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Abstract

In this paper we propose a multivariate asset model based on Lévy processes for pricing

of products written on more than one underlying asset. Our construction is based on a two

factor representation of the dynamics of the asset log-returns. We investigate the properties

of the model and introduce a multivariate generalization of some processes which are quite

common in financial applications, such as subordinated Brownian motions, jump diffusion

processes and time changed Lévy processes. Finally, we explore the issue of model calibration

for the proposed setting and illustrate its robustness on a number of numerical examples.

Keywords: Jump Diffusion process, Lévy processes, model calibration, multinames

derivative contracts, subordinated Brownian motions, time changed Lévy processes.

JEL Classification: G13, G12, C63, D52

1 Introduction

The aim of this paper is to introduce a simple, parsimonious and robust model for multivari-

ate Lévy processes with dependence between components, which can be easily implemented for

financial applications, such as the pricing of several types of multi-names derivative contracts

commonly used for example in the credit and the energy markets. The interest in the construc-

tion of multidimensional asset models based on Lévy processes is motivated by the importance of

capturing market shocks using more refined distribution assumptions compared to the standard

Gaussian framework, as highlighted by the recent crisis in the financial markets.

The proposed approach is based on a parsimonious two-factor linear representation of the

assets (log)-returns, in the sense that it uses a linear combination of two independent Lévy pro-

cesses representing respectively the systematic factor and the idiosyncratic shock. Hence, the

model has a simple and intuitive economic interpretation and retains a high degree of mathe-

matical tractability, as the multivariate characteristic function is always available in closed form.
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Further, dependence is generated by the chosen construction and the features of the distribu-

tion of the processes chosen as systematic and idiosyncratic components. Our construction can

be further applied to originate multidimensional versions of time changed Lévy processes with

dependence between components. This would allow to incorporate stochastic volatility features

which are shown to improve the performance of Lévy processes in pricing options across different

maturities (see Carr et al., 2003; Carr and Wu, 2004; Huang and Wu, 2004, for example).

The idea of inducing correlation via a factor approach dates back to Vasicek (1987) for

the case of Brownian motions; the application of linear transformations has been extensively

adopted in the literature for the case of Lévy processes as well. We cite, amongst others,

the approaches put forward by Baxter (2007), Moosbrucker (2006a,b), Lindskog and McNeil

(2003), Brigo et al. (2007), Semeraro (2008) and Luciano and Semeraro (2010). In more details,

Baxter (2007) and Moosbrucker (2006a,b) use a factor copula approach for both subordinated

Brownian motions and Jump Diffusion (JD) processes, whilst Lindskog and McNeil (2003) make

use of linear combinations to develop a common Poisson shock process framework for dependent

events frequencies in the context of insurance loss modelling and credit risk modelling. This

approach is then extended in Brigo et al. (2007) to a formulation which avoids repeated defaults

at both cluster level and single name level. Semeraro (2008) and Luciano and Semeraro (2010)

instead apply the factor approach to build multivariate subordinators from which they derive the

multivariate version of several families of subordinated Brownian motions, such as the Variance

Gamma process, in this way generalizing the approaches of Luciano and Schoutens (2006), Cont

and Tankov (2004), Leoni and Schoutens (2006) and Eberlein and Madan (2009).

In spite of being in general simple and relatively parsimonious, these approaches present

a number of drawbacks, including restrictions on the range of possible dependencies and the

set of attainable values for the correlation coefficient. This is also documented, for example, by

Wallmeir and Diethelm (2012) whose empirical analysis shows the limited potential to match ob-

served correlations of the multivariate Variance Gamma models of Leoni and Schoutens (2006)

and Semeraro (2008). We note that for the case of subordinated Brownian motions, Semer-

aro (2008) and Luciano and Semeraro (2010) improve the richness of the correlation struc-

ture through an alternative construction which uses correlated Brownian motions. However, as

pointed out by the the same authors, this is achieved at the cost of increasing the number of pa-

rameters required for calibration: the presence of a correlation matrix for the Brownian motion

part of the components, in fact, implies that the number of parameters grows with the square

of the number of assets included in the basket, whilst market data available for calibration is

usually linear in the number of instruments.

Although similar in principle to some of the multivariate constructions discussed above,

our model presents some distinctive features. In first place, our construction applies to any

type of Lévy process, hence offering a unified treatment, from subordinated Brownian motions
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to jump diffusion processes. In particular, in the case of jump diffusion processes, it allows

the distribution of the jump sizes to depend on the nature of the underlying shock; in the

case of subordinated Brownian motions, instead, the construction does not necessarily rely

on the process chosen as subordinator. This is of relevance, for example, in those cases in

which the simulation of the process subordinator proves inefficient, as in the case of the CGMY

process (see Ballotta and Kyriacou, 2014, for example). Further, our model is flexible enough to

accommodate complete dependence, independence, positive and negative linear correlation, and

is relatively parsimonious in terms of the overall number of parameters involved, as this grows

linearly with the number of assets, which facilitates its calibration to market data.

Finally, we note that model calibration to market data is an essential step for practical pricing

applications; however, calibration of any multivariate model requires the existence of actively

traded multi-names derivatives, and this is not the case in general. Hence, in the paper we

explore the implications of this issue on the proposed construction and the potential limitations.

The remaining of the paper is organized as follows. In section 2, we introduce our class of

multivariate Lévy processes, investigate its general properties and apply it to build multivariate

subordinated Brownian motions and jump diffusion processes. A financial application focussed

on model calibration and testing the robustness and the flexibility of the model is presented in

section 3; in this section, we also consider the pricing of spread options in view of recovering

information on the implied correlation matrix. Extensions to the case of time changed Lévy

processes are introduced in section 4; section 5 concludes.

2 Multivariate Lévy process via linear transformation

Lévy processes are characterized by independent and stationary increments; they are fully de-

scribed by their characteristic function which admits Lévy-Khintchine representation

φ (u; t) = etϕ(u), u ∈ R

ϕ (u) = iuα− u2σ
2

2
+

∫
R

(
eiux − 1− iux1(|x|<1)

)
Π (dx) .

The terms in the characteristic exponent, ϕ (·), i.e. (α, σ,Π) represent the characteristic triple

of the Lévy process. The parameter α ∈ R describes the drift of the process, σ > 0 represents

its diffusion part, whilst the jumps are fully characterized by the Lévy measure Π, i.e. a positive

measure satisfying
∫
R

(
1 ∧ |x|2

)
Π (dx) <∞.
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2.1 General framework

To construct a multivariate Lévy process with dependent components, we use the property that

these processes are invariant under linear transformations. The main result is given in the

following.

Proposition 1 Let Z (t), Yj(t), j = 1, ..., n be independent Lévy processes on a probability space

(Ω,F ,P), with characteristic functions φZ (u; t) and φYj (u; t), for j = 1, ..., n respectively. Then,

for aj ∈ R, j = 1, ..., n

X (t) = (X1 (t) , ...Xn (t))> = (Y1 (t) + a1Z (t) , ..., Yn (t) + anZ (t))>

is a Lévy process on Rn. The resulting characteristic function is

φX (u; t) = φZ

 n∑
j=1

ajuj ; t

 n∏
j=1

φYj (uj ; t) , u ∈ Rn. (1)

Corollary 2 Let X (t) be the multivariate Lévy process introduced in Proposition 1. Then.

(i) For j = 1, ..., n, the mth cumulant, cm, of the jth component of X (t) is

cm (Xj (t)) = t
[
cm (Yj (1)) + amj cm (Z (1))

]
. (2)

(ii) For any j 6= l, the covariance between the jth and lth components of X (t) is

Cov (Xj (t) , Xl (t)) = ajalVar (Z (1)) t.

The proof of both Proposition 1 and Corollary 2 follows from the properties of Lévy processes

(see, for example Cont and Tankov, 2004, Theorem 4.1).

The construction given in Proposition 1 offers a simple and intuitive economic interpretation

as for each margin, Xj , the process Z can be considered as the systematic part of the risk, whilst

the process Yj can be seen as capturing the idiosyncratic shock. Due to the presence of the

common factor Z(t), the components of X (t) may jump together and are dependent. Further,

as the model admits computable characteristic function (as in eq. 1), the joint distribution is

given and can be recovered numerically, even in the cases in which the components’ distribution

is not known analytically. This also implies that the dependence structure is determined by the

chosen distributions of Y (t) and Z(t). Further details on the model dependence are given in

the following (the proof is presented in A).
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Corollary 3 For each t ≥ 0, X (t) is positive associated, i.e.

Cov (f (X (t)) , g (X (t))) ≥ 0

for all non decreasing function f, g : Rn → R for which the covariance is well-defined, if either

aj ≥ 0 for j = 1, ..., n or aj ≤ 0 for j = 1, ..., n.

In the more general case in which the coefficients aj do not have the same sign for j = 1, ..., n,

the components Xj(t) and Xl(t), j 6= l, are pairwise negative quadrant dependent if ajal < 0.

Moreover, it follows directly from the construction of X (t) that the components are condition-

ally independent; further, if Y (t) is degenerate, the components of X (t) are perfectly (linear)

dependent; on the other hand, if Z(t) is degenerate, the components of X (t) are independent.

For the case of the proposed construction, the dependence between components of the mul-

tivariate Lévy process X (t) is correctly described by the pairwise linear correlation coefficient

ρXjl = Corr (Xj (t) , Xl (t)) =
ajalVar (Z (1))√

Var (Xj (1))
√
Var (Xl (1))

, (3)

(see Embrechts et al., 2002, for example). Indeed, ρXjl = 0 if and only if either ajal = 0 or

Var (Z (1)) = 0, i.e. Z is degenerate and the margins are independent. Moreover, |ρXjl | = 1

if and only if Y (t) is degenerate and there is no idiosyncratic factor in the margins. Further,

sign
(
ρXjl

)
= sign (ajal) and therefore both positive and negative correlation can be accommo-

dated. Finally, for fixed aj = ā > 0 (resp. aj = ā < 0), ρXjl is a monotone increasing (resp.

decreasing) function of al, which can take any value from −1 to 1 (resp. from 1 to -1). In

particular, ρXjl = 0 if either ā = 0, or al = 0 or both, whilst |ρXjl | = 1 as a limit case for ā→∞
and al →∞.

The previous results highlight an advantage of our model compared to the multivariate sub-

ordinator approach of Semeraro (2008) and Luciano and Semeraro (2010), and the factor copula

approach of Baxter (2007) and Moosbrucker (2006a,b). All these constructions, in fact, can only

accommodate strictly positive correlation values due to restrictions on the parameter control-

ling the correlation coefficient, which are required to ensure the existence of the characteristic

function of the processes involved. Moreover in the case of Semeraro (2008) and Luciano and

Semeraro (2010), the correlation coefficient can be zero (for symmetric subordinated Brownian

motions) even though the processes are still dependent.

Finally, the pairwise linear correlation between the margin processes can be expressed in

terms of the correlation between each margin and the systematic component as

Corr (Xj (t) , Z (t)) = aj

√
Var (Z (1))

Var (Xj (1))
∀j = 1, ..., n, (4)
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implying that ρXjl = Corr (Xj (t) , Z (t))Corr (Xl (t) , Z (t)).

The multidimensional modelling approach put forward in this section is quite flexible as

it allows to specify any univariate Lévy process for Y (t) and Z (t); the resulting distribution

of the margin might not be known analytically, but it is still accessible via the corresponding

characteristic function. On the other hand, for any chosen distribution for the margin process

X (t), it is possible to impose convolution conditions on the processes Y (t) and Z (t) so that

the linear combination Y (t) + aZ (t) has the same given distribution of X (t). This could be

particularly convenient in the case in which the multivariate Lévy process X(t) is used to build

a model for financial assets which is consistent with the information provided by traded vanilla

(univariate) options. As in general correlation cannot be directly observed in the market due to

lack of sufficiently liquid multinames derivative contracts (and therefore reliable quotes for these

instruments), by imposing convolution the calibration of the marginal distribution to observable

market data would be independent of the fitting of the correlation matrix, and therefore the

parameters governing the idiosyncratic and the systematic processes. These parameters would

be recovered at a second stage from any given correlation matrix and the relevant restrictions

imposed by the convolution. In more details, to facilitate the convolution, we choose X(t), Y(t)

and Z(t) from the same family of processes and, given the margins parameters, we solve

ϕXj(u) = ϕY j(u) + ϕZ(aju) j = 1, 2, ..., n. (5)

This implies that, if m is the number of parameters describing the processes Xj(t), Yj(t) and

Z(t), and the parameters of the margin processes are given, for a known correlation matrix

the fitting of the joint distribution requires n(m + 1) + m parameters. As shown by eq. (3),

we can recover the m parameters describing the common process Z(t) and the n loadings aj ,

j = 1, 2, ..., n, through the correlation matrix subject to relevant convolution conditions arising

from eq. (5). The nm parameters of the idiosyncratic process Yj(t) would then be obtained by

solving eq. (5) directly.

We note the following. In first place, the presence of convolution conditions on the parameters

of the idiosyncratic and systematic processes does not restrict the behaviour of the correlation

coefficient (3), as their effect would be to ensure that the cumulants cm(Xj(t)) and cm(Yj(t) +

ajZ(t)) match for j = 1, ..., n. Further, convolution conditions would not be necessary for

applications in which keeping the number of parameters small when dealing with univariate

contracts is not of particular relevance, and reliable information on the correlation matrix is

available.

Examples illustrating the case of a multivariate subordinated Brownian motions and jump

diffusion processes are discussed in the following sections, together with the corresponding con-

volution conditions.
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2.2 Multivariate subordinated Brownian motions

A subordinated Brownian motion X = (X (t) : t ≥ 0) is a Lévy process obtained by observing

a (arithmetic) Brownian motion on a time scale governed by an independent subordinator, i.e.

an increasing, positive Lévy process. Hence X(t) has general form

X (t) = θG (t) + σW (G (t)) , θ ∈ R, σ > 0, (6)

where W = (W (t) : t ≥ 0) is a Brownian motion and G = (G (t) : t ≥ 0) is a subordinator

independent of W . The resulting characteristic function is

φX (u; t) = e
tϕG

(
uθ+iu2 σ

2

2

)
, u ∈ R, (7)

where ϕG(·) denotes the characteristic exponent of the subordinator.

Constructing Lévy processes by subordination has particular economic appeal as, in first

place, empirical evidence shows that stock log-returns are Gaussian but only under trade time,

rather than standard calendar time (see Geman and Ané, 1996, for example). Further, the

time change construction recognizes that stock prices are largely driven by news, and the time

between one piece of news and the next is random as is its impact.

In general, the parameters of the distribution of the subordinator are chosen so that EG (t) =

t, in order to guarantee that the stochastic clock G (t) is an unbiased reflection of calendar

time (see Madan et al., 1998, for example). The law of the increments of G (t) allows us to

characterize the resulting process. There are different methods for choosing a subordinator

which is suitable for financial modelling; one class of such processes which proves to be quite

popular due to its mathematical tractability is the family of tempered stable subordinators,

which have characteristic exponent

ϕG (u) =
α− 1

αk

[(
1− iuk

1− α

)α
− 1

]
, u ∈ R, (8)

where k > 0 is the variance rate of G(t) and α ∈ [0, 1) is the index of stability. In particular, if

α = 0, expression (8) is to be understood in a limiting sense and G(t) is a Gamma process so that

X(t) is a (asymmetric) VG process (see Madan et al., 1998, for example). If, instead, α = 1/2,

the subordinator follows an Inverse Gaussian process and X (t) is the NIG process introduced

by Barndorff-Nielsen (1995). We note that the probability density of tempered stable processes

is known in explicit form only for these values of the stability index (i.e. α = 0 and α = 1/2),

however, through eq. (7) - (8) it is possible to construct subordinated Brownian motions for

any value of α ∈ [0, 1).

To build the multivariate version of a subordinated Brownian motion of the form (6), we
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follow Proposition 1 and let Yj (t) and Z (t) be independent subordinated Brownian motions

chosen from the same family of distributions, and obtained by subordinating respectively a

Brownian motion with drift βj ∈ R and volatility γj > 0 by an unbiased subordinator GY j ,

and a Brownian motion with drift βZ ∈ R and volatility γZ > 0 by an unbiased subordinator

GZ . Then, X (t) is a multivariate subordinated Brownian motion with margins of the same

distribution’s class as Yj (t) and Z (t) if the convolution condition (5) is satisfied.

For sake of illustration, in the following we consider the case in which the subordinators Gj ,

GY j , for j = 1, ..., n and GZ are unbiased tempered stable processes with variance rates kj > 0,

νj > 0 and νZ > 0 respectively. Then, eq. (5) and (8) imply{
kjθj = νZajβZ j = 1, ..., n

kjσ
2
j = νZa

2
jγ

2
Z j = 1, ..., n

(9)

consequently (
θj = βj + ajβZ , σ2

j = γ2
j + a2

jγ
2
Z , kj = νjνZ/ (νj + νZ)

)
(10)

The subordinators, in fact, are assumed to have the same stability index α in order to guarantee

that Xj(t), Yj(t) and Z(t) belong to the same family of distributions.

We note the following. Firstly, the application of Proposition 1 only requires knowledge of the

characteristic function of the subordinated Brownian motions, whilst the exact features of the

subordinator processes are not necessary (see, for example Ballotta and Kyriacou, 2014, for the

construction based on Proposition 1 of a multivariate CGMY process, which is a subordinated

Brownian motion whose subordinator’s distribution is not available in explicit form). Secondly,

in this construction dependence stems from both the subordinator and the associated Wiener

process. In particular, somehow similar to the model of Luciano and Semeraro (2010), our

approach allows for the activity of the (margin) stochastic clock to be governed by a systematic

component and a component which is instead asset specific, as supported by the empirical

analysis performed by Lo and Wang (2000).

Example 1 (The VG process) Let G(t) be a gamma process, i.e. a tempered stable process

with scale parameter α = 0; then X (t) is a VG process with characteristic function

φX (u; t) =

(
1− iuθk + u2σ

2

2
k

)− t
k

, u ∈ R.

Under the restrictions imposed by equation (9), X (t) is a multivariate VG process with margins’
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parameters (θj , σj , kj) constructed as described above and characteristic function

φX (u; t) =

1− iβZνZ
n∑
j=1

ajuj +
γ2
Z

2
νZ

 n∑
j=1

ajuj

2−
t
νZ n∏

j=1

(
1− iujβjνj + u2

j

γ2
j

2
νj

)− t
νj

.

The coefficient of pairwise correlation given by equation (3) in this case reads

ρXjl =
ajal

(
γ2
Z + β2

ZνZ
)√

σ2
j + θ2

jkj

√
σ2
l + θ2

l kl

. (11)

Example 2 (The NIG process) In the case in which the tempered stable subordinator G (t)

has scale parameter α = 1/2, i.e. is an Inverse Gaussian process, then X (t) is a NIG process

with characteristic function

φX (u; t) = e
t
k (1−

√
1−2iuθk+u2σ2k), u ∈ R.

Under the convolution restrictions (9), the margins Xj (t) are NIG processes with parameters

(θj , σj , kj) as constructed above. The resulting characteristic function of the multivariate NIG

process is

φX (u; t) = etϕ(u)

ϕ(u) =
1

νZ

1−

√√√√√1− 2iβZνZ

n∑
j=1

ajuj + γ2
ZνZ

 n∑
j=1

ajuj

2


+

n∑
j=1

1

νj

(
1−

√
1− 2iujβjνj + u2

jγ
2
j νj

)
.

Equation (11) describes the pairwise correlation coefficient also in this case.

As both the VG and NIG are 3-parameter processes, the number of parameters required for

the joint fit, given the margins, is (4n + 3), of which 3 + n are observed from the correlation

matrix subject to conditions (9), and 3n are obtained from the conditions on drift and diffusion

coefficients.

2.3 Multivariate jump-diffusion (JD) process

An alternative representation of Lévy processes quite common in financial applications relies on

the observation that stock prices appear to have small continuous movements most of the time

(due, for example, to a temporary imbalance between demand and supply); sometimes though
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they experience large jumps upon the arrival of important information with more than just a

marginal impact. By its very nature, important information arrives only at discrete points in

time and the jumps it causes have finite activity. A motion portraying such a dynamic is a

jump-diffusion process, which can be decomposed as the sum of a Brownian motion with drift

and an independent compound Poisson process. Hence, a Lévy process in the JD class has form

X (t) = µt+ σW (t) +

N(t)∑
k=1

ξ (k) , µ ∈ R, σ > 0,

where W = (W (t) : t ≥ 0) is a Brownian motion, N = (N (t) : t ≥ 0) is a Poisson process count-

ing the jumps of X and ξ (k) are i.i.d. random variables capturing the jump sizes (severities).

W , N and ξ are independent of each other.

We assume that the rate of arrival of the Poisson process is λ > 0. In this case, we say that

the process X (t) has parameters (µ, σ, λ) and jump sizes distributed as a random variable ξ;

the resulting characteristic function is

φX (u; t) = e
t
(
iuµ−u2 σ

2

2
+λ(φξ(u)−1)

)
,

φξ (u) = E
(
eiuξ

)
, u ∈ R.

Popular examples of JD processes used in finance are the so-called Merton process (Merton,

1976), for which the jump sizes are Gaussian, and the Kou process (Kou, 2002) in which case

the jump sizes follow an asymmetric double exponential distribution.

In order to construct the multivariate version of the JD process, we follow the same steps as

in the previous sections and let the idiosyncratic factor, Yj , and the global factor, Z, to be two

independent JD processes, respectively with parameters (βj , γj , δj) and jump sizes distributed

as a random variable ηj , and (βZ , γZ , δZ) and jump sizes distributed as a random variable ηZ .

The corresponding pairwise correlation coefficient is

ρXjl =
ajal

(
γ2
Z + δZE

(
η2
Z

))√
σ2
j + λjE

(
ξ2
j

)√
σ2
l + λlE

(
ξ2
l

) . (12)

Further, for the convolution condition (5) to hold, i.e. for the process X (t) = Y (t) + aZ(t)

to be a multivariate JD process, whose margins have parameters (µj , σj , λj) and jump sizes

distributed as a random variable ξj , we require

(
µj = βj + ajβZ , σ2

j = γ2
j + a2

jγ
2
Z

)
; (13)
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further, as the Poisson process is closed under convolution, we also impose

λj = δj + δZ , (14)

from which it follows that eq. (5) reduces to the following convolution on the distribution of the

jump sizes:

φξj (u) =
δjφηj (u) + δZφηZ (aju)

δj + δZ
, u ∈ R. (15)

We note the following. Firstly, under the proposed construction, the compound Poisson

process components are allowed to jump at different points in time. Secondly, the convolution

conditions reported above show the decomposition of both the continuous part of the risk and

the pure jump one into their corresponding asset specific part and the one common to the entire

basket under consideration. Further, the proposed construction of multivariate JD processes

falls in the more general common Poisson shock framework, reviewed in Lindskog and McNeil

(2003) and further extended by Brigo et al. (2007). In our case, we use only two different types

of shock (systematic and idiosyncratic); however, the distribution of the jump sizes depends on

the nature of the underlying shock.

We note that a simple solution to eq. (15) can be obtained by assuming that ξj , ηj and ajηZ

are identically distributed. This is the case discussed by Moosbrucker (2006a) . However, in the

following we do not consider this alternative as it imposes the unrealistic restriction that the

jump sizes of each margin and the ones of its idiosyncratic component are identically distributed.

Therefore, we make use of the (numerical) solution of eq. (15). In particular, as this condition

indicates that the margins’ jump size distribution is given by a mixture of the distributions of

the components’ jump sizes, we solve the resulting missing data problem by moment matching.

Example 3 (The Merton process) Assume that the distribution of the jump sizes is Gaus-

sian. Then, if ηj ∼ N
(
ϑY j , υ

2
Y j

)
and ηZ ∼ N

(
ϑZ , υ

2
Z

)
, the process Xj (t) = Yj (t) + ajZ (t) is a

Merton JD process with parameters (µj , σj , λj) as defined above, and jump sizes ξj ∼ N
(
ϑj , υ

2
j

)
,

where ϑj and υj are the solutions of

eiuϑj−u
2
υ2j
2 =

δje
iuϑY j−u2

υ2Y j
2 + δZe

iuajϑZ−u2
a2j υ

2
Z

2

δj + δZ
, u ∈ R. (16)

The above implies

ϑj =
δjϑY j + δZajϑZ

δj + δZ
,

υ2
j =

δj(ϑ
2
Y j + υ2

Y j) + δZa
2
j (ϑ

2
Z + υ2

Z)

δj + δZ
− ϑ2

j .
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The coefficient of correlation is given by equation (12), with

E
(
ξ2
j

)
= ϑ2

j + υ2
j , ∀j = 1, ..., n

E
(
η2
Z

)
= ϑ2

Z + υ2
Z .

Example 4 (The Kou process) In the case of the Kou process, the jump sizes follow a double

exponential distribution with parameters (p, α+, α−), i.e. their density function is given by

pα+e−α
+y1(y≥0) + (1− p)α−eα−y1(y<0), α+, α− ∈ R++, p ∈ [0, 1].

Thus, if ηj , ηZ , ξj have a double exponential distribution respectively with parameters (pY j , α
+
Y j , α

−
Y j),

(pZ , α
+
Z , α

−
Z ), (pj , α

+
j , α

−
j ), then, for the convolution condition (15) to hold, these parameters

must satisfy the following

pj
α+
j

α+
j − iu

+ (1− pj)
α−j

α−j + iu
=

1

δj + δZ

[
pY j

δjα
+
Y j

α+
Y j − iu

+ (1− pY j)
δjα
−
Y j

α−Y j + iu
+ pZ

δZα
+
Z

α+
Z − iaju

+ (1− pZ)
δZα

−
Z

α−Z + iaju

]
.(17)

The correlation coefficient is obtained from equation (12) for

E
(
ξ2
j

)
= 2

 pj(
α+
j

)2 +
1− pj(
α−j

)2

 , ∀j = 1, ..., n

E
(
η2
Z

)
= 2

(
pZ(
α+
Z

)2 +
1− pZ(
α−Z
)2
)
.

Finally, we note that for the multivariate Kou model, the reconstruction of the margin param-

eters (p, α+, α−) from the components parameters can only be performed numerically.

In the following, we consider applications of our multivariate approach to option pricing

problems; therefore, without loss of generality, we consider the case of a JD process with no

drift, i.e. we set µj = βj = βZ = 0 for j = 1, ..., n. This implies that for the joint fit, given the

margins, we require (5n+ 4) parameters in the case of the Merton process and (6n+ 5) in the

case of the Kou process.
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3 Multivariate asset modelling: calibration and derivative pric-

ing

In this section we analyze the calibration of the multivariate Lévy process model to market data

in view of applications to the problem of pricing multi-assets products.

To this purpose, we consider a frictionless market in which (equity) asset log-returns are

modelled by the multivariate Lévy process defined in Proposition 1, so that under any risk

neutral martingale measure asset prices are given by

Sj(t) = Sj(0)e(r−qj−ϕXj(−i))t+Xj(t), j = 1, ..., n

where r > 0 is the risk free rate of interest, Sj(0) and qj denote respectively the spot price

and the dividend yield of the jth asset, and ϕXj(−i) is the exponential compensator of the jth

component of the multivariate Lévy process, Xj(t). As in general the given market is incomplete,

there are infinitely many risk neutral martingale measures; the availability of market prices for

European vanilla options, though, allows us to “complete” the market and extract the pricing

measure by calibration.

As outlined in the previous sections, the full calibration procedure should use both single-

name and multi-names derivatives in order to access information on the log-returns correlation

matrix as well. However, in general suitable multi-names contracts are not sufficiently liquid

to generate reliable estimates. Therefore, we assume that option traders views about this cor-

relation is strongly based on observed asset prices; we further explore a procedure with which

information about the market consensus on correlation could be recovered, in a way similar to

the one used to extract implied volatility from vanilla options, if a suitable number of prices

of exotic options (that are sensitive to correlation) is available. Finally, we note that the cal-

ibration of the model can only be solved numerically via constrained least square; hence, we

analyze the resulting approximation error by quantifying the difference between the moments of

the distribution of the processes X(t), calculated using the components parameters in conjunc-

tion with eq. (2), and the same moments calculated instead using the margin parameters and

the corresponding model exact formulae (reported in B for the case of subordinated Brownian

motions and C for the case of JD processes).

The analysis is organized as follows. In section 3.1 we consider the case of three assets, as this

is a relatively common situation for example when assessing bilateral counterparty credit risk of

contracts on a distinct reference name (see Ballotta and Fusai, 2013, for example, and references

therein). In section 3.2, we present a procedure aimed at recovering “implied” correlation.

Finally, in section 3.3, we offer some further comments on the performance of the model and its

robustness by considering different combinations of higher dimensional cases.
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3.1 Model calibration: a 3-asset case

We test the flexibility of the model by calibrating it to option prices on Ford Motor Company,

Abbott Laboratories and Baxter International Inc. We use Bloomberg quotes at three different

valuation dates, September 30, 2008, February 27, 2009 and September 30, 2009, in order to

explore the behaviour of the proposed model when fitting different correlation values. A synopsis

of the three assets is reported in Table 1. The risk free rate of interest is taken from Bloomberg

as well in correspondence of the relevant dates. Correlation between assets log-returns has been

estimated on a time window of 125 days up to (and including) the valuation date.

The three assets considered in this analysis are constituents of the S&P100 index, and rep-

resent three different industries: automotive, drug manufacturers and medical instruments and

supplies respectively. Abbott Laboratories and Baxter International Inc. are part of the same

healthcare sector. Further, from Table 1 we observe that in September 2008 the three assets

exhibit positive correlation, at a level which is fairly similar between Ford and the remaining

two assets, whilst it is significantly higher between Abbott and Baxter. This date, in fact, co-

incides with the peak of the financial crisis which led to the collapse of Lehman Brothers; the

car industry was also experiencing a particularly difficult period following the General Motors

liquidity crisis and the sales fall also reported by its main competitors. Correlation values fur-

ther increase in February 2009, when the effects of the credit crisis are fully captured by the

estimation procedure used in this analysis. These observations lead us to expect the common

component Z(t) to play a significant role in the prices of Abbott Lab. and Baxter, whilst we

expect it to have a smaller impact on Ford prices. The same consideration holds especially for

the September 2009 valuation date, when Ford exhibits negative correlation with the other two

assets considered in this analysis.

The calibration of the proposed multivariate asset model is performed in steps, as described

in section 2.1. In first place, we extract the parameters of the margin processes, X(t), using

market quotes of European options written on each asset, by minimizing the weighted root mean

square error. In particular, we follow Huang and Wu (2004) for the choice of both the error

function and the weights. Thus, we consider the pricing error outside the bid-ask spread, in

the sense that the error is calculated as the difference between the model price and the bid-ask

quotes only if the model prices fall outside the market bid-ask spread. As argued by Huang

and Wu (2004) and Dumas et al. (1998), this choice is aimed at measuring the exactness with

which the model fits within the trading costs bounds. As for the choice of the weights, we use an

optimal weighting approach based on the variance of option prices (see Huang and Wu, 2004, for

further details). Model prices are computed using the Fourier inversion procedures of Carr and

Madan (1999); out-of-the-money options are dealt with the time value approach. The second

step consists of the calibration of the parameters of the idiosyncratic process, Y(t), and the

systematic component, Z(t), by fitting the correlation matrix using least squares, and imposing
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the relevant convolution conditions.

The calibrated parameters of the margins, the idiosyncratic components and the systematic

process are reported in Tables 2-5 for all the valuation dates considered and models analysed in

this paper. The Tables also report the accuracy with which the postulated linear combination

reproduces the margin process distribution (which we quantify under the heading “Moment

Matching Error”), and the error originated in fitting the given correlation matrix (heading

“Correlation Error”). Further, Figures 1-2 show the QQ plots of the (simulated) samples of the

margin process obtained by direct calibration to European vanilla options and the same process

obtained, instead, by linear combination of the idiosyncratic process and the systematic process.

In particular, in these plots we consider the case of the multivariate VG model and Merton JD

model (similar results have been obtained for the other models presented in this paper and are

available from the authors). These results illustrate the goodness of the convolution provided

by the fitting procedure, although the accuracy of the approximation tends to deteriorate at

the very far end of the tails. Also, the full range of observed correlations is captured with a

satisfactory degree of accuracy.

As a further test, we re-calculate the prices of the European vanilla options using the joint

characteristic function and quantify the error against the corresponding market data, as reported

in Tables 2-5. The (weighted) root mean squared errors are very close to the ones generated by

direct calibration of the marginal distribution, which shows that any potential approximation

error introduced by the joint fitting procedure is relatively negligible for this type of application.

We note though that the higher the number of parameters in the joint distribution, the less

flexible the fitting of the multivariate model, which highlights the importance of having a parsi-

monious margin model for the fitting procedure to converge efficiently. Finally, Figure 3 shows

the volatilities recovered by the standard Black-Scholes formula in the case in which the input

prices are generated by the multidimensional VG process. The plot also reports the original

bid-ask volatilities obtained from market data.

We conclude by noting that, as in the set up proposed in this paper the correlation coef-

ficient is an explicit function of the model parameters, market consistent information on the

(in general not observable) common component could be recovered directly from the market

correlation matrix. The multivariate construction presented in section 2 would allow us to use

this information to observe the impact of these components on each asset through, for example,

the correlation coefficient (4). For the case of the assets considered in this study, these results

are shown in Table 6. In particular, we observe the very strong impact of the systematic process

on the correlation between the log-returns of Abbott Lab. and Baxter; the role of the common

factor though is not so relevant in the case of Ford, confirming the economic considerations

offered above. Further evidence is provided by the parameters reported in Tables 2-5; for ex-

ample, in the case of the VG model specification, the systematic component explains only 13%
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of the total variance of Ford log-returns in September 2008, against 60% of the total variance

of Abbot Lab. and 67% of Baxter. This changes in February 2009 to 14% for Ford, 90% for

Abbott Lab. and 62% for Baxter. In September 2009, the contribution of Z accounts for 10%

of the total variation of Ford, and 49%-41% for Abbott Lab. and Baxter respectively. Similar

considerations hold for the other models analyzed in this paper.

3.2 Pricing of Exotics and implied correlation

In this section, we consider the pricing of European style multi-names products in the market

model calibrated in section 3.1. In particular, we consider the case of a spread (call) option with

payoff at maturity T

(S1(T )− S2(T )−K)+ .

The choice of this contract class is motivated by the fact that they carry information about the

market consensus on correlation between the underlying assets.

In this example, we assume a joint VG dynamics for the log-returns of the two assets, with

parameters obtained by the joint model calibration reported in Table 2. Further, we assume that

the assets considered are Baxter and Abbott Lab. for j = 1, 2 respectively; finally the valuation

date is 27/02/2009. All prices are computed using the Fourier inversion method proposed by

Hurd and Zhou (2009).

The “implied” correlation is obtained from the standard model using as input the spread

option prices obtained under the multivariate VG model, and the implied volatility of each asset

extracted from vanilla option prices computed under the VG model in correspondence of each

strike and maturity. The results are presented in Figure 4 - panel (a). We note, in particular,

that the implied correlation is higher than the historical correlation (which is fixed at 83% - see

Table 1) in the case of in-the-money options (i.e. if K < A(0), for A(0) = S1(0) − S2(0)) and

it decreases as the option moves out-of-the-money and deep out-of-the-money (i.e. K > A(0)).

This observed “skew” pattern is consistent with the so-called correlation leverage effect reported

for example by Da Fonseca et al. (2007).

3.3 Model calibration in higher dimensions

We conclude this section with some additional comments on the performance of the model and

the proposed 2-step calibration procedure when more than three assets are considered.

For illustration purposes, we discuss only the case of the multidimensional VG process; for

the 4-asset case we add to the previous data set the security Harley-Davidson Inc., observed on

Sept. 30, 2008. For higher dimension cases, we use part of the data set provided in Fiorani

et al. (2010). A synopsis of the results is offered in Table 8, where we report the root mean

square error resulting from the correlation matrix fit, and the moment matching error. QQ plots
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for the 5-assets and 10-assets cases are presented in Figures 5-6. We note that, as somewhat

expected, the dimensionality of the problem affects both the quality of the correlation fit and

the robustness of the numerical solution to the convolution conditions, especially as far as the

tails of the distributions are concerned.

4 Extensions to multivariate time changed Lévy processes: a

simple setting.

The multivariate Lévy process introduced in Proposition 1 can also be used as the basis for mul-

tivariate time changed Lévy processes constructions, allowing for the introduction of stochastic

volatility features. As Lévy processes have independent and stationary increments, in fact, they

suffer in terms of fitting performance especially over medium-long maturities. In this respect,

time changed Lévy processes represent a way to simultaneously and parsimoniously capture the

fact that not only asset prices jump, but also returns volatilities are stochastic and are correlated

to asset returns. These processes have been studied in the context of option pricing by, amongst

others, Carr et al. (2003), Carr and Wu (2004), and Huang and Wu (2004) (see Appendix B).

For a simple construction, let V(t) be a n-dimensional absolutely continuous time change

with components of the form

Vj(t) = bjV (t)

= bj

∫ t

0
v(s)ds j = 1, ..., n,

for positive constants bj , j = 1, ..., n, and a positive integrable process v(t) representing the

instantaneous (common) business activity rate. A multivariate time changed Lévy process B(t)

can be then obtained by evaluating each component of a n-dimensional Lévy process X(t) as

given in Proposition 1 on a time scale governed by V(t) so that

Bj(t) = Xj (Vj(t)) j = 1, ..., n.

The corresponding characteristic function of the margin process is given by

φBj(uj ; t) = E
[
E
(
eiujXj(Vj(t))

∣∣∣Vj(t))] uj ∈ R, j = 1, ..., n; (18)

if Vj(t) is independent of Xj(t) for j = 1, ..., n, (18) reduces to

φBj(uj ; t) = φV (−ibjϕXj(uj); t) j = 1, ..., n. (19)

We note that the generalization of the previous result to the case in which Xj(t) and Vj(t)



18

are correlated (to capture the so called leverage effect) can be obtained using the leverage-

neutral measure of Carr and Wu (2004). The corresponding multivariate characteristic function

is therefore

φB (u; t) = φV (−ig (u; a,b) ; t) (20)

g (u; a,b) =

n∑
j=1

bjϕY j (uj)

+b(1)ϕZ

 (n)∑
l=(1)

ulal

+

(n)∑
l=(2)

(bl − bl−1)ϕZ

 (n)∑
k=(l)

ukak

 (21)

where b(j) is the j-th element of the sequence (b(1), b(2), ..., b(n)) obtained by rearranging in

increasing order the sequence of parameters (b1, b2, ..., bn) (and (1), (2), ..., (n) is a permutation

of 1, 2, ..., n). Further, for any j 6= l, the covariance between the jth and lth components of B (t)

is

Cov(Bj(t), Bl(t)) = ajal min(bj , bl)E(V (t))Var(Z(1)) + bjblE(Xj (1))E(Xl (1))Var(V (t)), (22)

from which the correlation coefficient follows (the proof of equations (20)-(22) is provided in

Appendix B.2). We note the limited dependence structure offered by the proposed construction

due to the common time change applied to the base Lévy process; a full, richer construction of

multivariate time changed Lévy processes is left to future research.

For an illustration, we consider the case of a multivariate VG process (as given in section

2.2) time changed by an independent integrated CIR process (as in Carr et al. (2003)), so that

dv(t) = κ (η − v(t)) dt+ λ
√
v(t)dW̄ (t),

where W̄ (t) is a standard Brownian motion independent of the base process X(t). The charac-

teristic function of V (t) is well known from standard results on affine processes (see Filipović,

2009, for example); therefore (19) reads

φBj(uj ; t) = eΦj(uj ,t)+Ψj(uj ,t)v(0) j = 1, ..., n,
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with

Φj(uj , t) =
2κη

λ2
ln

 2ζj(uj)e
ζj(uj)+κ

2
t

(ζj(uj) + κ)
(
eζj(uj)t − 1

)
+ 2ζj(uj)


Ψj(uj , t) =

2ξj(uj)
(
eζj(uj)t − 1

)
(ζj(uj) + κ)

(
eζj(uj)t − 1

)
+ 2ζj(uj)

ζj(uj) =
√
κ2
j − 2λ2ξj(uj)

ξj(uj) = − bj
kj

ln

(
1− iujθkj + u2

j

σ2

2
kj

)
.

The parameters of the multivariate VG-CIR model calibrated to the market data described

in section 3.1, under the assumption of a risk neutral dynamic of the stock price,

Sj(t) = Sj(0)e(r−qj)t−Φj(−i,t)−Ψj(−i,t)v(0)+Bj(t),

are reported in Table 7. For illustration purposes, we only consider the valuation date as of

27/02/2009. The Table reports the error in fitting the correlation matrix as well as the error

in reproducing the original option prices by the multivariate VG-CIR model. Comparison with

Table 2 shows the improved performance of the time changed VG construction due to the

additional stochastic volatility features. Further evidence is provided in Figure 3, where we plot

the implied volatilities generated by the multidimensional VG-CIR process and compare them

with the ones obtained previously from the multivariate VG model. In particular, we note that

the implied volatility induced by the VG-CIR construction provides a better fit especially for

the more liquid contracts, as expected (see Carr et al., 2003; Huang and Wu, 2004, for example).

In Figure 4 - panel (b), we show the implied correlation extracted from the prices of the

spread option introduced in section 3.2. Similarly to the case of the multivariate VG model,

we observe high values of the implied correlation for in-the-money options, which decreases

as the contract moves out-of-the-money. Further, the calibrated multivariate VG-CIR process

generates implied correlation values that are consistently higher than the ones generated by the

multivariate VG model calibrated to the same dataset. This is due to the higher variance of the

Gamma clock as compared to the integrated CIR process, which in turns generates a distribution

of the underlying spread with higher variance than under the VG-CIR framework. Therefore

the multivariate VG model is expected to give a relatively higher price for this contract.

The multivariate construction for time changed Lévy processes introduced in this section

can be further improved to a setting in which stochastic volatility can be generated separately

from the diffusion and the jump component of X(t), by applying individual time changes as

in Huang and Wu (2004). Hence, the multidimensional model proposed in this section could
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be considered as an alternative to the Wishart processes approach introduced for example by

Gourieroux (2006), Da Fonseca et al. (2007) and further extended by Leippold and Trojani

(2008).

5 Conclusions

In this note we present an alternative construction of multivariate Lévy processes which keeps

the appealing properties of the approaches existing in the literature and, at the same time,

addresses their limitations. The proposed model could also be used as a platform to construct

multivariate time changed Lévy processes, allowing for a richer stochastic volatility structure.

The empirical analysis presented in this paper shows that our approach is flexible enough to

accommodate the full range of possible linear dependence, from negative to positive correlation,

from complete linear dependence to independence, but, at the same time, it is relatively parsi-

monious in terms of number of parameters involved, as this grows linearly with the number of

names in the basket. The presence of restrictions on the parameters due to convolution condi-

tions implies some accuracy error in reproducing the margin distribution when the number of

assets grows. Further, model calibration requires access to the log-returns (risk neutral) correla-

tion matrix, which is however not directly observable due to lack of actively traded multi-assets

securities. Hence, current research is focussed on investigating alternative estimation methods

of the parameters of the systematic process based on index options and asymptotic properties

of the Lévy processes considered, in order to both relax the convolution requirement and gain

information on the correlation matrix as to improve the tractability of the model, especially its

calibration to market data.
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A Proof of Corollary 3

To prove the result, we use the conditional covariance formula for any three random variables ξ, η and ζ

Cov (ξ, η) = E (Cov (ξ, η| ζ)) + Cov (E (ξ| ζ) ,E (η| ζ)) , (A.1)

(see Ross, 2010, for example). Hence, let f, g : Rn → R be non decreasing functions for which the

covariances are defined. By properties of positive association (see Müller and Stoyan, 2002, for example),

Y (t) is positive associated because it has independent components; consequently, also Y (t) + az is

positive associated for each fixed z ∈ R. Therefore

Cov (f (X (t)) , g (X (t))|Z(t)) = Cov (f (Y (t) + aZ(t)) , g (Y (t) + aZ(t))|Z(t)) ≥ 0;

hence, its expectation is non-negative. Further, E (f (Y (t) + az)) and E (g (Y (t) + az)) are non decreas-

ing function of z if aj ≥ 0 for j = 1, 2, ..., n. As Z(t) is positive associated, it follows from the properties

of positive association (see Müller and Stoyan, 2002, for example) that the covariance between these two

terms is non-negative as well. On the other hand, if aj ≤ 0 for all j = 1, 2, ..., n, then (−E (f (Y (t) + az)))

and (−E (g (Y (t) + az))) are non decreasing function of z, and therefore

Cov (E (f (X (t))|Z(t)) ,E (g (X (t))|Z(t))) = Cov (−E (f (X (t))|Z(t)) ,−E (g (X (t))|Z(t)))

is non-negative as well. The required result follows.

B Time changed Lévy processes

B.1 General facts

Time changed Lévy processes are obtained by observing a Lévy process X(t) on a time scale governed by

a non-negative, non-decreasing stochastic process V (t). X(t) is the base process, V (t) is the time change,

or stochastic clock, and the resulting process is B(t) = X (V (t)). Under the assumption of a stochastic

clock independent of the base process, the process characteristic function is φB(u; t) = φV (−i (ϕX(u)) ; t).

It follows by direct differentiation of the (logarithm of the) characteristic function of B(t) that

EB (t) = E (X(1))E (V (t)) , (B.1)

Var (B (t)) = Var (X (1))E (V (t)) + E2 (X(1))Var (V (t)) , (B.2)

c3(B(t)) = c3 (X(1))E (V (t)) + 3E (X(1))Var (X(1))Var (V (t)) (B.3)

+E3 (X(1)) c3 (V (t)) , (B.4)

c4(B(t)) = c4(X(1))E (V (t)) + 4c3(X(1))E (X(1))Var (V (t)) + 3Var2 (X(1))Var (V (t))

+6E2 (X(1))Var (X(1)) c3 (V (t)) + E4 (X(1)) c4 (V (t)) , (B.5)

from which the indices of skewness, γ1(t), and excess kurtosis, γ2(t), follow.

In the special case in which the base process is a Brownian motion with drift X(t) = θt+ σW (t) for
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θ ∈ R, σ > 0, then (B.1)-(B.5) reduce to (see Ané and Geman, 2000, for example)

EB (t) = θE (V (t)) , (B.6)

Var (B (t)) = σ2E (V (t)) + θ2Var (V (t)) , (B.7)

c3(B(t)) = 3θσ2Var (V (t)) + θ3c3 (V (t)) , (B.8)

c4(B(t)) = θ4c4 (V (t)) + 6θ2σ2c3 (V (t)) + 3σ4Var (V (t)) . (B.9)

B.2 Proof of Equations 20, 21, 22

(i) The multivariate characteristic function of the process B(t) can be written as

φB (u; t) = E
[
eV (t)

∑n
j=1 bjϕY j(uj)E

(
ei

∑n
j=1 ujajZ(bjV (t))

∣∣∣V (t)
)]
.

Rearrange the sequence (b1, b2, ..., bn) in increasing order to obtain (b(1), b(2), ..., b(n)), where (1), (2), ..., (n)

is a permutation of 1, 2, ..., n. Then, conditioned on V (t),

n∑
j=1

ujajZ (bjV (t)) =

(n)∑
l=(1)

ulalZ (blV (t))

=

(n)∑
l=(1)

ulalZ
(
b(1)V (t)

)
+

(n)∑
l=(2)

 (n)∑
k=l

ukak (Z (blV (t))− Z (bl−1V (t)))

 .

As conditioned on V (t), Z(t) has independent and stationary increments, eq. (20), (21) follow.

(ii) Eq. (22) follows by direct differentiation of the multivariate characteristic function. Alternatively,

the covariance can be calculated using the conditional covariance formula (A.1). Due to the as-

sumptions of independence between Yj(t), Z(t) and V (t), in fact,

Cov (Xj (bjV (t)) , Xl (blV (t))|V (t)) = ajal min(bj , bl)V (t)Var(Z(1));

further E(Xj (bjV (t))|V (t)) = bjV (t)E(Xj (1)), from which eq. (22) follows.

C Cumulants of a JD process

By differentiation of the characteristic exponent, it follows

EX (t) = (µ+ λE (ξ)) t, (C.1)

Var (X (t)) =
(
σ2 + λE

(
ξ2
))
t, (C.2)

c3(X(t)) = λE
(
ξ3
)
t, (C.3)

c4(X(t)) = λE
(
ξ4
)
t. (C.4)
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Table 1
Synopsis of market data for Ford Motor Company, Abbott Laboratories and Baxter International Inc.

125-day correlation

VALUATION DATE ASSET S (0) q F (Ford) ABT (Abbott Lab.) BAX (Baxter)

F 5.20 0.0% 100%

30/09/2008 ABT 57.58 2.8% 25% 100%

BAX 65.67 1.5% 30% 64% 100%

F 2.00 0.0% 100%

27/02/2009 ABT 47.34 3.0% 37% 100%

BAX 50.91 1.8% 34% 83% 100%

F 7.21 0.0% 100%

30/09/2009 ABT 49.47 3.0% -22% 100%

BAX 57.02 1.7% -15% 45% 100%
aCorrelation matrix estimated using historical log-returns of the three assets over a 125-day time

window, up to (and including) the valuation date. Source: Bloomberg.
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Table 2
Calibration of the multivariate VG model.

VG MODEL

30/09/2008
MARGINS

F ABT BAX

θ -2.6871 -0.6373 -0.5286

σ 0.8537 0.2259 0.2296

k 0.0264 0.0928 0.0897

RMSE 3.75E-02 1.23E-01 1.49E-01

(w)RMSE 2.21E-03 9.94E-03 1.18E-02

IDIOSYNCRATIC PART

β -2.1117 -0.2552 -0.1467

γ 0.8120 0.1429 0.1488

ν 0.0318 0.2316 0.2137

a 1.1564 0.7678 0.7675

SYSTEMIC PART

βZ -0.4976

γZ 0.2278

νZ 0.1547

MOMENT MATCHING ERROR

EX (1) 0.00E+00 0.00E+00 0.00E+00

stdX (1) -1.34E-03 0.00E+00 -3.72E-03

γ1 (1) -3.61E-03 2.11E-15 7.77E-03

γ2 (1) -5.32E-05 -5.27E-15 -2.25E-02

CALIBRATION ERROR

RMSE 9.49E-03 1.70E-07 1.18E-07

(w)RMSE 8.81E-04 -1.17E-08 2.45E-09

CORRELATION ERROR

F -

ABT 3.05E-02 -

BAX -5.84E-04 5.47E-08 -

VALUATION DATE

27/02/2009

F ABT BAX

-6.3009 -0.8664 -0.7969

0.5354 0.1509 0.2613

0.0588 0.1555 0.0805

4.54E-02 2.72E-01 3.60E-01

4.64E-03 1.51E-02 1.61E-02

-4.9115 -0.0838 -0.1316

0.4710 0.0469 0.2311

0.0892 1.6068 0.1512

1.4550 0.8197 0.6969

-0.9547

0.1750

0.1721

0.00E+00 0.00E+00 0.00E+00

-4.62E-02 -1.08E-14 -3.80E-02

3.41E-02 6.64E-14 -1.91E-02

-6.16E-02 -2.08E-13 -5.84E-02

9.71E-09 -5.14E-08 -1.30E-08

1.17E-09 -3.61E-10 -7.81E-10

-

5.43E-08 -

1.39E-07 1.22E-07 -

30/09/2009

F ABT BAX

0.4058 -0.2283 -0.5425

0.6040 0.2352 0.2129

0.0104 0.2339 0.0944

4.78E-02 7.15E-02 1.01E-01

1.86E-03 4.09E-03 3.89E-03

0.2888 -0.1168 -0.4356

0.5788 0.1682 0.1431

0.0106 0.4570 0.1176

-0.9348 0.8903 0.8541

-0.1252

0.1846

0.4790

0.00E+00 0.00E+00 0.00E+00

-4.72E-03 -2.36E-14 -1.33E-14

-1.80E-02 1.11E-12 -1.58E-07

-1.28E-02 -4.05E-12 -8.48E-02

3.69E-09 0.00E+00 1.11E-09

9.43E-11 0.00E+00 5.45E-11

-

4.60E-07 -

-5.28E-02 -9.41E-07 -

a Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009,
27/02/2009 and 30/09/2009. Parameters of the marginal distributions (θj , σj , kj) obtained by direct
calibration to market prices. Parameters governing the idiosyncratic risk process, (βj , γj , νj , aj), and
the systematic risk process, (βZ , γZ , νZ), obtained by fitting the correlation matrix and then solving the
parameters conditions given in Example 1. Moment matching error: the difference between the exact
moments provided in Appendix B (calculated using the parameters of the marginal process) and the
moments reconstructed using equation (2). Calibration error: difference between the errors produced
by the calibration to market option prices of the margin processes, X (t), and the linear transformation
Y (t) + aZ (t). Correlation error: difference between the model and the sample correlation.
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Table 3
Calibration of the multivariate NIG model.

NIG MODEL

30/09/2008
MARGINS

F ABT BAX

θ -2.0985 -0.3917 -0.3879

σ 0.8082 0.2206 0.2141

k 0.0175 0.0698 0.0559

RMSE 3.63E-02 1.20E-01 1.40E-01

(w)RMSE 2.11E-03 9.70E-03 1.13E-02

IDIOSYNCRATIC PART

β -1.7346 -0.1828 -0.1483

γ 0.7579 0.1507 0.1081

ν 0.0201 0.1495 0.0976

a 1.1480 0.6591 0.7559

SYSTEMIC PART

βZ -0.3170

γZ 0.2445

νZ 0.1308

MOMENT MATCHING ERROR

EX (1) 0.00E+00 0.00E+00 0.00E+00

stdX (1) -6.22E-04 0.00E+00 -2.66E-03

γ1 (1) -1.81E-04 4.44E-16 6.64E-02

γ2 (1) -2.40E-04 -1.39E-15 -1.39E-01

CALIBRATION ERROR

RMSE 3.82E-02 2.86E-01 2.95E-01

(w)RMSE 3.00E-03 2.27E-02 3.04E-02

CORRELATION ERROR

F -

ABT 1.50E-02 -

BAX 1.80E-02 -5.48E-08 -

VALUATION DATE

27/02/2009

F ABT BAX

-6.2583 -0.8635 -0.8041

0.9382 0.2350 0.2570

0.0397 0.1140 0.0881

4.25E-02 2.72E-01 3.60E-01

4.44E-03 1.50E-02 1.60E-02

-4.9265 -0.0836 -0.1328

0.8572 0.0731 0.1706

0.0580 1.1777 0.2917

1.3965 0.8178 0.7039

-0.9537

0.2731

0.1262

0.00E+00 0.00E+00 0.00E+00

-2.39E-02 -6.48E-13 -7.14E-03

3.02E-02 6.29E-12 1.23E-03

-6.35E-02 -2.36E-11 -4.23E-02

-1.85E-09 4.90E-09 -3.91E-09

-2.35E-10 1.19E-11 9.51E-10

-

6.43E-07 -

1.80E-07 4.38E-07 -

30/09/2009

F ABT BAX

0.5358 -0.2567 -0.5414

0.5968 0.2303 0.2167

0.0196 0.2536 0.0937

5.00E-02 7.15E-02 9.79E-02

1.94E-03 4.09E-03 3.76E-03

0.4072 -0.0783 -0.4024

0.5806 0.1271 0.1569

0.0207 0.8316 0.1260

-0.6866 0.9523 0.7420

-0.1874

0.2016

0.3648

0.00E+00 0.00E+00 0.00E+00

-3.18E-03 -3.35E-13 -8.07E-14

-2.61E-03 1.54E-11 -2.24E-07

-3.76E-03 -7.30E-11 -2.83E-02

4.16E-09 0.00E+00 -4.86E-11

9.68E-11 0.00E+00 3.12E-10

-

9.88E-07 -

-1.59E-02 7.42E-02 -

a Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009,
27/02/2009 and 30/09/2009. Parameters of the marginal distributions (θj , σj , kj) obtained by direct
calibration to market prices. Parameters governing the idiosyncratic risk process, (βj , γj , νj , aj), and
the systematic risk process, (βZ , γZ , νZ), obtained by fitting the correlation matrix and then solving
the parameters conditions given in Example 2. Moment matching error: difference between the exact
moments provided in Appendix B (calculated using the parameters of the marginal process) and the
moments reconstructed using equation (2). Calibration error: difference between the errors produced
by the calibration to market option prices of the margin processes, X (t), and the linear transformation
Y (t) + aZ (t). Correlation error: difference between the model and the sample correlation.
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Table 4
Calibration of the multivariate Merton jump diffusion model.

MERTON MODEL

VALUATION DATE

30/09/2008 27/02/2009 30/09/2009

MARGINS

F ABT BAX F ABT BAX F ABT BAX

σ 0.8232 0.2553 0.2353 0.9462 0.2193 0.2551 0.5858 0.2085 0.2219

λ 0.6969 0.1974 0.2017 2.3781 0.5619 0.5674 0.2708 0.2055 0.2186

ϑ -0.4738 -0.2600 -0.2837 -0.6313 -0.3574 -0.2644 0.0177 -0.2099 -0.3031

υ 0.2770 0.1998 0.1867 0.4650 0.2251 0.1800 0.3120 0.2772 0.1500

RMSE 5.03E-02 1.53E-01 1.46E-01 3.69E-02 2.74E-01 3.60E-01 4.67E-02 6.97E-02 9.79E-02

(w)RMSE 3.37E-03 1.23E-02 1.20E-02 3.87E-03 1.51E-02 1.60E-02 1.82E-03 3.10E-03 3.88E-03

IDIOSYNCRATIC PART

γ 0.7748 0.1751 0.1018 0.8909 0.1000 0.1960 0.5682 0.1000 0.1791

δ 0.5183 0.0187 0.0231 1.9165 0.1003 0.1057 0.1683 0.1030 0.1161

ϑY -0.5267 -0.5807 -0.3502 -0.6257 0.1445 0.0491 -0.0578 -0.2320 -0.4288

υY 0.2736 0.1252 0.2651 0.4881 0.1469 0.0100 0.3352 0.2792 0.0784

a 0.6467 0.4320 0.4936 0.8863 0.5428 0.4544 -0.5606 0.7188 0.5148

SYSTEMIC PART

γZ 0.4299 0.3595 0.2546

δZ 0.1787 0.4617 0.1025

ϑZ -0.5073 -0.7437 -0.2695

υZ 0.3062 0.3900 0.3738

MOMENT MATCHING ERROR

EX (1) 1.40E-03 -1.30E-03 -4.42E-03 2.09E-03 -3.37E-06 8.19E-04 -9.76E-04 6.04E-04 -2.27E-03

stdX (1) 5.89E-04 4.99E-03 6.38E-03 -1.74E-04 1.26E-04 -1.32E-02 1.09E-04 6.30E-05 -5.12E-03

γ1 (1) 4.16E-04 -4.23E-02 –6.42E-02 -1.41E-03 9.06E-03 9.32E-02 1.03E-02 4.41E-03 3.51E-02

γ2 (1) 1.83E-03 7.07E-02 9.96E-02 -2.24E-04 -1.98E-02 -1.76E-01 -2.02E-03 5.89E-03 -5.94E-02

CALIBRATION ERROR

RMSE 3.92E-05 6.05E-03 6.69E-04 -9.62E-06 -7.44E-05 2.63E-02 5.80E-05 -6.14E-04 -1.11E-03

(w)RMSE 3.92E-06 5.20E-04 5.97E-04 -1.80E-06 -4.99E-07 8.55E-04 2.05E-06 -3.40E-05 -8.55E-05

CORRELATION ERROR

F - - -

ABT -2.08E-04 - -3.87E-07 - 5.03E-04 -

BAX -9.11E-04 3.56E-04 - -3.56E-07 -8.68E-07 - -7.91E-04 -3.47E-04 -

a Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009,
27/02/2009 and 30/09/2009. Parameters of the marginal distributions (σj , λj , ϑj , υj) obtained by direct
calibration to market prices. Parameters governing the idiosyncratic risk process, (γj , δj , ϑY j , υY j , aj),
and the systematic risk process, (γZ , δZ , ϑZ , υZ), obtained by fitting the correlation matrix and then
solving the parameters conditions given in Example 3. Moment matching error: difference between the
exact moments provided in Appendix C (calculated using the parameters of the marginal process) and
the moments reconstructed using equation (2). Calibration error: difference between the errors produced
by the calibration to market option prices of the margin processes, X (t), and the linear transformation
Y (t) + aZ (t). Correlation error: difference between the model and the sample correlation.
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Table 5
Calibration of the multivariate Kou jump diffusion model.

KOU MODEL

VALUATION DATE

30/09/2008 27/02/2009 30/09/2009

MARGINS

F ABT BAX F ABT BAX F ABT BAX

σ 0.8116 0.2549 0.2500 1.1776 0.2234 0.2794 0.5828 0.2300 0.2432

λ 0.2549 0.2000 0.2170 0.9873 0.9939 0.5105 0.3624 0.2033 0.2115

p 0.0254 0.3000 0.6184 0.0579 0.0772 0.0658 0.2385 0.4600 0.2300

α+ 21.3413 22.1345 26.9924 5.5704 19.7977 11.7134 3.5667 8.0000 22.4224

α− 2.4050 3.5001 2.7864 2.0662 4.1458 4.5614 7.3701 4.3438 4.8337

RMSE 5.11E-02 1.63E-01 1.55E-01 3.77E-02 2.71E-01 3.56E-01 4.81E-02 1.25E-01 1.25E-01

(w)RMSE 3.57E-03 1.31E-02 1.29E-02 4.51E-03 1.49E-02 1.59E-02 1.87E-03 6.66E-03 5.17E-03

IDIOSYNCRATIC PART

γ 0.7667 0.1639 0.1169 1.1446 0.1042 0.2278 0.5629 0.1216 0.2000

δ 0.0668 0.0119 0.0289 0.4967 0.5033 0.0198 0.2424 0.0833 0.0915

pY 0.0115 0.0568 0.4937 0.0100 0.9000 0.1000 0.2681 0.2185 0.2031

α+
Y 6.3406 6.4452 41.0497 1.9113 4.7301 38.6608 3.4307 4.5397 8.8803

α−Y 1.7582 1.9443 1.8969 2.0154 5.0739 87.2172 6.3361 4.5398 4.1503

a 0.5455 0.4003 0.4530 0.9538 0.6813 0.5581 -0.5226 0.6754 0.4788

SYSTEMIC PART

γZ 0.4878 0.2900 0.2891

δZ 0.1881 0.4906 0.1200

pZ 0.1908 0.0204 0.3709

α+
Z 2.3883 6.7138 22.9985

α−Z 2.3863 2.0884 3.2841

MOMENT MATCHING ERROR

EX (1) -3.90E-02 -1.21E-02 4.70E-03 1.96E-02 -1.47E-01 2.61E-02 -1.52E-02 1.10E-02 -5.97E-03

stdX (1) 1.37E-02 1.13E-02 -1.41E-06 -2.34E-03 -4.74E-02 -3.05E-02 0.00E+00 2.55E-05 3.62E-03

γ1 (1) -3.41E-02 -2.14E-01 -2.16E-01 -1.32E-03 -3.62E-01 2.93E-01 0.00E+00 1.20E-04 -4.84E-02

γ2 (1) -2.13E-02 -4.83E-01 1.12E-04 2.53E-03 -9.59E-01 -1.02E+00 0.00E+00 -6.71E-04 -3.02E-04

CALIBRATION ERROR

RMSE 2.56E-02 5.37E-02 6.71E-02 -6.49E-04 4.68E-01 6.07E-02 -1.35E-12 -5.20E-05 8.08E-03

(w)RMSE 1.72E-03 4.32E-03 5.75E-03 -7.79E-05 2.35E-02 2.07E-03 2.12E-12 -3.44E-06 3.83E-04

CORRELATION ERROR

F - - -

ABT 9.16E-03 - 1.06E-04 - -2.57E-04 -

BAX 0.00E+00 2.89E-08 - 6.25E-04 -2.44E-04 - 1.90E-04 -5.49E-04 -

a Parameters of the margins, the systemic part and the idiosyncratic components as at
30/09/2009, 27/02/2009 and 30/09/2009. Parameters of the marginal distributions (σj , λj , pj , α

+
j , α

−
j )

obtained by direct calibration to market prices. Parameters governing the idiosyncratic risk process,
(γj , δj , pY j , α

+
Y j , α

−
Y j , aj), and the systematic risk process, (γZ , δZ , pZ , α

+
Z , α

−
Z ), obtained by fitting the

correlation matrix and then solving the parameters conditions given in Example 4. Moment matching
error: difference between the exact moments provided in Appendix C (calculated using the parameters
of the marginal process) and the moments reconstructed using equation (2). Calibration error: difference
between the errors produced by the calibration to market option prices of the margin processes, X (t),
and the linear transformation Y (t) + aZ (t). Correlation error: difference between the model and the
sample correlation.
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Table 6
Correlation between asset log-returns (X) and the common component (Z) and the idiosyncratic part
(Y).

VALUATION DATE

30/09/2008 27/02/2009 30/09/2009
VG MODEL NIG MODEL VG MODEL NIG MODEL VG MODEL NIG MODEL

Z Y Z Y Z Y Z Y Z Y Z Y
F 0.3622 0.9336 0.3628 0.9326 0.3893 0.9519 0.3893 0.9377 -0.3148 0.9573 -0.2639 0.9700

ABT 0.7713 0.6328 0.7303 0.6831 0.9504 0.3111 0.9504 0.3111 0.6987 0.7154 0.8337 0.5522

BAX 0.8265 0.5862 0.8764 0.5050 0.8733 0.6850 0.8733 0.5276 0.6440 0.7650 0.6287 0.7776

JD Merton JD Kou JD Merton JD Kou JD Merton JD Kou

Z Y Z Y Z Y Z Y Z Y Z Y
F 0.3416 0.9392 0.3485 0.9203 0.3893 0.9212 0.3899 0.9228 -0.2713 0.9623 -0.2709 0.9626

ABT 0.7313 0.6569 0.7436 0.6105 0.9504 0.3100 0.9495 0.5932 0.8090 0.5874 0.8129 0.5822

BAX 0.8763 0.4339 0.8607 0.5091 0.8733 0.5604 0.8739 0.6458 0.5558 0.8538 0.5529 0.8171

a These values have been obtained using equation (4) and the parameters of the components as
reported in Tables 2-5.
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Table 7
Calibration of the multivariate VG-CIR model.

VG-CIR MODEL

MARGINS MOMENT MATCHING ERROR

F ABT BAX F ABT BAX

θ -3.1330 -0.7165 -0.7366 EX (1) 0.00E+00 0.00E+00 0.00E+00

VG σ 1.0542 0.3296 0.3513 stdX (1) -4.31E-02 -2.94E-02 -1.58E-02

k 0.0314 0.1836 0.0927 γ1 (1) 7.15E-03 -7.07E-01 -9.79E-03

b 1.0000 0.2351 0.2220 γ2 (1) -1.98E-02 -7.03E-01 -2.80E-01

CIR λ 0.8333 0.4040 0.3926

κ 1.0993 1.0993 1.0993

η 1.1275 0.2651 0.2503 CALIBRATION ERROR

RMSE 7.63E-03 1.33E-01 7.39E-02 RMSE -8.92E-11 8.22E-13 5.15E-11

(w)RMSE 8.53E-04 8.18E-03 3.66E-03 (w)RMSE -7.55E-10 4.93E-09 2.28E-09

IDIOSYNCRATIC PART CORRELATION ERROR

β -1.8899 0.0962 -0.1144 F -
γ 0.9680 0.1849 0.2825 ABT -2.73E-07 -
ν 0.0372 2.2361 0.1727 BAX -2.18E-07 -9.97E-07 -
a 1.1932 0.7801 0.5972

SYSTEMIC PART

βZ -1.0418

γZ 0.3498

νZ 0.2000
aValuation date: 27/02/2009. Parameters of marginal distributions (θj , σj , kj , λj , κ, ηj) obtained by

direct calibration to market prices (note: λj = λ
√
bj , ηj = bjη, where λ, η are the parameters of the com-

mon time change). Remaining parameters (idiosyncratic and systematic components of the VG process)
obtained by fitting the correlation matrix subject to relevant convolution conditions. Moment matching
error: difference between the exact moments provided in Appendix B (calculated using the parameters
of the marginal process) and the moments reconstructed using equations (B.1)-(B.5) in conjunction with
equation (2). Correlation error: difference between the model and the sample correlation. Calibration
error: difference between the errors of the calibration of the margin process and the linear combination
to market prices.
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Table 8
Calibration of the multivariate VG model (n ≥ 3)

ASSET NUMBER (n)
CORRELATION ERROR 3 4 5 6 7 8 9 10

RMSE 1.76E-02 1.51E-02 7.25E-03 6.17E-03 5.50E-03 6.17E-03 6.66E-03 7.46E-03

MOMENT MATCHING ERROR
min 0.00E+00 0.00E+00 -1.11E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.11E-16

EX(1) max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-16 5.55E-17 1.11E-16 0.00E+00
average 0.00E+00 0.00E+00 -2.22E-17 0.00E+00 1.59E-17 6.94E-18 1.23E-17 -1.11E-17

min -3.72E-03 -1.49E-01 -8.86E-02 -9.15E-02 -8.68E-02 -8.67E-02 -7.70E-02 -8.25E-02
stdX(1) max 0.00E+00 -4.03E-03 -1.06E-04 -1.14E-05 -4.36E-05 -2.90E-03 -8.87E-04 -1.39E-03

average -1.69E-03 -4.17E-02 -2.50E-02 -2.31E-02 -2.39E-02 -2.44E-02 -2.08E-02 -2.07E-02

min -3.61E-03 -1.47E-01 5.52E-03 1.72E-03 3.52E-03 1.60E-02 1.68E-02 1.36E-03
γ1 max 7.77E-03 1.26E-02 7.53E-02 7.99E-02 9.37E-02 2.90E-01 2.65E-01 2.17E-01

average 1.39E-03 -5.65E-02 3.36E-02 3.56E-02 4.43E-02 1.66E-01 1.42E-01 1.21E-01

min -2.25E-02 -2.87E-02 -3.12E-01 -3.44E-01 -3.13E-01 -1.13E+00 -8.87E-01 -7.72E-01
γ2 max -5.27E-15 3.05E-02 -2.66E-02 -1.80E-02 -2.42E-02 -8.06E-02 -8.47E-02 -1.49E-02

average -7.50E-03 9.64E-04 -1.28E-01 -1.25E-01 -1.38E-01 -6.43E-01 -5.58E-01 -4.77E-01
aCorrelation error: Root Mean Square Error (RMSE) of the correlation matrix fit to given data.

Moment matching error: difference between the exact moments provided in B (calculated using the
parameters of the marginal process) and the moments reconstructed using equation (2).
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Figure 1
Convolution error: recovering the VG distribution.
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aQQ plots of a Monte Carlo sample of the margin VG process, X(t), and the linear transformation
process, X ′(t) = Y (t) + aZ(t), for Ford, Abbott Lab. and Baxter at September 30, 2008, February 27,
2009 and September 30, 2009. Monte Carlo simulation based on 1,000,000 iterations.
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Figure 2
Convolution error: recovering the VG distribution.
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tion process, X ′(t) = Y (t) + aZ(t), for Ford, Abbott Lab. and Baxter at September 30, 2008, February
27, 2009 and September 30, 2009. Monte Carlo simulation based on 1,000,000 iterations.
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Figure 3
Recovering implied volatilities with multivariate VG processes and VG-CIR processes.
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a Implied volatility recovered by inversion for the Black-Scholes formula in correspondence of input
vanilla option prices obtained using the given multivariate processes. Parameters: Tables 2 and 7.
Maturity: 11 months. Valuation date: 27/02/2009.



37

Figure 4
Spread call options: recovering implied correlation with multivariate VG and VG-CIR processes.
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aImplied correlation recovered from the standard model in correspondence of input spread option
prices obtained using the given multivariate process. Multivariate model parameters: Table 2 and 7.
Standard (log-normal) model parameters: implied volatility recovered from the vanilla options prices
computed under the given multivariate process. Valuation date: 27/02/2009. A(0) = S1(0)− S2(0). S1:
Baxter; S2: Abbott Lab.
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Figure 5
Convolution error: recovering the VG distribution. 5 Assets
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aQQ plots of a Monte Carlo sample of the margin VG process, X(t), and the linear transformation
process, X ′(t) = Y (t) + aZ(t).
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Figure 6
Convolution error: recovering the VG distribution. 10 Assets
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aQQ plots of a Monte Carlo sample of the margin VG process, X(t), and the linear transformation
process, X ′(t) = Y (t) + aZ(t).
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