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Abstract

We present a joint Monte Carlo-Fourier transform sampling scheme for pricing

derivative products under a CGMY model exhibiting jumps of infinite activity and

finite or infinite variation. The approach relies on numerical transform inversion with

computable error estimates, which allow generating the unknown cumulative distribu-

tion function (CDF) of the CGMY process increments at the desired accuracy level. We

use this to generate samples and simulate the entire trajectory of the process without

need of truncating the process small jumps. We illustrate the computational efficiency

of the proposed method by comparing it to the existing methods in the literature

on pricing a wide range of option contracts, including path-dependent univariate and

multivariate products.
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1 Introduction

In this paper we present an efficient Monte Carlo simulation scheme coupled with Fourier

transform, which we name MC-FT, for the pricing of single and multi-asset option contracts

when the underlying is governed by a CGMY process.

The CGMY process has been introduced by Carr et al. (2002) with the aim to provide

a model for the dynamic of equity log-returns which is rich enough to accommodate jumps

of finite or infinite activity, and finite or infinite variation. Their empirical analysis shows,

in fact, that risk neutral processes are mainly of infinite activity with finite variation, while

infinite variation may be prevalent in the corresponding statistical processes. The CGMY

process has also been reported to perform consistently better than other Lévy processes when

extended via a random time change to include stochastic volatility (e.g., see Carr et al.,

2003).

In recent years, numerical integration/transform techniques have proved very fast and

accurate on pricing a wide range of single-asset derivative products with path-dependence

and early-exercise features written on Lévy driven underlying price processes with known

characteristic functions (e.g., see Chung et al., 2010; Lord et al., 2008; Feng and Linetsky,

2008; Černý and Kyriakou, 2011). However, these techniques often become impractical when

tackling high dimensional problems, such as multi-asset contracts with path-dependent pay-

offs (like, e.g., Asian basket options); in such cases, Monte Carlo simulation is generally the

method of choice. Monte Carlo simulation of the CGMY process, though, is not straightfor-

ward due to the fact that its cumulative distribution function (as well as its density function)

is not available in closed form.

Monte Carlo simulation of the CGMY process has been tackled in the literature specifi-

cally by Madan and Yor (2008), Poirot and Tankov (2006) and Rosiński (2007). In details,

Madan and Yor (2008) present a Monte Carlo strategy for the CGMY process based on a

Brownian subordination construction of the process proposed by the same authors. Rosiński

(2007) proposes an alternative approach which uses a representation of the CGMY process
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as an infinite sum of a mixture of independent random variables whose exact simulation is

straightforward. However, the first method entails truncating jumps of size smaller than a

threshold level and replacing these by their expectation, while the second one requires trun-

cation of the infinite sum. As a consequence, the resulting Monte Carlo price estimates are

affected by an approximation bias which may be substantial and, at the same time, difficult

to quantify. In order to avoid such errors, Poirot and Tankov (2006) construct a new proba-

bility measure under which the original CGMY reduces to a stable process whose exact sim-

ulation is well established. Although faster in execution, the method of Poirot and Tankov

(2006) does not provide access to the entire trajectory of the process precluding the pricing

of path-dependent products; further, the extension of this approach to a multidimensional

setting is not straightforward.

Other relevant simulation methods available in the literature are based on acceptance-

rejection sampling (e.g., see Devroye, 1981; Baeumer and Meerschaert, 2010), and Gaussian

approximation of the small jump part (see Asmussen and Rosiński, 2001). Kawai and Masuda

(2011) provide a comparison of these methods in terms of acceptance rate, approximation

error and computing time; it is shown that the acceptance-rejection sampling scheme of

Baeumer and Meerschaert (2010) is the simplest and most efficient to use for any given com-

puting budget, especially when simulating CGMY increments over small time steps. The

method, though, is only exact for a CGMY process with infinite activity and finite variation,

while an approximation error is introduced in the infinite variation case.

Another class of simulation methods available for distribution laws known only through

the associated characteristic functions couples Monte Carlo principles with transform in-

version. Applications have been shown for common Lévy processes by Glasserman and Liu

(2010) and Chen et al. (2012) amongst others, but also for the Heston stochastic volatility

model by Broadie and Kaya (2006) and Glasserman and Kim (2009).

In this paper we build on the latter stream of contributions and focus on the nontrivial

case of the CGMY process. We propose and analyze a method that only requires knowledge

of the properties of the CGMY characteristic function, and does not rely on possibly arbi-
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trary truncation rules. In addition, we study the representation of the CGMY process as

subordinated Brownian motion of Madan and Yor (2008), which also admits a closed form

expression for the characteristic function of the subordinator. This representation is usu-

ally considered in view of constructing multivariate versions of the CGMY process (e.g., see

Madan and Yor, 2008; Luciano and Semeraro, 2010). We examine the behaviour of the two

characteristic functions when the CGMY exhibits jumps of finite activity, infinite activity

with finite variation and infinite variation; of particular interest is the case of infinite varia-

tion which is less frequently met in the literature of transform pricing techniques (e.g., see

Feng and Linetsky, 2008; Chen et al., 2012; Cai et al., 2013). For a CGMY process of infi-

nite activity with finite or infinite variation, we prove sufficient conditions for the existence

of computable exponentially decaying bounds for the errors induced by retrieving the CDF

using numerical transform inversion. This allows us to compute the values of the CDF at

the desired accuracy for later use in the simulation part, making the proposed simulation

scheme virtually bias free. Finally, we show that in the finite activity case the characteristic

function is not absolutely integrable precluding transform inversion. However, this case is

of less interest as CGMY admits an explicit representation as a compound Poisson process

which can be simulated exactly.

The remainder of this paper is organized as follows. Section 2 contains preliminaries.

Section 3 reviews the CGMY process. Section 4 presents the main theoretical results of the

paper. Further, the practical application to numerical evaluation of the distribution func-

tion and the use in the simulation of the CGMY process is outlined. In Section 5, we apply

the proposed sampling method on pricing European plain vanilla, Asian and barrier options

with discrete monitoring. We highlight the benefits of the proposed approach by compar-

ing it to the existing Monte Carlo methods of Poirot and Tankov (2006), Madan and Yor

(2008), Baeumer and Meerschaert (2010) and Rosiński (2007). In Section 6, we extend to

multivariate products. Section 7 concludes. All the proofs are deferred to the appendices.
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2 Preliminaries

2.1 Regularizing distribution functions

Assume some random variable X with (unknown) continuous cumulative distribution func-

tion F . For D > 0 consider the auxiliary function

Fr(x) = F (x)− 1

2
F (x−D)− 1

2
F (x+D) (1)

(see Hughett, 1998), which is regularized in the sense that it decays to zero as |x| → ∞.

Then, for sufficiently large D, F (x) approaches Fr(x) + 1/2 for fixed x. Hence, providing

that Fr(x) is known (see Section 2.2), it can be used to compute F (x) subject to a so-called

regularization error given by |F (x) − Fr(x) − 1/2|. In the following, we extend previous

work by Hughett (1998) based on polynomial decay of 1 − F (x) and F (−x) to exponential

decay as x → ∞, providing that exponential moments of the distribution exist in an interval

containing the origin, and use these to derive a tight explicit bound for the regularization

error. Assume that

E(e−yX) < ∞ (2)

for all y ∈ (a−, a+) with −∞ < a− ≤ 0 ≤ a+ < ∞. For any nonnegative function g the

inequality

P (g(X) ≥ γ) ≤ E (g(X))γ−1

holds for any γ > 0 (e.g., see Abramowitz and Stegun, 1968, p. 931), from which it follows

that

1− F (x) = P (X ≥ x) = P (eαX ≥ eαx) ≤ E(eαX)e−αx, (3)

F (−x) = P (−X ≥ x) = P (e−αX ≥ eαx) ≤ E(e−αX)e−αx (4)
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for α > 0 such that [−α, α] ⊂ (a−, a+). Then, for |x| ≤ D/2 so that D ± x ≥ D/2 > 0, the

regularization error of replacing F by Fr + 1/2 in (1) can be bounded as follows

∣

∣

∣

∣

F (x)− Fr(x)−
1

2

∣

∣

∣

∣

≤ 1

2
|F (−(D − x))|+ 1

2
|1− F (x+D)|

≤ 1

2

(

E(e−αX) + E(eαX)
)

e−αD/2. (5)

2.2 Fourier inversion formula of the distribution function

The regularized distribution function Fr is known through its Fourier transform (e.g., see

Hughett, 1998) given by the continuous function

φr(u) :=

∫

R

eiuxFr(x)dx =











−1−cos(uD)
iu

φ(u) u 6= 0

0 u = 0
, (6)

where

φ(u) := E(eiuX).

To invert the Fourier transform (6), from, e.g., Goldberg (1961), we require that

∫

R

|φr(u)|du =

∫

R

1− cos(uD)

|u| |φ(u)|du ≤ D

∫

R

|φ(u)|du < ∞, (7)

where we have used (1 − cos u)/|u| ≤ 1 for u ∈ R. Assuming (7) holds, we can invert (6)

and write

Fr(x) =
1

2π

∫

R

e−iuxφr(u)du. (8)

In practice, to evaluate Fr, we need to truncate the infinite integration domain in (8) by

choosing a sufficiently large L > 0 and work on the truncated finite interval [−L/2, L/2]. To

this end, let us introduce

Fc(x) =
1

2π

∫ L/2

−L/2

e−iuxφr(u)du, (9)
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then the resulting truncation error is bounded by

|Fr(x)− Fc(x)| ≤
1

π

∫ ∞

u>L/2

|φr(u)|du ≤ D

π

∫ ∞

L/2

|φ(u)|du. (10)

From (10) the truncation error depends on the tail behaviour of the characteristic function.

In order to bound the truncation error, it is sufficient that

|φ(u)| ≤ Be−b|u|β (11)

for B, b, β > 0. Then,

|Fr(x)− Fc(x)| ≤
D

π

∫ ∞

L/2

Be−buβ

du =
DB

πβb1/β
Γ(1/β, bLβ2−β) = o(L1−βe−bLβ2−β

), (12)

where Γ(ε, x) =
∫∞

x
e−ttε−1dt denotes the upper incomplete gamma function and the last

equality follows from limx→∞ Γ(ε, x)/(xε−1e−x) = 1 (e.g., see Abramowitz and Stegun, 1968,

p. 263). Hence, the truncation error decays exponentially in L; however, bound (11) does

not hold or is not possible to derive always. A less sharp, still useful, alternative applies in

the case of selfdecomposable laws with Lévy densities of the special form ν(x) = k(x)/|x|,

where k(x) is a nonnegative function increasing for negative x and decreasing for positive

x (see Sato, 1999, Corollary 15.11). Lemma 28.5 in Sato (1999) shows that these laws

admit characteristic functions decaying as |u|−β as |u| → ∞ for 1 < β < γ, where γ :=

k(0+) + k(0−). Therefore, for B > 0

|φ(u)| ≤ B|u|−β (13)

and

|Fr(x)− Fc(x)| ≤
D

π

∫ ∞

L/2

Bu−βdu =
DB2β−1

π(β − 1)
L1−β = o(L1−β). (14)

We note that characteristic functions with exponential decay (11), or polynomial decay (13)

with β > 1 suffice to guarantee that φr is absolutely integrable, i.e., (7) is satisfied.
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To compute the truncated inverse Fourier transform integral (9), we employ numerical

integration in the Fourier space which generates, additionally, discretization error. Based

on the study of Feng and Linetsky (2008), it is possible to approximate integral (9) using

simple rules with error converging exponentially to zero in 1/h where h denotes the dis-

cretization spacing. More specifically, given some evenly spaced grid u := {(j−N/2)h}N−1
j=0 ,

we approximate Fc(x) by

Fd(x) :=
1

2π
h

N−1
∑

j=0

e−iujxφr(uj). (15)

Assume (2) holds, then |φ(u + iy)| ≤ E(e−yX) < ∞ also holds for any y ∈ (a−, a+). From

Theorem 6.6 in Feng and Linetsky (2008), the discretization error is bounded by

|Fc(x)− Fd(x)| ≤ A
e−2πα/h

2π(1− e−2πα/h)
, (16)

where α > 0 is such that [−α, α] ⊂ (a−, a+), if the Fourier transform φr is absolutely

integrable,
∫ α

−α
|φr(u+ iy)|dy → 0 as |u| → ∞ and

A := eαx
∫

R

|φr(u+ iα)|du+ e−αx

∫

R

|φr(u− iα)|du

is finite. Further, from (6), the following holds for |x| ≤ D/2

A =

∫

R

e−Dα|e2Dα − 2eDα cos(uD) + 1|
2
√
u2 + α2

(

eαx|φ(u+ iα)|+ e−αx|φ(u− iα)|
)

du

≤ 1

2α
e−Dα/2(eDα + 1)2

∫

R

(|φ(u+ iα)|+ |φ(u− iα)|) du, (17)

where we have used |e2Dα − 2eDα cos(uD) + 1|/
√
u2 + α2 ≤ (eDα + 1)2/α.
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3 The CGMY process

A CGMY process X (t), t ≥ 0 on a probability space (Ω,F ,P) is a pure jump process with

Lévy density

νX (x) := C

(

e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)

, (18)

parameters C > 0, G ≥ 0, M ≥ 0, Y < 2, and characteristic function

E
(

eiuX(t)
)

= exp
(

tCΓ (−Y )
(

(G+ iu)Y −GY + (M − iu)Y −MY
))

. (19)

It follows by differentiation of the characteristic exponent that the first four cumulants of

the CGMY process are

c1 (X(t)) := E (X(t)) = CΓ (1− Y )
(

MY −1 −GY−1
)

t,

c2 (X(t)) := Var (X(t)) = CΓ (2− Y )
(

MY−2 +GY−2
)

t,

c3 (X(t)) := E
(

(X(t)− E (X(t)))3
)

= CΓ (3− Y )
(

MY −3 −GY−3
)

t,

c4 (X(t)) := E
(

(X(t)− E (X(t)))4
)

− 3Var (X(t))2 = CΓ (4− Y )
(

MY −4 +GY−4
)

t.

Consequently, the process has positive (resp. negative) skewness if G > M (resp. G < M);

further, the process is leptokurtic and the excess kurtosis is controlled by the parameter C.

The parameter Y characterizes the fine structure of the jumps of the CGMY process

(see Carr et al., 2002). In details, for Y < 0 the process exhibits finite activity (i.e., the

process has a finite number of jumps in any finite time period). In this case, CGMY can be

considered as a compound Poisson process with arrival rate CΓ(−Y )
(

GY +MY
)

and jump

size which follows an asymmetric double gamma distribution with density

p
G−Y

Γ(−Y )
eGx(−x)−1−Y 1x<0 + q

M−Y

Γ(−Y )
e−Mxx−1−Y 1x>0;

p :=
GY

GY +MY
, q := 1− p.
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For Y ∈ (0, 1) the process has trajectories of infinite activity and finite variation (in other

words, relative calmness is observed between big jumps), whilst for Y ∈ (1, 2) the process

has infinite variation (there is a high degree of activity near zero as many small oscillations

are observed between big jumps).

As shown by Madan and Yor (2008), the CGMY process can be represented as a subor-

dinated Brownian motion

X (t) = θZ (t) +W (Z (t)) ,

where Z(t) is a subordinator independent of the Brownian motion W (t) with

E
(

e−µZ(t)
)

= exp(tCΓ (−Y ) (2 (2µ+GM)
Y
2 cos (ζ (µ;G,M)Y )−MY −GY )), (20)

for a complex number µ, ζ (µ;G,M) := arctan(
√

2µ− θ2/θ̃), θ := (G − M)/2 and θ̃ :=

(G + M)/2. For Y > 0 the subordinator Z is absolutely continuous with respect to the

one-sided Y/2-stable subordinator and has Lévy density

νZ (z) := s (z) ν0 (z) , (21)

where

s (z) :=
Γ (Y )

Γ (Y/2) 2Y/2−1
e

z
2
(θ2−θ̃2)h−Y

(

θ̃
√
z
)

,

hv (x) is the Hermite function with parameter v and

ν0 (z) := C
2−Y/2

√
π

Γ (Y/2 + 1/2)

1

zY/2+1
.

4 Monte Carlo simulation with Fourier transform

Monte Carlo methods rely on the inversion of the relevant distribution function. This gen-

erally applies to the increments of the actual process or, in case of subordinated Brownian

motions such as the VG or the NIG, its subordinator (e.g., see Cont and Tankov, 2004, and
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references therein). However, the distribution functions of the CGMY process and its subor-

dinator are unknown; hence, in the following we show how to adapt the transform inversion

discussed in Section 2 to recover the distributions of interest up to a pre-specified degree

of accuracy. We note at this stage that, when applied to the CGMY process, this method

allows for two different implementations. On the one hand, we can sample directly from the

CGMY distribution using the characteristic function (19) (implementation MC-FT1). Alter-

natively, as the CGMY process is a subordinated Brownian motion, we can first sample from

the distribution of the subordinator using (20) and then combine with sample increments of

the Brownian motion (implementation MC-FT2).

4.1 Error bounds for the CDF Fourier inversion formula

4.1.1 The case of the CGMY process

Let X(t) be the CGMY process. In the following theorem, we derive an explicit expression

for the absolute value of the characteristic function of the CGMY process which allows us

to study the effect of values of the parameter Y in the ranges (−∞, 0), (0, 1), (1, 2) on its

tail behaviour. Depending on this, we then derive explicit bounds for the absolute value of

the characteristic function for use in transform inversion.

Theorem 1 Let φX(u; t), u ∈ R, be the characteristic function of the process X(t) given by

(19). The following statements hold.

(i) The absolute value |φX(u; t)| is given by

|φX(u; t)| = etK+tC|u|Y f(u), (22)

where

f(u) := Γ(−Y )

[

(

G2

u2
+ 1

)Y/2

cos
(

Y arctan
u

G

)

+

(

M2

u2
+ 1

)Y/2

cos
(

Y arctan
u

M

)

]

(23)
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and K := −CΓ(−Y )(MY +GY ) is a constant.

(ii) The function f(u) given by (23) is even, negative, and

(a) monotone increasing for u > 0 when Y ∈ (0, 1);

(b) monotone decreasing for u > u∗ when Y ∈ (1, 2), where

u∗ := max(G,M)max[tan(π/(2Y )), −1/ tan(Y π/2)] > 0.

(iii) The absolute value |φX(u; t)| is bounded by

|φX(u; t)| ≤ etK−b|u|Y (24)

(a) for u ∈ R and Y ∈ (0, 1) with b := −t2CΓ(−Y ) cos(πY/2) > 0;

(b) for |u| > u∗ and Y ∈ (1, 2) with b := −tCf(u∗) > 0.

Proof. See Appendix A.1.

Expression (24) provides us with an analytic bound for the characteristic function of the

CGMY process that exhibits exponential decay. Therefore, the exponential tail condition

(11) holds with

B = etK , b = −t2CΓ(−Y ) cos(πY/2) > 0, β = Y for u ∈ R, Y ∈ (0, 1); (25)

B = etK , b = −tCf(u∗) > 0, β = Y for |u| > u∗, Y ∈ (1, 2). (26)

For Y ∈ (1, 2) an exponential bound of the form (24) is not possible to derive for u ∈ R as

function f(u) in (23) increases unbounded as u goes to zero. However, as shown in Theorem

1, this limitation can be bypassed by truncating the range of values u. In addition, it is

shown in Appendix B that for Y > 0 the CGMY process is selfdecomposable, hence the

more conservative condition (13) can be considered, if necessary, with u ∈ R and parameters

β ∈ (1,∞) and B = maxu>0 |φX(u; t)u
β|.

For Y < 0, lim|u|→∞ |φX(u; t)| = etK > 0, therefore φX(u; t) is not absolutely integrable

and condition (7) is not satisfied. Note also that the integral (10) defining the truncation

12



error is not convergent. This precludes retrieving the distribution function by inversion of the

characteristic function and the use of the simulation method described in Sections 4.2–4.3.

Nevertheless, this method is of less interest when Y < 0 since in this case the CGMY process

is of compound Poisson type with known law of increments (see Section 3) whose sample

paths can be simulated exactly using standard techniques (e.g., see Cont and Tankov, 2004).

The upper bounds of the regularization error (5) and discretization error (16) depend on

the positive parameter α so that [−α, α] ⊂ (a−, a+) with |φX(u + iy; t)| ≤ E(e−yX(t)) < ∞

for y ∈ (a−, a+). From (19) we have

φX(u+ iy; t) = exp
(

tCΓ(−Y )((G− y + iu)Y −GY + (M + y − iu)Y −MY )
)

=: ξyφXy(u; t), (27)

where ξy := exp
(

−tCΓ(−Y )(GY −GY
y +MY −MY

y )
)

is a constant, and φXy denotes the

characteristic function of the CGMY process Xy(t) with parameters C, Y , Gy := G− y > 0,

My := M + y > 0. To ensure Gy, My are positive, we require that y ∈ (−M,G) implying

0 < α < min(G,M). In addition, from (17) and (27), we have

A ≤ 1

α
e−Dα/2(eDα + 1)2

(

ξα

∫ ∞

0

|φXα(u; t)|du+ ξ−α

∫ ∞

0

|φX−α(u; t)|du
)

, (28)

where |φX±α(u; t)| is given by (22) for the indicated parameters. In the case Y ∈ (0, 1) we

further have from (24)

A ≤ 2

α
e−Dα/2(eDα + 1)2B

∫ ∞

0

e−buβ

du =
2e−Dα/2(eDα + 1)2BΓ(1/β)

αβb1/β
, (29)

where B, b, β are given by (25).

4.1.2 The case of the CGMY subordinator

Let Z(t) be the subordinator of the CGMY process. The next theorem studies the absolute

value of the characteristic function of Z(t) for use on recovering the associated distribution
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function by transform inversion. Similarly to the case of the CGMY process, its tail behaviour

is affected by the choice of values of Y ∈ (0, 1) ∪ (1, 2).

Theorem 2 Let φZ(u; t) be the characteristic function of the subordinator Z(t) given by

(20) for µ = iu, where u ∈ R. Let K = −CΓ(−Y )(MY + GY ) and suppose G 6= M . The

following statements hold.

(i) The absolute value |φZ(u; t)| is given by

|φZ(u; t)| = etK+tC|u|Y/2f(u), u ∈ R, (30)

where

f(u) := 2Γ(−Y )

(

G2M2

u2
+ 4

)Y/4 [

cos

(

Y

2
arctan

2u

GM

)

cos(Y a(u)) cosh(Y b(u))

+ sin

(

Y

2
arctan

2u

GM

)

sin(Y a(u)) sinh(Y b(u))

]

, (31)

a(u) :=
π

4
− 1

2
arctan

(

1− x(u)2 − y(u)2

2x(u)

)

, a(0) = 0, (32)

b(u) :=
1

4
ln

(

x(u)2 + (y(u) + 1)2

x(u)2 + (y(u)− 1)2

)

, b(0) = ln

√

G

M
, (33)

x(u) := θ̃−1(θ4 + 4u2)1/4 cos

(

−1

2
arctan(2θ−2u) +

π

2
1u≥0 −

π

2
1u<0

)

, (34)

y(u) := θ̃−1(θ4 + 4u2)1/4 sin

(

−1

2
arctan(2θ−2u) +

π

2
1u≥0 −

π

2
1u<0

)

. (35)

(ii) The function f(u) given by (31) is even and, for Y ∈ (0, 1),

(a) f(u) < 0, f ′(u) > 0 for u > 0 when |θ/θ̃| > 1/
√
3;

(b) f(u) < 0, f ′(u) > 0 for u > u∗ > 0, where u∗ satisfies

tan

(

1

2
arctan(2θ−2u∗)

)

= tanh

(

1

2
arcosh(θ̃2/θ2 − 2)

)

, (36)

when |θ/θ̃| ≤ 1/
√
3.
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(iii) For Y ∈ (0, 1), the absolute value |φZ(u; t)| is bounded by

|φZ(u; t)| ≤ etK+t2CΓ(−Y )2Y/2 cos(πY/4) cos(πY/2)|u|Y/2

(37)

for u ∈ R, if |θ/θ̃| > 1/
√
3; for |u| > u∗, if |θ/θ̃| ≤ 1/

√
3, where u∗ satisfies (36).

Proof. See Appendix A.2.

Given the conditions derived in Theorem 2, for Y ∈ (0, 1) we have from (37) that

B = etK , b = −t2CΓ(−Y )2Y/2 cos(πY/4) cos(πY/2) > 0 and β = Y/2. (38)

For Y ∈ (1, 2) the function f(u) given by (31) is unbounded as u approaches zero. We have

not been able to prove sufficient monotonicity conditions for a valid finite upper bound to

f(u), and consequently a bound of the form (11) for the absolute value of the characteristic

function, even for a truncated range of values u. Still, the subordinator is selfdecomposable

(see Appendix B) satisfying (13), which can be used as an alternative, with β ∈ (1,∞) and

B = maxu>0 |φZ(u; t)u
β|.

To obtain the upper bounds of the regularization error (5) and discretization error (16),

consider

φZ(u+ iy; t) = exp
(

tCΓ(−Y )(2(−2iu+GM + 2y)Y/2 cos(Y ζ(−iu+ y;G,M))−MY −GY )
)

=: ξyφZy(u; t), (39)

where φZy denotes the characteristic function of the CGMY subordinator Zy(t) with param-

eters C, Y ,

Gy :=
My

2(GM + 2y)

(

√

(G−M)2 − 8y(G+M)− 4y +G2 +M2
)

,

My :=

√
2

2

√

−
√

(G−M)2 − 8y(G+M)− 4y +G2 +M2
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with y ∈ (−GM/2, (G−M)2/8), so that conditions

GyMy = GM + 2y > 0,

(Gy −My)
2 = (G−M)2 − 8y > 0,

Gy +My = G +M,

Gy > 0,My > 0

are satisfied. Then, 0 < α < min(GM/2, (G − M)2/8) so that [−α, α] ⊂ (−GM/2, (G −

M)2/8). From (17) and (39) we obtain

A ≤ 1

α
e−Dα/2(eDα + 1)2

(

ξα

∫ ∞

0

|φZα(u; t)|du+ ξ−α

∫ ∞

0

|φZ−α(u; t)|du
)

, (40)

where |φZ±α(u; t)| follows from (30) for the indicated parameters. If Y ∈ (0, 1) and |G±α −

M±α|/(G±α +M±α) > 1/
√
3, we further have from (37)

A ≤ 2

α
e−Dα/2(eDα + 1)2B

∫ ∞

0

e−buβ

du =
2e−Dα/2(eDα + 1)2BΓ(1/β)

αβb1/β
, (41)

where B, b, β are given by (38).

4.2 Evaluating the CDF by numerical transform inversion

Following our earlier discussion, we identify three sources of error when using Fd in (15) to

approximate the required CDF, F : the regularization, truncation and discretization errors.

Given our upper bounds for these errors, we are able to constrain them within pre-specified

tolerance levels and compute the CDF numerically at the desired accuracy. Suppose (without

loss of generality) that each error term contributes equally to the total approximation error,

for which we assume a target level ǫ > 0.
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4.2.1 Regularization error

From (3)–(5) the tail probabilities and the regularization error are exponentially decreasing

functions of parameter D > 0 which determines the truncation of the domain of the CDF

from R to [−D/2, D/2]. The error also depends on parameter α. Based on (3)–(4), we

use standard root finding procedure to find the smallest value of D which satisfies 1 −

F (D/2) < ǫ/3, F (−D/2) < ǫ/3, subject to 0 < α < min(G,M) for the CGMY process and

0 < α < min(GM/2, (G −M)2/8) for the subordinator. The regularization error given by

(5) is then guaranteed to be bounded by ǫ/3.

4.2.2 Truncation error

To bound the truncation error (12) above by ǫ/3, in addition to our earlier choice for D, we

consider fixed parameters B, b, β given explicitly by (25)–(26) for the CGMY for different

ranges of the process parameter Y . Then, by employing a root finding procedure, we de-

termine L from (12), i.e., the bounded domain [−L/2, L/2] of the Fourier transform of the

regularized CDF (6). Note that for Y ∈ (1, 2) we need to ensure that L > 2 ⌈u∗⌉ holds (see

26), where u∗ = max(G,M)max[tan(π/(2Y )), − tan−1(Y π/2)] and ⌈u∗⌉ denotes the nearest

integer greater than u∗. The corresponding parameters B, b, β for the CGMY subordinator

are given by (38) for Y ∈ (0, 1). Note in this case that for |G −M |/(G + M) ≤ 1/
√
3 we

need to choose L > 2 ⌈u∗⌉, where u∗ satisfies Eq. (36). In the absence of a bound of the

form (12) when Y ∈ (1, 2) (see discussion in Section 4.1.2), we resort to (14) from which we

compute L = 2[ǫπ(β−1)/(3DB)]1/(1−β) with β ∈ (1,∞) and B = maxu>0 |φZ(u; t)u
β| which

can be found numerically given the explicit expression (30) for |φZ(u; t)|.

4.2.3 Discretization error

Given parameters D, α, B, b, β, we can then compute parameter A of the discretization

error bound (16). In particular, for Y ∈ (0, 1), we have been able to obtain explicit upper

bounds for A for both the CGMY process (see Eq. 29) and the CGMY subordinator (see Eq.
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41). Alternatively, for Y ∈ (0, 1)∪ (1, 2) one can obtain an estimate for A numerically based

on (28) and (40) respectively for each model. Given A, we compute the grid spacing h for

the truncated Fourier domain [−L/2, L/2] so that the discretization error (16) is bounded

above by ǫ/3.

4.2.4 Transform inversion

Following the procedure described above, we obtain all the necessary parameters D, L, h

for the numerical inversion of the Fourier transform (8) to recover the regularized CDF,

and subsequently the CDF, subject to total target error ǫ. To this end, we select uniform

grids u := {(j − N/2)h}N−1
j=0 and x := {(l − N/2)η}N−1

l=0 where N := ⌈L/h⌉ and η := D/N .

Denoting by Fd = {Fd(xl)}N−1
l=0 and ϕr = {φr(uj)}N−1

j=0 the values of Fd in (15) on grid x and

φr in (6) on grid u respectively, we compute

Fd,l =
1

2π
h

N−1
∑

j=0

e−iujxlϕr,j =
1

2π
he−iu0(xl−x0)

N−1
∑

j=0

e−ijlhηe−iujx0ϕr,j. (42)

Finally, we calculate the CDF as

F ≈ Fr +
1

2
≈ Fd +

1

2
,

where 1

2
is an N -dimensional vector of halves and F := {F (xl)}N−1

l=0 is the vector of approx-

imate values of F on grid x.

In (42), by setting hη = LD/N2 = 2π/N , one obtains the usual discrete Fourier transform

which can be computed fast on the grid x in o(N log2N) floating operations using the fast

Fourier transform (FFT). For hη = LD/N2 = 2πω with arbitrary real ω 6= 1/N , (42)

generalizes to the so-called fractional discrete Fourier transform, which allows the user to

bypass the undesirable restriction LD = 2πN . For this reason, we implement (42) using

the fractional FFT which also provides us with multiple values of the distribution function

simultaneously.

18



It is worth noting that the (absolute value) characteristic function bounds presented

in Theorems 1 and 2 can be used in alternative methods for evaluating numerically the

CDF based on characteristic function inversion, including, for example, the Hilbert trans-

form method (see Feng and Linetsky, 2008; Chen et al., 2012) or (inverse) Laplace transform

algorithms (e.g., see Cai et al., 2013).

4.3 Monte Carlo simulation

Assume m > 0 simulation trials and n > 0 time steps. The MC-FT1 algorithm proceeds as

follows.

1. Compute (42) using the CGMY characteristic function given by (19). Compute F and

store (x,F) to use for all m,n. Recall that the values of grid x represent the CGMY

process increments which are stationary and independent. This allows us to compute

and tabulate the distribution function once for use in all time steps and simulations.

This is a substantial CPU power saving that is forgone when the method is applied to

non-Lévy models (e.g., see Broadie and Kaya, 2006).

2. Generate matrix {Uk,j}n×m where Uk,j ∼ Unif[0, 1].

3. Use binary search to find 0 ≤ l < N − 1 so that Fl ≤ Uk,j < Fl+1 for 1 ≤ k ≤ n

and 1 ≤ j ≤ m. Use the uniform random samples on [0, 1] to generate samples

x̂ := {x̂k,j}n×m from the CGMY distribution FX(t) by interpolating linearly between

the tabulated values (x,F). The error of linear interpolation is o(η2). If 0 ≤ Uk,j < F0

and/or FN−1 ≤ Uk,j < 1, return respectively x0 and xN−1 (see Glasserman and Liu,

2010); the likelihood of these events is user-specified since P (Uk,j < F0) = F0 < ǫ/3

and P (Uk,j ≥ FN−1) = 1− FN−1 < ǫ/3 (see Section 4.2.1), hence the error from using
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such a convention is negligible. Based on the above, F−1
X(t)(Uk,j) ≈ x̂k,j where

x̂k,j =























x0, if Uk,j < F0

Uk,jη+xlFl+1−xl+1Fl

Fl+1−Fl
, if Fl ≤ Uk,j < Fl+1 for 0 ≤ l < N − 1

xN−1, if Uk,j ≥ FN−1

.

Utilizing linear interpolation also ensures that FX(t) (and F−1
X(t)) is monotonically in-

creasing between grid points, providing that Fl+1 > Fl for all l; if strict monotonicity

of {Fl}N−1
l=0 is violated, we increase the accuracy of the inversion scheme.

MC-FT2 proceeds along the same steps described above with the following modifications.

1. Replace the CGMY characteristic function with the one of the subordinator given by

(20) with µ ∈ iR.

3. Generate samples ẑ := {ẑk,j}n×m from the subordinator’s distribution FZ(t). Let ŷ :=

{ŷk,j}n×m where ŷk,j ∼ N (0, 1) . Then x̂k,j = θẑk,j +
√

ẑk,j ŷk,j .

5 Numerical study

For the purpose of implementing the MC-FT procedures in Sections 4.2–4.3, in what follows

we compute sufficient grid parameter values to calculate numerically the CDFs of the CGMY

process and the CGMY subordinator to achieve desired error tolerance, as described in

Section 4.2. We then test the performance of MC-FT against the existing CGMY Monte

Carlo methods on pricing different types of option contracts. We use the same parameters

as in Poirot and Tankov (2006), hence we choose C = 0.5, G = 2.0, M = 3.5, Y = 0.5 (set

I), i.e., CGMY with jumps of infinite activity and finite variation; and C = 0.1, G = 2.0,

M = 3.5, Y = 1.5 (set II), i.e., CGMY with jumps of infinite variation.
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5.1 Numerical CDFs

Table I provides the grid sizes D, L and the number of grid points N that need to be used

in the Fourier inversion formula (42) for the CDF of the CGMY process X(t) and the subor-

dinator Z(t) to ensure that the total approximation error (regularization, truncation of the

state and Fourier domains, discretization) is bounded above by ǫ = 10−3, . . . , 10−10, 10−13.

The grid parameters are determined using our computable error bounds, following the proce-

dure in Section 4.2 for each tolerance level, and are reported for X(t), t = 1, 1/12, 1/52, and

Z(t), t = 1, for model parameters sets I and II, as required for our simulation experiments in

Section 5.2. Given t, it can be seen that increasing precision results to larger parameters D,

L controlling the regularization and truncation errors; the number of grid points N adjusts

accordingly to offset the increase in the discretization error. It is also shown that the grid

size L and, consequently, the number of grid points N increases with decreasing t and/or pa-

rameter Y . This is not surprising given the detrimental effect decreasing t and/or Y have on

the decay of the absolute characteristic function value as shown in (24). We note the higher

grid requirement in the case of the CGMY subordinator, especially for parameters set I; this

is due to the slower decay of the corresponding characteristic function as o(exp(−b|u|Y/2))

(see 37), as opposed to o(exp(−b|u|Y )) (see 24) in the case of CGMY.

Additional numerical experiments for alternative model parameters C = 2, G = 5,

M = 15, Y = 0.5 and t = 0.5, as assumed in Cai et al. (2013), have shown that selecting

D = 7.1, L = 149, N = 29 based on the procedure in Section 4.2 suffice to compute using

(42) FX(0.5)(−3.099) = 0.000000152486, FX(0.5)(−0.029) = 0.450226233660, FX(0.5)(1.506) =

0.999999976408; our results are consistent with those obtained using the Laplace transform

algorithm of Cai et al. (2013) and the Hilbert transform method of Chen et al. (2012) to 12

decimal places.
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5.2 Pricing option contracts

The CGMY stock price process is given by

S (t) = S (0) e(r−q+̟)t+X(t), 0 < t ≤ T,

for given S (0) > 0, where r > 0 is the constant continuously compounded interest rate, q > 0

is the dividend yield, and the constant ̟ is chosen so that the discounted price process of

the (tradable) asset is a martingale under some risk neutral measure P, i.e.,

̟ = −CΓ(−Y )
(

(G+ 1)Y −GY + (M − 1)Y −MY
)

.

We further require M ≥ 1 in order to ensure that EP(eX(t)) < ∞. Finally, we consider a

partition of the contingent claim lifetime [0, T ] 0 = t0 < t1 < ... < tk < ... < tn = T , with

tk = t0 + kδ and δ := T/n.

In order to assess the performance of the MC-FT scheme, we consider a European plain

vanilla put option with terminal payoff

π(T ) = (K − S (T ))+ , (43)

where K is the strike price; an Asian call option with discrete monitoring at dates 0 = t0 <

t1 < ... < tk < ... < tn = T and payoff

π(T ) =

(

1

n+ 1

n
∑

k=0

S (tk)−K

)+

(44)

with fixed strike K; and a discretely monitored barrier call option of the type up-and-out

(UOC) with payoff

π(T ) = (S (T )−K)+ 1{supt∈T S(t)<B}, (45)

where T := {tk}nk=0 and B > S (0) is the barrier level. These options can be priced nu-
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merically (without Monte Carlo) under the CGMY model at high precision using, for ex-

ample, the Fourier-cosine series expansion of Fang and Oosterlee (2008) (payoff 43) and the

backward convolution algorithms of Černý and Kyriakou (2011) (payoff 44) and Lord et al.

(2008) (payoff 45). We use these methods to benchmark the proposed Monte Carlo scheme.

Results are shown in Table II; the numerical CDFs used for the Monte Carlo experiment are

obtained using the settings in Table I for ǫ = 10−10. The 95% confidence interval generated

by the Monte Carlo simulation always contains the exact price produced by the benchmark

algorithms.

Further, we compare the performance of MC-FT with the existing Monte Carlo methods

of Poirot and Tankov (PT) (Poirot and Tankov, 2006), Madan and Yor (MY) (Madan and Yor,

2008), Baeumer and Meerschaert (AR) (Baeumer and Meerschaert, 2010) and Rosiński (SR)

(Rosiński, 2007). In the interest of a fair comparison, all the schemes considered use programs

coded on the same platform (MATLAB R2010b run on a Dell Optiplex 755 Intel Core 2 Duo

PC 2.66GHz with 2.0GB RAM; the implementation of the MY scheme in MATLAB is based

on the C++ code of Peter Tankov available at http://people.math.jussieu.fr/˜tankov/). The

PT scheme is considered only for the case of the European put option as it cannot be applied

to generate the process path. Note that MY, AR and SR generate biased price estimators.

In the MY approach, in fact, bias results from the truncation of the small jumps of the

subordinator Z below some threshold level ε (see also Poirot and Tankov, 2006). In the

AR sampling scheme, bias is originated by the truncation of the real line to the domain on

which the tempering is performed (see Kawai and Masuda, 2011) and which is controlled

by a parameter γ > 0, say. Note that the AR scheme is exact for Y ∈ (0, 1) (i.e., set I).

Finally, bias in the SR method is introduced by the truncation of the infinite summation

representation of the CGMY process to a finite number of terms, say Ñ . In the presence of

bias, we measure the error of the Monte Carlo price estimates with the root mean square

error RMSE :=
√

bias2 + σ2, where bias := π̂0−π0, π̂0 is the price estimate calculated using

107 simulation trials, π0 is the true price obtained by the benchmark methods and σ2 is the

sample variance. As MC-FT is implemented based on numerical CDF with error bounded
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above by ǫ = 10−10, its approximation bias is negligible compared to the Monte Carlo sim-

ulation error itself. The PT scheme is also unbiased. Consequently, for both methods the

RMSE coincides with the standard error.

A comparison in terms of speed and accuracy of the MC-FT schemes and the PT, MY

and AR methods is illustrated in Figure 1, where we plot on a log-log scale the RMSE against

the CPU time obtained for 104, 105, 106, 107 simulation trials when pricing the European

put option with terminal payoff (43). The MY estimates are obtained using the threshold ε

which originates an overall RMSE as close as possible to the one generated by the MC-FT

schemes. This value depends on the parameter Y : for Y = 0.5 (set I) ε = 10−4, while for

Y = 1.5 (set II) ε = 10−5. The parameter γ in the AR scheme for set II is chosen in a similar

manner and fixed at 2. The steeper slopes in the plots indicate that both MC-FT1 and

MC-FT2 outperform the other simulation approaches. More in details, MY and AR achieve

same RMSE as MC-FT for the same number of simulation trials, quantified, for example,

at 0.0197 (regardless of the parameters set used) when 106 trials are used. However, this is

achieved at a higher CPU cost: under set I, for 106 trials MY uses 387 seconds to produce a

price estimate, AR uses 446 seconds, whilst MC-FT1 and MC-FT2 require 0.56 seconds and

1.93 seconds respectively. Under set II, the CPU times are 1705, 2805, 0.47, 1.20 seconds

for MY, AR, MC-FT1 and MC-FT2 respectively. The PT scheme, on the other hand, is the

closest to the MC-FT implementations in terms of computing time, especially for a small

number of simulation trials; however, both MC-FT1 and MC-FT2 prove to be more accurate

generating smaller RMSE. For example, for the illustrative case of 106 trials, PT returns the

option price in 0.81 seconds with a RMSE of 0.09.

Figure 1 also shows that MC-FT1 and MC-FT2 achieve the same accuracy for all sim-

ulation trials, however MC-FT1 is slightly faster. This is a consequence of the more time

consuming CDF tabulation in MC-FT2 due to the larger number of grid points used in the

numerical transform inversion to attain the desired error tolerance, as discussed in Section

5.1. As the number of simulation trials increases, the execution time of the simulation part

overshadows the computational burden of CDF tabulation and the two MC-FT implemen-
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tations converge.

If the SR method is used, the choice of the truncation threshold Ñ of the infinite series

is an important issue to be addressed due to the trade-off between the approximation error

and the CPU time, which is even more pronounced than in the MY and AR schemes. Our

numerical exercise has shown that, for parameter Y = 0.5 (set I), SR with Ñ = 103 produces

same RMSE as the MC-FT schemes, however for higher computing time by a factor of 105.

The efficiency gains provided by the MC-FT method are even more pronounced for Y = 1.5

(set II): the RMSE generated by the MC-FT schemes is smaller by a factor of 102 even when

using SR with Ñ = 104, whilst the saving in terms of CPU time is of a factor of 106. We

have not explored higher values Ñ due to the large computing effort.

In light of the previous discussion, we present the results obtained only by the MC-FT1,

MY and AR methods for the Asian option with payoff (44) and the UOC barrier option

with payoff (45). Figures 2 and 3 illustrate the speed and accuracy of the methods for 106

simulation trials and quarterly, monthly and weekly monitoring (i.e., n = 4, 12, 52). The

three simulation schemes achieve similar precision as measured by the RMSE, however at

different computing costs. For illustration purposes, in the monthly monitoring case the

Asian option price is generated with a RMSE of 0.019, whilst the UOC barrier option price

estimate has a RMSE of 0.006, regardless of the parameters set used. The difference in

CPU times, though, is significant: for both the Asian and UOC barrier options, MC-FT1

generates a price estimate in 7.4 seconds (set I) and 7 seconds (set II), MY requires instead

3828 seconds (set I) and 6309 seconds (set II), whilst AR requires 426 seconds (set I) and

1069 seconds (set II).
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6 Extension to multivariate options

The proposed simulation methodology can be easily extended to accommodate multivariate

option contracts. In this study we consider the case of a spread option with payoff function

π(T ) = (S2(T )− S1(T )−K)+

and an Asian basket option with terminal payoff

π(T ) =

(

1

d(n+ 1)

d
∑

j=1

n
∑

k=0

Sj(tk)−K

)+

, (46)

where d denotes the number of assets in the portfolio. These are derivative contracts common

in energy markets, where they trade OTC but also on commodity exchanges such as NYMEX

(e.g., see Borovkova and Permana, 2010, and references therein).

The pricing of these contracts requires the construction of a multidimensional CGMY pro-

cess with dependence between components. Recent contributions on multivariate Lévy pro-

cesses include, amongst others, Ballotta and Bonfiglioli (2013) and Luciano and Semeraro

(2010). In particular, Ballotta and Bonfiglioli (2013) use a two-factor approach in which

each component of a d-dimensional Lévy process is given by the sum of an idiosyncratic

and a systematic risk process. Convolution conditions are then imposed to guarantee that

the given sum returns a process with known distribution in order to facilitate the calibra-

tion of the model. The construction proposed by Luciano and Semeraro (2010), instead, is

specific to processes with known subordinated Brownian motion representation, such as the

CGMY process, as dependence is induced by the subordinator, which is decomposed into an

idiosyncratic and a systematic clock.

In this analysis we adopt the multivariate construction proposed by Ballotta and Bonfiglioli

(2013) and use MC-FT1 to simulate CGMY variates directly which was shown above to be

faster. More specifically, for j = 1, . . . , d, let Lj(t) and Ld+1(t) be independent CGMY
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processes with parameters (CLj, GLj ,MLj, Y ) and (CL, GL,ML, Y ) respectively, representing

the idiosyncratic and the systematic risk factors. Then, for aj ∈ R

X (t) = (X1(t), . . . , Xd(t))
⊤ = (L1(t) + a1Ld+1(t), . . . , Ld(t) + adLd+1(t))

⊤ (47)

is a d-dimensional CGMY process, whose margins have parameters (Cj, Gj,Mj , Y ) if the

following convolution conditions are satisfied











GLj = GL/aj , j = 1, ..., d,

MLj = ML/aj , j = 1, ..., d,

and Cj = CLj + CLa
Y
j , j = 1, ..., d. Note that in this example we assume that all pro-

cesses have the same parameter Y < 2, i.e., the same fine structure. The pairwise (linear)

correlation coefficient is

ρjl := Corr (Xj (t) , Xl (t)) = ajal
Var (Ld+1 (1))

√

Var (Xj (1))Var (Xl (1))
. (48)

In order to adapt the MC-FT1 algorithm to the multivariate construction (47) for a

d-dimensional problem, we require (d + 1) computations of the discrete transform (42) to

evaluate the CDFs of the d idiosyncratic processes and the systematic component, each

subject to error tolerance ǫ = 10−10. Similarly to the univariate case, these can be tabulated

once at the beginning of the Monte Carlo simulation. The corresponding CGMY samples

are generated using a cube of uniform random variates of dimension n × m × (d + 1) (see

Section 4.3), and then combined under the linear transformation (47).

For the numerical test, we use the same data as in Ballotta and Bonfiglioli (2013), hence

we calibrate the CGMY margins to market prices of vanilla options written on Ford Motor

Company (F), Abbott Lab. (ABT), and Baxter Int. Inc. (BAX) as of September 2008.

The parameters of the idiosyncratic and the systematic processes are obtained by fitting

the correlation matrix and imposing the corresponding convolution conditions. As a proxy
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for the correlation between Xj (t) , Xl (t), we consider the historical correlation estimated on

a time window of 125 days up to (and including) the valuation date. All parameters are

reported in Table III. The table also shows the accuracy with which the linear combination

(47) reproduces the original market option data. In details, the table provides information

on the error caused by fitting the correlation matrix (correlation fit error) and imposing

convolution. Note that the convolution conditions are solved numerically originating an

error, which we quantify by the difference between the first four cumulants of the CGMY

margins and the linear combination (47) (cumulant error) and its impact on option prices

(calibration error).

As spread options can be priced at high accuracy with transform techniques (e.g., see

Lord et al., 2008), we can benchmark the multivariate MC-FT1 algorithm. For more accurate

Monte Carlo price estimates, we further use antithetic variates (with the same total number

of simulation trials as the crude MC-FT1). In this example, we assume spread options

written on Ford (asset S1) and Abbott (asset S2). From Table IV, we observe that the

reference prices lie in the 95% confidence interval generated by the MC-FT1 procedure.

MC-FT1 lends itself easily to more complicated multivariate contracts for which exact

(non-Monte Carlo) pricing techniques are not currently available. To the best of our knowl-

edge, this is the case, for example, with Asian basket options. By changing to the payoff

(46), we use MC-FT1 to price Asian basket options written on Ford, Abbott and Baxter

(asset S3), see Table IV. Alternative pricing methods in the literature are based on the mo-

ment matching approach (e.g., see Borovkova and Permana, 2010, for an application in the

traditional Gaussian economy); differently from the MC-FT sampling approach, though, the

induced approximation error of the moment matching method is not directly quantifiable

and therefore difficult to control.
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7 Conclusions

In this paper, we present a Monte Carlo simulation method for the CGMY process based on

sampling from CDF obtained by Fourier transform inversion. Based on the same principle,

we study further the simulation of the CGMY using its Brownian subordination represen-

tation. We investigate sufficient conditions for the existence of explicit bounds for the error

in transform inversion, which allow us to gauge the precision of the numerical CDF. The

suggested sampling scheme is tested on numerical examples involving the pricing of single-

asset plain vanilla and exotic options under a CGMY model of infinite activity with finite

or infinite variation. The method provides access to the entire trajectory of the process and

shows significant efficiency gain over other CGMY sampling schemes for different values of

the process parameter Y ∈ (0, 1)∪(1, 2). Further, we extend to the multidimensional case by

proposing a multivariate construction of the CGMY process and assessing the performance

of the sampling scheme on pricing multi-names contracts.

Finally, we note that the MC-FT schemes, especially the MC-FT1 implementation, has

the advantage of keeping the dimension of the problem at its minimal level; in this respect,

the proposed approach is QMC friendly and further efficiency improvements can be expected

by combining it with QMC/RQMC methods (see also Chen et al., 2012) for further consid-

erations on the suitability of inverse transform methods for QMC implementations). The

performance of QMC methods, though, depends also on the payoff function and the actual

process construction (e.g., see Wang and Sloan, 2011, and references therein); the full in-

vestigation of these aspects for the case of the CGMY process and, more in general, other

Lévy processes is left to future research.
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A Proofs of Theorems

A.1 Proof of Theorem 1

Proof of (i). Define

w1 = G+ iu with argw1 = arctan
u

G
, |w1| = (G2 + u2)1/2,

w2 = M − iu with argw2 = − arctan
u

M
, |w2| = (M2 + u2)1/2;

therefore

wY
j = |wj|Y [cos(Y argwj) + i sin(Y argwj)]

for j = 1, 2. Then,

φX(u; t) = exp
[

tK + tCΓ(−Y )
(

wY
1 + wY

2

)]

from which result (22) follows.

Proof of (ii). As the cosine function is an even function, so is the function f , i.e.,

f(−u) = f(u). Given this, in what follows we consider u > 0. Further,

f ′(u) = −Y Γ(−Y )

[

(

G2

u2
+ 1

)Y/2
G

G2 + u2
cos
(

Y arctan
u

G

)

(

G

u
+ tan

(

Y arctan
u

G

)

)

+

(

M2

u2
+ 1

)Y/2
M

M2 + u2
cos
(

Y arctan
u

M

)

(

M

u
+ tan

(

Y arctan
u

M

)

)

]

.

Note that cos(Y arctan(u/G)), cos(Y arctan(u/M)), tan(Y arctan(u/G)), and tan(Y arctan(u/M))

are: (a) positive when Y ∈ (0, 1) as Y arctan(u/G), Y arctan(u/M) ∈ (0, Y π/2) ⊂ (0, π/2)

for all u > 0; (b) guaranteed to be negative for u > max(G,M) tan(π/(2Y )) > 0 when

Y ∈ (1, 2) as Y arctan(u/G), Y arctan(u/M) ∈ (π/2, Y π/2) ⊂ (π/2, π). Consequently, under

(a), function f(u) is negative and monotone increasing for u > 0. Under (b), f(u) is negative

for u > max(G,M) tan(π/(2Y )); further, f ′(u) is negative if | tan(Y arctan(u/G))| > G/u,
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and | tan(Y arctan(u/M))| > M/u, i.e., if − tan(Y π/2) > max(G,M)/u. Hence, both f(u)

and f ′(u) are negative for u > max(G,M)max[tan(π/(2Y )),−1/ tan(Y π/2)] = u∗.

Proof of (iii). Consider case (a), hence Y ∈ (0, 1). Then, it follows f(0) → −∞; further,

limu→∞ cos(Y arctan(u/G)) = limu→∞ cos(Y arctan(u/M)) = cos(πY/2) and limu→∞ f(u) =

2Γ(−Y ) cos(πY/2) < 0. From part (ii), f(u) is monotone increasing for u > 0; therefore,

f(u) ≤ 2Γ(−Y ) cos(πY/2). Since function f is even, the bound is also satisfied for u < 0.

Consider case (b). Then, 0 > f(u∗) > f(u) as f(u) is guaranteed to be negative and

monotone decreasing for u > u∗ from part (ii). Since function f is even, the bound is also

satisfied for u < −u∗. The proof is complete.

A.2 Proof of Theorem 2

Proof of (i). Define

w1 = 2iu− θ2 with argw1 = − arctan(2θ−2u) + π1u≥0 − π1u<0,

|w1| = (θ4 + 4u2)1/2,

so that

w
1/2
1 = |w1|1/2

[

cos

(

1

2
argw1

)

+ i sin

(

1

2
argw1

)]

.

Then,

φZ(u; t) = exp
[

tK + t2CΓ(−Y )(2iu+GM)Y/2 cos(ζ(iu;G,M)Y )
]

,

where

ζ(iu;G,M) = arctan(θ̃−1w
1/2
1 ) ≡ arctan(x(u) + iy(u)) ≡ a(u) + ib(u)

for real-valued functions a(u), b(u), x(u), y(u) given by (32)–(35), see Abramowitz and Stegun

(1968), p. 81. Note that x(u) > 0 when u 6= 0 and x(0) = 0, also y(0) = θ/θ̃ ∈ [−1, 1], hence
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a(0) = 0 and b(0) = ln(
√

G/M). The following also holds:

cos(ζ(iu;G,M)Y ) = cos(Y a(u)) cosh(Y b(u))− i sin(Y a(u)) sinh(Y b(u)).

Finally, define

w2 = 2iu+GM with argw2 = arctan
2u

GM
, |w2| = (G2M2 + 4u2)1/2,

so that

w
Y/2
2 = |w2|Y/2

[

cos

(

Y

2
argw2

)

+ i sin

(

Y

2
argw2

)]

.

Then,

φZ(u; t) = exp
[

tK + t2CΓ(−Y )w
Y/2
2 cos

(

arctan(θ̃−1w
1/2
1 )Y

)]

from which result (30) follows by straightforward algebra.

A.2.1 Outline of proof of (ii)

We begin the path to proving part (ii) of Theorem 2 by establishing some useful results.

As the arctangent function is an odd function, a(−u) = a(u) and b(−u) = −b(u) which

further imply that f(−u) = f(u). Given this, in what follows we consider u > 0 only.

Define the ratio τ = θ/θ̃ ∈ [−1, 1]. For u > 0, let β = 1
2
arctan(2θ−2u) ∈ (0, π/4) so that

2u = θ2 tan(2β) and θ4 + 4u2 = θ4 sec2(2β), then

x(u) = |τ | sin(β)
√

sec(2β), y(u) = |τ | cos(β)
√

sec(2β).

Further, let γ = tan β ∈ (0, 1), then cos β = 1/
√

1 + γ2, cos(2β) = (1 − γ2)/(1 + γ2),

tan(2β) = 2γ/(1−γ2). Finally, consider the substitution γ = tanh v ∈ (0, 1) with v ∈ (0,∞),

which yields

x(u) = |τ | sinh v, y(u) = |τ | cosh v.
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This implies

x(u)2 + (y(u) + 1)2

x(u)2 + (y(u)− 1)2
=

τ 2 cosh(2v) + 1 + 2|τ | cosh v
τ 2 cosh(2v) + 1− 2|τ | cosh v =: R(v) ≥ 1,

1− x2(u)− y2(u)

2x(u)
=

1− τ 2 cosh(2v)

2|τ | sinh v =: α(v).

Further

2u

GM
=

tan(2β)

τ−2 − 1
=

2γτ 2

(1− γ2)(1− τ 2)
=

τ 2 sinh(2v)

1− τ 2
,

from which

arctan
2u

GM
= arctan

(

τ 2 sinh(2v)

1− τ 2

)

=: I(v).

Given the functions R(v), α(v), I(v), we define

g(v) = R(v)Y/4 cos z1(v) +R(v)−Y/4 cos z2(v), (A.1)

where

z1(v) := (I(v)− J(v))Y/2,

z2(v) := (I(v) + J(v))Y/2,

J(v) := π/2− arctanα(v). (A.2)

Using standard trigonometric identities and algebraic expressions of the sinh and cosh func-

tions, we can rewrite function f in (31) as

f(u) = Γ(−Y )

(

G2M2

u2
+ 4

)Y/4

g(v(u)),

where

v(u) = artanh

[

tan

(

1

2
arctan(2θ−2u)

)]

> 0 (A.3)
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for u > 0. Note that v′(u) = (θ4 + 4u2)−1/2 > 0, hence v(u) is an increasing, nonnegative

function of u. Then,

f ′(u) = Γ(−Y )

(

G2M2

u2
+ 4

)Y/4 [

−Y

2

G2M2

u(G2M2 + 4u2)
g(v) + g′(v)v′(u)

]

, (A.4)

where

g′(v)v′(u) =
Y

2
v′(u)

[

R′(v)

2R(v)

(

R(v)Y/4 cos z1(v)− R(v)−Y/4 cos z2(v)
)

−R(v)Y/4(I ′(v)− J ′(v)) sin z1(v)− R(v)−Y/4(I ′(v) + J ′(v)) sin z2(v)
]

.(A.5)

In what follows, we derive sufficient conditions to ensure that function g is positive with

g′ negative, hence function f is negative and f ′ is positive for Y ∈ (0, 1). To this end, we

study first the behaviour of functions I, J and R.

The behaviour of functions I and J. From the definitions it follows that

I ′(v) =
2τ 2(1− τ 2) cosh(2v)

1− 2τ 2 + τ 4 cosh2(2v)
, J ′(v) =

2|τ | cosh(v)(1 + τ 2(cosh(2v)− 2))

1− 2τ 2 + τ 4 cosh2(2v)
. (A.6)

We notice from (A.6) that the derivatives I ′, J ′ share the same denominator, which is pos-

itive, and that their numerators are also positive. Further, as I(0) = J(0) = 0, I, J

are increasing, nonnegative functions. Consider the difference I − J . Using the identity

cosh(2v) = 2 cosh2 v − 1 and the substitution δ = cosh v ≥ 1, it follows that

I ′(v)− J ′(v) = − 2|τ |(δ + |τ |)
1 − 2τ 2 + τ 4 cosh2(2v)

G(δ),

where G(δ) := 2δ2τ 2 − 2δ|τ | + 1 − τ 2 has a minimum value at δ∗ = 1/(2|τ |) > 1 for

|τ | < 1/2 equal to G(δ∗) = 1/2 − τ 2 > 0. If |τ | ≥ 1/2, the minimum is at δ∗ = 1

with G(1) = (|τ | − 1)2 > 0. Hence, I ′(v) − J ′(v) < 0. Since limv→∞ I(v) = π/2 and
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limv→∞ J(v) = π, it follows that I(v) − J(v) is monotone decreasing from 0 to −π/2. In

addition, I(v) + J(v) is monotone increasing from 0 to 3π/2.

The behaviour of functions R and g. We have shown already that R(v) ≥ 1 for v > 0.

Further

R′(v)

2R(v)
=

2|τ | sinh(v)(1− τ 2(2 + cosh(2v)))

1− 2τ 2 + τ 4 cosh2(2v)
,

where the denominator in the last equality is positive. Consequently, R′(v) < 0: (a) for all

v > 0 when |τ | > 1/
√
3 since 1− τ 2(2 + cosh(2v)) < 1− 3τ 2 < 0; (b) for all values of v such

that cosh(2v) > τ−2 − 2 ≥ 1, i.e., for v > v∗ := 1
2
arcosh(τ−2 − 2) > 0 where |τ | ≤ 1/

√
3.

We inspect the sign of the three terms in (A.5): firstly, R ≥ 1, and R′ < 0 under either

condition (a) or (b). Recall further that z1 = (I − J)Y/2 ∈ (−Y π/4, 0) ⊂ (−π/2, 0) and

z2 = (I + J)Y/2 ∈ (0, 3Y π/4) ⊂ (0, 3π/2) since Y < 2. If |I − J |Y/2 < (I + J)Y/2 < π/2,

we have that cos z1 > cos z2 > 0, else if |I − J |Y/2 < π/2 < (I + J)Y/2 < 3π/2, we have

that cos z2 < 0; in either case we conclude that

R′(v)

2R(v)

(

R(v)Y/4 cos z1(v)− R(v)−Y/4 cos z2(v)
)

< 0

for v > 0. Secondly, the term

R(v)Y/4(I ′(v)− J ′(v)) sin z1(v) > 0,

since I ′ − J ′ < 0 and sin z1 < 0. Finally, I ′ + J ′ > 0 and sin z2 > 0 since z2 = (I + J)Y/2 ∈

(0, 3Y π/4) ⊂ (0, π) if we restrict Y < 4/3, in which case the term

R(v)−Y/4(I ′(v) + J ′(v)) sin z2(v) > 0.

In summary, g′(v)v(u) < 0 when either condition (a) or (b) holds in addition to Y < 4/3.

We use our previous conclusion to determine the sign of function g(v). We inspect
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both conditions. Assume condition (a) holds: from (A.1), g(0) = R(0)Y/4 + R(0)−Y/4 =

[(|τ |+1)2/(|τ |−1)2]Y/4+[(|τ |−1)2/(|τ |+1)2]Y/4 > 0, and limv→∞ g(v) = limv→∞ cos z1(v)+

limv→∞ cos z2(v) = cos(πY/4) + cos(3πY/4) > 0 if we restrict Y < 1. Since g′(v) < 0

for all v > 0, then g(v) > 0. Instead, suppose condition (b) holds: we need to examine

the sign of g(v∗). We have that 0 < J(v∗) < π/2, which follows from (A.2) as α(v∗) =

(1− τ 2 cosh(2v∗)) / (2|τ | sinh v∗) = |τ |/ sinh v∗ > 0 and 0 < arctanα(v∗) < π/2. Also

0 < I(v∗) < π/2, therefore z2(v
∗) = (I(v∗) + J(v∗))Y/2 < π/2 and cos z2(v

∗) > 0 if we

restrict Y < 1. Further, cos z1(v
∗) > 0 and R(v∗) > 0, implying g(v∗) > 0. We conclude

that g(v) > 0 for v > v∗ when Y < 1.

Proof of (ii). Based on the analysis in Section A.2.1, we conclude that f ′(u) in (A.4)

is positive, i.e., f(u) in (31) is monotone increasing, for Y ∈ (0, 1) and (a) all u > 0 when

|τ | > 1/
√
3; (b) all values u > u∗ > 0, where u∗ satisfies tan

(

1
2
arctan(2θ−2u∗)

)

= tanh(v∗)

in virtue of (A.3) with v∗ = 1
2
arcosh(τ−2 − 2) > 0 when |τ | ≤ 1/

√
3. Under either condition

(a) or (b), f is also negative.

Proof of (iii). Let Y ∈ (0, 1). From (31), f(0) → −∞. Also x(∞) → ∞, y(∞) → ∞, im-

plying limu→∞ a(u) = π/2, limu→∞ b(u) = 0; therefore limu→∞ f(u) = 2Γ(−Y )2Y/2 cos(πY/4)

cos(πY/2) < 0. From part (ii), f(u) is monotone increasing for u > 0 when |τ | > 1/
√
3, and

for u > u∗ when |τ | ≤ 1/
√
3. Hence, for values of u in the relevant ranges, we have that

f(u) ≤ limu→∞ f(u). As function f is even, the bound is also satisfied for u < 0 or u < −u∗.

This concludes the proof of the theorem.

B Selfdecomposability of the CGMY process and the

CGMY subordinator

For the case of the CGMY process, consider its Lévy density given by (18). It follows that

kX(x) = νX(x)x = C

(

e−G|x|

|x|Y 1x<0 +
e−Mx

xY
1x>0

)

> 0 for all x ∈ R
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and

k′
X(x) = C

[

e−G|x|

|x|Y
(

G+
Y

|x|

)

1x<0 −
e−Mx

xY

(

M +
Y

x

)

1x>0

]

implying that k(x) is increasing on (−∞, 0) and decreasing on (0,∞) when Y > 0, hence

satisfies sufficient selfdecomposability conditions.

For the case of the CGMY subordinator, we have from (21) that the Lévy density can

be rewritten in terms of the confluent hypergeometric function of the second kind, U(a, b, c),

(see Gradshteyn and Ryzhik, 2007, p. 1023 and 1028) as

s (z) =
Γ (Y )

Γ (Y/2) 2Y−1
e

z
2
(θ2−θ̃2)U

(

Y/2, 1/2, zθ̃2/2
)

.

It follows that

kZ(z) = νZ(z)z = s(z)ν0(z)z > 0

and

k′
Z(z) = −1

4

[

2Y

z
+ 2(θ̃2 − θ2) +

√
2Y θ̃√
z

U(Y/2 + 1/2, 1/2, zθ̃2/2)

U(Y/2, 1/2, zθ̃2/2)

]

kZ(z) (B.1)

= −1

4

[

2Y

z
+ 2(θ̃2 − θ2) +

2Y θ̃√
z

h−Y−1(θ̃
√
z)

h−Y (θ̃
√
z)

]

kZ(z), (B.2)

which is negative on (0,∞) when Y > 0 since θ̃ > θ, θ̃ > 0 (for equalities B.1–B.2, see

Abramowitz and Stegun, 1968, p. 505 and 507).
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bonds in Lévy process models: a fast Hilbert transform approach. Mathematical Finance,

18, 337–384.

Glasserman, P., & Kim, K. (2009). Gamma expansion of the Heston stochastic volatility

model. Finance and Stochastics, 15, 267–296.

Glasserman, P., & Liu, Z. (2010). Sensitivity estimates from characteristic functions. Oper-

ations Research, 58, 1611–1623.

Goldberg, R. (1961). Fourier Transforms. Cambridge Tracts in Mathematics and Mathe-

matical Physics, No. 52. Cambridge: Cambridge University Press.

Gradshteyn, I.S., & Ryzhik, I.M. (2007). Table of Integrals, Series, and Products. New York:

Academic Press.

Hughett, P. (1998). Error bounds for numerical inversion of a probability characteristic

function. SIAM Journal on Numerical Analysis, 35, 1368–1392.

Kawai, R., & Masuda, H. (2011). On simulation of tempered stable random variates. Journal

of Computational and Applied Mathematics, 235, 2873–2887.

Lord, R., Fang, F., Bervoets, F., & Oosterlee, C.W. (2008). A fast and accurate FFT-based

method for pricing early-exercise options under Lévy processes. SIAM Journal on Scientific
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Table I
Grid parameters for CDF Fourier inversion formula.

CGMY CGMY subordinator
set ǫ t = 1 t = 1/12 t = 1/52 t = 1

D L log2N D L log2N D L log2N D L log2N
10−3 7.0 85 8 7.1 1.2× 104 15 7.1 3.0× 105 20 58 1.1× 104 18
10−4 9.3 116 9 9.4 1.6× 104 16 9.4 3.9× 105 21 74 1.7× 104 19
10−5 11.6 151 10 11.7 2.1× 104 17 11.8 5.0× 105 21 91 2.6× 104 20
10−6 13.9 189 10 14.1 2.6× 104 17 14.1 6.1× 105 22 107 3.7× 104 21

I 10−7 16.2 230 11 16.4 3.2× 104 18 16.4 7.3× 105 22 123 5.1× 104 21
10−8 18.5 275 11 18.7 3.9× 104 18 18.8 8.6× 105 23 139 6.8× 104 22
10−9 20.9 324 12 21.1 4.6× 104 19 21.1 1.0× 106 23 159 8.9× 104 23
10−10 23.2 376 12 23.4 5.3× 104 19 23.5 1.1× 106 23 174 1.2× 105 23
10−13 30.1 555 13 30.2 7.8× 104 20 30.6 1.6× 106 24 222 2.2× 105 24

10−3 11.6 20 8 11.6 107 9 11.6 298 10 58 707 14
10−4 13.9 24 8 13.9 123 9 13.9 339 11 74 841 15
10−5 16.2 27 8 16.2 138 10 16.2 377 11 91 1010 15
10−6 18.5 31 8 18.5 152 10 18.5 411 12 107 1158 16

II 10−7 20.8 34 8 20.8 165 11 20.8 444 12 123 1332 16
10−8 23.1 37 9 23.1 176 11 23.1 477 12 140 1490 17
10−9 25.4 40 9 25.4 188 11 25.4 508 12 159 1662 17
10−10 27.7 43 9 27.7 200 11 27.7 539 13 174 1828 17
10−13 34.6 52 10 34.6 234 12 34.6 624 13 222 2370 18

Grid parameters computed given tolerance level ǫ of total error (regularization, truncation of state and Fourier
domains, discretization) in numerical Fourier inversion (see Sections 4.2.1–4.2.4). Process parameters (see
Eqs. 19, 20): sets I & II, t = 1, 1/12, 1/52. [−D/2, D/2]: truncated domain of CDF; [−L/2, L/2]: truncated
domain of Fourier transform (6); N : number of grid points.

Table II
MC-FT price estimates of European vanilla put, Asian call and UOC barrier options.

Vanilla put option Asian call option UOC barrier option
set K ref. MC-FT1 std MC-FT2 std ref. MC-FT1 std ref. MC-FT1 std

price price error price error price price error price price error
80 6.3037 6.2757 0.0130 6.3101 0.0130 23.0533 23.0344 0.0234 8.8650 8.8804 0.0132

I 90 9.6597 9.6710 0.0164 9.6677 0.0164 15.5249 15.5049 0.0220 5.2601 5.2579 0.0095
100 14.0691 14.0516 0.0197 14.0604 0.0197 9.6434 9.6490 0.0197 2.6325 2.6389 0.0062
110 19.5655 19.5340 0.0229 19.5793 0.0230 5.8405 5.8105 0.0176 0.9894 0.9902 0.0032
120 26.0513 26.0483 0.0258 26.0527 0.0258 3.6888 3.6987 0.0164 0.1959 0.1975 0.0011

80 7.0254 7.0401 0.0125 7.0226 0.0124 23.1589 23.1803 0.0244 4.9206 4.9157 0.0104
II 90 10.9517 10.9548 0.0160 10.9355 0.0160 16.2348 16.2145 0.0221 2.7331 2.7361 0.0072

100 15.8165 15.8150 0.0195 15.8212 0.0195 10.9197 10.9561 0.0195 1.2983 1.3031 0.0045
110 21.5315 21.5440 0.0229 21.4762 0.0229 7.1342 7.1385 0.0166 0.4734 0.4723 0.0023
120 27.9847 28.0039 0.0261 27.9752 0.0261 4.5866 4.5824 0.0138 0.0944 0.0953 0.0007

MC-FT prices and standard errors computed using 106 simulation trials. Reference prices for the plain
vanilla put, Asian call, UOC barrier options obtained respectively using the methods of Fang and Oosterlee
(2008), Černý and Kyriakou (2011) and Lord et al. (2008). CGMY parameters: sets I & II. CDF error
tolerance: ǫ = 10−10. Other parameters: S (0) = 100, B = 130, r = 0.04, q = 0.0, T = 1, n = 12.
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Table III
3-dimensional CGMY process: parameters set.

125-day correlation
asset S (0) q F ABT BAX

(a) Valuation date: 30.09.2008 F 5.20 0.0% 100%
ABT 57.58 2.8% 25% 100%
BAX 65.67 1.5% 30% 64% 100%

(b) Margin process Cj 3.1852 0.5263 0.6017
Gj 5.7670 8.9598 11.0817
Mj 12.1599 24.9805 29.8549
Y 0.8999 0.8999 0.8999

Calibration RMSE 1.12× 10−1 4.15× 10−1 4.32× 10−1

(c) Idiosyncratic process CLj 2.7679 0.2422 0.2880
GLj 5.7670 8.9598 11.0817
MLj 12.1599 24.9805 29.8549
Y 0.8999 0.8999 0.8999
aj 1.0239 0.6681 0.7457

(d) Systematic process CL 0.4085
GL 5.9053
ML 16.4643
Y 0.8999

(e) Cumulant error c1 8.52× 10−2 2.87× 10−4 1.51× 10−2

c2 6.73× 10−3 4.82× 10−4 1.23× 10−2

c3 1.02× 10−3 7.60× 10−5 1.92× 10−3

c4 2.30× 10−4 3.12× 10−5 7.59× 10−4

(f) Calibration error 3.71× 10−3 −7.73× 10−3 −2.30× 10−1

(g) Correlation fit error F -
ABT 6.87× 10−3 -
BAX 0 1.09× 10−9 -

Panel (a). Market data for the three assets considered. Correlation matrix estimated using historical
prices of the three assets over a 125-day time window up to (and including) the valuation date. Source:
Bloomberg. Panels (b)–(d). Parameters of the CGMY margin processesXj (t), j = 1, 2, 3, and corresponding
idiosyncratic and systematic components Lj(t), j = 1, 2, 3, and L4(t). Fit of the multivariate CGMY process
tested in panels (e)–(g). Panel (e). Cumulant error expressed as (absolute) difference between the indicated
cumulants of the process Xj (t) and the corresponding cumulants of the linear combination Lj (t) + ajL4 (t)
for j = 1, 2, 3. Panel (f). Calibration error expressed as difference between the RMSEs generated by
calibration to vanilla option market prices of the margins (reported in panel b) and the linear combinations
Lj (t) + ajL4 (t), j = 1, 2, 3. Panel (g). Correlation fit error expressed as difference between model and
historical correlations. Model correlations computed using (48).
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Table IV
Multivariate option contracts: spread option and Asian basket option.

Crude Monte Carlo with
Monte Carlo antithetic variates

K MC-FT1 std MC-FT1 std ref.
price error price error price

20 31.4648 0.0093 31.4682 0.0026 31.4700
Spread 30 21.9351 0.0091 21.9389 0.0027 21.9408
option 40 13.1633 0.0082 13.1664 0.0036 13.1686

50 6.4404 0.0064 6.4400 0.0045 6.4431

20 22.3345 0.0037 22.3410 0.0010
Asian basket 30 12.6770 0.0037 12.6832 0.0010

option 40 3.8684 0.0029 3.8737 0.0015
50 0.2773 0.0008 0.2785 0.0008

Prices and standard errors obtained for 2 × 106 simulation trials using crude MC-FT1, and 106 simulation
trials using MC-FT1 with antithetic variates. CPU times (in seconds): spread option: 2.75 (crude MC-FT1),
2.53 (MC-FT1 with antithetic variates); Asian basket option: 51.31 (crude MC-FT1), 44.62 (MC-FT1 with
antithetic variates). Reference prices for spread options obtained with the method of Lord et al. (2008).
Model parameters: Table III. CDF error tolerance: ǫ = 10−10. Other parameters: r = 0.0336 (source:
Bloomberg), T = 1, n = 12, d = 2 (spread option), d = 3 (Asian basket option).

Figure 1
Speed and accuracy of the MC-FT1 & MC-FT2 methods: European vanilla put option.
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Comparison performed against the PT method Poirot and Tankov (2006), MY method Madan and Yor
(2008) and AR method Baeumer and Meerschaert (2010). CGMY parameters: sets I & II. MC-FT CDF
error tolerance: ǫ = 10−10. MY parameters: ε = 10−4 (set I) & ε = 10−5 (set II). AR parameter: γ = 2 (set
II). Other parameters: S(0) = K = 100, r = 0.04, q = 0.0, T = 1. Simulation trials: 104, 105, 106, 107.
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Figure 2
Speed and accuracy of the MC-FT1 method: Asian call option.
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CGMY parameters: sets I & II. MC-FT CDF error tolerance: ǫ = 10−10. MY parameters: ε = 10−4 (set I)
& ε = 10−5 (set II). AR parameter: γ = 0.5 (set II). Other parameters: S(0) = K = 100, r = 0.04, q = 0.0,
T = 1. Simulation trials: 106. Monitoring dates n = 4, 12, 52.

Figure 3
Speed and accuracy of the MC-FT1 method: UOC barrier option.
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CGMY parameters: sets I & II. MC-FT CDF error tolerance: ǫ = 10−10. MY parameters: ε = 10−4 (set I)
& ε = 10−5 (set II). AR parameter: γ = 0.5 (set II). Other parameters: S(0) = K = 100, B = 130, r = 0.04,
q = 0.0, T = 1. Simulation trials: 106. Monitoring dates n = 4, 12, 52.
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