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Approximations for quantiles of life expectancy and annuity values using the 

parametric improvement rate approach to modelling and projecting mortality 

 

 

 
Abstract 

In this paper, we develop accurate approximations for medians of life expectancy and life annuity pure 

premiums viewed as functions of future mortality trends as predicted by parametric models of the 

improvement rates in mortality.  Numerical illustrations show that the comonotonic approximations 

perform well in this case, which suggests that they can be used in practice to evaluate the consequences of 

the uncertainty in future death rates.  Prediction intervals based on 5% and 95% quantiles are also 

considered but appear to be wider compared to simulated ones.  This provides the practitioner with a 

conservative shortcut, thereby avoiding the problem of simulations within simulations in, for instance, 

Solvency 2 calculations. 
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1 Introduction 
 

Forecasting mortality in actuarial studies is generally based on extrapolation methods that 

capture the pattern in historical mortality rates by means of appropriate parametric 

predictor structures.  Foremost among such structures is the Poisson log-bilinear 

specification proposed by Brouhns, Denuit and Vermunt (2002) and Renshaw and 

Haberman (2003) in line with the seminal paper by Lee and Carter (1992).  Recently, 

Haberman and Renshaw (2012) have introduced and investigated parametric mortality 

projection methods based on mortality improvement rates (as opposed to mortality rates).  

This approach provides an efficient alternative to the direct parametric modelling and 

projecting of mortality rates. 

 

In this paper, we consider present values of life annuity benefits as functions of the 

unknown life table applying in the future (as well as life expectancies, corresponding to 

zero interest rate).  Deriving the exact distribution for this random variable requires 

extensive simulations of numerical evaluations.  Therefore, we take the comonotonic 

approximations proposed by Denuit and Dhaene (2007) and Denuit (2007) in the random 

walk with drift case and extended to general ARIMA models by Denuit, Haberman and 

Renshaw (2010).  Specifically, we adapt this approach to the parametric projection 

models targeting mortality improvement rates (rather than mortality rates) proposed by 

Haberman and Renshaw (2012).  The approach developed in the present paper helps 

avoid the requirement to conduct simulations with simulations in, for instance, Solvency 

2 reserving calculations.  Numerical illustrations show that the comonotonic 

approximations perform well for medians (and other central quantiles), which suggests 

that they can be used in practice to evaluate the consequences of the uncertainty in future 

death rates.  Prediction intervals based on 5% and 95% quantiles are also considered but 

appear to be wider compared to simulated ones.  This provides the practitioner with a 

conservative shortcut avoiding simulations within simulations. 
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This paper is organised as follows.  Section 2 describes the mortality projection method 

based on parametric improvement rates.  The comonotonic approximations are derived in 

Section 3.  Section 4 is devoted to numerical illustrations.  The final Section 5 briefly 

discusses the results. 

 

 

2 Mortality improvement rates 

 

We consider a rectangular data array, partitioned into unit squares of size one year 

corresponding to ages 1 2, ,..., kx x x x  and periods 1 2, ,... nt t t t .  Denote   ,x x tm t m  the 

central rate of mortality (or death rate) at age x in period t. 

 

 

Referring to Haberman and Renshaw (2012), under their Route II approach we consider 

the period-based mortality improvement rates (MIR) given by 
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In this definition, we consider the ratio of the period one-step mortality improvements to 

the average of the two adjacent mortality rates. A more natural definition of improvement 

rate would involve the initial rate in the denominator i.e. the rate at time t-1. The 

definition here avoids the phase difference between the numerator and denominator that 

would otherwise be present and background calculations indicate that it leads to 

improved modelling results. Following modelling and extrapolation, the MIR are 

converted to mortality rates (MR) using the reverse relationship 
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where the function g is defined as 
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Given the nature of z, which typically take values well within the range  0.5,  0.5  as 

can be seen for Figure 3 in Renshaw and Haberman (2012), we can safely restrict g to the 

domain  1,  2z   where g is positive and decreasing. 

 

In this paper, we consider 

 

 , n nx j t i ji x j t iZ Z       ,  
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where jiZ  and 
nt i   are random variables and the x j   are considered as known 

constants. Henceforth, we assume that 
nt i   obeys some ARIMA time series model (and 

is therefore multivariate Normal). Then conditional on 
0t  we have 

 

  2~ ,ji ji jiZ N    

 

with 

      
2

2,  
n nji x j t i ji x j t iE Var          . 

 

 

3 Comonotonic approximations 

 

In this section, we show that the theoretical arguments which formed the basis of Denuit, 

Haberman and Renshaw (2010) can be extended to provide approximations for quantiles 

of life expectancy and annuity predictions under parametric improvement rate modelling 

as defined in Section 2.  There are, however some fundamental differences, as stressed 

below. 

 

As in Section 2, we decompose the incremental mortality rate changes into 

 

  2

, ~ ,
n nx j t i x j t i ji jiZ N       . 

 

The next result shows that assuming that the incremental mortality rate changes are 

perfectly correlated provides a conservative upper bound on future death rates.  In this 

paper, we concentrate on u-type approximations for quantiles as the numerical study 

performed in Denuit, Haberman and Renshaw (2010) showed that they were more 

accurate than their l-type counterparts. 

  

Before proceeding with this result, let us recall the definition of some useful stochastic 

order relations.  For more details, we refer the interested reader to Denuit, Dhaene, 

Goovaerts and Kaas (2005).  The increasing convex order, or stop-loss order (denoted as 

ICX ) is defined for random variables X and Y as follows: ICXX Y  if E[h(X)]≤E[h(Y)] 

for all the non-decreasing convex functions h for which the expectations exist. In words, 

ICXX Y means that X tends to be “smaller” and “less variable” than Y.  The 

supermodular order (denoted as SM ) is defined for random vectors  1,..., nX X  and 

 1,..., nY Y  as    1 1,..., ,...,n SM nX X Y Y  if E[h  1,..., nX X ]≤E[h  1,..., nY Y ] for all the 

supermodular functions h for which the expectations exist. Recall that a (regular) 

supermodular function has a non-negative mixed partial derivative with respect to each 

pair of distinct components.  In words,     1 1,..., ,...,n SM nX X Y Y  means that the 
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components of  1,..., nX X  are “less positively dependent” than the components of 

 1,..., nY Y . 

 

Property.  Let  ~ 0,1Z N .  We then have the following upper bound on the death rate at 

age x j  in calendar year nt j : 
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Proof.  Whatever the dependent structure between the ,  1,2,3,...
nt i i   , we have from 

Proposition 6.3.7 of Denuit, Dhaene, Goovaerts and Kaas (2005) that 

 

    , 1 , 2 , 1 1 2 2, ,..., , ,...,
n n nx j t x j t x j t j SM j j j j jj jjZ Z Z Z Z Z               . 

 

The more the 
nt i   are positively related, the closer is the incremental mortality rate 

random vector to the upper bound in the SM  sense.  Now, we get from Property 

3.4.61(ii) of Denuit et al. (2005) that 

 

          , 1 , 1 1,..., ,...,
n nx j t x j t j SM j j jj jjg Z g Z g Z g Z           

 

also holds.  From Proposition 6.3.9 of Denuit et al. (2005), we finally see that 

 

    ,

1 1
n

j j

x j t j ICX ji ji

i i

g Z g Z  

 

    

 

from which the announced result follows since a ranking in the ICX sense is not affected 

by scaling (i.e. multiplication by mx+j,tn).  This completes the proof.  

 

 

Now, let us denote as  |d x nP t   the random d-year survival probability for an individual 

aged x in calendar year nt , that is, the conditional probability that this individual reaches 

age x d  in year nt d , given the vector   of the t .  It is formally defined as 

 

    | expd x n dP t S   

 

where 
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We know from Proposition 3.4.29 of Denuit et al. (2005) that 

 

  
1

, ,

1 1
n n

jd
u

d ICX d x t x j t ji ji
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S S m m g Z 
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
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     . 

 

Here, we take  exp u

dS  as an approximation to the d-year survival probability 

   | expd x n dP t S   and we investigate its accuracy in the next section, based on 

numerical illustrations. 

 

As a final comment, let us mention that the approach developed in the present section 

also applies to alternative specifications for ,x tZ .  For instance, the comonotonic 

approximations also hold for models with a cohort effect as long as the individual under 

interest belongs to a cohort whose effect can be estimated from the available historical 

data.  Specifically, we can also consider 

 

  2

, ~ ,
n n nx j t i x j t i t x i j ji jiZ N            . 

 

with 

 

      
2

2,  
n n nji x j t i t x i j ji x j t iE Var                

 

as long as the cohort effect ι can be considered as constant (i.e. estimated from past data). 

 

 

4. Numerical illustrations 

 

Let us consider a basic life annuity contract paying 1 unit of currency at the end of each 

year, as long as the annuitant survives.  The random life annuity single premium, that is, 

the conditional expectation of the payments made to an annuitant aged x in the year nt  

given 1 2, , ,...
n n nt t t     is 

 

      
1

| | 0,x n d x n

d

a t P t d


  , 

where  .,.  is the discount factor (precisely,  ,s t  is the present value at time s of a 

unit payment made at time t).  Note that  |x na t   corresponds to the generation aged x 

in calendar year nt , and accounts for future mortality improvements experienced by this 

particular cohort.  Clearly,  |x na t   is a random variable that depends on the future 
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trajectory 1 2, , ,...
n n nt t t    .  An analytical computation of the distribution function of 

 |x na t   is out of reach. 

 

From the approximation u

dS  assumed for dS , we get the following approximation for the 

random survival probabilities 

 

     1| exp 1u
d

d x n S
P t F U    

 

where U is uniformly distributed on the interval  0,1 .  Note that the same random 

variable U is used for all of the values of d, making the approximations to the conditional 

survival probabilities comonotonic.  Hence, we obtain the following approximation for 

 |x na t   

 

0( | )xa t   1

1

exp (1 ) (0, )u
dS

d

F U v d



   . 

 

Since this approximation is a sum of comonotonic random variables, its quantile 

functions is additive.  So, we obtain the following approximations for the quantile 

function 
   1

|x na t
F z


 of  |x na t   

 

0

1

( | )( )
xa tF z
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1

exp (1 ) (0, )u
dS

d

F z v d



    

 

 

where 

 

     
1

1 1

, ,

1 1

u
n nd

jd

x t x j t ji jiS
j i

F z m m g z 


 



 

     . 

 

 

The random cohort life expectancy  |x ne t   is the conditional expected remaining 

lifetime of an individual aged x in year nt , given 1 2, , ,...
n n nt t t    .  Keeping the 

assumption that deaths are uniformly distributed over each calendar year, this 

demographic indicator is given by 

 

    
1

1
| |

2
x n d x n

d

e t P t


   . 

 

We use the  superscript to indicate that we work along a diagonal band in the Lexis 

diagram.  Except for the additive constant1 2 ,  |x ne t   coincides with  |x na t   if we 
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let the interest rate tend to zero.  As was the case for  |x na t  , an analytic computation 

of the distribution function of  |x ne t   is out of reach. 

 

From the approximation u

dS  assumed for dS , we get the approximation for  |x ne t   

 

 0( | )xe t 
1

1
exp( )

2

u

d

d

S


   . 

 

Since the u

dS ’s are sums of comonotonic random variables, their quantile functions are 

additive.  Moreover, the zth  quantile of  exp u

dS  is   1exp 1u
dS

F z  .  This provides 

the following approximation for the quantile function 
 

 1

|x ne t
F z


 of  |x ne t   
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    1 1

|
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1
exp 1

2
u
dx n Se t

d

F z F z 



   
. 

 

 

For the numerical results which follow, we use the 1961-2009 USA male and female 

mortality experiences with deaths and matching exposures by individual calendar year for 

individual ages 20-104 (the full age range being 0-109) available through the Human 

Mortality Database (HMD).  Preliminary analysis including an analysis of residuals (not 

reproduced) is supportive of the inclusion of the cohort effects terms t x   for males but 

not for females. Hence, we report the results for the respective 1H  formulation (see 

below for a precise definition) for males and the LC formulation for females by depicting 

the fitted parameter values in Figure 1.  Also included are the period component time 

series forecasts using the selected AR(1) process for males and the simple AR(0) process 

for females, fitted as Gaussian regression models.  Thus, for males, we have chosen to 

model the MIR Gaussian structure using the so-called 1H  formulation: 

 

  2

, ~ ,
n n nx j t i x j t i t x i j ji jiZ N             

 

whereas for females, we have modelled the structure based on the LC formulation: 

 

  2

, ~ ,
n nx j t i x j t i ji jiZ N        

 

where 

 

  
n nji x j t i t x i jE          or  

nji x j t iE     and    
2

2

nji x j t iVar    . 

 



 8 

Using these parameters estimates and forecasts we tabulate (Table 1: 1
st
 and 3

rd
 panels) 

details for life expectancy and 4% annuity predictions, computed by cohort trajectory for 

ages 40, 45, 50, …75 focused on the year 2009.  For convenience, we have not used the 

topping-out procedure advocated by Haberman and Renshaw (2012) for dealing with 

extrapolating the life table to the oldest ages. For comparison, we also tabulate (Table 1: 

2
nd

 and 4
th

 panels) the respective equivalent life expectancies and 4% annuity predictions 

generated by the simulation method described in Haberman and Renshaw (2012), using a 

total of 10,000 simulations for each age.  Referring to Table 1 and Figure 1 we note the 

following points: 

 On comparing like for like, there is an exceptionally close agreement between the 

matching theoretical and simulated median predictions. However, the interval 

prediction widths in the theoretical cases are much wider when compared with the 

matching simulated cases. 

 We note the narrowness of the simulated males prediction intervals, which are 

appreciably narrower than equivalent simulated intervals for the England & Wales 

male mortality experience depicted in Figure 8 of Haberman & Renshaw (2012), 

where topping-out by age has been applied but this seems to have little effect on 

increasing the interval widths. 

 With the exception of a few isolated ages in the male experience, the beta 

parameters are positive over the full age range for males and females and 

therefore for both modelling structures. It would be possible to adapt the 

algorithms so that the beta parameters are constrained to be positive. We note 

further that the period index forecasts for mortality improvement rates are 

negative for males using 1H  but positive for females using LC.  

 In order to reach the 99.5% solvency probability required under Solvency 2, we 

assume that the policyholders are required to provide premiums adding up to the 

75th quantile of the present value of annuity payments and the insurer pays for the 

difference between the 99.5th quantile of these payments and the aforementioned 

75th quantile. Here, we make the assumption that the size of the portfolio is large 

enough to neglect diversifiable risk so that only the systematic risk matters. The 

latter is equal to the size of the portfolio multiplied by the expected present value 

of the annuity payments given future mortality. The difference in the 99.5
th

 and 

75
th

 quantiles appears in the last column of each panel in Table 1. Comparing the 

differences based on the approximations derived in the present paper to the 

simulated ones, we see there that the amount of capital is over-estimated when the 

approximations are used. 

 

In the standard model's module for longevity risk, the Value-at-Risk at probability level 

99.5% is approximated by the change in net asset value due to a pre-specified longevity 

shock based on a 25% reduction in mortality rates at all ages. Let us now explore the 

accuracy of the approximations derived in the present paper in dealing with such a shock. 

Specifically, we compare the values obtained from the approximations derived in the 

present paper to those coming from the standard formula which consists of reducing 

death rates by 25%. Table 2 is the same as Table 1 subject to a reduction in all projected 

mortality rates by a factor of 25%. The close agreement between simulated and 

theoretical medians is preserved, as in Table 1. Also the medians in Table 2 are 
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consistently higher than their matching counter-parts in Table 1 as expected. The 

approximations to the 95
th

 quantiles listed in Table 1 are reasonably close to their 

simulated counterparts in Table 2 based on a reduction of death rates by 25%. This shows 

that the approximations derived in the present paper for high quantiles may be used as an 

alternative to the standard approach which involves decreasing all death rates by, say, 

25%. 

 

5. Discussion 

 

Combining a conservative shift with non necessary conservative ones, the 

approximations derived in the present paper appear to be very accurate in the centre of 

the distribution (around the median) but tend to over estimate the tails (left and right).  

Using the proposed easy-to-compute approximation may thus be a good strategy for the 

calculation of the percentiles in the centre of the distribution (for example, the valuation 

of the median) as it would considerably reduce the computational burden and save time. 
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    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 36.64 45.31 56.21 8.929  18.38 19.92 21.40 1.217 

45 32.70 40.27 50.22 8.687  17.34 18.91 20.52 1.397 

50 28.86 35.37 44.28 8.295  16.17 17.76 19.48 1.577 

55 25.11 30.61 38.40 7.720  14.88 16.44 18.23 1.740 

60 21.46 25.98 32.55 6.910  13.43 14.92 16.72 1.843 

65 17.97 21.59 26.91 5.927  11.85 13.24 14.97 1.871 

70 14.68 17.46 21.56 4.797  10.17 11.41 12.98 1.792 

75 11.64 13.67 16.62 3.587  8.43 9.46 10.80 1.579 

USA females- LC: theoretical predictions 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 43.56 45.22 46.94 2.002  19.64 19.91 20.17 0.288 

45 38.70 40.21 41.76 1.746  18.62 18.90 19.18 0.310 

50 33.95 35.32 36.74 1.635  17.44 17.75 18.06 0.352 

55 29.36 30.57 31.85 1.448  16.11 16.43 16.76 0.373 

60 24.87 25.95 27.06 1.328  14.58 14.91 15.25 0.396 

65 20.65 21.56 22.50 1.132  12.89 13.23 13.57 0.395 

70 16.70 17.44 18.22 0.914  11.07 11.39 11.73 0.375 

75 13.04 13.64 14.28 0.749  9.15 9.45 9.76 0.356 

USA females- LC: simulated predictions (10,000 simulations)  

 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 40.38 44.61 49.14 4.909  18.87 19.62 20.33 0.760 

45 34.71 38.13 41.97 4.330  17.51 18.24 18.97 0.803 

50 29.84 32.58 35.72 3.636  16.12 16.80 17.51 0.801 

55 25.46 27.61 30.12 2.941  14.65 15.28 15.95 0.765 

60 22.05 23.77 25.76 2.348  13.35 13.92 14.53 0.707 

65 18.66 19.99 21.52 1.811  11.90 12.41 12.95 0.633 

70 15.10 16.05 17.16 1.305  10.19 10.60 11.06 0.531 

75 11.68 12.31 13.04 0.869  8.31 8.63 8.97 0.411 

USA males-H1: theoretical predictions 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 43.88 44.54 45.18 0.729  19.49 19.61 19.73 0.131 

45 37.52 38.10 38.66 0.618  18.11 18.24 18.36 0.133 

50 32.06 32.54 33.03 0.566  16.67 16.80 16.92 0.145 

55 27.18 27.59 28.00 0.444  15.15 15.28 15.40 0.137 

60 23.39 23.74 24.09 0.418  13.79 13.91 14.03 0.140 

65 19.67 19.96 20.25 0.335  12.28 12.40 12.51 0.131 

70 15.81 16.03 16.25 0.267  10.49 10.59 10.69 0.122 

75 12.13 12.29 12.46 0.193  8.53 8.62 8.70 0.100 

USA males- H1: simulated predictions (10,000 simulations) 

 

Table 1.  USA female & male 2009 life expectancy and 4% annuity quantile predictions, 

ages 40(05)75:  comparison of theoretical & simulated predictions. 
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    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 38.80 48.32 58.29 7.493  18.92 20.48 21.78 1.000 

45 34.82 43.21 52.47 7.410  17.95 19.56 21.00 1.167 

50 30.91 38.21 46.67 7.209  16.85 18.49 20.06 1.340 

55 27.09 33.34 40.88 6.856  15.62 17.26 18.93 1.508 

60 23.35 28.57 35.10 6.602  14.23 15.83 17.55 1.638 

65 19.75 24.00 29.45 5.575  12.70 14.22 15.92 1.714 

70 16.33 19.67 24.00 4.681  11.06 12.44 14.04 1.700 

75 13.14 15.63 18.86 3.654  9.33 10.52 11.92 1.563 

USA females- LC: theoretical predictions 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 46.51 48.22 49.94 1.876  20.22 20.47 20.71 0.265 

45 41.58 43.14 44.65 1.670  19.28 19.55 19.80 0.277 

50 36.72 38.16 39.60 1.623  18.18 18.48 18.78 0.323 

55 32.02 33.28 34.58 1.489  16.94 17.25 17.56 0.353 

60 27.41 28.54 29.68 1.437  15.49 15.83 16.15 0.393 

65 23.01 23.99 24.97 1.144  13.88 14.22 14.55 0.383 

70 18.86 19.66 20.52 0.997  12.11 12.44 12.78 0.397 

75 14.98 15.64 16.34 0.769  10.21 10.52 10.84 0.352 

USA females- LC: simulated predictions (10,000 simulations)  

 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 43.47 47.88 52.22 4.477  19.55 20.26 20.90 0.660 

45 37.72 41.40 45.23 4.122  18.30 19.01 19.69 0.723 

50 32.73 35.74 39.00 3.593  17.00 17.69 18.37 0.746 

55 28.20 30.63 33.30 3.011  15.62 16.27 16.93 0.737 

60 24.62 26.59 28.76 2.450  14.38 14.98 15.60 0.697 

65 21.03 22.59 24.30 1.937  12.97 13.52 14.08 0.641 

70 17.23 18.39 19.66 1.454  11.27 11.74 12.23 0.561 

75 13.53 14.34 15.22 1.021  9.37 9.75 10.15 0.458 

USA males-H1: theoretical predictions 

 

    life expectancy   4% annuity value 

age| quantile 0.05 0.5 0.95 0.995-0.75  0.05 0.5 0.95 0.995-0.75 

40 47.16 47.78 48.39 0.693  20.14 20.24 20.35 0.117 

45 40.79 41.34 41.91 0.646  18.89 19.00 19.12 0.128 

50 35.22 35.73 36.21 0.548  17.57 17.69 17.80 0.128 

55 30.20 30.63 31.06 0.485  16.15 16.27 16.39 0.133 

60 26.23 26.59 26.95 0.427  14.86 14.98 15.09 0.135 

65 22.28 22.59 22.89 0.351  13.40 13.52 13.63 0.127 

70 18.16 18.41 18.65 0.282  11.64 11.75 11.85 0.118 

75 14.19 14.37 14.56 0.211  9.68 9.77 9.86 0.103 

USA males- H1: simulated predictions (10,000 simulations) 

 

Table 2.  USA female & male 2009 life expectancy and 4% annuity quantile predictions, 

ages 40(05)75: comparison of theoretical & simulated predictions subject to a 25% 

reduction in projected mortality rates. 

 


