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Abstract:

This paper introduces a new neural network architecture based on the
idea of fibring logical systems. Fibring allows one to combine different sys-
tems (neural networks) in a principled way. Fibred neural networks may
be composed not only of interconnected neurons but also of other networks
in a recursive architecture. A fibring function then defines how this recur-
sive architecture must behave by defining how the networks relate to each
other (typically by allowing the activation of one network to influence on
the change of the weights of another). We show that, in addition to being
universal approximators, fibred networks can approximate any polynomial
function to any desired degree of accuracy, thus being more expressive than
standard feedforward neural networks.

1 Introduction

The goal of Neural-Symbolic integration is to benefit from the symbolic and
the connectionist paradigms of Artificial Intelligence (AI) [CZ00, dGBGO02].
Towards this end, efficient, parallel and distributed learning capability should
be at the core of any Neural-Symbolic system and, one may argue, of any
AT system. Neural-Symbolic systems that use simple neural networks, such
as single hidden layer feedforward or recurrent networks [Hay99], typically
only manage to represent and reason about propositional symbolic knowl-
edge or if then else rules [BV01l, dGBG02, Fu94, Pin95, TS94]. On the
other hand, Neural-Symbolic systems that are capable of representing and
of reasoning about more expressive symbolic knowledge, such as modal
logic and first order logic, normally are less capable of learning new con-
cepts efficiently [HKS99, SA97, Sha99, KSCO01]. There is clearly a need to



strike a balance between the reasoning and learning capabilities of Neural-
Symbolic systems. Either the simple networks to which, for example, the
efficient Backpropagation learning algorithm or its variations can be applied
to [RHWS86, Wer74, Wer90] must be shown to represent languages more
expressive than propositional logic, or the complex connectionist systems
that are capable of representing first order logic, such as for example CHCL
[HK92], must have efficient learning algorithms developed for them. This
is necessary because real-world applications such as failure diagnosis, en-
gineering and bioinformatics applications, do require the use of languages
more expressive than propositional logic. Bioinformatics, in particular, very
much depends on the ability to represent and reason about relations as used
in first order logic [AMO02].

In this paper, we adopt the approach of extending simple networks that
use Backpropagation in order to allow for higher expressive power. We do so
by following Gabbay’s Fibring methodology [Gab99], in which several differ-
ent systems such as logical systems of space and time, neural networks and
bayesian networks [WGO03], can be put to work together in an co-ordinated
manner to solve a particular problem.! To this end, we know that a funda-
mental aspect of symbolic computation lies on the ability to do recursion.
As a result, to make neural networks behave like logic, we need to add recur-
sion to it by allowing networks to be composed not only of interconnected
neurons but also of other networks. Figure 1 exemplifies how a network can
be embedded into another. Of course, the idea of fibring is not only to or-
ganise networks as a number of sub-networks. In Figure 1, for example, the
hidden neuron of Network A is expected to be a neural network (Network
B) in its own right, and the input, weights and output of Network B may
depend on the activation values of neurons in Network A, according to the
fibring function used. For example, a fibring function may be to multiply the
weights of Network B by the input potential of Network’s A output neuron.

Most of the work on how to do recursion in neural networks has concen-
trated on the use of recurrent auto-associative networks and symmetric net-
works to represent formal grammars [Elm90, TH88, Smo90, Smo00, Pol90].
In general, the network learns how to simulate a number of recursive rules
by similarity, and the question of how such rules are represented in the net-
work is treated as secondary. In this paper, we give a different treatment
to the subject, looking at it from a Neural-Symbolic integration perspective
[dGBGO2]. The idea is to be able to represent and learn symbolic rules of

!For example, a robot’s motion control system requires a logic of space, a logic of time
and a visual, pattern recognition system.
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Figure 1: Fibring Neural Networks

the form a — (b — ¢), where (b — ¢) would be encoded into network B
and then a — (b — ¢) would be encoded into the fibred network containing
networks A and B.

In what follows, we introduce and define the fibred neural network (fNN)
architecture, and show that, in addition to being universal approximators,
fNNs can approximate any polynomial function, thus being more expressive
than standard feedforward networks. Briefly, this can be shown by noting
that fibred neural networks compute, e.g., the function f(z) = 22 exactly
for any given input x in R, as opposed to feedforward networks which are
restricted to compact (i.e. closed and bounded) domains [Cyb89, HSW8&9].
Intuitively, fibring neural networks can be seen as running and training
neural networks at the same time. In Figure 1, for example, at the same time
that we run network A, we perform a kind of learning in network B because
we allow the weights of B to change according to the fibring function. In



other words, object-level network running and meta-level network training
are occurring simultaneously in the same system, and this is responsible for
the added expressiveness of the system.

This paper is organised as follows. Section 2 introduces and exemplifies
fibred neural networks. Section 3 defines the architecture and dynamics
of fibred networks precisely, and shows that fibred networks approximate
polynomials. Section 4 concludes and discusses directions for future work.

2 Examples of Fibring

The main idea behind fibring neural networks is to allow single neurons
to behave like entire embedded networks according to a fibring function ¢.
This function qualifies the function computed by the embedded network
so that the embedded network’s output depends on ¢. For example, con-
sider Network A and its embedded network (Network B) in Figure 1. Let
W4 and Wp be the set of weights of Network A and Network B respec-
tively. Let fw,(ia) be the function computed by Network A, and gw, (i)
be the function computed by Network B, where iy and ip are the input
vectors of Networks A and B respectively. If Network B is embedded into
Network A with fibring function ¢, the function computed by Network B be-
comes gap(WB)(i B), and then the function computed by Network A becomes
fwA’gwa)(iB)(iA), as the following example illustrates.

Consider the two simple networks (A and B) of Figure 2. Let us assume,
without loss of generality, that input and output neurons have the identity as
activation function, while hidden neurons have h(z) = tanh(x) as activation
function [HSW89]. We use bipolar inputs i; € {—1,1}, Wj, € R, and
outputs oy € (—1,1). The output of Network A is of* = WA (WD +
W), and the output of Network B is oB = WB.A(WEiB + WBB).
Now, let Network B be embedded into Network A as shown in Figure 2.
This indicates that the input potential of A’s output neuron will influence
B according to fibring function ¢. Let us refer to the input potential of
A’s output neuron as I(o‘i*).2 In addition, this indicates that the output of
B (0P) will influence A (in this example, only the output of A). Suppose
©(Wpg) =I(of)- Wg, where W = [WB, WB, WEB]. Let us use 5* and 5P
to denote the outputs of networks A and B respectively, after they are fibred.
0P is obtained by applying ¢ to Wp and calculating the output of such a
network, as follows: o8 = (I(of*). W) - h((I(of). WB)iB + (1(o). WDB)iB).

2Note that, in this particular example, I(of‘) = of* due to the use of the identity as
activaton function in the output layer.



5‘1'* is obtaining by taking 5]13 as the output of the neuron in which Network

B is embedded. In this example, 52 = o2. Notice how network B is being
trained (when ¢ changes its weights) at the same time that network A is
running.

Clearly, fibred networks can be trained from examples in the same way
that standard feedforward networks are (for example, with the use of Back-
propagation [RHWS86]). Networks A and B of Figure 2, for example, could
have been trained separately before being fibred. Network A could have
been trained, e.g., with a robot’s visual system, while network B would
have been trained with its planning system. For simplicity, we assume for
now that, once defined, the fibring function itself should remain unchanged.
Future extensions of fibring neural networks could, however, consider the
task of learning fibring functions as well.

In addition to using different fibring functions, networks can be fibred in
a number of different ways as far as their architectures are concerned. The
networks of Figure 2, for example, could have been fibred by embedding
Network B into an input neuron of Network A (say, the one with input ;).
In this case, outputs o2 and 34* would have been 52 = o(WE)-h(p(WE)iB+
©(WP)iB), where ¢ is a function of W (say, e.g., o(Wpg) = i1 - Wg), and
o = WA R(WHASE + Wis).

Let us now consider an even simpler example that, nevertheless, illus-
trates the power of fibring neural networks. Consider two networks A and
B, both with a single input neuron (i and B, respectively), a single hid-
den neuron and a single output neuron (0 and o®B, respectively). Let all
the weights in both networks have value 1, and let the identity (f(z) = z)
be the activation function of all the neurons (including the hidden neu-
rons). As a result, we simply have o® = f(Wg - f(W{ - f(i#))) = iA
and o = f(WB . f(WB . f(iB))) = B, where W and W are the
weights of network A, and W and WP are the weights of network B.
Now, if we embed network B into the input neuron of network A, we ob-
tain 9B = f(o(WE) - f(p(WB) - f(iB))) and 5A = F(W§ - F(WA -5B)).
Since f(x) = x, we have o = (WP) - p(W) - iB and o4 = WH - WA -
o2. Now, let our fibring function be ¢(Wy,is, Wg) = i - Wp, where
Wp = [WB, WEB].3 Since WA WA WB, WP are all equal to 1, we ob-
tain o2 = iA - i - B and ® = oB. This means that if we fix (B = 1,
the output of network A (fibred with network B) will be ¢4 - 4. Finally,
assume that the following sequence is given as input to A fibred with B:
n,1/n,n+1,1/(n+1),n+2,1/(n + 2),... for n € R. The corresponding

31n practice, the fibring function ¢ must be defined depending on the problem domain.
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Figure 2: Fibring two simple networks

output sequence of A will be: n2 1, (n+ 1)2,1,(n + 2)2,1,.... Note that,
input n changes the weights of B from 1 to n, input 1/n changes the weights
of B back to 1, input n + 1 changes the weights of B from 1 to n + 1, input
1/(n + 1) changes the weights of B back to 1, and so on.* The interest in
this sequence lies in the fact that, for alternating inputs, the square of the
input is computed exactly by the network for any input in ®. This illus-
trates an important feature of fibred neural networks, namely, their ability
to approximate functions in an unbounded domain [Hen02, Hin96]. This
results from the recursive characteristic of fibred networks as indicated by
the function fyy, ’ng(h)(il) computed by the network, and will be discussed
in more detail in the following section.

“Note that, since the fibring function changes the weights of the embedded network,
weuse 1/n, 1/n+1, 1/n+2... to reset the weights back to 1 in the sequence computation.



3 Fibred Neural Networks

In this section, we define fibred neural networks (fNNs) precisely, we define
the dynamics of fNNs, and we show that fNNs can approximate unbounded
functions.

3.1 Fibring Definition

For the sake of simplicity, we restrict the definition of fibred networks to
feedforward, single output neuron networks. We also concentrate on net-
works with linear input and output activation functions, and either linear
or sigmoid hidden layer activation function. We believe, however, that the
principles of fibring could be applied to any artificial neural network model.”
In what follows, we allow not only two networks, but any number of em-
bedded networks to be nested into a fibred network. We also allow for an
unlimited number of hidden layers per network.

Definition 1 (Fibring Function) Let A and B be two neural networks. A
function ¢, : I — W s called a fibring function from A to B if I is the
input potential of a neuron n in A and W is the set of weights of B.

Definition 2 (Fibred Neural Networks) Let A and B be two neural net-
works. We say that B is embedded into A if ¢,, is a fibring function from
A to B and the output of neuron n in A is given by the output of network
B. The resulting network composed of networks A and B is called a fibred
neural network.

Note that many networks can be embedded into a single network, and
that networks can be nested so that network B is embedded into network
A, network C is embedded into network B, and so on. The resulting fibred
network can be constructed by applying Definition 2 recursively, e.g., first
to embed C into B and then to embed the resulting network into A.

Example 3 Consider three identical network architectures (A, B and C),
each containing a single linear input neuron, a single linear hidden neuron,
and a single linear output neuron. Let us denote the weight from the input
neuron to the hidden neuron of network x € {A, B,C} by W, and the weight
from the hidden neuron to the output neuron of x by W¢. Assume we embed
network C into the output neuron of network B, and embed the resulting

SParticularly interesting would be to consider fibring recurrent networks (i.e. networks
with feedback connections).



network into the output neuron of network A (according to Definition 2),
as depicted in Figure 3. Let g denote the fibring function from A to B,
and po denote the fibring function from B to C. As usual, let us define
v =19 - Wp and oo = 1% - We, where 19 is the input potential of A’s
output neuron given input x, 1% is the input potential of B’s output neuron
given inputs x and y, Wp denotes the weight vector [Wg,Wg/ of B, and
W denotes the weight vector [Wh WE] of C. Initially, let Wh = \/a, where
a€RT, and W§ = Wg =W3 = W(}} = W@ = 1. As a result, given input
x to A, the input potential of A’s output neuron will be x+/a. Then, @p will
be used to update the weights of network B to Wh = z\/a and W§ = z./a.
If we had only networks A and B fibred, input y = 1, for example, would
then produce an output o = ax? for network B and then A. Since network
C' s also embedded into the system, given input y, fibring function o will
be used to update the weights of network C, according to the input potential
of B’s output neuron. Thus, given y = 1, the input potential of B’s output
neuron will be ax?, and the weights of network C will change to Wg = ax?
and Wg = ax?. Finally, assume z = 1. The output o of networks C, B and
A will be a’x*. This illustrates the computation of polynomials in fNNs.
The computation of odd degree polynomials and of negative coeficients could
be achieved with the addition of more hidden layers to the networks, as we
will see in the sequel.

3.2 Fibring Dynamics

Example 3 also illustrates the dynamics of fibred networks. Let us now
define such a dynamics precisely.

Definition 4 (Nested fNNs) Let Ny, Na,..., N, be neural networks. Ni,
Ns,..., N, form a nested fibred network if N; is embedded into a neuron
of Ni—1 with a fibring function @; for any 2 < ¢ < n. We say that j — 1
(1 <j < n)is the level of network Nj.

Definition 5 (fNNs Dynamics) Let Ny,Ns,...,N, be a nested fibred net-
work. Let @; be the fibring function from N;_1 to N; for 2 < i < n. Leti;
denote an input vector to network Nj, W the current weight vector of Nj,
L,(i;) the input potential of N;’s neuron n; into which Njyq is embedded
given input vector ij, Oy, the output of neuron nj;, and fw,(i;) the function
computed by network N; given W; and i; as in the standard way for feed-
forward networks. The output o; of network N; (1 < j <mn—1) is defined
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Figure 3: Nesting Fibred Networks

recursively in terms of the output 0j1 of network Nj 1, as follows:
Wj-‘rl = (pj—l-l(:[(ij)ij-l-l)? I1<j<n-1
On = an (ln)
0j = fw,(ij, On; := 0j41)
where fy (i, O, == 0j+1) denotes the function computed by N; substituting
the output of its neuron n; by the output of network Njy1.
3.3 Fibring Expressiveness

Now that fNNs have been defined, we proceed to show that, in addition
to being universal approximators, fNNs can approximate any polynomial

10



function, and thus are more expressive than standard feedforward neural
networks.

Proposition 6 Fibred neural networks can approximate any (Borel) mea-
surable function in a compact domain to any desired degree of accuracy (i.e.
fNNs are universal approximators).

Proof. This follows directly from the proof that single hidden layer feedfor-
ward neural networks are universal approzimators [HSWS89], together with
the observation that level zero networks are a generalisation of single hidden
layer feedforward networks. [

Proposition 7 Fibred neural networks can approximate any polynomial func-
tion to any desired degree of accuracy.’

Proof. Consider the level zero network N of Figure 4, and its three embeded
networks A, B and C at level 1, all containing linear neurons. Let n + 1
(n € N) be the number of input neurons of N, 0 < i < n, a; € R. We
embed n—1 networks into the input neurons of N, each network representing

22,23, ..., 2", as indicated in Figure 4 for networks A, B and C, representing

22, 23 and a™, respectively. A network Nj; that represents 2 2<j<n)
contains two input neurons (to allow the representation of aj € R), j — 1
hidden layers, each layer containing a single hidden neuron (let us number
these hi,ha,...,hj—1), and a single output neuron. In addition, let a;/2 be
the weight from each input neuron to hy, and let 1 be the weight of any
other connection in Nj. We need to show that such a network computes
aja:j. From Definition 5, given input x to N and ¢; = W, the weights
of N; are multiplied by x. Then, given input (1,1) to N;, neuron hy will
produce output a;x, neuron hy will produce output ajx2, and so on. Neuron
hj—1 will produce output ajmj_l, and the output neuron will produce ajmj.
Finally, by Definition 2, the neuron in N into which N; is embedded will
present activation ajmj, and the output of N will be Zj ajmj. The addition
of axx and ag is straighforward (see Figure /), completing the proof that
fNNs compute Y, a;at. O

4 Conclusions and Future Work

This paper has introduced a new neural network architecture named fibred
neural networks (fNNs), which combines a number of standard feedforward

Recall that, differently from functions in a compact domain, polynomial functions are
not bounded.
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Figure 4: Computing polynomials in fibred networks

neural networks (that can be trained using Backpropagation) with the use
of a fibring function. We have shown that, in addition to being universal
approximators, fNNs can approximate any polynomial function, therefore
being more expressive than standard feedforward neural networks.

The question of which logics could be represented in fNNs is an inter-
esting open question. Our next step is to use the recursive, more expres-
sive architecture of fNNs to perform symbolic computation, giving fNNs
a Neural-Symbolic characterisation. We expect to be able to use fNNs to
represent variables and to learn and reason about relational knowledge.

Another interesting work to pursue would be to define how recurrent
neural networks could be fibred. Recurrent networks already possess a lim-

12



ited ability to compute unbounded functions [Hen02]. A comparison of these
two architectures’ capabilitites would be highly desirable.

Finally, the questions of how different networks should be fibred and
which fibring functions should be used is a very important one when it
comes to practical applications of fNNs. This is clearly domain dependent,
and an empirical evaluation of fNNs in comparison with standard neural
networks would be required.
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