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Portfolio optimization under solvency constraints: a
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Abstract

We develop portfolio optimization problems for a non-life insurance company seeking to find the minimum

capital required, which simultaneously satisfies solvency and portfolio performance constraints. Motivated by

standard insurance regulations, we consider solvency capital requirements based on three criteria: Ruin Proba-

bility, Conditional Value-at-Risk and Expected Policyholder Deficit ratio. We propose a novel semiparametric

formulation for each problem and explore the advantages of implementing this methodology over other potential

approaches. When liabilities follow a Lognormal distribution, we provide sufficient conditions for convexity for

each problem. Using different expected Return on Capital target levels, we construct efficient frontiers when

portfolio assets are modelled with a special class of multivariate GARCH models. We found that the correlation

between asset returns plays an important role in the behaviour of the optimal capital required and the portfolio

structure. The stability and out-of-sample performance of our optimal solutions are empirically tested with re-

spect to both the solvency requirement and portfolio performance, through a double rolling window estimation

exercise.
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1 Introduction

Insurance regulation has played an important role in securing policyholders and investors against various types

of risk. One of its primary objectives is the establishment of an initial capital amount required to be held by

insurance companies, in order to offer protection in the case of unexpected events. There has been an extensive

literature on capital adequacy and its relationship to risk measures. For example, the Value-at-Risk (V aR), one

of the most popular tools used in financial risk management, constitutes the basis for the Solvency II regulatory

standards which applies to insurance companies in European Union (EU) (e.g. Sandström, 2006). In order to

overcome some of the V aR pitfalls (e.g. V aR is not sub-additive), Artzner et al. (1999) introduced the notion of

coherent risk measures. A discussion about their applications to capital requirements in insurance is provided in

Artzner (1999). Amongst the coherent risk measures, an important special case is represented by the Expected

Shortfall (ES), which plays a crucial role for the development of the Swiss Solvency Test (SST) (FOPI, 2004). The

class of coherent measures has been further extended to convex measures by Föllmer and Schied (2002). For an

overview of theoretical properties of various well-known risk measures used as solvency capital requirements, we

refer to Dhaene et al. (2006). For a more recent survey on applications of risk measures in portfolio management

we refer to Krokhmal et al. (2011).

The standard approach used in connecting minimum capital standards to risk measures relies on the investment

of solvency capital into a single “eligible” security, often taken as a risk-free asset. However, if the regulator allows

the financial institution (e.g. insurance company in our case) to use a portfolio of such “eligible” assets, investing

only into the risk-free asset may not be efficient. For example, Balbas (2008) showed that the investment of the

capital requirement into a risk-free asset is not optimal in several important cases, and he provided an example

based on a Conditional Value-at-Risk (CV aR) (a risk measure introduced by Rockafellar and Uryasev, 2000) and

Black-Scholes assumptions. Artzner et al. (2009) provided a brief discussion on the efficient use of capital and

risk measures in the case of multiple traded assets, while Farkas et al. (2012) gave a comprehensive theoretical

background on the same issue. However, none of the above studies provide empirical examples on how minimum

capital and its optimal allocation are obtained. Moreover, despite their popularity, these optimization problems

are typically treated separately in the actuarial literature. The use of both initial capital and portfolio weights as

decision variables for optimization problems has only been recently proposed. For example, Mankai and Bruneau



Portfolio optimization under solvency constraints: a dynamical approach 3

(2012) introduced a joint optimization problem by maximizing the expected return on risk-adjusted capital subject

to a CV aR constraint, while Asimit et al. (2012) developed a minimum capital requirement problem based on

a Ruin Probability (RP ) constraint. However, both studies assumed a static setting and did not investigate the

behaviour of the optimal solutions and portfolio performance over time.

In this paper we introduce three joint optimization problems for a non-life insurance company in a dynamic

framework. Each problem is constructed by minimizing the initial capital subject to two types of constraints. The

first category is represented by solvency requirements according to a particular insurance regulation, while the

second constraint, which is the same for all problems, is given through a portfolio performance measure.5 Since

shareholders usually require a gain on their investment, we use the expected Return on Capital (ROC) as our

portfolio performance measure. Other choices for measuring performance are suggested in Cherny and Madan

(2009), among others.

Motivated by the Solvency II and SST directives, the first two solvency criteria are based on a target value for

the RP and a negative CV aR of the insurer’s net loss, respectively, both computed over a predefined period of time

(e.g. one year horizon). Since the RP constraint is equivalent to a negative V aR, the two criteria considered agree

with the mathematical definition of a solvency requirement given by Djehiche and Hörfelt (2005) for a general risk

measure. The third solvency criterion uses an upper bound for the Expected Policyholder Deficit (EPD), which was

introduced by Butsic (1994) as a new measure of insolvency risk. The EPD criteria has played an important role in

establishing the US Risk-based Capital (RBC) regulatory system (e.g. see NAIC, 2009). Analyses and comparisons

of the three capital standards have been previously considered in the literature. For example, Holzmüller (2009)

and Cummins and Phillips (2009) provided detailed assessments of the RBC, SST and Solvency II directives. Barth

(2000) compared the RP and EPD approaches and found that the latter increases the insolvency risk for larger

insurers. Eling et al. (2009) investigated the RP , EPD and ES in a mean-variance setup using data from a

German non-life insurance company.

Our objective is to provide a detailed analysis of the optimal capital required and its portfolio allocation for all

three solvency criteria. In constructing the insurer net loss, we model only two sources of risk, namely the market

5A conceptually similar problem has been very recently proposed in the financial literature by Santos et al. (2012). They develop
an optimization problem which minimizes the capital required subject to a Basel II criteria (i.e. a target number of V aR violations
within a year) and a lower bound for the expected portfolio return. However, their problem is constructed as a single optimization
problem (i.e. the only decision variable is the portfolio weight), since the capital requirement is given explicitly by the maximum
between current-day V aR and the average one-day-ahead V aR over the last 60 business days.
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(assets) and insurance (liabilities) risks. The dynamical structure is introduced by assuming that the portfolio’s

assets follow a Multivariate Generalized Autoregressive Conditional Heteroskedastic (MV-GARCH) model. There

is a considerable number of MV-GARCH specifications proposed in the financial econometrics literature (e.g.

conditional covariance matrix, factor, and conditional covariance and correlation models) and for recent surveys

we refer to Bauwens et al. (2006) and Silvennoinen and Terasvirta (2009). In this study, we focus on the class of

Dynamic Conditional Correlation (DCC) models introduced by Engle (2002). There are at least three important

reasons for this choice. Firstly, these models are not heavily parametrized and therefore, are appropriate for large

scale estimation and risk management problems (e.g. see Engle and Sheppard, 2008). Secondly, their forecasting

performance is not significantly outperformed by richer competitors (e.g. see Laurent et al., 2012). Thirdly, we

wish to analyze the effect of a time-varying correlation matrix between portfolio’s assets on the optimal solutions,

by comparing it with the constant and zero correlation cases. The insurance liability is modelled with a univariate

random variable.

One of the major issues with implementing the proposed problems is related to their convexity. Since the

expected ROC constraint is linear in both capital and weights, the focus remains on the convexity of the solvency

constraints. The standard approach for dealing with CV aR optimization is based on a Monte-Carlo type of approx-

imation, and this leads to a linear programming (LP) reformulation for the initial problem (e.g. see Rockafellar and

Uryasev, 2000, 2002, and Krokhmal et al., 2002, among others). Tian et al. (2010) used the similar prescription

for solving asset-liability mean-variance portfolio optimization problems under CV aR constraints. Alexander et

al. (2006) pointed out that the LP reformulation becomes less efficient when the number of Monte-Carlo paths be-

comes large. For the RP problem, closed-form expression and/or convex reformulation are rarely available. There

are two streams of literature dealing with probability (chance) constraints. The first direction consists of using

Monte-Carlo type estimators based on indicator functions and performing further appropriate approximations (e.g.

see Boyd and Vandenbergue, 2004, for convex approximations by eliminating the indicator function, Nemirovski

and Shapiro, 2006, for Bernstein scheme convex approximation, Luedtke and Ahmed, 2008, for non-convex mixed-

integer programming (MIP) reformulation, among others). The second direction formulates and solves the chance

constraints as V aR-constrained optimization (e.g. see Larsen et al., 2002, for algorithms based on iterative CV aR

optimizations, Gaivoronski and Pflug, 2004, for scenario-based methods and Wozabal et al., 2008, for a difference

of convex functions reformulation).
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In order to avoid the above convexity issues, we propose a semiparametric approach for reformulating the

solvency constraints using the empirical distribution based on asset returns scenarios generated according to the

MV-GARCH models and the given parametric specification of the liability distribution. For the RP -constrained

optimization, this methodology can be viewed as a generalization of the semiparametric algorithm proposed in

Asimit et al. (2012). When liabilities are Lognormal distributed, we derive sufficient convexity conditions for all

three solvency constraints. Our numerical examples are constructed based on two 3-asset portfolios. The first

portfolio is formed with one “risk-free” asset (US T-Bills) and two risky assets (NASDAQ and NYSE), while

the second consists of the S&P 500 index and two exchange traded funds which track the investment results

of US Treasury and Corporate Bond indices. The parameters are estimated from daily returns using the two-

stage estimation methodology introduced by Engle and Sheppard (2001) for three covariance specification: DCC-

GARCH, CCC-GARCH (constant correlation) and UNI-GARCH (no-correlation). The liability parameters are

estimated based on monthly aggregate claim amounts from property insurance provided by a European Union-

based insurance company. Using different level of shareholders’ expected ROC, we construct efficient frontiers

for a one-month horizon. All three solvency constraints indicate a similar type of behaviour in the sense that

the DCC-GARCH is the most conservative model in terms of capital requirements. We run a double rolling

window estimation exercise (re-estimate asset and liability parameters over a given period) to compare the out-

of-sample performance of our models. The results indicate that the DCC specification outperforms the CCC and

the no-correlation ones, in terms of both the solvency constraint and return on capital performance, for portfolios

with strongly correlated assets. The univariate GARCH structure is slightly preferred for lower correlated asset

portfolios. The time-varying correlation also plays an important role in the portfolio structure. We further found

that the portfolio weights are generally stable over the rolling window period, while the optimal total assets exhibit

significant variation.

The rest of the paper is organized as follows. In the next section, we introduce the optimization problems

based on the solvency and expected ROC constraints and illustrate the semiparametric approach for solving them.

Models for both assets and liabilities and discussions on the convexity of the proposed methods are provided in

Section 3. An extensive empirical analysis is performed in Section 4. We conclude the paper in Section 5.
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2 Preliminaries and solvency constrained optimization

We consider a discrete-time framework with the set of trading dates indexed by T = {0, 1, . . . , T}. The market

consists of a portfolio of n assets with the gross return6 process over the period [t, t + 1] defined by Rt+1 =

(R1,t+1, . . . , Rn,t+1)T . We denote by Ft, the historical information on the asset return evolution up to time t, so

that Ft = σ(R1, . . . ,Rt). For convenience, we use the following notations for conditional probabilities, expectations

and variances: Pr(·|Ft) = Prt(·), E[·|Ft] = Et[·] and V ar[·|Ft] = V art[·]. Moreover, we use majuscules for random

variables (except for cases when un upper script associated to a random variable may be interpreted as a realization

of that random variable) and non-capital letters for deterministic quantities.

We introduce three optimization problems based on different solvency criteria for a non-life insurance company

within a one-period setting, [t, t + τ ], where τ is the solvency horizon satisfying τ ≤ T − t. First, we denote by

pt the aggregate premium available for investment at time t. In addition, we assume that shareholders provide a

regulatory initial capital of size ct. Without loss of generality, no other premiums are collected and no capital is

issued or retired between t and t+ τ , and therefore, the total invested amount is pt + ct. Let xt = (x1,t, . . . , xn,t)
T

be the portfolio weights whose components satisfy the standard budget constraint,
n∑
i=1

xi,t = 1 and the no short

sales constraint, xi,t ≥ 0, i = 1, . . . , n. Since our problem is designed as a single-period optimization, no rebalancing

is allowed during the solvency period.

To fully describe the setup, we let the insurer’s liability be modelled by a univariate random variable Yt+τ .

This represents the aggregate claim amount over the solvency horizon which is assumed to be paid at time t+ τ .

At this point, no particular assumptions regarding the conditional distributions of Rt+τ and Yt+τ are made, and

no premium calculation principle is assigned for pt. We define the insurer’s net loss as the difference between the

liability and portfolio value over the solvency horizon:

Lt,t+τ = Yt+τ − (pt + ct)R
T
t+τxt.

Since both the capital requirement and portfolio allocations are decision variables in our joint optimization problems,

we can view the net loss r.v. as a function of these quantities (i.e. Lt,t+τ := L(ct,xt)). For convenience, we assume

there are no other sources of risk other than the ones modelled through Y and R, and there are no transaction or

6The gross return process is defined here as the ratio between the terminal and initial asset prices, and thus is non-negative.
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other friction costs.

Each optimization problem proposed in the following subsections is characterized by minimizing the capital

requirement ct, subject to two key constraints. The first constraint is a solvency capital requirement imposed by

the insurer’s regulator, and is based on one of the following criteria: RP , CV aR and EPD. Next, we define the

gross ROC over the investment period:

ROCt,t+τ = −Lt,t+τ
ct

. (2.1)

Since shareholders typically require a rate of return on the provided capital, the second constraint is introduced

as a portfolio performance measure based on a target level for shareholders’ expected return. For each type of

solvency, we provide a novel semiparametric approach, which allows us to reformulate the constraints and further

implement the optimization without costly computational effort.

2.1 Optimization with RP constraint

The use of ruin probability constraints is motivated by the Solvency II Regime, which applies to any EU based

insurance company, and consists of identifying the capital required to maintain a target level for the ruin probability

over a specified period of time. Thus, we define the RP -constrained problem as follows:

min
ct,xt

ct

s.t. Et
[
1{Lt,t+τ>0}

]
≤ 1− α,

Et
[
ROCt,t+τ

]
≥ ROCα,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.2)

Here, α represents the specified solvency level, 1{·} is the indicator function and ROCα is the lower bound for

the shareholders’ expected return on capital, which also depends on α. We notice that the solvency probability

constraint in (2.2) can be reformulated as a Value-at-Risk constraint, where the V aR of a loss random variable Z

at a confidence level α is defined by

V aRα(Z) := inf{z ∈ < : Pr(Z ≤ z) ≥ α}.
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Indeed, it immediately follows that:

Et
[
1{Lt,t+τ >0}

]
≤ 1− α⇔ Prt

(
Lt,t+τ > 0

)
≤ 1− α⇔ V aRαt (Lt,t+τ ) ≤ 0,

where V aRαt is the value at risk conditional on the historical asset return evolution up to time t. The main difficulty

in dealing with this type of problem is the convexity of the chance constraint. Closed-form expressions for the

ruin probability only exist in very few special cases. For example, if we assume that Lt,t+τ has a multivariate

Gaussian distribution, then (2.2) can be rewritten as a Second Order Cone optimization, which can be efficiently

implemented with appropriate solvers. Asimit et al. (2012) found a closed form expression for such a problem in

the absence of the short-sales and ROC constraints. However, when Yt+τ and Rt+τ do not belong to the same

family of distributions, we may not be able to even identify the distribution of  Lt,t+τ .

A standard approach in the chance constrained programming literature is to use a fully nonparametric method

for approximating the conditional expectation in (2.2). This can be done by using Monte-Carlo simulations for

both assets and liabilities. The solvency condition can be thus reformulated as:

1

m

m∑
j=1

1{Yt+τ (j)−(pt+ct)RT
t+τ

(j)xt>0} ≤ 1− α. (2.3)

Here, m is the number of Monte-Carlo simulations and Yt+τ (j) and Rt+τ (j) represent the jth generated path for

liabilities and assets conditional on Ft. Due to the presence of the indicator function, the optimization problem is

still non-convex. As was already mentioned in the introduction, several approaches such as convex approximations

or non-convex Mixed Integer Programming (MIP) representations have been recently proposed in the literature

to handle the non-parametric constraint. In general, their implementation becomes less efficient when m is large,

which is generally required for a better accuracy of the Monte-Carlo estimator. Another alternative is to construct

an equivalent condition to (2.3) by finding an appropriate confidence level which requires a reasonable small value

for the number of Monte-Carlo paths; however, this depends on the data used and requires a calibration procedure.

In order to avoid such issues, we use a conditional version of the semiparametric approach proposed in Asimit et

al. (2012). This methodology is based on a pre-specified parametric conditional liability distribution and scenario-

based asset returns. Using the notation, E
[
· |Ft

⋃
{Rt+τ = Rt+τ (j)}

]
= E

(j)
t

[
·
]
, and using the double expectation
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rule, we reformulate the initial problem:

min
ct,xt

ct

s.t. 1
m

m∑
j=1

E
(j)
t

[
1{Yt+τ−(pt+ct)RT

t+τ
(j)xt>0}

]
≤ 1− α,

Et
[
ROCt,t+τ

]
≥ ROCα,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.4)

The expectation in the solvency constraint is taken with respect to the r.v. Y . A sufficient condition for the

convexity of (2.4) is that E
(j)
t

[
1{Yt+τ−(pt+ct)RT

t+τ
(j)xt>0}

]
is convex in (ct, xt), for any j = 1, . . . ,m. This is

equivalent to having a conditionally convex survival function for the liability Yt+τ . Most of the survival functions

used for modelling claim data posses this property (some not on their entire domain) and all our empirical results

in Section 4 will be based on such a distribution.

2.2 Optimization with CV aR constraint

The CV aR was introduced by Rockafellar and Uryasev (2000) as an alternative coherent risk measure to V aR,

which quantifies the loss severity in the case of default. For general random variables, the CV aR is defined as

a weighted average of the corresponding V aR and conditional expected losses which strictly exceed V aR. When

losses have a continuous distribution function, CV aR coincides with ES (e.g. see Acerbi and Tasche, 2002, and

Hürliman, 2003), which constitute the basis for quantifying the target capital according to the Swiss Solvency Test

(EIOPA, 2011), that applies to all Swiss based insurance companies.

Following a similar approach as in the RP -constrained case, we define the following optimization problem with

a CV aR solvency constraint:

min
ct,xt

ct

s.t. CV aRβt
(
Lt,t+τ

)
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.5)

Here, β is the confidence level for CV aR and ROCβ is the associated lower bound for our performance measure.
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CV aR is a more conservative measure of risk than V aR given the same confidence level. In the empirical analysis

from Section 4, we shall relate the confidence levels for each of the risk measures by, β = 1 − 2(1 − α), such that

V aRα is the median of the worst 1− β events. This is also satisfied by the values used in the Solvency II and SST

directives (α = 99.5% and β = 99%).

There are various ways of formulating CV aR in the literature. The most appropriate representation for our

context is the one provided by Pflug (2000) and Rockafellar and Uryasev (2000), who define CV aR as the solution

of an optimization problem. For a general loss r.v. Z we have:

CV aRβ(Z) = inf
s∈<

{
s+

1

1− β
E
[
(Z − s)+

]}
,

where (Z − s)+ = max(Z − s, 0). Using the above definition, the optimization (2.5) becomes:

min
s,ct,xt

ct

s.t. s+ 1
1−βEt

[
(Lt,t+τ − s)+

]
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.6)

There are different potential strategies for reformulating the solvency constraint. The traditional method used in

the literature is based on approximating the above conditional expectation with a Monte-Carlo type estimator and

transforming (2.6) into a Linear Programming (LP) problem. Indeed, under a fully non-parametric prescription,

the CV aR constraint can be rewritten as:

s+
1

m(1− β)

m∑
j=1

(
Yt+τ (j)− (pt + ct)R

T
t+τ (j)xt − s

)
+
≤ 0,

which can be further reformulated as a system of linear inequalities by introducing m additional decision variables

(e.g., see Rockafellar and Uryasev, 2000). Despite the attractiveness of having the LP representation, the imple-

mentation of (2.6) with standard solvers becomes less efficient when the number of Monte-Carlo paths is large, since

the dimension of the problem increases with m. Therefore, alternative convex approximations for the conditional

expectation should be investigated to accommodate such scenarios. For example, Alexander et al. (2006) use a
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continuously differentiable piecewise quadratic approximation. As in the RP -constrained optimization case, we

propose here a semiparametric approach which reformulates (2.6) as:

min
s,ct,xt

ct

s.t. s+ 1
m(1−β)

m∑
j=1

E
(j)
t

[
(Yt+τ − (pt + ct)R

T
t+τ (j)xt − s)+

]
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.7)

A sufficient condition which ensures the convexity of (2.7) is that E
(j)
t

[(
Yt+τ −(pt+ct)R

T
t+τ (j)xt−s

)
+

]
is a convex

function in s, ct and xt. This issue is discussed in Section 3, once the liability r.v. is fully specified.

2.3 Optimization with EPD constraint

The EPD concept was introduced by Butsic (1994) as an alternative method to the ruin probability for measuring

insolvency risk, and constitutes a useful tool in establishing the US RBC system. EPD is defined as the expected

loss in the event of insolvency, and thus, it is similar to the ES concept (for a detailed discussion, see Cummins

and Phillips, 2009). Translating this definition into our setting, we write:

EPD(Lt,t+τ ) = Et
[
(Yt+τ − (pt + ct)R

T
t+τxt)+

]
. (2.8)

The solvency constraint based on this measure can be constructed by imposing a maximum allowance level for

EPD. However, since an a priori choice of such threshold is not straightforward and it depends on the insurer

expected liability, we introduce a solvency criteria based on a target level for the deficit ratio. Consequently, the

EPD constraint is defined as:

EPD
(
Lt,t+τ

)
Et
[
Yt+τ

] ≤ f.

Here, f is the maximum level for the EPD ratio with 0 ≤ f < 1. Since (2.8) contains a similar expectation term

as in the CV aR definition, the discussion on dealing with the CV aR-constrained problem applies here as well. For
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consistency, we only give the semiparametric representation for our EPD-constrained optimization problem:

min
ct,xt

ct

s.t. 1
m

m∑
j=1

E
(j)
t

[
(Yt+τ − (pt + ct)R

T
t+τ (j)xt)+

]
≤ fEt

[
Yt+τ

]
,

Et
[
ROCt,t+τ

]
≥ ROCf ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.9)

The convexity of the solvency constraint in (2.9) will be discussed in the same manner as in the CV aR case in

Section 3.

3 Modelling assets and liabilities

MV-GARCH processes are probably the most popular tools for modelling the variances and covariances of different

assets in discrete time. Depending of the conditional covariance matrix structure, a large number of MV-GARCH

models have been proposed in the literature. We consider here the class of DCC-GARCH processes of Engle (2002),

for modelling the multivariate dynamic of the log-return process. Due to their relative simple estimation procedure,

the DCC framework is also convenient for large scale risk management problems.

We assume that the vector of asset log-returns are observed at a higher frequency than solvency is observed.

In particular, we sample returns on a daily basis:

log Rt+1 = mt+1 + εt+1, εt+1|Ft ∼MVN(0, Ht+1). (3.1)

Here, mt+1 is the n-dimensional Ft-measurable conditional mean log-return vector and εt+1 = (ε1,t+1, . . . , εn,t+1)T

has a conditionally multivariate Gaussian distribution with mean 0 and covariance matrix Ht+1.

One of the main features of the DCC structure is that it allows for separate dynamics for the individual

conditional variances and the time-varying conditional correlation matrix. In the following, we briefly illustrate
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Engle’s (2002) formulation:

Ht+1 = D
1/2
t+1Σt+1D

1/2
t+1, (3.2)

Dt+1 = diag(h1,t+1, . . . , hn,t+1), (3.3)

Σt+1 = diag(q
−1/2
11,t+1, . . . , q

−1/2
nn,t+1)Qt+1diag(q

−1/2
11,t+1, . . . , q

−1/2
nn,t+1), (3.4)

Qt+1 = (1− θ1 − θ2)Q̄+ θ1utu
T
t + θ2Qt. (3.5)

Here, Dt+1 is the n × n diagonal matrix formed with the univariate conditional variances which are assumed to

follow a standard GARCH(1,1) process as below:

hi,t = ωi + αiε
2
t−1 + βihi,t−1, i = 1, . . . , n (3.6)

The time-varying conditional correlation matrix of Rt+1 is denoted by Σt+1 and its elements ρij,t+1 are of the

form ρij,t+1 = qij,t+1q
−1/2
ii,t+1q

−1/2
jj,t+1, for any 1 ≤ i, j ≤ n; qij,t+1 are the elements of Qt+1 and are assumed to follow

another GARCH(1,1) dynamic given in (3.5). The process ut represents the n × 1 vector of devolatilized, but

correlated innovations (i.e. ui,t = h
−1/2
i,t εi,t ) and Q̄ is the unconditional covariance matrix of ut. We assume

that all univariate GARCH parameters in (3.6), ωi, αi and βi, and the DCC parameters in (3.5), θ1, θ2, satisfy the

conditions required for covariance stationarity, and positive definiteness of Ht+1, for any t.

In order to investigate the effect of the time-varying conditional correlations between the portfolio’s assets, we

shall also look at two other models, which can be viewed as particular cases of the DCC-GARCH. The first one

is the Conditional Constant Correlation (CCC) model of Bollerslev (1990) that can be obtained by replacing the

time-varying correlation matrix by a symmetric positive definite matrix with constant elements (i.e. Σt = Σ).

The second alternative analyzed assumes the assets are uncorrelated and this is immediately obtained by letting

Σt = In in (3.5), where In is the n × n identity matrix. In our numerical applications, we call these models the

CCC-GARCH and the UNI-GARCH, respectively.

Historical data for modelling claim amounts is commonly fitted using one-component parametric distributions

such as, Pareto, Lognormal, Gamma, Weibull etc., or more recently using composite distributions (see for example,

Scollnik and Sun, 2012, and the references therein for Pareto composite models). Since the objective of the paper is
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not to investigate goodness-of-fit of different alternatives, we restrict our attention only to a one parametric family.

In particular, we consider that claims are modelled with a Lognormal distribution. Since our semiparametric method

requires the computations of various conditional expectations given historical information on the asset evolutions,

we further assume in our numerical examples that Yt+τ is independent of the enlarged filtration Ft
⋃
σ(Rt+τ ), for

any time t and a given solvency horizon τ . Although this allows us for a more convenient implementation, the

optimization problems can be solved under more general dependence structures between assets and liabilities, as

long as the resulting constraints are convex. Therefore, we let:

Yt+τ ∼ LGN(µt+τ , σt+τ ). (3.7)

The model parameters are assumed to be time-dependent as they will be re-estimated using a double rolling-

window exercise. In the remainder of this section, we discuss the convexity of the solvency constraints under the

lognormality assumption from (3.7).

First, we let zt = (pt + ct)xt in all three optimization problems (2.4), (2.7) and (2.9). With this notational

change, the new decision variables are ct and zt, and the budget constraint becomes 1T zt = pt + ct with zt ≥ 0.

Under the above assumption, the solvency constraint for the EPD problem can be rewritten as:

1

m

m∑
j=1

E
[
(Yt+τ −RT

t+τ (j)zt)+
]
≤ fE

[
Yt+τ

]
.

A sufficient condition for convexity is that E
[
(Yt+τ − RT

t+τ (j)zt)+
]

is convex for any j = 1, . . . ,m. We notice

that the quantity under the expectation represents the payoff of a European Call option written on Yt+τ . Under

the lognormality assumption of Yt+τ , we can write the above expectation as the present value at maturity of a

Black-Scholes Call price, erTBS(S,K, T, σ, r), with the following parameter matching:

S = 1, K = RT
t+τ (j)zt, T = 1, σ = σt+τ , r = µt+τ +

σ2
t+τ

2
.



Portfolio optimization under solvency constraints: a dynamical approach 15

Thus, the solvency constraint can be reformulated as:

m∑
j=1

ï
exp

(
µt+τ +

σ2
t+τ

2

)
Φ
(− log(RT

t+τ (j)zt) + µt+τ + σ2
t+τ

σt+τ

)
−RT

t+τ (j)ztΦ
(− log(RT

t+τ (j)zt) + µt+τ

σt+τ

)ò
≤ b. (3.8)

Here, b = fm exp
(
µt+τ +

σ2
t+τ

2

)
and Φ(·) is the cumulative distribution function of a standard Gaussian random

variable. The convexity of (3.8) follows now from the convexity property of the European Call price with respect

to the strike price, which is itself an affine function of zt.

Using a similar prescription, we can show the convexity of the CV aR optimization problem (2.7) based on the

Black-Scholes formula. The only difference consists of having a different strike price K = RT
t+τ (j)zt + s, which is

a linear function of the decision variables s and zt.

We now turn our attention to the RP problem (2.4). The solvency constraint is equivalent to:

1

m

m∑
j=1

Φ
(− log(RT

t+τ (j)zt) + µt+τ

σt+τ

)
≤ 1− α. (3.9)

Since the standard Gaussian c.d.f. is convex only on its negative domain, a sufficient condition for the convexity

of (3.9) is the following:

min
1≤j≤m

RT
t+τ (j)zt ≥ expµt+τ . (3.10)

Thus, according to condition (3.10), the convexity of (2.4) is satisfied when the terminal value of the total assets

investment in the worst case scenario is greater than the median of the liability distribution. Although this

requirement cannot be verified analytically as in the previous two cases, our numerical simulations from Section 4

indicate that (3.10) is never violated.

4 Empirical Analysis

In this section, we investigate the empirical performance of three MV-GARCH models for all optimization problem

considered. We provide two main numerical experiments. Firstly, for a specified solvency target, we construct

efficient frontiers for (2.4), (2.7) and (2.9) by varying the expected ROC. Secondly, the out-of-sample performance

analysis is carried out through a detailed double rolling window estimation exercise.
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4.1 Data Description

We consider two 3-asset portfolios. The first portfolio consists of NASDAQ and NYSE Composite indices, and the

3-month US T-Bills, while the second is formed with the S&P 500 Index and two exchange-traded funds (ETF):

the iShares Barclays 1-3 Year Treasury Bond (SHY) and the iShares iBoxx $ Investment Grade Corporate Bond

(LQD).

The data is recored on a daily basis from January 3, 2005 to July 29, 2011 for a total of l = 1, 656 observations.

Descriptive statistics are provided in Table 4.1.1.

Table 4.1.1: Descriptive statistics for NASDAQ, NYSE, S&P 500 Index, SHY and LQD log-returns from January 3, 2005 - July 29,
2011 for a total of 1,656 observations.

Index Min Max Mean Std Skewness Kurtosis
NASDAQ -0.0959 0.1116 0.0001 0.0149 -0.1670 10.2725

NYSE -0.1023 0.1153 0.0001 0.0150 -0.3480 12.7329
S&P 500 -0.0947 0.1096 0.0000 0.0142 -0.2565 13.4443

SHY -0.0066 0.0071 0.0001 0.0011 -0.1685 7.1727
LQD -0.0956 0.0932 0.0002 0.0062 -1.1486 82.3485

We notice that there are no significant differences between the three stock index series relative to the first two

moments. The NYSE log-returns exhibit a more pronounced negative skewness, while S&P 500 has the highest

kurtosis of the three. However, the Corporate Bond ETF displays a very high kurtosis and is more negatively

skewed than the stock indexes. Since the T-Bill will not be modelled stochastically, its descriptive statistics are

not illustrated in Table 4.1.1.

The data set is divided into two samples: Sample A consists of lA = 1, 259 daily observations for a 5-year period

from January 3, 2005 through December 31, 2009, and it is used for the in-sample estimation and analysis of the

efficient frontiers. Sample B, which covers the period from January 1, 2010 through July 29, 2011 with lB = 397

daily points, is used for testing the out-of-sample performance in the rolling window exercise. The most significant

part of the recent financial crisis period is included in Sample A.

For liabilities, we use a data set on property insurance claim amounts provided by a European Union-based

insurance company for the same period used in the assets case. However, the main difference is that the sampling

frequency is different from the one used for assets. There are 79 observations representing aggregate monthly claim

amounts, which are divided into two samples according to a similar prescription (i.e. Sample A′ consist of lA′ = 60
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monthly observations and Sample B′ has lB′ = 19 data points which are used for the out-of-sample comparison).

The main characteristics of the entire sample are illustrated in Table 4.1.2.

Table 4.1.2: Descriptive statistics for monthly claim amounts from January 3, 2005 - July 29, 2011 for a total of 79 observations (figures
are in thousands €).

Min Max Mean StDev Skewness Kurtosis
8.2465 2049.2119 603.2802 375.1311 1.2434 5.5068

4.2 Estimation results

We first estimate the parameters for the asset returns. For the first portfolio we estimate a bivariate GARCH

structure for NASDAQ and NYSE, while for the second portfolio we estimate a multivariate DCC-GARCH based

on S&P 500, SHY and LQD. There are various ways which one can specify the conditional mean vector in the MV-

GARCH log-return equation (3.1). For example, Rombouts and Stentoft (2011) use a multivariate risk premium

specification for mt when pricing options under a DCC-GARCH model, while Hlouskova et al. (2009) consider

an autoregressive structure for deriving multistep predictions with applications in risk management. Since our

objective is to analyze the conditional correlation effect on the optimal capital and its allocation, we perform our

estimation ignoring the mean effect.

The estimation procedure follows the two-stage Maximum Likelihood Estimator (MLE) algorithm proposed by

Engle and Sheppard (2001). In the first stage, the univariate GARCH parameters are estimated by replacing the

conditional correlation matrix of Rk, Σk, with the identity matrix in the log-likelihood function below:

logL = −1

2

l∑
k=1

(
log(|Hk|) + ε′kH

−1
k εk

)
,

where l represents the number of observations in the dataset. Given the parameters estimated in the first stage,

the DCC and CCC parameters are estimated based on the correct log-likelihood specification with Σk and Σ,

respectively. Thus, at the second stage only θ1 and θ2 for DCC, and ρ for CCC are estimated. The results are

reported in Table 4.2.1 for Portfolio 1 and in Table 4.2.2 for the second portfolio.

According to all three selection criteria, the DCC specification is preferred to the CCC one. The parameter

estimates for the DCC-GARCH are in the same range with the values obtained in other previous studies. Each
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Table 4.2.1: Parameter estimates (with corresponding asymptotic variances reported the brackets) using log-returns for NAS-
DAQ and NYSE during January 3, 2005 - July 29, 2011 for a total of 1656 observations. AIC and BIC are the
Akaike and Bayesian Information Criteria.

Estimation Stage Model parameters Selection criteria

Index ω α β
NASDAQ 2.0E-06 0.0736 0.9146

1 (5.06E-13) (1.35E-04) (1.40E-04)
NYSE 1.4E-06 0.0856 0.9061

(3.99E-13) (1.46E-04) (1.41E-04)

Covariance model
DCC θ1 θ2 logL AIC BIC

0.0432 0.9409 11,630 -23,245 -23,201
2 (5.58E-05) (9.28E-05)

CCC ρ12 logL AIC BIC
0.9061 11,574 -23,134 -23,096

(1.64E-05)

Table 4.2.2: Parameter estimates (with corresponding asymptotic variances reported the brackets) using log-returns for S&P
500, SHY and LQD during January 3, 2005 - July 29, 2011 for a total of 1656 observations. AIC and BIC are
the Akaike and Bayesian Information Criteria.

Estimation Stage Model parameters Selection criteria

Index ω α β
S&P 500 1.4E-06 0.0842 0.9055

1 (4.02E-13) (1.48E-04) (1.55E-04)
SHY 1.0E-13 0.0286 0.9713

(1.18E-17) (9.23E-07) (2.98E-06)
LQD 6.0E-07 0.1942 0.8052

(1.16E-13) (1.24E-02) (7.21E-03)

Covariance model
DCC θ1 θ2 logL AIC BIC

0.0325 0.9564 21,607 -43,193 -43,133
2 (1.65E-04) (4.64E-04)

CCC ρ12 ρ13 ρ23 logL AIC BIC
-0.3192 -0.0285 0.5183 21,458 -43,892 -42,828

(7.93E-04) (1.04E-03) (1.76E-03)

univariate series is characterized by a high degree of persistence (e.g., α+β = 0.988 for NASDAQ, and α+β = 0.9994

for LQD). However, the volatility clustering effect is less pronounced in the Corporate Bond series than in the

others (i.e. smaller value of β). A similar persistence can be observed in the conditional correlation dynamic,

since θ1 + θ2 = 0.984 for the assets in the first portfolio, while θ1 + θ2 = 0.989 in the second portfolio. The value

of ρ12 = 0.91 in the CCC case for NASDAQ and NYSE suggests a high degree of positive correlation over the

considered period. However, this is no longer the case of the 3-asset portfolio. For example, there is almost no

CCC-GARCH implied correlation between the stock index and the Corporate Bond fund (ρ13 = −0.0285) and the

two ETFs are moderately positively correlated (ρ23 = 0.5183). The implied GARCH conditional variances and

DCC-conditional correlation are illustrated in Figures 4.2.1 and Figures 4.2.2.

Next, we use the MLE to fit a Lognormal distribution on the monthly claim amounts for the same period. The

results are reported in Table 4.2.3. The Kolmogorov-Smirnov test indicates that a Lognormal distribution cannot

be rejected at 5% significance level.
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Figure 4.2.1: Conditional variances for the DCC-GARCH models based on the MLE estimates over the period January 3,
2005 - July 29, 2011 for a total of 1656 observations.
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Figure 4.2.2: Conditional correlations for the DCC-GARCH models based on the MLE estimates over the period January 3,
2005 - July 29, 2011 for a total of 1656 observations.



Portfolio optimization under solvency constraints: a dynamical approach 21

Table 4.2.3: Parameter estimates (with corresponding asymptotic variances reported the brackets) for Lognormal distribution
using monthly claim amounts for property insurance during January 3, 2005 - July 29, 2011 for a total of 79
observations. KStest stands for the Kolmogorov-Smirnov test and its p-value is reported in the brackets.

µ̂ σ̂ Log L KStest
6.160460 0.829457 584.00 0.1297
(0.0087) (0.0044) (0.1279)

4.3 Implementation of solvency constrained optimization

All three optimization problems (2.4), (2.7) and (2.9), combined with the convex reformulations for the solvency

constraints from Section 3, are implemented using Matlab’s non-linear optimization routine fmincon based on

interior-point algorithms. The solvency targets are fixed as follows: α = 99.5% (the standard value imposed by

Solvency II) for the RP -constrained problem, β = 99% (the standard value imposed by SST) for the CV aR-

constrained problem and f = 0.25% (arbitrarily chosen) for the EPD-constrained problem.7 Since losses are

sampled on a monthly basis, we let the solvency horizon τ = 21 days. Given all the information up to time t, each

optimization is implemented according to the following algorithm:

1. Estimate the asset and liability parameters according to the methodology described in Section 4.2.

2. Compute the insurance premiums using the expected premium principle, so pt = (1 + η)E[Yt+τ ], where η is

the relative security loading factor fixed at 0.1.

3. Generate m = 10, 000 Monte-Carlo paths, Rt+τ (j), j = 1, . . . ,m, for the asset returns, according to the

corresponding covariance structure from equations (3.1)-(3.5); for the T-Bill rate, we use the three month

rate corresponding to the period [t, t+ τ ].

4. Solve each optimization problem and find the optimal capital required c∗t , and the optimal portfolio allocation

(x∗i,t, i = 1, . . . , 3).

Different choices for the number of Monte-Carlo paths used in the scenario generation step have been discussed in

Asimit et al. (2012). When liabilities are Pareto distributed, they showed that the semiparametric approximation

implemented with Matlab provides very close solutions to the ones obtained via an SOC representation implemented

7Unlike in the RP and CV aR cases, there is no generally recommended threshold for the EPD ratio. We only chose f = 0.25% in
order to make the optimal capital requirements comparable to those obtained in the other two optimization problems. This can be
achieved by computing EPD ratios based on the optimal solutions for the RP and CV aR constrained problems.
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in Mosek when m = 10, 000. Moreover, in the Gaussian case, this solution converges to the theoretical one.8

4.3.1 Efficient Frontier Analysis

Efficient frontiers are constructed only for Portfolio 1, by running the above algorithm for different targets for the

expected return on capital. The minimum levels for the expected ROC are obtained by solving the unconstrained

version of each optimization (i.e. we discard the performance measure constraint). All parameters are estimated

from samples A and A′ data.
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Figure 4.3.1: Efficient frontiers for Portfolio 1 based on DCC, CCC and UNI-GARCH models under the RP , CV aR and
EPF -constrained problems. Solvency constraints are approximated based on 10,000 Monte-Carlo paths and
scenarios are generated based on Sample A estimates.

The behaviours of (c∗t ) and (x∗i,t, i = 1, . . . , 3) are analyzed for all three covariance specifications. First, we plot

the efficient frontiers in Figure 4.3.1. We notice that all efficient frontiers are smooth for all three optimizations.

Moreover, the same pattern can be observed for each of the covariance model considered. On the one hand, the

DCC-GARCH, which captures the best the correlation dynamic, is the most conservative model in the sense that

it requires the highest minimum optimal capital for the same level of expected ROC. On the other hand, c∗t has

the smallest values for UNI-GARCH, as this model totally ignores the strong positive correlation between the two

risky assets. The correlation dynamic seems to have a strong impact on the structure of the optimal portfolio. This

is depicted in Figure 4.3.2. The optimal allocation into NASDAQ increases with the expected ROC level for all

8In an unreported numerical exercise, we tested the accuracy of the Monte-Carlo approximation when m = 10, 000 for the CV aR
and EPD problems; our results suggested that the standard errors of the optimal solutions are in the same range as those obtained in
the RP case.
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three models and for all of the problems considered, while the optimal allocation in T-Bills decreases in a similar

fashion. Indeed, when no expected ROC is imposed, the optimal allocations are around 20% in NASDAQ, and

70% (UNI) and 80% (CCC and DCC) in T-Bills. When the shareholders’ expected ROC approaches its maximum

feasible value, the optimal portfolios are constructed based almost solely on the NASDAQ index. Interestingly,

the optimal allocation in the riskiest asset (NYSE) is almost zero for the DCC-GARCH, while for the other two

dynamics it first increases until a maximum is reached, and after that decreases approximately to zero as well.

4.3.2 Out-of-Sample Performance

In this section, we carry out an out-of-sample analysis for the optimal portfolios based on RP , CV aR and EPD

constraints. Our approach is similar to the standard rolling window methodology proposed in the portfolio op-

timization literature (e.g., see Santos et al., 2012). However, since we have two main sources of risk, we further

propose and analyze the effect of a double rolling window estimation on our optimal solutions.

We set the length of the rolling window lA = 1, 259 for the estimation of asset returns and lA′ = 60 observations

for liability estimation. First, we compute the optimal solutions (c∗t ,x
∗
t ) for period [t, t+τ ] using data from Samples

A and A′. Next, we construct a new sample for assets by dropping the first τ = 21 observations from Sample A

and adding the same number of data points from Sample B. This corresponds to a monthly portfolio rebalancing.

Similarly, we construct the new sample for liabilities by discarding the first observation from Sample A′ and adding

the first observation from Sample B′. With this new data set, we recompute the next period optimal solutions

(c∗t+τ ,x
∗
t+τ ) based on Step 1 - 4. We repeat this sampling procedure and the corresponding optimization steps

until the end of Sample B/Sample B′ is reached. In other words, we have computed (c∗t+(k−1)τ ,x
∗
t+(k−1)τ ), with

k = 1, . . . , lB′ , optimal solutions for each solvency constrained problem and MV-GARCH model. In order to avoid

potential feasibility issues created by the expected return on capital constraint under liability re-estimation, all

optimization problems are implemented without a lower bound for the expected ROC. The results illustrated in

Figures 4.3.3-4.3.5.

Figure 4.3.3 plots the evolution of the total optimal assets invested (pt + c∗t ) for the two portfolios. First, we

notice that there are no significant differences among the covariance models for all optimization problems. The

portfolio choice does not seem to affect the value of the assets invested. However, there is a large variation in

the optimal capital required over the rolling window, and this is mainly caused by the changes in the liability
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(e) CV aR-constrained optimization
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(f) EPD-constrained optimization

1.035 1.0355 1.036 1.0365 1.037 1.0375 1.038 1.0385 1.039 1.0395
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expected Return on Capital

O
p
ti
m

a
l 
A

s
s
e
t 
A

ll
o
c
a
ti
o
n
 T

−
B

il
l

 

 

DCC−GARCH

CCC−GARCH

UNI−GARCH

(g) RP -constrained optimization
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(h) CV aR-constrained optimization
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(i) EPD-constrained optimization

Figure 4.3.2: Optimal asset allocation for Portfolio 1 for different levels of expected ROC for DCC, CCC and UNI-GARCH
models under the RP , CV aR and EPF -constrained problems. Solvency constraints are approximated based
on 10,000 Monte-Carlo paths and scenarios are generated based on Sample A estimates.
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parameters.9The variation in total assets invested is quite large, ranging from 1,887 to 2,728 for RP , 1,986 to

2,949 for CV aR and 1,868 to 3,222 for EPD; thus, the EPD problem has the largest fluctuation, while RP is the

smallest.

Figures 4.3.4-4.3.5 suggest that the differences in the optimal portfolio allocations are less pronounced. The

portfolio structure also depends on the choice of the MV-GARCH model. For the RP and CV aR Portfolio 1

problems, the variation in optimal allocations for NASDAQ and NYSE are smaller for UNI-GARCH when compared

to the DCC and CCC counterparts. We also notice that the largest investment is typically made to the T-Bills,

the minimum value of approximately 70% corresponding to the UNI-GARCH for each problem. A similar pattern

can be observed in Portfolio 2 where most of the capital is allocated to the lowest risk entity represented by the

Treasury Bond ETF.

In the remainder of this section, we compute a variety of out-of-sample indicators to provide a comparison

between the covariance models relative to the solvency and portfolio performances. In order to measure the

solvency requirement performance of the optimal solutions, we consider three metrics: the average assets invested,

the average solvency value and the maximum solvency value. All averages are computed over the rolling window

period. Depending on the solvency criteria, the average solvency values are computed based on the following

expressions:

R̂P =
1

lB′

lB′∑
k=1

Φ
(
dt+kτ

)
,

ĈV aR =
1

lB′

lB′∑
k=1

(E[Yt+kτ ]

1− β
Φ
(
σt+kτ − Φ−1(β)

)
−RT

t+kτz
∗
t+(k−1)τ

)
,

ÊPD =
1

lB′

lB′∑
k=1

ï
E[Yt+kτ ]Φ

(
dt+kτ + σ2

t+kτ

)
−RT

t+kτz
∗
t+(k−1)τΦ

(
dt+kτ

)ò
.

Here,

z∗t+(k−1)τ = (pt+(k−1)τ + c∗t+(k−1)τ )x∗t+(k−1)τ ,

dt+kτ =
− log RT

t+kτz
∗
t+(k−1)τ + µt+kτ

σt+kτ
,

9In an unreported simulation exercise, we solved the rolling window optimizations under the assumption of constant liability
parameters. Our results showed no significant changes in the optimal required capital for the whole rolling period.
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(a) RP -constrained for Portfolio 1
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(b) RP -constrained for Portfolio 2
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(c) CV aR-constrained for Portfolio 1
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(d) CV aR-constrained for Portfolio 2
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(e) EPD-constrained for Portfolio 1
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(f) EPD-constrained for Portfolio 2

Figure 4.3.3: Optimal total assets invested, pt + c∗t , for Portfolios 1 and 2.
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(a) RP -constrained optimization
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(b) CV aR-constrained optimization
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(c) EPD-constrained optimization
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(d) RP -constrained optimization
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(e) CV aR-constrained optimization
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(f) EPD-constrained optimization
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(g) RP -constrained optimization
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(h) CV aR-constrained optimization
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(i) EPD-constrained optimization

Figure 4.3.4: Optimal asset allocation for Portfolio 1 with double rolling window.
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(a) RP -constrained optimization
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(b) CV aR-constrained optimization
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(c) EPD-constrained optimization
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(d) RP -constrained optimization
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(e) CV aR-constrained optimization
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(f) EPD-constrained optimization
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(g) RP -constrained optimization
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(h) CV aR-constrained optimization
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(i) EPD-constrained optimization

Figure 4.3.5: Optimal asset allocation for Portfolio 2 with double rolling window.
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where (c∗t+(k−1)τ ,x
∗
t+(k−1)τ ) and Rt+kτ represents the optimal solution and the gross return vector, respectively,

over the period [t + (k − 1)τ, t + kτ ], for any k = 1, . . . , lB′ . The average assets invested are calculated by taking

averages of all pt+(k−1)τ + c∗t+(k−1)τ over the rolling period. The results are reported in the first panel of Tables

4.3.1 and 4.3.2.

Table 4.3.1: Solvency and out-of-sample performance for Portfolio 1.

Solvency Performance Portfolio Performance

Avg. Assets Avg. Solvency Max. Solvency Avg. Std. Sharpe Turnover
invested Value Value AROC (%) AROC Ratio

Problem 1. Avg. Max.
Ruin Constraint Ruin Probability (%) Ruin Prob (%)

Covariance Model
DCC 2129.17 0.497 0.546 5.08 1.46 3.46 0.019
CCC 2129.06 0.497 0.553 5.06 1.56 3.23 0.021
UNI 2128.81 0.496 0.589 5.17 2.25 2.29 0.020

Problem 2. Avg. Max.
CVaR Constraint CVaR CVaR

Covariance Model
DCC 2258.85 -1.773 28.645 4.67 1.38 3.38 0.018
CCC 2258.75 -1.319 32.857 4.65 1.47 3.16 0.020
UNI 2258.48 -2.114 58.813 4.75 2.11 2.24 0.018

Problem 3. Avg. Max.
EPD Constraint EPD Ratio (%) EPD Ratio (%)

Covariance Model
DCC 2222.25 0.248 0.273 4.92 1.67 2.94 0.019
CCC 2222.15 0.249 0.276 4.91 1.77 2.77 0.022
UNI 2221.86 0.248 0.294 5.03 2.46 2.04 0.019

Table 4.3.2: Solvency and out-of-sample performance for Portfolio 2.

Solvency Performance Portfolio Performance

Avg. Assets Avg. Solvency Max. Solvency Avg. Std. Sharpe Turnover
invested Value Value AROC (%) AROC Ratio

Problem 1. Avg. Max.
Ruin Constraint Ruin Probability (%) Ruin Prob (%)

Covariance Model
DCC 2129.43 0.491 0.554 5.39 1.51 3.55 0.068
CCC 2129.18 0.493 0.549 5.29 1.46 3.62 0.023
UNI 2128.14 0.493 0.547 5.31 1.41 3.74 0.022

Problem 2. Avg. Max.
CVaR Constraint CVaR CVaR

Covariance Model
DCC 2259.14 -6.684 33.681 4.97 1.42 3.49 0.065
CCC 2258.88 -5.106 30.659 4.87 1.37 3.55 0.021
UNI 2258.84 -5.418 28.999 4.89 1.33 3.67 0.020

Problem 3. Avg. Max.
EPD Constraint EPD Ratio (%) EPD Ratio (%)

Covariance Model
DCC 2222.53 0.245 0.277 5.24 1.73 3.03 0.068
CCC 2222.26 0.247 0.275 5.13 1.67 3.07 0.021
UNI 2222.21 0.246 0.274 5.16 1.63 3.15 0.021

For all models and for both portfolios the average total investment is almost the same across each covariance

model. Table 4.3.1 shows that the mean out-of-sample ruin probability is around 0.497 for all models in Portfolio

1. However, we observe scenarios under which the ruin solvency constraint is violated. Although not reported in

the tables, the number of violations is the same across all models and typically corresponds to a negative monthly

rate of return for both risky assets. More specifically, the maximum values for the ruin probabilities are attained

when the asset monthly rate of returns are −11% for NASDAQ and −12% for NYSE. . The DCC-GARCH is the
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best model choice in the sense that it gives the lowest maximum ruin probability of 0.546%, as opposed to 0.589%

observed in the no-correlation case. A similar pattern can be observed for the maximum levels of CV aR and

EPD ratio. The results in Table 4.3.2 indicate that although the DCC-GARCH model has the smallest average

solvency values, it produces the highest maximum solvency values observed in the periods of high negative returns.

However, the differences between these values are not as high as in the Portfolio 1 case. Potential improvements

for reducing the number of constraint violations could be obtained using a more sophisticated conditional mean

return (e.g. an autoregressive structure) and estimating the model parameters based on lower frequency data (e.g.

weekly or monthly). The latter reduces the number of simulation steps and thus improves the GARCH forecasting

performance.

We now analyze the out-of-sample portfolio performance by computing averages, standard deviations and Sharpe

ratios based on an adjusted rate of return on capital defined below:

AROCt,t+τ =
(pt + c∗t )R

T
t+τx

∗
t − E[Yt+τ ]

ct
− 1.

The following quantities are calculated and reported in the second panel of Tables 4.3.1 and 4.3.2:

µ̂AROC =
1

lB′

lB′∑
k=1

AROCt+(k−1)τ,t+kτ ,

σ̂AROC =

Ã
1

lB′

lB′∑
k=1

(AROCt+(k−1)τ,t+kτ − µ̂AROC)2,”SRAROC =
µ̂AROC − E[rf ]

σ̂AROC
,

Turnover =
1

lB′ − 1

lB′−1∑
k=1

n∑
i=1

|x∗i,t+kτ − x∗i,t+(k−1)τ |.

Here rf represents the risk-free rate of return given by the 3-month T-Bills. DeMiguel and Nogales (2009) interpret

the portfolio turnover as the average percentage of wealth traded in each period. From Table 4.3.1, we observe

that the no-correlation GARCH model outperforms the other two covariance specifications in terms of the average

AROC. The DCC and CCC-GARCH models have slightly lower and approximately equal values for µ̂AROC .

The risk-return trade-off is also visible from the fact that the average AROC is a decreasing function of capital

invested. The DCC-GARCH provides the highest values of Sharpe Ratio in all of the situations. For example,



Portfolio optimization under solvency constraints: a dynamical approach 31”SRAROC = 3.46 for the RP -constrained optimization, 3.38 for CV aR and 2.94 for EPD. The smallest Sharpe

Ratios are recorded for the no-correlation dynamic with values of 2.29, 2.24 and 2.04, respectively. Thus, we can

conclude that the incorporation of a dynamic correlation for modelling the two risky assets in Portfolio 1 increases

the portfolio performance as measured by its Sharpe Ratio. The turnover ratios have similar values for all models.

According to the results in Table 4.3.2, the DCC-GARCH model outperforms the other GARCH counterparts in

terms of average AROC, but it has the smallest ”SRAROC . However, the differences are much smaller than in the

Portfolio 1 case (e.g. the largest difference is for the RP -constrained optimization when the ”SRAROC = 3.55 for

the DCC-GARCH as opposed to 3.74 for the UNI-GARCH). Unlike in the previous study, the portfolio turnover

is approximately three times higher in the case of the DCC-GARCH. A potential justification for explaining these

numerical findings is the presence of relatively small correlations between the Portfolio 2 assets over the time period

considered. Therefore, the less complex no-correlation model is preferred in this case.

Finally, we provide a brief discussion regarding the advantages/disadvantages of choosing between the RP and

CV aR solvency criteria. On the one hand, we notice that for both portfolios, the CV aR-based optimization at 99%

requires a higher initial optimal capital than the corresponding V aR at 99.5%. This also results in a higher overall

average out-of-sample EPD (ÊPD = 2 for Portfolio 1 and ÊPD = 1.98 for Portfolio 2) for the CV aR-constrained

problem compared to the RP counterpart (ÊPD = 1.45 for Portfolio 1 and ÊPD = 1.44 for Portfolio 2).10 On the

other hand, shareholders will benefit more from their investment based on the less conservative approach, since the

overall average Sharpe Ratio for the RP problems are 3.33 and 3.64, respectively, while the corresponding values

for the CV aR optimizations are 2.93 and 3.57, respectively. We do not comment on further comparisons with

the EPD-constrained optimization, since the latter is constructed based on an arbitrary upper limit for the EPD

ratio.

5 Conclusions

In this paper, we propose three problems to solve jointly for the optimal capital requirement and its optimal

portfolio allocation. Each problem is constructed based on two types of constraints. The first set of constraints

are dictated by standard solvency insurance requirements such as V aR, CV aR and EPD calculated for a specified

10These overall average EPD values are computed across all models for the rolling period using the optimal solutions of RP and
CV aR optimization problems and observed returns.
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horizon and for a given confidence level. The second constraint represents a performance measure constraint based

on a lower bound for the shareholders’ expected ROC. We provide a novel semiparametric approach for solving

these problems based on a parametric distribution of the liability random variable and the empirical distribution for

asset returns. In particular, we assume claim amounts follow a Lognormal distribution and portfolio’s asset returns

are generated according to a Dynamic Conditional Correlation multivariate GARCH model. We provide sufficient

conditions such that each solvency constraint admits a convex representation; these are further implemented using

the non-linear optimization Matlab solver based on interior-point algorithms. We examine optimal solutions for

3-asset portfolios (two indices and one risk-free asset) through two numerical experiments.

In the first numerical example, we construct efficient frontiers for the optimal capital based on different levels of

expected ROC. The efficient frontiers have the same pattern for all constraints and covariance models considered.

The correlation between the two entities plays an important role in the behaviour of the optimal capital required

and the portfolio structure. For the same level of expected ROC, the minimum value of c∗t is obtained for the

no-correlation model, while DCC-GARCH is the most conservative model.

The out-of-sample performance of our portfolio is tested in a second detailed numerical example using a double

rolling window estimation for both assets and liabilities. On the one hand, we found that the optimal required

capital varies substantially across all models and optimization problems. On the other hand, the differences between

the optimal portfolio weights are not as pronounced. We computed two types of indicators for assessing the solvency

and return on capital performances. Our results suggest that the DCC model outperforms the other candidates

(has the smallest value of the maximum RP , CV aR and EPD and provides the highest out-of-sample Sharpe

Ratio) when assets are strongly correlated, while the univariate GARCH is slightly preferred for low correlated

asset portfolios. Several extensions to our models can be further investigated by including more complex models

for assets and liabilities, as well as by extending this work to allow for multiple business lines, friction costs and

possibly a multiperiod setting.
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