IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Garcez, A., Spanoudakis, G. & Zisman, A. (2003). Proceedings of ACM
ESEC/FSE International Workshop on Intelligent Technologies for Software Engineering
WITSEOQ3 (TR/2003/DOC/01). .

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4061/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Proceedings of ACM ESEC/FSE International Workshop on
Intelligent Technologies for Software Engineering
WITSE 2003

A.S. d’Avila G. Spanoudakis A. Zisman

Department of Computing
City University
Technical Report Series
TR/2003/DOC/01
ISSN 1364-4009

A. S. d'Avila Garcez, G. Spanoudakis and A. Zisman

Proceedings of ACM ESEC/FSE International
Workshop on Intelligent Technologies for Software
Engineering WITSEO3

Department of Computing
City University
Technical Report Series
TR/2003/SEG/02
ISSN 1364-4009

WITSE 2003
Workshop on Intelligent Technologies
In Software Engineering

ESEC/FSE 2003
9™ European Software Engineering Conference
and
11™ ACM SIGSOFT Symposium on the
Foundations of Software Engineering
Helsinki, Finland
September 1-5, 2003

WITSE 2003
PROCEEDINGS

Workshop on Intelligent Technologies
In Software Engineering

http://witse.sol.city.ac.uk/

September 1, 2003
Helsinki, Finland

Workshop at ESEC/FSE 2003

9™ European Software Engineering Conference
and

11" ACM SIGSOFT Symposium on the
Foundations of Software Engineering

WITSE 2003
TABLE OF CONTENTS

ORGANIZING COMMITTEE
WORKSHOP INTRODUCTION

Developing High Assurance Software Systems: On the Role of Software Tools
Constance Heitmeyer
Naval Research Laboratory, USA

Abstracting Wizards from Portal Observations
Christopher J. Hogger

Imperial College London, UK

Frank R. Kriwaczek

Imperial College London, UK

Computing Minimal Revised Specifications by Default Logic
Ken Satoh
National Institute of Informatics, Tokyo, Japan

Intelligent Support for Developing Adaptable Software Architectures: A Knowledge-Based
Approach

Nary Subramanian

Hofstra University, NY, USA

Lawrence Chung

University of Texas at Dallas, TX, USA

Reasoning about Requirements Evolution using Clustered Belief Revision
Odinaldo Rodrigues

King's College London, UK

Artur d’Avila Garcez

City University London, UK

Alessandra Russo

Imperial College London, UK

The Impacts of Software Design on Development Effort — A Differential Evolution
Approach

Paivi Ovaska

Lappeenranta University of Technology, Finland

Alexandre Bern

Lappeenranta University of Technology, Finland

Vi

vii

13

20

27

An Explanation Reasoning Procedure Applicable to Loop Transformation in Compiler
Mariko Sasakura

Okayama University, Japan

Susumu Yamasaki

Okayama University, Japan

Agent-Based Support for Requirements Elicitation
Chad Coulin

University of Technology Sydney, Australia

Didar Zowghi

University of Technology Sydney, Australia

DCBL: A framework for Dynamic Control of Behavior based on Learning
Patrice Vienne

INSA Lyon, France

JeanLouis Sourrouille

INSA Lyon, France

vii

34

40

44

WITSE 2003
ORGANIZING COMMITTEE

Dr. Artur Garcez is a Lecturer at the Department of Computing at City University,
London. He holds an M.Eng. in Computing Engineering (honours), an M.Sc. in
Computing and Systems Engineering and a Ph.D. (D.l.C.) in Computing. He is the
author of a number of publications on Machine Learning, specifically on the integration
of Logics and Neural Networks. His research has evolved from the theoretical
foundations of Artificial Intelligent systems of Neural-Symbolic Integration to its
application in Bioinformatics and Software Engineering. Dr. Garcez is an editor of the
Journal of Applied Logic, Elsevier. He has served on the programme committees of
international conferences and workshops. He holds a Visiting Research Fellowship at
the Department of Computer Science, King's College, London. He is a member of the
British Computer Society's Requirements Engineering Specialist Group. He is an author
of the book "Neural-Symbolic Learning Systems: Foundations and Applications,
Springer-Verlag, 2002. For more information see: http://www.soi.city.ac.uk/~aag

Dr. George Spanoudakis is a senior lecturer at the Department of Computing at City
University, London. He holds a BSc (Honours) degree in Informatics, a MSc degree in
Artificial Intelligence and a PhD degree in Computer Science. He has been a visiting
associate professor at the Department of Computer Science at the University of Crete,
and a visiting lecturer at the Department of Information Systems at the London School
of Economics. He has served in the program committees of several international
conferences and workshops on software engineering, having chaired workshops and
conference sessions. Dr. Spanoudakis has acted as a reviewer for international scientific
journals and has served as the editor of Requirenautics Quarterly, the Newsletter of the
Requirements Engineering Specialist Group of the British Computer Society. He has
published extensively in the area of software engineering. His current research interests
include requirements specification and analysis, multi-perspective software modelling,
management of inconsistencies in software documentation, and software traceability
and measurement. For more information see: http://www.soi.city.ac.uk/~gespan.

Dr. Andrea Zisman is a lecturer at the Department of Computing at City University,
London. She holds a PhD in Computer Science, a MSc in Applied Mathematics to
Computer Science (Magna cum louver), and a B.Sc. in Computer Science (Honours).
Previously, she worked as a research fellow at University College London, and as a
software system consultant, developer and analyst. She has been a visiting researcher at
AT&T Labs Research. Dr. Zisman has been research-active in the fields of management
and automated support of distributed data and software artefacts, having an extensive
number of publications. She is interested in the areas of consistency management and
traceability of distributed software artefacts, validation of systems models,
interoperability of distributed database systems, and web services applications, to which
she has applied computational intelligence techniques in many of her approaches. She
has given tutorials and commercial courses on XML in several international
conferences. She has served in the program committees of international conferences and
workshops, has chaired workshops and conference sessions, and has acted as a reviewer
for international journals. She is member of the ACM, XML UK, and associated
member of the IEE. For more information see: http://www.soi.city.ac.uk/~zisman.

viii

WITSE 2003
PROGRAMME COMMITTEE

Artur d’Avila Garcez (City University London, UK) (co-chair)
Eric Dubois (Research Centre Henri-Tudor, Luxembourg)
Dimitra Giannakopoulou (NASA AMES, USA)

Robert Hall (AT&T Labs Research, USA)

Antony Hunter (University College London, UK)

Julio Leite (PUC-RIo, Brazil)

Neil Maiden (City University London, UK)

Tim Menzies (Nasa IV&V, USA)

Bashar Nuseibeh (Open University, UK)

Elisabetta di Nitto (Polimi, Italy)

Alessandra Russo (Imperial College London, UK)

Camille Salinesi - Ben Achour (Paris | - Sorbonne, France)
Ken Satoh (National Institute of Informatics, Japan)

George Spanoudakis (City University London, UK) (co-chair)
Andrea Zisman (City University London, UK) (co-chair)
Didar Zowghi (University of Technology, Sydney, Australia)

WITSE 2003
WORKSHOP INTRODUCTION

Software engineering practitioners and researchers continue to face huge challenges in the software development
and maintenance of software systems. The complexity of software systems and a number of recent advances in the
field of computational intelligence have been providing a fruitful integration between software engineering and
intelligent technologies. In the computational intelligence field, this is particularly true in the areas of model
checking, validation and verification, fuzzy logic and abductive reasoning, uncertainty management and belief
based reasoning, artificial neural networks and machine learning, genetic and evolutionary computing, and case-
based reasoning. In the software engineering field, this integration is seen in the areas of requirements analysis
and evolution, traceability, multiple viewpoints, inconsistency management, human-computer interaction design,
software risk assessment, and software verification.

The International Workshop on Intelligent Technologies for Software Engineering (WITSE’03) is intended to
provide a forum for presentation and discussion of a wide range of topics related to the applicability of new
intelligent technologies to software engineering problems. It aims to bring together researchers from academia
and industry, and practitioners working in the areas of computational intelligence and software engineering, to
discuss current state of the art, existing issues, recent developments, applications, experience reports, software
tools, and future research directions of intelligent technologies applied to software engineering.

WITSE’03 is a one full day event, structured around sessions composed of a keynote talk, presentations of papers
rigorously selected by the programme committee, and open round table discussions. The sessions have been
organised based on papers submitted from all corners of the globe. The workshop provides an opportunity for
exchanging valuable information on theoretical and practical aspects of:

Intelligent methods of requirements analysis and evolution

Machine learning for change management and risk assessment

Intelligent approaches for inconsistency management of software systems

Intelligent architectures for software evolution

Intelligent human-computer interaction design

Intelligent technologies for traceability management

Intelligent techniques for software validation, verification, and testing

Empirical studies, experience, and lessons learned on applying computational intelligence to software
development

We would like to take this opportunity to thank the members of the programme committee who helped in
reviewing and selecting the papers submitted to the workshop, Dr Constance Heitmeyer for her keynote talk, the
authors of the submitted and accepted papers, and the ESEC/FSE 2003 workshop co-chairs Dr Cecilia Mascolo
and Dr Andre van der Hoek for their assistance in the organisation of the workshop.

Helsinki, September 2003
Artur d’Avila Garcez , George Spanoudakis, Andrea Zisman

Xi

Keynote

Developing High Assurance Softwar e Systems:
On the Role of Software Tools

Constance L. Heitmeyer
Head of Software Engineering Section
Center for High Assurance Computer Systems
Nava Research Laboratory, Washington DC, USA
heitmeyer@itd.nrl.navy.mil

Abstract

Recently, researchers have developed a number of powerful, formally based
software tools, such as model checkers and theorem provers, for verifying
properties and for detecting property violations in both software and hardware
descriptions. To date, these tools have largely been used to analyze hardware
designs. However, in the future, they should have significant value in analyzing
the requirements and designs of software systems, especially high assurance
software systems, where compelling evidence is needed that the system satisfies
critical properties, such as safety and security properties. This talk describes the
many different roles that formally based software tools can play in debugging,
verifying, and testing software systems and software system artefacts. It aso
describes one important activity in software development not involving tools that
is often neglected and that merits much greater care and attention.

Abstracting Wizards from Portal Observations

Christop her J. Hogger
Impetial College London
SouthKensington Campus
London SW7 2AZ, UK
+44 (0)20 75948182

¢gh@doc.ic.ac.Lk

ABSTRACT

We describe a procedure for abstracting, from observations of
a portal user’s activities, specifications of wizard tools which,
if implemented within the portal, could enable those activities
to be more conducted more efficiently. The abstraction process
uses a re-programmable rule-base to decide whether sequences
of observed events are instances of coherent work patterns that
can be used as specifications for wizard-building.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures — data
abstraction, patterns.

1.5.2 [Pattern Recognition]: Design Methodology — feature
evaluation and selection, pattern analysis.

General Terms
Algorithms, Design, Human Factors.

Keywords

Portal events, user actions, coherence rules, wizard tools.

1. INTRODUCTION

Various characteristics have been ascribed to an enterprise
portal [1, 2, 3]. In broad terms such a portal provides access to
resources in a manner customized to its users.

Our work addresses one particular approach to such
customization. The typical user instigates many information-
processing events: opening emails and attachments, creating
documents, updating databases, and so on. In this stream of
activity there are many repetitive sequences, arbitrarily
interleaved in time, each constituting a coherent set of events.
If enough such sequences conform to some abstract template
then that template can be used to build a generic tool
potentially helpful to the user.

Automating wizard building has been examined elsewhere [4,
5] but within a more limited context and with a narrower focus.

FrankR. Kriwazek
Impetial College London
South Kensington Campus
London SW7 2AZ, UK
+44 (0)20 75948447

frk@doc.ic.ac.uk

Our focus on recognition of event sequences, based upon that
of [6, 7], is somewhat related to [8] in which an algorithm
gradually adapts a user interface to its observed pattern of use.

Related work in active databases and workflow includes
concatenating recurring sequences of primitive events. An
active database monitors transactions to develop production
rules for such tasks as integrity enforcement. As some rules
may take effect only after particular combinations of events
have occurred, it is important to specify composite events
flexibly [9, 10], as well as to detect them efficiently [11].

Workflow is concerned with the coordination of uses,
information and events that cause work to flow, such as
deadlines, and the status of work required to meet
organisational objectives. Workflow researchers are interested
in reusing business process models, including templates
(models that have been especially adapted for reuse) [12]. Such
templates are essentially complex composite actions. In [13],
data mining is used to construct process models from
workflow logs, thereby creating new workflow systems
conforming to previous behaviour.

2. OUTLINE OF THE PROCEDURE

We focus on portal evolution instigated by observations of
events, namely user actions. The portal is presumed to contain
a background agent that observes, stores and analyses these
events. The agent is encoded as a logic program, partly for ease
in codifying rule-based principles but mainly in order to
manipulate partially-determined data structures. Its role is to
trigger appropriate portal responses to the events observed.
We restrict the response to action composition, characteristic
of wizard-building and toolbar customization, whose simplest
mode is concatenation. This arranges selected actions into
ordered sequences representing composite actions, whose
generic form specifies the desired wizard.

To analyse events we require access to the portal's event
history to ascertain their temporal order and frequencies of
occurrence. Each event updates this history. For practicality,
policies are needed to govern the granularity, relevance and
temporal baseline of the events recorded in the history.

Whenever a new event arrives in the history, our procedure
analyses the sequence — named Events — comprising the most
recent events as determined by a given bound upon the times
since they entered the history. The analysis decides whether
Events includes an instance of a coherent behavioural pattern
and, if so, whether that pattern has been observed sufficiently
frequently. If these properties hold then the procedure signals
that the pattern is worth converting (offline) into a tool for
subsequent integration into the portal’s functions.

3. CHARACTERIZING EVENTS

The characterization of an event determines what can be done
in response to it. We represent an event as a term of the form
event(U, T, A, R, Ts) whose arguments are:

user (U) the initiator of the event
tool (T) the tool employed
action (A) the action applied using the tool

the resources so entailed in the action
the time when the event was completed

resources (R)
timestamp (Ts)

An event history is a set of such terms. The representation
imposes some degree of granularity upon the observable
events. For instance, we do not observe what happens between
the initiation and completion of an event. Further, we focus
mainly upon events whose actions apply tools to resources.

Deciding suitable types for the arguments is a matter of
practical choice. Any such choice must be sufficiently general
to match realistically observable events, but sufficiently
specific to enable realistically useful responses to flow from
them. Our own choices have been applied so far in one
medium-scale, real-world context to test their suitability. Later
we will briefly illustrate an example drawn from that exercise.

Below we outline the types so far experimented with. They are
not a fixture within the general framework, and can easily be
varied to suit the portal domain.

3.1 User (U) Types

We take only the simplest case in which U is an atom serving
as a user identifier. In most cases U identifies the portal's user.
In some cases, however, it may identify a different user,
enabling the portal to observe interactions between users.

3.2 Tool (T) Types

A term tool(Name, Exec, Location, Rights, Params) is used to
represent a tool T. All five arguments are represented by atoms
whose interpretations are as follows:

Name: the internal system name for the tool, appropriate to the
host operating system. In Windows, for example, 'MSWord'
could be such a name. A tool name in Unix might be 'emacs’.

Exec: the internal system name for the executable file
representing the tool. It may take the form Filename.ext in
cases where the file has an associated extension.

Location: the location of the executable file. This could be, for
instance, a path on a local drive—such as 'etc/bin/emacs/—or a
URL to a remote computer.

Rights: a member of {true, false} denoting whether or not the
user has the right to access the executable file.

Params: the values of any parameters the tool expects to be
supplied by the user when invoking the tool. If none are
needed then Params takes the value null.

3.3 Action (A) Types

The framework currently supports a variety of conceptually
distinct kinds of user action, denoted by the following atoms:

created copied deleted logged_in
moved pasted sent logged out
renamed received opened updated

Thus, a term event(U, T, created, R, Ts) signifies an event in
which the user U used tool T to create resource R at time Ts.

An action A does not require arguments of its own. All the
material upon which it bears is contained in the other top-level
arguments—primarily T and R —of the event term.

Not all actions involve tools or resources. Actions which do
must be compatible with them. Implicitly, there are further
constraints upon the type characterizations of events in order
to render them meaningful. For instance, the constraints upon
event(U, T, logged_in, R, Ts) require U to be the portal's user, T to
be the atom null (no tool is employed in logging-in), R to be
null (no resources are involved) and Ts to be not nul. By
contrast, the constraints upon event(U, T, created, R, Ts) require
U to be the portal's user, T to be not nul, R to comprise
precisely one resource and Ts to be not null. A suitable set of
assumed constraints for this domain can be found in [6].

When a null atom appears in an argument position within an
event term, it signifies that the argument is undefined, that is,
has no concrete meaningful value. This provision must be
clearly distinguished from that which permits an argument to
be undetermined. In the latter case the argument is an
anonymous variable (‘_") . So a term event(U, _, moved, R, Ts)
represents an event in which resources R were moved (between
locations) but in which the tool used (if any) was not
observed, or not recorded or not of interest. This partially-
determined structure stands generically for all the concrete
terms obtainable by choosing particular values for the tool
argument.

3.4 Resource (R) Types

Deciding upon suitable resource types is perhaps the hardest
aspect of characterizing events. The real world offers many
such types, each having its own particular kind of content,
handles, and so on. We have experimented with just three
primary resource types—document, database table and email,
denoted by the atoms doc, dbtable and email respectively. Each
one has the following attributes:

Type: its type identifier, chosen from {doc, dbtable, email }
Name: its current internal system name (an atom).

Loc: its current location, such as a local pathname or a URL (an
atom).

Rights: its rights, being some subset of {read, write}.
Ucr: the identifier of the user who created it (an atom).

Tcr: either null or the local pathname of the tool used to create
it (an atom).

OldN: for the action renamed this is the resource's prior name
(an atom), but for all other action types it is null.

OldL: for the action moved this is the resource's prior location,
being of the same type as Loc (an atom), but for all other action
types it is null.

Atts: further attributes specific to the primary type: for a
document it is null; for a database table it is a term of the form
atts(Spec, Schema) where Spec is an atom encoding a query or
view definition, and Schema is an atom encoding the table's
schema; for an email it is a term atts(Sender, Recipients, Subject,
Attachment) where Sender is a user identifier (an atom),

Recipients is a list of user identifiers, Subject is the message's
subject line (an atom) and Attachment is a list of atoms each
encoding the local pathname or URL of an attached file.

More: a place-holder for any other information about the
resource that the portal might be required to exploit.

The representation of a resource is then a term containing all
these arguments, as follows:

resource(Type, Name, Loc, Rights, Ucr, Tcr, OldN, OldL, Atts, More)

3.5 Timestamp (Ts) Types

A timestamp is represented by a term whose arguments fix the
temporal granularity for recording events. We use a term
ts(Year, Month, Day, Hour, Min, Sec). Whenever an event's action
is completed, the arguments of its timestamp are instantiated
with values drawn from the host system clock.

A complete example of an event drawn from the real-world data
we have experimented with is the following:

event('u146', tool('Outlook’, 'outlook.exe’,
'/ProgramFiles/Outlook’, true, null), opened,
[resource(doc, 'agenda.agd', ‘/users/u146/Outlook/,
[read, write], u146,
'ProgramFiles/Outlook/outlook.exe’, null, null, null, null)],
ts(2000, 9, 5, 9, 10, 44))

This represents the completion at time 9.10.44 am. on
September Sth 2000 of the action by user u146 of opening with
the Outlook tool a single resource, namely a document
‘agendaagd — drawn from the local directory
Jusers/u146/Outlook/ — which that same user had previously
created with that same tool.

4. EVENTS AND WORK PATTERNS

Events are real and tangible manifestations of an individual's
work. We can identify them not only correctly but also
unobtrusively. More difficult is the task of deciding whether
they jointly signify meaningful work patterns. A sequence of
temporally-ordered events may be recognizable as a whole to
the user in relation to their defined role. However, the
flexibility of working arrangements to achieve overall
objectives may be such that some sequences, whilst logically
consistent with the role, may not be directly recognizable as
such. Moreover, the environment may be one in which no
individual roles have been formally defined.

Given this, we employ a customizable rule-base to decide
whether any given event sequence has a subsequence matching
some work pattern meriting wizard support in the portal. This
allows flexibility in determining such patterns without
consulting the user or institutional roles, although it does not
preclude doing so. The rule-base recognizes such patterns in
the event history on the basis of the events’ internal content.

The event history is conceptually a set of stored events. In
general, however, events have a natural temporal order
determined by their timestamps. In the absence of such an
order a set of events may not amount to a set of logically
coherent actions. For example, a resource cannot be sent as an
email attachment before it has been created. A coherent set will
normally require that its timestamps satisfy at least some
given partial order, and in some cases may even need to be
totally ordered. Given two particular events e1 and e2 we might

require that el occurred before €2 and/or that the interval
between them were less than some specified bound.

An event-collecting agent running in the portal background
produces the event history as a stream of validated event terms
in the form described above. An adjustable bound controls
how long events persist in the history before being garbage-
collected. Concurrently, a wizard-analysing agent eagerly
consumes the history’s events. Each newly-arrived event
triggers this analyser to assemble the more recent events —
including the one just arrived — into a list called Events, and
then to seek significant patterns within this list by consulting
the rule-base. For coding convenience, Events is ordered by
increasing recency. Its membership is constrained by another
adjustable bound that determines how far back through the
event history the search for patterns is pursued.

For each instance of Events the analyser potentially considers
each non-empty subsequence S within it. S need not be
contiguous. For instance, if Events has the form [e1, €2, €3, e4,
e5, €6, ..] then S might be [e1, €3, e4, e6]. Whether S is an
instance of a work pattern depends upon it being recognized as
such by coherence rules in the rule-base. These customizable
rules describe work-related relationships among events.

In general, the notion of coherence of a subsequence can be
based upon any logical relation over its members. In this paper
we consider coherence only between its adjacent members.
This reduces the discernibility of potential patterns but gains
from the simplicity of defining pairwise constraints. Given
this, each coherence rule takes the form

cohere(C, Cnext) :- conditions.

A coherent subsequence [e1, €3, e4, e6] must then satisfy
cohere(e1, e3), cohere(e3, e4) and cohere(ed4, e6). It is not,
however, the structure we wish ultimately to extract. In a
coherence rule the head arguments C and Cnext are typically
non-ground, that is, contain variables. When this is so, C and
Cnext are required to cohere for whatever values they take. So,
it may be enough that C has an opened action and Cnext a copied
action, without regard to the particular tools employed in
those actions. In that case the tool arguments within C and
Cnext would be anonymous variables. Moreover, their
anonymity would prevent them from being bound by the
evaluation of the rule's conditions. What we wish to extract is
not the concrete subsequence, but rather an abstract template
for it that has no greater specificity than that required by the
coherence rules. For [e1, €3, e4, ef], one extracted template may
be [t1, 13, t4, t6]. Then, e, ..., e4 must be substitution instances of
t1, ..., t4 and the rule-base must contain satisfied rules whose
heads are cohere(t1, t3), cohere(t3, t4) and cohere(t4, t6).

The logic program shown below extracts all templates from
Events. The principal case is the final scan clause, whose logic
is such that a partially-constructed template T (in reverse
temporal order) is extended by a term Cnext provided (a) a pair
(E, Enext) of concrete events satisfies some coherence rule
whose head's argument tuple is a variant copy of (C, Cnext) and
(b) C unifies with the term Cprev most recently put in T.
Requirement (b) ensures that each abstract term in the template
coheres with both its predecessor and its successor, as is
identically required of the corresponding concrete terms in the
input subsequence. The final state of T is reversed by the first
scan clause to yield a completed template in order of
increasing recency.

find_templates(Events, Templates) :-
findall(Templ, template(Events, Templ), Templates).

template(Events, Templ) :-
scan(Events, [], [, Templ), length(Templ, N), range(N, 3, 10).

scan([], _, T, Templ) :- reverse(T, Templ).
scan([_| Es], B, T, Templ) :- scan(Es, B, T, Templ).
scan([E | Es], [, T, Templ) :- |, scan(Es, [E], T, Templ).
scan([Enext | Es], [E], [I,Templ) :-
cohering_pair(E, Enext, C, Cnext), !,
scan(Es, [Enext], [Cnext, C], Templ).
scan([Enext | Es], [E], [Cprev | T], Templ) :-
cohering_pair(E, Enext, C, Cnext), C=Cprey, !,
scan(Es, [Enext], [Cnext, Cprev | T], Templ).

cohering_pair(E, Enext, C, Cnext) -
clause(cohere(A, Anext), Conditions),
copy_term((A, Anext), (C, Cnext)), E=A, Enext=Anext,
Conditions.

One can improve the procedure so that when it is triggered it
need not test for coherence of any pair previously tested. This
can be arranged by indexing the events in the history and
consulting a database of pairs already shown to cohere.

A recognized template is required to have a sensible length.
The program above delivers only templates having lengths in
the range 3-10. A length shorter than 3 represents so little
activity that a corresponding wizard would confer little
realistic benefit, whilst for one above 10 the wizard could be
overly specialized or unwieldy to use.

S. COHERENCE RULES

The following is an example of a coherence rule.

cohere(event(U, _, received, Rs, Ts1),
event(U, _, opened, [R], Ts2) :-
portal_user(U), U\==Sender,
atts(Sender, _, _,),),
member(R, Rs), soon_afterwards(Ts1, Ts2).

It identifies coherence between the receipt by the portal's user
U of a collection Rs of resources including an email R which U
opens “soon afterwards”, conditional upon R having been sent
by someone other than U. The additional requirement that U
shall be a recipient of the email will have been already checked
during the stream-entry validation of whichever event is now
matched with the rule-head's first argument.

An example of a concrete Events list containing at least two
events is:

[event(u146, null, received,
[resource(email, ‘inbox.dox’,
'/Win/ApplicationData/ldentities/u146/Outlook/,
[read, write], null, null, null, null, atts(u416, u146,
'Book Meeting', null), null), resource(email, inbox.dox’,
'/Win/ApplicationData/ldentities/u146/Outlook/,
[read, write], null, null, null, null, atts(u811, u146,
'Request’, '~pn105'), null)], ts(2000, 9, 5, 9, 2, 52)),
event(u146, tool(Outlook, outlook.exe,
‘/ProgramFiles/Outlook’, true, null), opened,
[resource(email, 'inbox.dox’,
'/Win/ApplicationData/ldentities/u146/Outlook/,
[read, write], null, null, null, null, atts(u416, u146,
'Book Meeting', null), null)], ts(2000, 9, 5, 9, 10, 20)),
... and further events ...]

This data was extracted from the actions observed over a
period of a few weeks in the “real life” of a business portal
user. The event history accumulated amounted to several
thousand events. The first event above records that user u146
received two emails, one from u416 about the booking of a
meeting and the other from user u811 issuing a request. The
second event records that about seven minutes later u146
opened the first of those emails. Provided that this elapse time
is within the period defined as “soon afterwards”, the
coherence of these events as defined by the rule above yields a
template for u146's portal having the form

[event(U, _, received, _,),
event(U, _, opened, [_],), ... and further events ...]

This reflects no more than the pattern of receiving resources
and then opening a single resource, not necessarily among
those received. A wizard constructed from it may support just
that level of abstraction and enforce nothing further. This
depends upon the process used to construct wizardss. If the
coherence rule is made more specific:

cohere(event(U, _, received,

[resource(email, N, L, _, _, , _, _, Atts,)], Ts1),
event(U, _, opened,
[resource(email, N, L, _, _, _, _, _, Atts,)], Ts2) :-

portal_user(U), U\==Sender,
Atts=atts(Sender, _, _,), soon_afterwards(Ts1, Ts2).

we obtain a more specific template reflecting the receipt of just
one resource, necessarily comprising an email, and the
subsequent opening of that same email:

[event(U, _, received,

[resource(email, N, L, , , _, _, ,Atts,)],),
event(U, _, opened,

[resource(email, N, L, , , _, , ,Atts,)],),
... and further events...]

Figure 1 illustrates a simple wizard built from this template.

Figure 1. An email-handling wizard.

This is launched in the portal interface when an unopened
email passes the “soon afterwards” threshold. Its main features
can be built mechanically by a template interpreter. The
window of emails waiting to be opened, and its “Open”
button, are such features. The “Forward” button is owed to a
third event in the template recording that user U, upon
opening the email, executes a sent action upon it to forward it

elsewhere. The text field “You normally open your emails soon
after ...” is devised manually from inspection of the conditions
in the body of the coherence rule. The “Trash” button is an
embellishment added without recourse to either the template
or the coherence rule.

The expressive power of the templates is limited to what is
expressed solely by the arguments appearing in their abstract
event terms. Conditions in the bodies of the coherence rules
cannot form part of the templates. In the above example, the
condition that the email's sender shall not be the portal's user
is not enforced by the template. Likewise, we cannot express in
a template that the opened email must belong to some longer
list of received resources, nor that it be opened “soon
afterwards”. More generally, however, wizard-building can take
account of conditions in the coherence rules' bodies, either
using them to constrain the construction process or actually
compiling them into the wizards.

The above treatment identifies templates using just the
coherence rules, taking no account of the frequency with which
events occur. It treats a pattern as worth instituting as a wizard
even if it is observed to occur only once. More rational is to
require that a pattern p shall also have a sufficiently high
frequency of occurrence over some allotted time period, in
relation to the frequencies of occurrence of its constituent
events. Our framework currently employs only a simple
measure of this, using the frequency fraction fp /(f1 + .. +fn)
where n (>1) is the length of p, fp is the number of occurrences
so far of p and each fi is the number of occurrences so far of
event ei (ignoring its timestamp). The nearer this fraction
approaches 1, the more significant is p within the event
history. For each n we stipulate a threshold #z above which the
fraction is taken to indicate that p justifies building a wizard.

6. CONCLUSION

Wizard tools can offer useful economies to the user provided
their construction is unobtrusive and provided they capture
significant work patterns. In this work we have focused upon
the role of logical characterization of work patterns. This
aspect can be integrated with other capabilities for the data-
mining of event histories and for the incremental adaptation of
wizards. Data-mining might also assist the development of the
coherence rule-base. However, the rule-base alone, with limited
frequentist filtering, does provide significant power in
identifying template candidates, and many examples more
interesting—but too lengthy to illustrate here—than the
above example are derivable from our experimental data.

Other researchers have applied machine learning and other data
mining techniques to analyse sequences of user actions in
order to build models that attempt to anticipate user needs and
hence reduce the burden of working with a computer. In [14]
graph-based induction — an information-measure based
technique for pattern detection — is used in three distinct
ways: (i) to monitor the input of user commands in real-time
and constantly offer the "next command" as anticipated by the
model, (ii) to produce stereotypical scripts composed of short
sequences of commands that have been observed as occurring
frequently through the batch processing of long histories of
operations and (iii) to produce rules — also through batch
processing — that can be used to prefetch files in a multi-

tasking environment. The approach we describe in this paper is
closest in intent to the second of these tasks. However, our
wizards can be quite flexible tools, whereas the scripts
described in [14] are fixed sequences allowing only for single
arguments. A degree of expertise is required in the statement of
the coherence rules upon which our wizards are constructed
whereas the scripts in [14] are produced by an automated
machine learning process. Yet expertise is still required to
weed out those scripts deemed to have little utility.

7. REFERENCES

[1] Firestone, J.M. Defining the Enterprise Information Portal.
Executive Information Systems, Inc., 1999.

[2] Wells, D., Sheina, M. and Harris-Jones, C. Enterprise
Portals: New Strategies for Information Delivery. Ovum
Report, 2000.

[3] Murray, G. The Portal is the Desktop. Group Computing.
May-June 1999, p.22.

[4] Carliner, S. Designing wizards. Training and
Development, 1998.

[5] Kipp, N.A. Hyperwizards: XML over CGI. Proc. of
XML'98, 1998.

[6] Serafetinidou, M. Wizard Building in an Abstract Portal
Framework. MSc Dissertation, Department of Computing,
Imperial College London, 2000.

[7]1 Hogger, C.J., Kriwaczek, F.R. and Serafetinidou, M. Wizard
Building in an Abstract Portal Framework. Technical
Report 2000/18, ISSN 1469-4174, Department of
Computing, Imperial College London, 2000.

[8] Davison, B.D. and Hirsh, H. Predicting Sequences of User
Actions. Proc. of the 1998 AAAI/ICML Workshop
Predicting the Future: AT Approaches to Time-Series
Analysis, 1998.

[9] Motakis, I. and Zaniolo, C. Composite Temporal Events in
Active Database Rules: A Logic-Oriented Approach. Proc.
of the 4th Intl. Conference on Deductive and Object-
Oriented Databases, 1995.

[10] Motakis, I. and Zaniolo, C. Temporal aggregation in active
databases rules. SIGMOD Rec. 26(2), pp.440-451, 1997.

[11] Urban, S.D., Unruh, A., Martin, G. and Nodine, M.
Expressing Composite Events in InfoSleuth.
Microelectronics and Computer Technology Corporation,
Technical Report #MCC-INSL-131-98, 1998.

[12] Jergensen, H. and Carlsen, S. Writings in Process
Knowledge Management: Management of Knowledge
Captured by Process Models. ISBN 82-14-01928-1.
SINTEF Telecom and Informatics, 2000.

[13] Agrawal, R., Gunopulos, D. and Leymann, F. Mining
Process Models from Workflow Logs. Proc. of the Sixth
International Conference on Extending Database
Technology (EDBT), 1998.

[14] Motoda, H. and Yoshida, K. Machine learning techniques
to make computers easier to use. Artificial Intelligence
103, pp.295-321, 1998.

Computing Minimal Revised Specifications
by Default Logic

Ken Satoh
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ksatoh@nii.ac.jp

ABSTRACT

This paper presents a method of computing minimal revised
specifications represented as a function-free Horn theory.
We have already proposed a formalization of minimal revi-
sion of a logical specification and two computational meth-
ods. However, the previous methods have either a problem
of needs of minimality check or a problem of completeness.
In this paper, we propose a method using Default Logic
which not only directly computes a minimal revised specifi-
cation without minimality check, but also is guaranteed to
be complete. Then, we give a top-down proof procedure to
compute an extension correpsonding with a minimal revused
specification.

Categoriesand Subject Descriptors
D.2.1 [Software Engineering]:
ments/Specifications— Methodologies

Require-

1. INTRODUCTION

Software evolution is one of the most important issue in soft-
ware engineering. The famous report [8] even in 80’s states
that 75% of maintenance task in software industry are activ-
ities dealing with the following issues.

e Changes in the software environment.

e New user requirements.

In the current network environment of computers, the above
correction/updates occurs frequently and therefore the re-
search on software evolution becomes much more important.

As the first steps, we have already formalized an update for
a specification represented as a set of Horn theories with
integrity constraints. We divide a specification into two
parts; a temporary part and a persistent part. The for-
mer is subject to change and the latter is not allowed to be

changed. Then, when the addition of a new specification
leads to contradiction, we minimally revise a logical specifi-
cation to avoid contradiction. So far, we proposed the fol-
lowing methods to compute minimal revised specifications.

Using abductive logic programming [16, 17] We
translate a logical specification into an abductive logic
program where we introduce a deletion abducible into
each rule of the temporary part of the logical spec-
ification and correspond the assumption of deletion
abducible with a deletion of the temporary part.

Using extended logic programming [18] We translate
a logical specification into an extended logic program
where we consider all the contrapositive of the logical
specification in order to simulate a logical deduction
within extended logic programming and we introduce
a deletion literal into each rule of the temporary part
of the logical specification and correspond the truth of
deletion literals with a deletion of the temporary part.

However, either method has its own problem of computing
minimal revised specification. The former method firstly
computes a set of deletion abducibles corresponding with
the deletion of rules to avoid contradiction, but then we need
to check its minimality since the computing method in [16,
17] is not guaranteed to compute minimal abducibles. On
the other hand, the latter method does not need to perform
minimality check, but the method is not complete for ev-
ery class of logical specification; in other words, there is a
minimal revised specification, but by the latter method, we
cannot find it. So, we have to restrict the class of logical
specification to guarantee completeness.

In this paper, to solve these problems, we propose a usage
of Default Logic [12]. We translate each logical specifica-
tion into a default theory and compute an extension of the
theory. Then, we can guarantee that each extension exactly
corresponds with a possible minimal revised specification.
We also give a procedure of Default Logic which is simplied
from our original procedure of Default Logic [15] to compute
(a part of) an extension to identify which rules should be
deleted.

2. MINIMAL REVISED SPECIFICATION

In this section we review our framework of minimal revised
specification[16, 17, 18] for maintaining consistency of soft-
ware specification.

Consider the following example of a logical representation
of database and constraints which is inspired by the exam-
ple in [4, p590]. Here, we assume that data in database,
integrity constraints, and rules are represented as logical
formulas.

Example 1.

Integrity Constraint meaning that if F' is a father of E
then the age of E must be under the age of F:
father(F, E) A age(F, A1) A age(E, A2)
A(A1 < A2) D L.
where | means “contradiction”.

A rule of calculating the age:
birth_year(E,Y) A current_year(Z)A
A=Z —Y Dage(E,A).

e s is the father of c:
father(s,c).

The birth year of s is 1975:
birth_year(s, 75).

The birth year of ¢ is 1974:
birth_year(c, 74).

We assume that the following:

e The integrity constraint is not completely specified.
There would be an exception of the above integrity
constraint.

e There are some possibilities that the information of
birth year is wrongly inserted in the database.

e Therefore, we can delete either some part of the in-
tegrity constraint or some date of birth year to avoid
future contradiction.

Suppose that we add ¢(99).'. The addition of ¢(99). leads to
inconsistent database state. To resolve such inconsistency,
we would consider the following possibilities.

S1: b(s,75) is considered to be added incorrectly and so, we
delete this information from the database.

Sa: b(e, 74) is considered to be added incorrectly and so, we
delete this information from the database.

S3: We regard this situation as an exceptional situation and
so, we change the integrity constraint.

Note that there are other ways of resolving inconsistency,
but other revisions are greater than the above three revi-
sions. In this paper, we would like to have such minimal
revised specifications.

From now on, for brevity, we write “f” for “father” predi-
cate, “a” for “age” “b” for birth_year, “c”’ for current_year,
respectively

Definition 1. Let Tps: be a set of Horn clauses which are
of the form:

BiANBaAN..\NB; D H.

where H, Bi, ..., B; are atoms.

Let Timp be a set of labeled Horn clauses which are of the
form:

¢: BiANBa2AN...ANBiDH

where ¢ is a name for the clause.

A logical specification T is a pair of (Tpst, Timp) and we call
Tpst a persistent part of T and Timp a temporary part of T

We define a minimal revised specification based on a maxi-
mal consistent subset of the logical specification defined as
follows.

Definition 2. Let S be a set of function-free Horn clauses.
A mazimal consistent subset of S is S’ such that S’ is con-
sistent and S’ C S and there is no proper superset S of S’
such that S” is consistent and S” C S.

Definition 8. Let T be a logical specification (Tpst, Ttmp)-
Let IIr,,,, be a set of ground clauses obtained by replacing
all variables in each clause in T},,, by every constant in T'.
Let Rnew be a clause.

A minimal revised specification w.r.t. T and Rpew is
(Tpst U{Rnew},S) such that (Tpst U{Rnew })US is a maximal
consistent subset of (Tpst U {Rnew}) UIlT,,,,.

The minimal revised specification is such a specification that
deletes ground instances of Ty when Tpst U{Rnew } U Timp
leads to contradiction.

Ezxzample 2. Consider the specification in Example 1.

Tpst U {Rnew} :
BEY)AZ)ANA=Z Y > a(E, A).
f(s,0).
c(99)

Ttmp :
b(s,75).
b(c, 74).
f(E,E)Na(F,Al) Na(E, A2) A (A1 < A2) D L.

Il7,,,,is as follows.
b(s,75).
b(c, 74).
f(s,¢) Aa(s,24) Aa(e,25) A (24 < 25) D L.
f(s,c) Nafs, (:
f(s,s) Na(s,24) Na(s,24) N (24 <24) D L.

Since Tpst U {Rnew} U Il7y,,, is contradictory, we have
the following minimal revised specifications (Tps¢ U
{Rnew}tandS;)(i =1,2,3).

[Sl = HTtmp — {b(S, 75)}
o Sy = HTtmp - {b(C, 74)}
o S3 = HTthf

{f(s,c) Na(s,24) Aa(c,25) A (24 <25) D L.}

3. COMPUTING MINIMAL REVISED
SPECIFICATION BY DEFAULT LOGIC

In this section, we give a translation from a logical speci-
fication to a default theory in order to compute a minimal
revised specification.

Definition 4. Let T be a logical specification (Tpst, Timp)
where Tps¢ and Tymp are function-free. We define a trans-
lated default theory for a consistency management of T (de-
noted as DTcn (T) = (D, W)) as follows.

e W consists of the following clauses.

— Every clause in T)s: is in W.

— Let ¢: Bi A... ANB; D H € Tyymp. We introduce
a deletion literal dels(x) for each clause ¢ where
X is a tuple of free variables in ¢. Then, a clause
Bi,...,B; D H Vdelg(x). is in W.

— Unique name axioms and domain closure axioms

are in W.

e D consists of the following defaults.
{: —dely(x)
—del (%)

(¢:C(x)) € Timp}

Definition 5. Let ¢ : B1 A B2 A ... AN B; D H be a labelled
clause and X = (Xji,...,X}) be a tuple of free variables
in ¢ and 61, ..., 0., be substitutions of ground terms to these
free variables. Updated clause Update(¢; 01, ...01,) of ¢ w.r.t.
01, ...,0,, is defined as the following clause:

¢ mEQX,01) AN ... A\mEQ(X,0m)ANL1A... NLi D H

where ¢’ is the new name of the above clause and
EQ(X,0:) = (X1 = (X10:)) A ..(Xk = (Xi0:)))

The following theorem shows that an extension of DT (T')
exactly corresponds with a minimal revised specification.

Theorem 1. Let T be a function-free logical specification
(Tpst, Temp), and let Rpew be an added clause. If there is an
extension F for DTea ((Tpst U {Rnew}, Ttmp)) with a set of
deletion literals A, then (Tpst U{Rnew }, (Ttmp — Taet) UTuda)
is a minimal revised specification where

Tger = {(;5 : Bl, ey B D H|(del¢(x)9) (S A} and

Thew = {Update(¢p; 01, ...0m)|(dely(x)0;) € A}.

Conversely, if there is a minimal revised specification
(Tpst U{Rnew}; Thew), then there exists an extension E for
DTom({Tpst U {Rnew}, Timp)) s-t. Uy, — Iz, = {¢ :
(B1, ., B D H)9|(del¢(x)9) S E}

Proor. We use the following proposition mentioned

in[13]. Let D be a set of defaults, each of the form ?ﬁ

We denote a set of consequents of defaults, {3 |?ﬁ € D} as
CONS(D).

Proposition 1. Suppose R is a set of default rules, each
of the form ~— for a first-order sentence, . Then E is an

extension for the default theory (R,W) iff E = Th(W U
CONS(D)) where D is a maximal subset of R such that
W UCONS(D) is consistent.

Proof of Theorem 1: By the above proposition and the
defininition of DTcum (T)(= (D,W)), E is an extension of
DTem(T) if and only if W U {—dely(t)|~delys(t) € E} is a
maximal consistent subset of WU{—del(t)|¢ € Timp}. This
equivalently means that Tpst U{Rnew } U (Ttmp — Tder) UTwad
is a maximal consistent subset of (Tpst U {Rnew}) U HTtmp,
or equivalently, (Tpst U {Rnew}, (Ttmp — Taet) U Tuaa) is a
minimal revised specification. []

Ezxample 3. Consider the database specification T =
(Tpst, Temp) in the Example 1. To compute a minimal re-
vised specification, we translate the specification into the
following default theorm (D, W).

W:
b(E,Y)A

f(s,0).

(99)

b(s,75) V delg, .

b(c, 74) V delg, .

f(F,E) ANa(F, A1) A a(E, A2) A

(ZYNA=Z—-Y >a(E,A).

(A1 < A2) D
dely, (F, E, A1, A2).

: dely, (F, E, Al, A2)
~dely, (F, E, AL, A2)

: dely,
—\d61¢1 ’

: delg,

—‘d€l¢2 ’

Then, three extensions E1, E2, andE3 containing the follow-
ing literals for the above default theory.

E1 D {dely,,~delg,, ~dely, (s, ¢, 24,25),
~b(s,75), ma(s, 24), a(c, 25),b(c, 74), f(s, ¢), c(99)}

Es D {—dely,,dely,, ~dely, (s, c,24,25),
‘!b(C, 74)7 ‘!CL(C, 25)7 a(37 24)? b(s7 75)7 f('37 C)7 0(99)}

Es D {—dely,,~dely,,dely, (s, c,24,25),
a(c, 25),b(c, 74), a(s, 24) b(s,75), f(s,c),c(99)}

According to Theorem 1, the corresponding logical specifica-
tion with each extension is a minimal revised specification.

A temporary part in the specification corresponding with
Eli
@2 : b(c, 74).

¢3: f(F,E)Na(F,Al) Na(E,A2) N A1 < A2 D 1.

A temporary part in the specification corresponding with
FEo:
@1 : b(s, 75).

¢3: f(F,E)Na(F,Al) Na(E,A2) NA1 < A2 D 1.

A temporary part in the specification corresponding with
FEs:

o1 : b(s,75).
d)z . b(c, 74).
3:-(F =s,F=c, Al = 24, A2 = 25)A
f(F,E)Na(F,Al) Na(E,A2) NA1 < A2 D 1.

4. PROOF PROCEDURE FOR COMPUT-
ING MINIMAL REVISED SPECIFICA-
TION

We can use a proof procedure proposed in [15]2. Our proce-
dure can check not only whether a formula is in an extension
or not, but also accumulate justifications why a formula is in
or out of an extension. Thus, we can compute a minimal re-
vised specification by accumulating deletion literals in order
to include a new specification without contradiction. How-
ever, the procedure proposed in [15] is a proof procedure
for any arbitrary class of default logic, but in this paper,
we only consider a normal default without prerequisites, so
we can simplify the procedure. Figure 1 is such a simplified
procedure. In the sequel, we explain this procedure.

Definition 6. Let a be a clause and X be a set of clauses.
A linear refutation proof for a w.r.t. X is a sequence of
clauses Co, ..., Cy, such that:

1. Co =«
2. C,, =0 (an empty clause)

3. C; is a resolved clause of C;_1 and a clause in X or
Co, ceny Ci-1.

Definition 7. A deletion assumption A is a pair of sets of
of deletion literals (A;n, Aout). We denote A;y, and Aoyt as
in(A) and out(A) respectively.

A deletion assumption is used to make a specification con-
sistent. A literal in in(A) must be derived and a literal in
out(A) must not be derived to keep consistency.

Definition 8. Let « be a clause. A linear refutation proof
Co, ...,Cn, for « is active w.r.t. a deletion assumption A if
there is no C; € out(A).

2There are proof procedures for normal defaults of Default
Logic [12, 11]. However, these methods only check whether
a formula is in an extension or not and do not compute
a justification to let the considered formula in/out of the
extension.

10

If any deletion literal in out(A) is used during a linear refu-
tation proof, the proof is not valid. Therefore, we need to
check the activeness during the construction of the proof.
This check actually prunes unnecessary proofs using dele-
tion literals which were assumed to be out of an extension
in a previous iteration.

In the procedure of Figure 1, we consider Rye. as a for-
mula in a temporary part and DTcoay ((Tpst, Temp U{ Rnew }))
as a intial default theory. Note that we can easily show
that an extension without delg,,,,, for the intial default the-
ory exactly corresponds with an extension DTcon ({Tpst U
{Ruecw}s Temp))-

Let ¢r,,.., be alabel of Ryew.
We firstly call out_con(delyy, ., (0,0)).

The initial call is to show that dely, _ is out of an exten-
sion. To show that, firstly we add dely, into out(A),
consider every proof to derive dely, ~and show that there
exists the negation of a deletion literal for each proof such
that the literal can be derived. This means that each proof
does not become active in the extension. Then, to show
that a deletion literal L is derived, we call derive(L,A). In
derive(L, A), we find a proof for L such that for every nega-
tion of a deletion literal, —del, in the proof, del is out of an
extension. Therefore, by calling out_con and derive alter-
nately, we calculate a set of deletion literals to let dely,
be out of the extension.

5. RELATED RESEARCH

In software engineering, there are several proposals of logi-
cal treatment of “inconsistency” of software specification [4,
3, 6]. A survey of these approaches is found in [9]. [4]
handles the first systematic work on exception handling of
integrity constraints in database specification and he pro-
poses an isolation of such an exception from integrity con-
straints. [3] proposes a recovery of isolation when the ex-
ception is resolved for temporary violation of integrity con-
straints. Finkelstein et al. [6] use non-collapsible “quasi-
classical logic” even in the existence of inconsistency and
formalizes consistency management between multiple spec-
ifications defined by several users.

There are many researches on belief revision which would be
related to consistency maintenance in software engineering.
Fagin et al. [5] give a formalization of consistency manage-
ment of a logical database consisting of first-order sentences.

Using default logic to express defeasible parts or uncertain
parts of specification is not new. For example, Ryan [14] pro-
posed a usage of order theory which is a prioritized default
logic to represent entrenchment of specifications. Zowghi et
al. [19] propose an application of default reasoning, belief
revision and epistemic entrenchment to model requirements
evolution. However, either of them do not give a computa-
tional method for consistency management.

However, in this paper, we not only formalize a minimal re-
vision on specification, but aslo provide an implementation
of minimal revised specifications in terms of default logic
based on a new proof procedure. This procedure computes
which hypotheses of deletion are necessary to achieve con-

out_con(d, A)
d: a deletion literal, A: a deletion assumption
begin
if d € in(A) then fail
elseif d € out(A) then return A
else
Ao = (in(A), out(A) U {d}); i := 0;
for every active linear refutation proof
of WUCONS(D) for =d w.r.t. A;, Co,...,Cr, do
begin
select negative deletion literal —d’
among C;’s (0< 57 <m)
if there is no such d’ then fail
if derive(d', A;) returns A,1; then
i:= 1+ 1; continue
end
return A;
end /* out_con */

derive(d, A)
d: a deletion literal, A: a deletion assumption
begin
if d € in(A) then return A
elseif d € out(A) then fail
else
select an active linear refutation proof
of WUCONS(D) for -d w.r.t. A, Co,...,Cn,
if there is no such proof then fail
Ao = A;i:=0;
for every negative deletion literal —d’
in C;’8(0 < 5 <m) do
begin
if out,con(d', A;) returns A;1; then
i:= 1+ 1; continue
end
return (in(A) U {d}, out(A))
end /* derive */

Figure 1: Proof Procedure for Calculating Minimal
Deletion Literals

sistency. Moreover, in this proof procedure, relevant parts
of the added specification will be checked for consistency so
that we can avoid a computation of whole extensions which
might have irrelevant parts of the added specification.

Inoue[7] proposes a similar technique to [16, 17] to maintain
consistency. He translates a computation of his proposed
extended abduction into a computation to ordinary abduc-
tion. However, to guarantee minimal updates, he needs a
minimality check as [16, 17], so the problem of [16, 17] is
inherited in his framework.

There is another technique of computing a minimal revised
specification using minimal hitting sets[10, 1]. Firstly, they
compute all sets of rules which lead to contradiction and
then, they compute a minimal hitting set of all sets (a min-
imal set which has a common element with each set). How-
ever, this method has a problem of calculating all sources of
contradiction in the first place instead of checking minimal-
ity in the last phase in [16, 17]. On the other hand, in our
proof procedure, we can prune non-active proofs by deletion

11

literals which are already assumed to be out of an extension,
so that we do not need to check all sets of cotradictory rules.

In [2], they restrict a deltable rule to a fact in extentional
data base and propose a method to avoid contradiction using
tableau method. In this method, neither minimality check
nor computing minimal hitting sets is necessary, but they
do not consider a deletion of an arbitrary rule.

6. CONCLUSTION

The contributions of this research are the following.

e We propose a correct and complete method of com-
puting a minimal revised specification by translating
the specification into a default theory.

e We propose a simplified top-down proof prcedure to
compute deletion literals to avoid consistency.

For a future work, we need to investigate an efficient imple-
mentation of the proof procedure and application to a real
problem.

Acknowledgements We would like to thank anonymous
referees for constructive comments on this paper. We also
thank Aditya Ghose who gives us comments on the paper
and related references.

7. REFERENCES

[1] Aravindan, C. and Baumgartner, P., A Rational and
Efficient Algorithm for View Deletion in Databases.,
Proc. of ILPS-97 pp. 165 — 179 (1997).

[2] Aravindan, C. and Baumgartner, P., Theorem Proving
Techniques for View Deletion in Databases, Journal of
Symbolic Computation Vol. 29, No. 2, pp. 119 — 147
(2000).

[3] Balzer, R., Tolerating Inconsistency, Proc. of ICSE-13,
pp. 158 — 165 (1991).

[4] Borgida, A., Language Features for Flexible Handling
of Exceptions in Information Systems, ACM
Transactions on Database Systems, 10, pp. 565 — 603
(1985).

[5] Fagin, R., Ullman, J. D., and Vardi, M. Y., On the
Semantics of Updates in Databases, Proc. of
PODS’83, (1983).

[6] Finkelstein, A. C. W., Gabbay, D., Hunter, A.,
Kramer, J., and Nuseibeh, B., Inconsistency Handling
in Multiperspective Specifications, IEEFE Transactions
on Software Engineering, 20, pp. 569 — 578 (1994).

[7] Inoue, K., A Simple Characterization of Extended
Abduction, Proc. of CL2000 pp. 718 — 732 (2000).

[8] Lientz, B. P., and Swanson, E. B., Software
Maintenance Management, Addison Wesley (1980).

[9]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Nuseibeh, B., To Be and Not to Be: On Managing
Inconsistency in Software Development, Proc. of 8th
IEEE International Workshop on Software
Specification and Design (IWSSD-8) pp. 164 — 169
(1996).

Pereira, L.M., Damasio, C. V., Alferes, J. J.,
Diagnosis and Debugging as Contradiction Removal,
LPNMR-93, pp. 334 — 348 (1993).

Poole, D., Compiling a Default Reasoning System into
Prolog, New Generation Computing, Vol. 9(1), pp. 3 —
38 (1991).

Reiter, R., A Logic for Default Reasoning, Artificial
Intelligence 13 pp. 81 — 132 (1980).

Reiter, R., A Theory of Diagnosis from First
Principles, Artificial Intelligence 32 pp. 57 — 95 (1987).

Ryan, M., Defaults in specifications, Proc. of IEEE
International Symposium on Requirements
Engineering (RE’93), pp. 142 — 149 (1993).

Satoh, K., A Top Down Proof Procedure for Default
Logic by Using Abduction, Proceedings of the Eleventh
European Conference on Artificial Intelligence, pp. 65
— 69, Amsterdam, the Netherlands (1994).

Satoh, K., Computing Minimal Revised Logic
Program by Abduction, Proc. of the International
Workshop on the Principles of Software Evolution, pp.
177 — 182 (1998).

Satoh, K., “Consistency Management in Software
Engineering by Abduction”, Proceedings of the
ICSE-2000 Workshop on Intelligent Software
Engineering, pp. 90 — 99, Limerick, Ireland (2000).

Satoh, K., Computing Minimal Belief Revision by
Extended Logic Programming without Minimality
Check, Proc. of IJCAI-01 Workshop on Abductive
Reasoning,pp. 48 — 55 (2001).

Zowghi, D., Ghose, A., and Peppas, P., “A Framework
for Reasoning about Requirements Evolution”, Proc.
of PRICAI’96, pp. 157 — 168 (1996).

12

Intelligent Support for Developing Adaptable Software
Architectures: A Knowledge-Based Approach

Nary Subramanian

Dept. of Computer Engineering
Hofstra University

Hempstead, NY 11549

koolnary@yahoo.com

ABSTRACT

Intelligent techniques can help practitioners generate adaptable
software architectures, the first step in the development of
adaptable software solutions. In this paper, we present the ASA
(Adaptable Software Architecture) Framework, which is intended
to help systematically generate adaptable software architectures
from the corresponding adaptability requirements, treated as one
type of non-functional requirements (NFRs). Taking the premise
that at the core of intelligence lies the capability to represent and
reason about knowledge of the subject matter, the ASA
Framework offers techniques for representing knowledge of
adaptability requirements and adaptability-enhancing architectural
designs and for reasoning about them. The framework specializes
the NFR Framework by focusing on adaptability requirements,
uses Telos as the underlying knowledge representation language,
and deploys ConceptBase as the knowledge base management
system in providing a tool support - the ASA Assistant. The ASA
Assistant uses case-based reasoning for retrieving architectural
constituents from the knowledge base. The ASA Framework has
been applied in three different systems, and an initial feedback has
been obtained from domain experts.

Categories and Subject Descriptors

Software — Software Engineering — Requirements/Specifications
(D.2.1); Software - Software Engineering - Software Architectures
(D.2.11); Software - Software Engineering - Design Tools and
Techniques (D.2.2).

General Terms
Design

Keywords
Adaptability, Software Architecture, Framework, Case-Based
Reasoning, Knowledge Base, Tool, Non-Functional Requirements

1. INTRODUCTION

Intelligent techniques such as knowledge-based systems,
reasoning systems, agent - based systems, etc. are expected to be

Lawrence Chung

Dept. of Computer Science
University of Texas at Dallas
Richardson, TX 75081

chung@utdallas.edu

useful for software engineering [5, 15, 25]. One of the interesting
challenges in software engineering is systematically developing
systems that satisfy non-functional requirements (or NFRs) such
as adaptability, testability, reliability, and so on. Adaptability is
emerging as an important NFR for software systems [6, 14, 18,
19]. Briefly stated, adaptability is the ability of software systems
to accommodate changes in their environment. There is a wide
belief that NFRs such as adaptability should be engineered into the
software architecture itself, the first step in the development of
software solutions, in order for the final software system to be
adaptable. Intelligent techniques can help practitioners generate
adaptable software architectures.

However, there are only a few techniques available to
methodically develop adaptable software architectures. Attribute
Tradeoff Analysis Method (ATAM) [10] is one such method. In
ATAM, for each architecture developed, its tradeoffs against a
previously determined list of attributes are determined and the
most appropriate architecture(s) are chosen as a result of this
exercise. Architecture Level Modifiability Analysis (ALMA) [12]
is another technique for developing modifiable architectures. Each
architecture is tested for its modifiability based on change
scenarios and the architecture that best satisfies the pre-set goals is
chosen. The Architecture Design Method (ADM) [2] is another
method. In ADM adaptability is given a value; the value for
adaptability for each architecture is estimated using different
techniques including simulation, and the architecture that matches
or exceeds the initial assigned value for adaptability is chosen.
However, in all these techniques we find that there is a general
lack of the ability to represent various software artifacts and to
reason about them. In this paper we take the premise that at the
core of intelligence lies the capability to represent and reason
about knowledge' and the framework that we present, the
Adaptable Software Architecture (ASA) Framework [22], offers
techniques for representing knowledge of adaptability
requirements and adaptability-enhancing architectural designs and
for reasoning about them. The ASA Framework also helps to
systematically generate adaptable software architectures from the
corresponding adaptability requirements.

The ASA Framework is a specialization of the NFR Framework
[3, 17] for the NFR adaptability and for the level of software
architectures, uses Telos [16] as the underlying knowledge
representation language, and deploys ConceptBase [8] as the

' [15] on pages 100-102 it states that representation of

knowledge is required by an intelligent system to support
reasoning.

13

knowledge base management system (KBMS) in providing a tool
support called the ASA Assistant. The ASA Assistant also uses
case-based reasoning (CBR) for matching search criteria to the
knowledge base content’. The ASA Framework was validated by
applying it to generate adaptable software architectures for three
different systems, implementing the architectures in the three
systems, and by obtaining the initial feedback from domain
experts. However, the results are preliminary and the Framework
needs to be tested on a larger scale.

Our survey of the literature [23] suggests that there is no one
definition for adaptability. In order to place the discussions in this
paper in its proper perspective, we give our definition of
adaptability that is comprehensive enough to accept most of the
other definitions. Adaptation means change in the system to
accommodate change in its environment. More specifically,
adaptation of a software system () is caused by change (Jg) from
an old environment (E) to a new environment (E’), and results in a
new system (S°) that ideally meets the needs of its new
environment (E’). Adaptability then refers to the ability of the
system to make adaptation. Adaptation involves three tasks:

1. ability to recognize o

2. ability to determine the change J5 to be made to the system S
according to Jg

3. ability to effect the change in order to generate the new system
S’

Another concept that needs to be clarified is software architecture.
Software architecture is the underlying structure of software
systems. Software architecture has the following constituents [1,
20]: components, connections, patterns, constraints, styles, and
rationales. Components are the elements from which systems are
built; connections are the interactions between the elements;
patterns describe the layout of the components and connections;
constraints are on the components, connections and patterns; styles
are an abstraction of architectural components from various
architectures; and rationales describe why the particular
architecture was chosen. Thus, for example, Interrupt Handler and
Parser could be components, message passing could be the
connection between them, style could be layered, constraint could
be that interrupt handler should accept all interrupts and that the
data received from the interrupt handler should be sent to the
parser within 100ms (constraint on connection), pattern could be
sequential processing, and rationale could be familiarity with this
architecture.

Section 2 describes the ASA Framework, section 3 describes the
use of case-based reasoning to develop adaptable architectures,
section 4 discusses validation of the Framework, and section 5
presents the conclusions.

2 Comparing our approach to the OMG MDA [9] effort, the latter
develops a UML model of a system; the ASA Assistant can be
used to develop this UML model of the software system itself —
ASA Assistant helps in representing adaptability goals and
reasoning about them, and also in searching for adaptable
elements for developing the UML model.

2. THE ASA FRAMEWORK

The ASA Framework is a specialization of the NFR Framework.
The NFR Framework has been influenced by work on decision
support systems [4, 13], but the NFR Framework focuses on
systematically dealing with non-functional requirements during
system/software development. As a specialization of The NFR
Framework, the ASA Framework further focuses on adaptability
requirements and the various methods which can be used to
satisfice such requirements.

The ASA Framework has the following components:

1. ameans for representing and reasoning about adaptability
requirements and software architectures,

2. ameans for converting the representations into a KBMS
format, and

3. ameans for generating adaptable architectures using the
KBMS.

Each of these components will be discussed in this section.

2.1 Representation and Reasoning
Mechanisms

2.1.1 Softgoal Interdependency Graphs

In the ASA Framework, adaptability requirements are treated as
softgoals’ to be achieved during the process of software
architecture development. Since the definition of adaptability itself
is not fixed, for each project or domain the appropriate definition
of adaptability is captured by the corresponding softgoal
decomposition. This creates an NFR softgoal hierarchy that
defines adaptability for the particular domain. The various
software architectures and their constituents are represented by
design (or operationalizing) softgoals. Satisficing of the NFR
softgoals by the design softgoals can occur in different intensities,
also called contributions of the design softgoals to the NFR
softgoals, and are given in Figure 1. The reasons for the
contributions are captured by the third type of softgoal — the claim
SIG) and an example SIG is shown in Figure 2. The ontology used

NFR Softgoal

Design (or Operationalizing)

Softgoal
Claim Softgoal

>
>
>

Strongly Positively S atisficing or
M AKE Contribution

— =

- =~ Negatively S

HURT Contribut

= =~ Strongly Negatively Satisficing or
BREAK Contribution

777777 = cCorrelation

ANTD Contribution

< ritic ality

Figure 1. Ontology (Partial) of the ASA Framework

3y [26] adopts the notion of softgoal to agent orientation but

defines a softgoal as a condition in the world which the actor
wishes to achieve, although the criteria for the condition being
achieved is not sharply defined a priori but subject to
interpretation.

14

Adaptability TDS] Reliability{ TDS]
<=
Adaptability Adaptability
[Server, ZDS] Embedded System, TDS]]
AN
Adaptability/ Adaprgbility Adaptability
[Honepage. [SoftwixgAgent, [Communication,
Server, TDPI] Server, TRS] exver, TDS]
. > 2
- Deletability Changeability Changeability
. Creatabili
Changeability 4 . e:vHogpag [SoftwareAgent, [Communicatign Media, [Communication Speed,
[Homepage, Server, ever, TDS] Server, TDS) Server, TDS] Server, TDS]
TDS] AR
% S W YOI
Changeabili bility
[Software areAgent,
Se
Changeability “ ' Creatability 7
[Repetition Count, Chang¥abili ata — “Reliability iabili
Software Agent. [Test Seyue [Super Agent, - Muttip [Multiple
Server, TDS] Software Agent, Server, TDS] + - g [le Users, TDS] Agents,
Server, TD - TDS]
+H
T ++
_ -
Changeable
Queme N 7 W
Soft Software Agent Test New Soﬁv::ire
Agent With Error Sequence éogemo:em
Reporting Controller P

Figure 2. An Example SIG

softgoal. Sometimes a design softgoal may make synergistic or
conflicting contributions to several NFR softgoals and these are
captured by correlations. The graph created by softgoals and their
contributions is called the Softgoal Interdependency Graph (or for
the different SIG elements is given in Figure 1. In Figure 2, TDS
stands for a type of system (Telepresent Diagnostic System) and
the design softgoals represent some components in the domain of
telepresent [21] diagnostics. Each softgoal is named using the
convention

Type[Topicl, Topic2, ...]

where Type is an NFR and Topic is a system to which Type
applies. Softgoals can also have criticalities associated with them
— in some situations some softgoals may be more critical than the
others.

Figure 2 is read as follows. Starting from the top, the NFR
softgoal (indicated by the cloud) Adaptability(TDS], which
represents the NFR adaptability as applicable to TDS, is OR-
decomposed (indicated by the double arc) into
Adaptability[Server, TDS] and AdaptabilityfEmbedded System,
TDS] child softgoals. A TDS system has both a server part and an
embedded system that can be telepresently controlled over the

internet by a client connected to the server. Adaptability of TDS
can refer to the adaptability of either the server or the embedded
system (or both) and hence the OR-decomposition. The sequence
of decomposition continues till the leaf NFR softgoals are
obtained. The design softgoals of interest are indicated at the
bottom of Figure 2 (by the dark clouds) and they represent
components developed in the TDS domain. The extent to which
the various components satisfice the different NFR softgoals is
captured by the contributions represented by the arrows from the
design softgoals to the NFR softgoals. The strength of satisficing
is indicated next to the arrows following the legend of Figure 1.
The reasons for the strengths are captured by the claim softgoals
(indicated by dashed cloud) in Figure 2. The cloud named
“Claim1” could actually stand for “New Software Agent Add
Component helps add new software agents and hence strongly
satisfices changeability requirement”. In Figure 2 we find another
contribution indicated by the dashed arrow — the correlation: this
captures the conflicting or synergistic interaction between NFRs;
thus while the Changeable Basic Test Software Agent with Error
Reporting strongly positively satisfices the NFR changeability it
also strongly positively correlates with the NFR reliability which
means that this component synergistically interacts with the two
NFRs: changeability and reliability. Thus the requirements for the
domain, the design elements and the rationale for the satisficing of
the design elements are succinctly captured by the SIG.

15

2.1.2 Evaluation Process

The reasoning part of the ASA Framework is partly captured by
the labeling and label propagation algorithms (the reasoning part is
also performed using case-based reasoning that is discussed later).
This process is interactive and can be performed by the developer.
Briefly the procedure is as follows: the design softgoals are
assigned labels S’ for satisficed and ‘D’ for denied depending on
whether the softgoal (which perhaps represents an architecture or
its constituent) is satisficeable or deniable. These labels are
decided by the developer based on available evidence — a
satisficeable softgoal has enough justification to be acceptable for
the design process, while for a deniable softgoal this is usually not
true. Once the design softgoals have been assigned labels, these
labels can be propagated to the NFR softgoals based on the
contributions of the design softgoals to the NFR softgoals. The
label propagation up the SIG usually takes place in two steps: the
first step computes the individual impact of each satisficed
interdependency on the parent, and the second step combines the
individual impacts of all interdependencies at the parent into a
single label for the parent. The architecture that produces the most
satisfactory labels for the relevant adaptability softgoals is then
chosen. The details of this process can be seen in [3]. Some
example rules are:

1. ifa softgoal is labeled ‘S’ and its contribution to its parent is
MAKE or HELP then the parent softgoal’s (partial) label is
‘S’

2. if a parent softgoal gets the partial label of ‘S’ from all its
child softgoals then the parent softgoal’s final label is ‘S’.

While we have not shown the labels in Figure 2, it can be assumed
that all the design softgoals satisfice (this is usually decided by the
developer - if the design softgoals positively satisfice then this is a
safe assumption; if they negatively satisfice then the developer can
make the decision) the leaf NFR softgoals. Because of the
preceding propagation rules, all the design softgoals satisfice the
root NFR softgoal Adaptability{TDS] as well. In other words, the
design elements in Figure 2 are adaptable and the developer has
the reasons for adaptability recorded in the claim softgoals. This
also indicates one of the other advantages of the ASA Framework
— its process orientation. We can determine the extent to which
components satisfice the NFR softgoals during the process of
architecture development. We do not need the completed
architecture to evaluate its adaptability. If during this evaluation
the developer finds a component to be unsatisfactory, the
developer can remove that component from consideration and
focus on another component that is perhaps more adaptable.

2.2 Converting to KBMS Format

Any SIG has several elements: softgoals, decomposition methods,
operationalization methods, argumentation templates and
correlation rules. Each of these SIG elements can be represented
using frame-like notation. These frame-like notations can then be
converted into a knowledge representation language such as Telos
[16]. The advantages of Telos include treatment of link types as
object, extensibility in the form of support for meta classes, and a
strong theoretical foundation — temporal calculus and Church’s
type theory. Softgoals can be NFR softgoals, operationalizing
softgoals or claim softgoals. Decomposition methods capture the
relationships between child and parent softgoals where the child
and parent softgoals are of the same type — either NFR softgoals or

design softgoals. Operationalization methods capture the
contributions of design softgoals to NFR softgoals; argumentation
templates capture the claim softgoals; and correlation rules
represent the correlations. Figure 3 depicts the frame-like
notations for an NFR softgoal, an NFR decomposition method, an
operationalization method and a correlation rule. These frame-like
notations can be converted into the corresponding Telos
descriptions in a straight forward manner. The Telos descriptions
can then be directly populated in a KBMS. We used ConceptBase
[8] for the KBMS and ConceptBase supports Telos notation.
Elements of several SIGs for different domains were populated in

the KBMS.

NFR Softgoal AdaptabilityTDS
Type: Adaptability
Topic: TDS
Priority: Low
Label: Undecided
Author: Nary
Creation Time: May 20, 2003

NFRDecompositionMethod
AdaptabilityTDSVia SubTopic
Parent: Adaptability[TDS]
Offspring:
Adaptability[Server, TDS],
Adaptability[Embedded
System, TDS]
Contribution: OR

OperationalizationMethod
TestSequenceController
Parent:
Changeability
[Test Sequence, Software
Agent, Server, TDS]
Offspring:
TestSequenceController
Contribution: MAKE
ApplicabilityCondition: Alway:
Constraint: Nil

CorrelationRule R1
Parent: Reliability
[Multiple Users,
TDS]
Offspring:
ChangeableBasicTest
SoftwareAgentWith
ErrorReporting
Contribution: MAKE
ApplicabilityCondition:
Always

Figure 3. Frame-like Notations for some SIG Elements

2.3 Generating Adaptable Architectures Using
KBMS

Once the KBMS has been populated with various SIG elements,
for any new project the knowledge base (KB) can be searched for
adaptable architectural constituents. The ASA Framework uses the
idea that adaptable architectural constituents helps generate
adaptable architectures. Therefore by first populating the KB with
adaptable constituents for different domains, it will be possible to
use the KB for developing adaptable architectures for new
projects. This is another type of reuse but with the proviso that the
reuse is guided by adaptability. Using the outputs of the KB, the
architect can create an architecture. The adaptability of this
architecture can again be tracked using SIGs for the (possibly
new) application.

In order to put the constituents obtained from the KB together into
an architecture we developed some heuristics based on our
experience. Some of these are:

1. based on the specifications* of the constituents retrieved from
the knowledge base in the architecture repository choose the
constituents whose specifications suit the application being
developed

* We used the DisCo (short for Distributed Cooperation) [7]
specification language for recording specifications of architectural
constituents.

16

2. components can be used as the starting point — develop the
architecture by adding new components to complete the
functionality not provided by the searched component(s)

3. using the other constituents (connections, patterns,
constraints, styles and rationales) searched for complete the
architecture(s).

3. CASE-BASED REASONING FOR
GENERATING ARCHITECTURES

There are several techniques to search the KB. We have chosen to
use case-based reasoning (CBR) [11] for this purpose. CBR is
especially useful where knowledge is incomplete and adaptable
architecture development seems to fit this requirement.

3.1 What is a case?

The search criteria that we were interested in were one or more of
type, topic and contribution type of an architectural constituent.
This constituted the problem space. The result of the search was
the constituent and this represented the solution space. In order to
use CBR a case-base was developed based on the contents of the
KB. Each case in the case-base was of the form

(problem, solution)

where for each problem in the problem space the corresponding
solution from the solution space was paired.

Once the KB is populated with the methods and correlation rules,
a search through the KB can help create SIGs for various design
softgoals in the KB. These SIGs were used as the basis for
creating cases. Each case had only one design softgoal. This
softgoal and its type (component, connection, pattern, constraint,
style or rationale) formed the solution part of the case. The
contribution of the design softgoal to its parent NFR softgoal, the
types, and the topics of all its parent NFR softgoals in the SIG
formed the problem space. Also part of the problem space were
the correlation types that the design softgoal involved itself in, the
types, and topics of the parent NFR softgoals of the correlations.
Figure 4 illustrates case formation from a SIG. The tool ASA
Assistant that we developed creates these cases automatically. The
current population of the KB has more than 100 NFR softgoals, 50
design softgoals, and about 300 cases. The tool takes about 15
minutes to create the case-base from the architectural knowledge.

3.2 Uses Cases to Generate Adaptable
Architectures

An example case is given below (can be obtained from the SIG of
Figure 2):

NFR Softgoal Types: Changeability, Adaptability

NFR Softgoal Topics: TestSequence, SoftwareAgent, Server, TDS
NFR Satisficing Type: MAKE

Correlation Softgoal Types: Reliability

Correlation Softgoal Topics: MultipleUsers, TDS

Correlation Satisficing Type: MAKE

Constituent Name: TestSequenceController

Constituent Type: Component

Several such cases exist in the KB. The search criteria can be one
or more of NFR softgoal type, NFR softgoal topic, and NFR
satisficing type. Optionally, correlation NFR softgoal type,
correlation NFR softgoal topic, and correlation NFR satisficing
type may also be given. Thus if the input criteria for architectural
component were “changeability” for NFR softgoal type,
“testsequence” for NFR softgoal topic and “MAKE” for NFR
satisficing type, then the result of the search would be
“TestSequenceController”. Using such outputs and the heuristics
of Section 2.3, adaptable architectures can be generated.

4. VALIDATING THE ASA FRAMEWORK

This section discusses validation of the ASA Framework. The
ASA Framework was validated using the following techniques:

1. Developing a tool called the ASA Assistant.

2. Applying ASA Framework to develop adaptable architectures
for three systems.

3. Obtaining feedback from domain experts.

4.1 ASA Assistant

We developed a tool called the ASA Assistant that helps to
populate the KB and retrieve data from the KB. The ASA
Assistant is based on the client-server style, runs on Unix, and has
been written in Tcl/Tk. The KBMS used is ConceptBase that uses
the Telos knowledge representation language. The ASA Assistant
provides graphical user interfaces (GUIs) for populating the
KBMS with the various architectural constituents, for displaying
the contents of the KB and for searching the KB for different
constituents. The ASA Assistant uses CBR for searching the KB
and provides the user interface for updating the case-base. After
populating the KB with adaptable architectural constituents for
various domains, the user can choose to update the case-base,
whereupon the ASA Assistant automatically creates the case-base
from all the constituents in the KB. Once the case-base has been
updated, the ASA Assistant is ready for use in a new project.
Using the GUIs provided for searching the KB, the user can search
the KB for appropriate constituents. The ASA Assistant uses icons
for displaying the different constituents and for each output also
indicates the extent of the match (in percentage).

4.2 Application of ASA Framework to Three
Systems

The ASA Framework was applied to three systems for which
adaptability was an important NFR. For each system different
adaptation problems were chosen and adaptable architectures were
generated for each problem using the ASA Assistant. The
architectures generated were implemented in the actual system and
confirmed to be adaptable. This confirmation was again kept track
of by means of a SIG. The three systems were vocabulary
evolution system (VES), the user interface system (UIS) and the
adaptable remote maintenance system (ARMS). The VES [24]
supports evolution of syntax used to communicate system; the UIS
provides means of entering data and displaying outputs; and the
ARMS helps in remotely maintaining (and controlling) an
embedded system.

17

Figure 4. Deriving Cases from a SIG

HomePage
!
Test Sequence Controller
l ! i
HITP Server Agentl Agent? o Agentn
} i ! i
Physical Layer Drivers

Figure 5. Architecture Generated Using the ASA
Framework

Architecture’ generated for TDS (a variant of ARMS) is given in
Figure 5 which uses a component Test Sequence Controller
obtained from the ASA Assistant.

4.3 Feedback from the Domain Experts

We obtained feedback on ASA Framework from several experts in
the industry with a cumulative experience of over 50 years in
software development. The feedback was obtained by means of
questionnaires, presentations, email, telephone conversations, and
face-to-face discussions. The general positive viewpoints were:
adaptability is important enough to warrant the ASA Framework;
the framework promotes component reuse; the implicit process
instituted by the framework is practical; the fact that the
framework accepts almost any definition of adaptability is good;

3 Representing architectures itself is another area of research with
different techniques such as box-and-line diagrams, modeling
languages, and architecture description languages being used; we
have used simple box-and-line diagram in Figure 5, where boxes
represent components and arrows represent procedure calls in the
direction of the arrow.

and the framework will be useful for architects, system engineers,
developers and process engineers. On the negative side the experts
felt that training for potential users needs to be provided;
motivation needs to be provided to change current practices; the
effort needed to develop and maintain the KB may be excessive;
process maturity may be needed in an organization to use the
framework; and that the framework needs to be tested on a larger
scale. We believe that the feedback provides a valuable “reality
check” on the practicality of ASA Framework.

5. CONCLUSION

Adaptability is becoming an important non-functional requirement
(NFR) for software systems. In order to develop an adaptable
software system its software architecture should itself be adaptable
in the first place. However, there are very few systematic methods
to develop adaptable software architectures. In this paper we have
presented the Adaptable Software Architecture (ASA) Framework
[22] that helps to generate adaptable software architectures using
intelligent techniques: provides capability for representing and
reasoning about software artifacts required to generate adaptable
architectures, provides ability to convert the representations into
frame-like notations that can be captured by a knowledge
representation language called the Telos [16] in a straight-forward
manner, allows for storing the Telos representations in a KBMS
called ConceptBase [8], and uses case-based reasoning for
searching the stored adaptable architectural constituents
(components, connections, patterns, constraints, styles and
rationales) from the KBMS. The ASA Framework was validated
by implementing a supporting tool called the ASA Assistant, using
the Assistant in developing adaptable architectures for three
systems, and obtaining feedback from domain experts.

There is still much work left to be done — the drawbacks indicated
by the domain experts needs to be put right, the ASA Assistant
needs modification for dynamic case-base updating (upon changes
to the KB), applying the ASA Framework in more systems,
providing tool support for Softgoal Interdependency Graph (SIG)
development, and architectural verification at the specification
level (using DisCo Animator [7], for example). Other interesting

18

avenues for future work include considering application of the
ASA Framework to product-line architectures, and adapting the
Framework to consider other NFRs such as security and safety.
However, we feel that the ASA Framework promises to be an
intelligent way of generating adaptable software architectures.

6. ACKNOWLEDGEMENTS

We thank the anonymous reviewers of the original version of this
paper for their insightful comments.

7. REFERENCES

[1] Bass, L., Clements, P., and Kazman, R. Software
Architecture in Practice. SEI Series in Software
Engineering, Addison-Wesley, 1998.

[2] Bosch, J., and Molin, P. Software Architecture Design:
Evaluation and Transformation. Proceedings of IEEE
Conference and Workshop on Engineering of Computer-
Based Systems, March 1999, pp. 4-10.

[3] Chung, L, Nixon, B. A., Yu, E. and Mylopoulos, J. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, Boston, 2000.

[4] Conklin, J., and Begeman, M. L. gIBIS: A Hypertext Tool
for Explanatory Policy Decisions. ACM Transactions on
Office Information Systems, Vol. 6, Issue 4, pp. 303- 331,
1988.

[5] Damiani, E., Khosla, R, and Kitjongthawonkul, S. A
Human-Centered Approach for Intelligent Internet
Applications. Soft Computing Agents: New Trends for
Designing Autonomous Systems, (Eds.) V. Loia and S.
Sessa, Physica-Verlag, Heidelberg, 2001, pp. 169 — 190.

[6] Hayes-Roth, B. Making Intelligent Systems Adaptive.
Architectures for Intelligence, (Ed.) K. VanLehn, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1991,301 —322.

[71 http://disco.cs.tut.fi

[8] http://www-i5.informatik.rwth-achen.de/CBdoc/
cbaccess.html

[9] http://www.omg.org/mda

[10] Kazman, R., Klein, M., and Clements, P. ATAM: Method
for Architecture Evaluation. CMU-SEI Technical Report
CMUY/SEI-2000-TR-004, 2000.

[11] Kolodner, J. Case-Based Reasoning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[12] Lassing, N., Bengtsson, P., Hans van Vliet and Bosch, J.
Experiences with ALMA: Architecture-Level Modifiability
Analysis. The Journal of Systems and Software, Vol. 61,
2002, pp. 47-57.

[13] Lee, J. A Decision Rationale Management System:
Capturing, Reusing, and Managing the Reasons for
Decisions. Ph.D. Thesis, MIT, 1992.

[14]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

19

Loia, V., and Sessa, S. A Soft Computing Framework for
Adaptive Agents. Soft Computing Agents: New Trends for
Designing Autonomous Systems, (Eds.) V. Loia and S.
Sessa, Physica-Verlag, Heidelberg, 2001, pp. 191 — 220.

Meystel, A. M., and Albus, J. S. Intelligent Systems:
Architecture, Design, and Control. John Wiley & Sons, New
York, 2002.

Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M.
Telos: Representing Knowledge About Information
Systems. ACM Transactions on Information Systems, Vol.
8, No. 4, October 1990, pp. 325-362.

Mylopoulos, J., Chung, L., Liao, S. S. Y., Wang, H., and
Yu, E. Exploring Alternatives During Requirements
Analysis. IEEE Software, January/February 2001, pp. 1- 6.

Neidhoefer, J. C., and Krishnakumar, K. Intelligent Control
for Near-Autonomous Aircraft Missions. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and
Humans, Vol. 31, No. 1, January 2001, pp. 14-29.

Perlman, G. Achieving Universal Usability by Designing for
Change. Internet Computing, Vol. 6, No. 2, March/April
2002, pp. 46-55.

Shaw, M., and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

Steur, J. Defining Virtual Reality: Dimensions Determining
Telepresence. Journal of Communication, Vol.42, No.4,
1992, pp. 73-93.

Subramanian, N. Adaptable Software Architecture
Generation Using The NFR Approach. Ph.D. Thesis,
University of Texas at Dallas, Richardson, Texas, 2003.

Subramanian, N., and Chung, L. Software Architecture
Adaptability — An NFR Approach. Proceedings of Fourth
International Workshop on Principles of Software Evolution
(IWPSE2001), Vienna, September 2001, ACM Press, pp.
52-61.

Subramanian, N., and Chung, L. Architecture-Driven
Embedded Systems Adaptation for Supporting Vocabulary
Evolution. Proceedings of the International Symposium on
Principles of Software Evolution, IEEE Computer Press,
Nov. 2000, pp. 144 — 153.

Venkatram, P. Elements of Computational Intelligence for
Network Management. Computational Intelligence in
Telecommunication Networks, (Eds.) W. Pedrcyz and A.
Vasilokos, CRC Press, Boca Raton, Florida, 2001, pp. 329 —
361.

Yu, E. Modelling Strategic Relationships for Process
Reengineering. Ph.D. Thesis, University of Toronto, 1995.

Reasoning about Requirements Evolution using
Clustered Belief Revision

O. Rodrigues, A. d’Avila Garcez’, A. Russor
“Department of Computer Science, King’s College London, UK, odinaldo@dcs.kcl.ac.uk
dDepartment of Computing, City University London, UK, aag@soi.city.ac.uk
PDepartment of Computing, Imperial College London, UK, ar3@doc.ic.ac.uk

ABSTRACT

During the development of system requirements, soft-
ware system specifications are often inconsistent. In-
consistencies may arise for different reasons, for ex-
ample, when multiple conflicting viewpoints are em-
bodied in the specification, or when the specification
itself is at a transient stage of evolution. These in-
consistencies cannot always be resolved immediately.
As a result, we argue that a formal framework for the
analysis of evolving specifications should be able to tol-
erate inconsistency by allowing reasoning in the pres-
ence of inconsistency without trivialisation, and cir-
cumuvent inconsistency by enabling impact analyses of
potential changes to be carried out. This paper shows
how clustered belief revision can help in this process.
Clustered belief revision allows for the grouping of re-
quirements with similar functionality into clusters and
the assignment of priorities between them. By analys-
ing the result of a cluster, an engineer can either choose
to rectify problems in the specification or to postpone
the changes until more information becomes available.

1. INTRODUCTION

Conflicting viewpoints inevitably arise in the pro-
cess of requirements elicitation. Conflict resolution,
however, may not necessarily happen until later in the
development process. This highlights the need for re-
quirements engineering tools that support the manage-
ment of inconsistencies [15, 19].

Many formal methods of analysis and elicitation rely
on Classical Logic as the underlying formalism. Model
Checking, for example, typically uses temporal oper-
ators on top of classical logic reasoning [11]. This fa-
cilitates the use of well-behaved and established theor-
ems and proof procedures. On the other hand, Clas-
sical Logic does not accept inconsistency, in the sense
that one can derive anything from an inconsistent the-
ory. For example, one can derive any proposition B
from propositions A and —A. This is known as theory
trivialisation, and is clearly undesirable in the context
of requirements engineering, where inconsistency often
arises [6, 10].

Paraconsistent Logics [3] attempt to ameliorate the

problem of theory trivialisation by weakening some of
the axioms of classical logic, often at the expense of
reasoning power. For instance, Belnap’s four valued
logic [2] allows for non trivial logical representations
where propositions can be both true and false, but does
not verify basic inference rules such as Modus Ponens.
While appropriate for concise modelling, logics of this
kind are too weak to support practical reasoning and
the analysis of inconsistent specifications.

Clustered belief revision [17] takes a different view
and uses theory prioritisation to obtain plausible (i.e.
not trivial) conclusions from an inconsistent theory, yet
exploiting the full power of classical logic reasoning.
This allows the requirements engineer to analyse the
results of different possible prioritisations by reason-
ing classically, and to evolve specifications that con-
tain conflicting viewpoints in a principled way. The
analysis of user-driven cluster prioritisations can also
give stakeholders a better understanding of the impact
of certain changes in the specification.

In this paper, we investigate how clustered belief re-
vision can support requirements elicitation and evol-
ution. In particular, we have developed a tool for
clustered revision that translates requirements given in
the form of “if then else” rules into the (more efficient)
disjunctive normal form (DNF) for classical logic reas-
oning and cluster prioritisation. We have then used a
simplified version of the light control case study [9] to
provide a sample validation of the clustered revision
framework in requirements engineering.

The rest of the paper is organised as follows. In
Section 2, we present the clustered revision framework.
In Section 3, we apply the framework to the simplified
light control case study and discuss the results. In
Section 4, we discuss related work and, in Section 5,
we conclude and discuss directions for future work.

2. CLUSTERED BELIEF REVISION

The AGM theory of belief revision is a formalism
used to model the kind of information change in which
an agent reasoning about his beliefs about the world is
forced to adjust them in face of new (possibly contra-
dictory) information. Work in the area started in the
early 80’s [1]. One of the main references to the work
is the book “Knowledge in Flux” [8].

Clustered belief revision [17] is based on the main
principles of belief revision but has two important fea-

Permission to make digital or hard copies of all or part of this work for tures not present in the original work: the use of extra-
personal or classroom use is granted without fee provided that copies are logical information to help in the process of conflict res-
not made or distributed for profit or commercial advantage and that copies oJution and the ability to group sentences with similar

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

role into a cluster.
Clustered belief revision also uses sentences in DNF
in order to make the deduction and resolution mech-

anisms more efficient. A cluster can be resolved and
simplified into a single sentence in DNF. The resol-
ution extends classical deduction by using the extra-
logical information to decide how to solve the conflicts.
Clusters can be embedded in other clusters and prior-
ities between clusters can be specified in the same way
that priorities can be specified within a single cluster.
The embedding allows for the representation of com-
plex structures which can be useful in the specification
of requirements in software engineering.

The behaviour of the selection procedure in the de-
duction mechanism — that makes the choices in the res-
olution of conflicts — can be tailored according to the
ordering of individual clusters and its intended local
interpretation. We provide one such ordering based
on the confidence/priority that the user has/wants to
assign to each cluster.

Our approach has the following main characterist-
ics: 4) it allows users to specify groups of sentences
associated with some possibly incomplete priority in-
formation. i) it resolves conflicts in a group by taking
into account the priorities specified by the user pri-
orities and provides a consistent conclusion whenever
possible ii1) it allows groups to be embedded in other
groups so that complex priority structures can be spe-
cified 7v) and finally, combines the reasoning about the
priorities with the deduction mechanism itself in an
intuitive way.

In the resolution of a cluster, the main idea is to
specify a deduction mechanism that reasons with the
priorities and computes a conclusion based on these
priorities. The priorities themselves are used only when
conflicts arise, in which case sentences associated with
higher priorities override those associated with lower
priorities. The prioritisation principle used here is that
“a sentence with priority # cannot block the accept-
ance of another sentence with priority higher than z”.
In the original AGM theory of belief revision, the pri-
oritisation principle is applied only to the sentence the
agent wants to incorporate in his beliefs: it is given the
highest priority amongst all of the agents’ belief.

The other principle used is that of minimal change.
In the original AGM theory this amounts to require
that the agent should not give up any of his old beliefs
unless it is strictly necessary in order to repair the in-
consistency caused by the new belief. In our case, we
extend this a bit further since we have several levels of
priority. We state it as follows: “information should
not be lost unless it causes inconsistency with inform-
ation conveyed by sentences with higher priority”. As
a result, when a cluster is provided with no relative
priority between sentences, the mechanism computes a
sentence whose models are logically equivalent to the
models of the (union of) the maximal consistent sub-
sets of the cluster. On the other extreme, if sentences
in the base are linearly prioritised, the mechanism be-
haves in a way similar to Nebel’s linear prioritised belief
bases [14].

DEFINITION 1. A labelled belief base (LBB) is a
tuple B = (7,<, f), where J is a set of labels, < is
a (partial) pre-order on J and f assigns elements of
J to sentences of the language.

DEFINITION 2. A structured cluster is a tuple Z =
(C,C, g) where C is a set of labels, C is a (partial) pre-
order on C and g is a function assigning elements of C
to either a sentence; a LBB or another cluster.

In our case, a belief base is a partial specification.

DEFINITION 3. The level of a propositional logic for-
mula is 0. Let E = (C,C, g) be a cluster. The level of E,
in symbols level(Z) is defined recursively as level(E) =
maziec{level(g(i))} + 1.

Thus, a cluster of level 1 is just a labelled belief base
as defined previously.

DEFINITION 4. Let K = {p1,...,¢r} be a finite set
of sentences. A matrix representation of K is obtained
by associating rows of the matriz with logically equi-
valent formulas in DNF of each sentence where the
columns are the disjuncts in those sentences. Mk will
denote a chosen matriz representation of K.

DEFINITION 5. Let Mg be a matriz representation
of a set K. A path in Mg is a set p of disjuncts, each
and only one taken from each row in M. We denote
the set of all paths in Mg by paths(Mg).

Note that a given path contains exactly one repres-
entative disjunct of each sentence in the belief base.
Also, the order in which the sentences are laid out in
the matrix is irrelevant, and so is the distribution of
disjuncts of a given sentence in a row of the matrix.

DEFINITION 6. The conjunction of all disjuncts vis-
ited in a path o will be denoted by o(p). If p is empty,
we define o(p) to be T (we assume the language has a
symbol for truth).?

Ultimately what we want is to compare the best com-
binations of sentences in a belief base verifying pri-
oritisation and consistency. If we can keep them all
consistently so much the better, but this is not always
possible. In order to compare subsets of the belief base,
we define an ordering < on 27 We use X <Y to de-
note that the satisfiability X’s sentences is at least as
plausible as Y’s. X <Y means X <Y and Y A X.

DEFINITION 7. Let B=(7,<, f) be a labelled belief
base and X,Y € 27. X XY iff eitheri) Y = 0; orii)
JreX,FyeY, st x<yand X—{z} Y —{y}; or
iii) Iz € X,IY' CY,st. YV #DPandVye Y.z <y
and X —{z} Y -Y'.

A number of results about the behaviour of =, in-
cluding compuational properties is given in [17]. We
cannot list them all here for space reasons, but we in-
clude some in order to show that some of our expecta-
tions about < are met.

ProOPOSITION 8. < is a pre-order.

ProOF. This proof is rather long and omitted here.
See [17] for details. [

Notice that if one sentence in the base is the max-
imum w.r.t. to <, it is easy to show that condition
iii) in Definition 7 will ensure that any subset of the
base containing that sentence will be strictly preferred
w.r.t. = to any subset not containing it. Therefore, if a
new sentence (belief) is given the highest priority, our
formalism verifies the basic principle of the primacy of
the update of the original AGM theory of belief revi-
sion. This principle states that the new belief is always
accepted in the result of a revision operation.

Definition 7 subsumes the converse of the the set-
inclusion ordering, and hence accepting as many sen-
tences whenever possible is guaranteed:

*Notice that o(p) is simply a conjunction of literals
and the basis for rebuilding formulas in DNF. In model
theoretical terms, o(p) represent one possible way of
satisfying a belief base.

21

PRrROPOSITION 9. Y C X implies X <Y.

PROOF. Proof by induction on |Y|. If |Y| = 0, then
Y = () and then the proposition holds trivially. Assume
that it holds for |Y| = k and suppose |Y| = k+1. Take
x €Y. Since Y C X, z € X. Therefore, 32’ € X
and 3y’ € Y such that 2’ < y'. For this we just set
2=y =2 Y —{y}=kandY — {y} C X — {z'},
and hence, by the induction hypothesis, X — {2’} =<
Y —{y'}. By Definition 7, X <Y. [

However, the converse is not true. It might be the
case that X <Y, but Y C X does not hold. It will
depend on how important the elements in both sets
are. A consequence of Proposition 9 is the following.

PROPOSITION 10. Let (J, <) be a partial pre-order.
J is the minimum on (27 <) and §, the mazimum.

ProoOF. It is easy to see that J is the minimum:
for any X € 27.X C J. Therefore, by Proposition 9,
J < X, for all X € 27. Similarly, X < 7 only if
X = J. That 0 is the maximum follows directly from
Definition 7. [

Figure 1 gives examples of some orderings < on J
and the derived orderings < on 27. A connecting arrow
from a to b indicates that a < b or a < b (i.e. that a is
preferred to b).

Given a path in a matrix, we are interested in com-
binations of disjuncts in the path that are not con-
tradictory (we will be especially interested in mazimal
such combinations):

DEFINITION 11. Let Mk be a matriz representation
of a set K and paths(M) the set of all paths in Mk .
The set of consistent subpaths of Mg is defined as
paths” (Mx) = {¢|3p € paths(Mx) s.t. £ C p and
(&) is not contradictory}.

DEFINITION 12. The label set of a path @ is the set
Is(p) ={a | a: P € p}. The label abstraction of a set
of paths A is the set La(A) = {Is(p) | p € A}.

DEFINITION 13. The maximal plausible subpaths of
a matrix representation of a set K are the elements
of the set mps(Mx) = {p € pathsT (Mx) | Is(p) is
=<-minimal in La(paths " (Mx))}.

DEFINITION 14. Let B = (J,<, f) be a labelled be-
lief base and Mp a matric representation of the sen-
tences mapped by f in B. The result of flattening out B,
in symbols FLATTEN_BASE(B), is the sentence

Veemps(ag) 7()-

It is also possible to flatten out a cluster of higher
order by recursively flatenning out all embedded sub-
clusters as follows (this is simply an extension to Defin-
ition 14).

DEFINITION 15. Let 2 = (C,LC,g) be a structured
cluster. The result of flattening out =, in symbols
FLATTEN_CLUSTER(E), is the sentence in DNF obtained
in the following way:

FLATTEN_CLUSTER(E) =
FLATTEN_BASE(E)
FLATTEN_CLUSTER(Z')

where =’ is the cluster obtained from Z by replacing
the function g by the function g¢', such that ¢'(i) =
FLATTEN_CLUSTER(g(%)), for all i € C.

o iflevel(E) =1
> otherwise

22

ExAMPLE 1. Consider the ordering < in the middle
of Figure 1 and assume that f(x) = user_inA gte_luzxs,
f(w) = —user_in V defaultlights', f(y) =
—de fault_lights'V —no_lights' and f(z) = —gte_luzs V
nolights'. These sentences correspond to the DNF of
the sentences in the second inconsistency example dis-
cussed in the next section and the ordering < is actually
the same in prioritisation P1 there.

The sentences taken conjunctively are inconsistent,
so we would have to look for consistent subpaths in the
matriz of this set. It can be shown that the consistent
subpaths with highest number of elements will be as-
sociated with the labels in the sets {x,w,y}, {z,y,z},
{z,w,z} and {w,y,z}. According to the ordering =,
the most plausible ones amongst those are {z,w,y} and
{z,y,2}. {w,y,z} cannot be chosen as it does not con-
tain o label of the most important sentence, namely x.
{z,w, z} is not chosen because it is strictly worse than
{z,w,y}, since the latter contains y which is strictly
better than z.

As a result, this ordering would produce a result which
accepts sentences associated with x and y and includes
the consequences of the disjunction of sentences w and
z. This stgnals that whereas it is possible to consistently
accept x and y, it is not possible to consistenly include
both w and z. Given the assigned priorities, a choice
between them cannot be made and their disjunction is
taken instead.

3. THELIGHT CONTROL EXAMPLE

In what follows, we adapt and simplify the Light
Control Case Study [16] in order to illustrate the rel-
evant aspects of our revision approach. The Light Con-
trol System (LCS) describes the behaviour of light set-
tings in an office building. We consider two possible
light scenes: a default light scene and a chosen light
scene. Office lights are set to a default level upon entry
of a user, who can then override this setting to a chosen
light scene. If an office is left unoccupied for more than
Ti minutes, the system turns the lights off. When an
unoccupied office is reoccupied within 75 minutes, the
light scene is re-established according to its immedi-
ately previous setting. The value of Ti is set by the
facilities’ manager whereas the value of T is set by the
office user [9].

A dictionary of the symbols used in the LCS case
study is given in Table 1. As usual, unprimed literals
denote properties of the current state of the system,
and primed literals denote properties of the next state
(e.g., occupied denotes that a user is in the office at
time ¢, and occupied’ denotes that a user is in the office
at time ¢ + 1).

A partial specification of the LCS is given below:
Behaviour rules
r1 : user_in — occupied’
ro : occupied A user_out A —elapsed_To — temp_unocc’
r3 : temp_unocc A elapsed_Ty — unoccupied’
r4 : temp_unocc A user_in — occupied’
rs : unoccupied — no_lights'
re : temp_unocc A user_in — chosen_lights'
r7 : user_in — de fault lights'

Rules r5 to r7 specify the intended behaviour of the
office lights: no_lights indicates that the office lights
are off; chosenlights indicates that the office lights
are as set by the user; and defaultlights indicates
that the office lights are in the default setting. We
assume that the initial chosen light scene is set to the
default one.

=

0

t {uw}
{=}

< A < {w;z
{3;} {wy}
{y.2} f
4 w Y

{z}
1 x
{z,2}

8>S —n

{z,y}
?

I A

{y; 2}
{w)y, =} Y z

{z} .
/%z}

{z w}
' {:c#[hZ}/{x:Ty}

{z, @y} {x, 9.2}

{2.y.2) {My}

:)
0
i) P

IN
—
<

—

{z,y,2}

Figure 1: Examples of orderings < on the clusters and the corresponding final ordering <.

[proposition meaning |

occupied a user is in the office

user_in a user enters an unoccupied office

user_out a user leaves an office unoccupied

temp_unoce the office is unoccupied for less than Th
minutes

unoccupied the office is unoccupied for 77 minutes
or more

elapsed_T; T; minutes have elapsed

chosenlights office lights are as set by the user

default_lights office lights are in the default setting

alarm the alarm is activated

gteluxy day light level is greater or equal to
the light level required by the chosen
or default light scene (luxy)

gte_luxa day light level is greater or equal to the
maximum luminosity achievable by the
office lights (luxs)

no_lights office lights are off

Table 1: Dictionary of symbols used in the spe-
cification.

In our study, we consider that the light control sys-
tem should satisfy two types of properties: safety prop-
erties and economy properties. The following are safety
properties: i) the lights are not off in the default light
scene; 17) if the fire alarm (alarm) is triggered, the de-
fault light scene must be established in all offices; and
111) T minutes after the alarm is triggered, the lights
must all be turned off (i.e., only emergency lights must
be on). The value of T3 is set by the facilities manager.
The above requirements are represented by rules s; to
S4:

Safety rules

s1 : alarm A —elapsed_Ts — default_lights’
s2 : alarm A elapsed Ts — no_lights'

s3 @ default_lights <> —no_lights

84 : default lights' <> —no_lights'

Economy properties include the fact that, to the ex-
tent feasible, the system ought to use natural light
to achieve the light levels required by the office light
scenes. Sensors can check i) whether the luminosity
coming from outside is enough to surpass the luminos-
ity required by the current light scene; and 7i) whether

the luminosity coming from outside is greater than the
maximum luminosity achievable by the office lights.
The latter is useful because it can be applied independ-
ently of the current light scene in an office. Let luzx; de-
note the luminosity required by the current light scene,
and luz2 the maximum luminosity achievable by the of-
fice lights. The above can be summarised as follows: 1)
if the natural light is at least luw1 (gtedluz1) and the
office is in the chosen or default light scene, then the
lights must be turned off; and) if the natural light is
at least luza (gteluxs), then the lights must be turned
off. The above properties are represented as follows:

Economy rules

e1: gteduwi A (chosen_lightsV default_lights)
— no_lights’
e2: gteduxa — nolights

Now, consider the following scenario. On a bright
Summer’s day, John is working in his office when sud-
denly the fire alarm goes off. He leaves the office imme-
diately. Once outside the building, he realises that he
left his briefcase behind and decides to go back to fetch
it. By the time he enters his office, the alarm has been
going off for more than T3 minutes. This situation can
be formalised as follows:

i1: John enters the office (user_in)

i2: The alarm is sounding (alarm)

i3: T3 minutes or more have elapsed since the
alarm went off (elapsed T43)

i4: Day light provides luminosity enough to
dispense with artificial lighting (gtelux2)

‘We get inconsistency in two different ways:

1. Because John walks in the office (i1), the default
light setting is chosen (r7). By s4, the lights must
be on in this setting. This is a contradiction with
safety rule sz, which states that lights should be
turned off T3 minutes after the alarm goes off.

user_in (i1), alarm (i2), elapsed T3 (i)
default lights' — —mo_lights' (s4)
user_in — default_lights' (rr)

alarm A elapsed T5 — no_lights' (s2)

2. Similarly, when John walks in the office (i), the
default light scene is set (r7). This effectively
23

forces the lights to be turned on (s4). However,
by e2, this is not necessary since the amount
of luminosity coming from outside is higher the
the maximum luminosity achievable by the office
lights (gteduz2).

user_in (i1), gteluxs (i)

default lights' — —no_lights' (s4)
user_in — default_lights' (rr)
gteduzs — no_lights' (e2)

‘We are, therefore, in a situation where inconsistency
on the light scenes occur due to a safety property vi-
olation and due to an economy property violation. We
need to reason about the courses of action to deal with
this problem. Using clustered belief revision, we can
arrange the several components of the specification in
different priority settings, by grouping rules in clusters,
e.g., safety cluster, economy cluster, etc. The organisa-
tion of the information in each cluster can be done inde-
pendently but the overall prioritisation of the clusters
at the highest level requires input from all stakeholders.
Since the specification is being refined, the framework
must cope with potential inconsistencies without trivi-
alising the results. The formalism allows for arbitrary
orderings inside the clusters as well, but this is not
considered here for reasons of space and simplicity.

For example, in the scenario described previously,
we might wish to prioritise safety rules over the other
rules of the specification and yet not have enough in-
formation from stakeholders to decide on the relative
strength of economy rules. In this case, we would en-
sure that the specification satisfies the safety rules but
not necessarily the economy or ones.

Let us assume that sensor and factual information is
correct and therefore not subject to revision. We com-
bine this information in a cluster called “update” and
give it highest priority. In addition, we assume that
safety rules must have priority over economy rules. At
this point, no information on the relative priority of
behaviour rules is available. With this in mind, it is
possible to arrange the clusters with the update, safety,
behaviour and economy rules as depicted in Figure 2.2
Prioritisations L1, L2 and L3 represent all possible lin-
ear arrangements of these clusters with the assump-
tions mentioned above, whereas prioritisations P1 and
P2 represent the corresponding partial ones. As we
mentioned, each of the components economy, beha-
viour, safety and update could be associated with its
own partial priority order as well, allowing for the ex-
pression of more complex relationships between indi-
vidual properties.

The overall result of the clustered revision will be
consistent as long as the cluster with the highest pri-
ority (factual and sensor information) is not itself in-
consistent. When the union of the sentences in the
clusters is indeed inconsistent, in order to restore con-
sistency, some rules may have to be withdrawn. The
result will be such that rules will be kept as long as
their inclusion does not cause inconsistency with other
rules in a cluster with higher priority. Note that, to
check whether the revised specification satisfies a rule,
one needs to check for derivability of that rule from the
final result.

For example, take prioritisation L1. The sentences
in the safety cluster are consistent with those in the

*Recall that a connecting arrow between clusters in-
dicates priority of the source cluster over the target
one.

24

update cluster; together, they conflict with behaviour
rule r7 (see Figure 3).

Since r7 is given lower priority in L1, it cannot be
consistently kept and it is withdrawn from the inter-
mediate result. The final step is to incorporate what
can be consistently accepted from the economy cluster,
for example es.t

Notice however, that r7 might be kept given a differ-
ent arrangement of the priorities. The refinement pro-
cess occurs by allowing one to reason about these differ-
ent arrangements and the impact of rules in the current
specification without trivialising the results. Eventu-
ally, one aims to reach a final specification that is con-
sistent regardless of the priorities between the clusters,
i.e. in the classical logic sense, although this is not
essential in our framework.

Prioritisations L2 and P2 give the same results as
L1, i.e. withdrawal of r7 is recommended. On the
other hand, in prioritisation L3, the sentence in the
behaviour cluster is consistent with those in the update
cluster; together, they conflict with safety rule s4 (see
Figure 4).

Since the safety cluster is given lower priority in L3,
both sentences s; and s4 cannot be consistently kept.
One has to give up either s or s4. However, if s4
were to be kept, then ez would also be required to be
withdrawn. The only way to cause minimal change to
the specification is therefore to keep s2 instead, since
it allows the inclusion of es.

Finally, prioritisation P1 offers a choice between the
sets of clusters {update, safety, economy} and {update,
behaviour, economy}. The former corresponds to with-
drawing r7 reasoning in the same way as for L1, L2 and
P2, while the latter corresponds to withdrawing s4 as
in the case of L3. It is not possible to make a choice
based on the available priority information and hence
the disjunction of results 1 and 2 above is taken.

In summary, from the five different cluster prioritisa-
tions analysed, a recommendation was made to with-
draw a behaviour rule in three of them, to withdraw
a safety rule in one of them, and to withdraw either a
behaviour or a safety rule in one of them. From these
results and the LCS context, the withdrawal of beha-
viour rule r7 seems more plausible. In more complic-
ated cases, a decision support system could be used
to help the choice of recommendations made by the
clustered revision framework.

4. RELATED WORK

A number of logic-based approaches for handling in-
consistency and evolving requirements specifications
have been proposed in the literature. Zowghi and Of-
fen [20] proposed belief revision for default theories as
a formal approach for resolving inconsistencies. Spe-
cifications are formalised as default theories where each
requirement may be defeasible or non-defeasible. Each
type is assumed to be consistent. Inconsistencies in-
troduced by an evolutionary change are resolved by
performing a revision operation over the entire spe-
cification. Change actions for handling inconsistency
are implicitly given by the definition of such a belief
revision operator, which changes the status of inform-
ation from defeasible to non-defeasible and vice-versa
to remove the inconsistent. Non-defeasible informa-
tion that is inconsistent with defeasible information is

e, is also implicitly incorporated since we can neither
prove the antecendent nor the negation of the con-
sequent.

economy behaviour economy
behaviour economy safety
safety safety behaviour
update update update
(L1) (L2 (L3)

economy behaviour economy
behaviour safety safety
update update
(PD) (P2

Figure 2: Linearly (L1, L2 and L3) and partially (P1 and P2) ordered clusters.

behaviour includes (in DNF):

update + safety include (in DNF): user_in A alarm A elapsed_T5 A gte luzxs A no_lights' A —default_lights'
—user_in V de fault lights'

result 1: user_in A alarm A elapsed Ts A gte luxzs A nolights’ A —default lights'

Figure 3: Conflict with behaviour rule 7.

not taken into consideration during the reasoning pro-
cess (thus avoiding trivialisation). Similarly, in our ap-
proach, requirements with lower priority that are in-
consistent with requirements with higher priority are
not considered in the computation of the revised spe-
cification. However, in our approach, the use of differ-
ent levels of priority enables the engineer to fine-tune
the specification and reason with different levels of de-
feasibility.

In [18], requirements are assumed to be defeasible,
having an associated preference ordering relation. Con-
flicting defaults are resolved not by changing the spe-
cification but by considering only scenarios or models
of the inconsistent specification that satisfy as much of
the preferable information as possible. Whereas Ryan’s
preference relation is similar to our priority relation,
the use of clusters in our approach provides the formal-
isation of the requirements with addtional dinemsions,
which enables a more refined reasoning process about
the inconsistencies.

In [4], a logic-based approach for reasoning about
requirements specifications based on the construction
of goal tree structures is proposed. Analyses of the
consequences of alternative changes are carried out by
investigating which goals would be satisfied and which
would not, after adding or removing facts from a spe-
cification. In a similar fashion, our approach supports
the evaluation of consequences of evolutionary changes
by checking which requirements are lost and which are
not after adding or deleting a requirement. Priority
plays an important role in this process as the analysis
could be focused on those requirements that have the
highest priority only.

Finally, many other techniques have been proposed
in the literature on managing inconsistency, but much
of this work has focused on consistency checking, ana-
lysis and action based on pre- defined inconsistency
handling rules. For example, in [5], consistency check-
ing rules are combined with pre-defined lists of pos-
sible actions, but with no policy or heuristics on how to
choose among alternative actions. The entire approach
relies on taking decisions based on an analysis of the
history of the development process (e.g., past incon-

sistencies and past actions). Differently, our approach
provides a formal support for analysing the impact of
changes over the specification by allowing the engin-
eer to perform if questions on possible changes and to
check the effect that these changes would have in terms
of requirements that are lost or preserved.

5. CONCLUSIONS & FUTURE WORK

In this paper, we have shown how clustered belief
revision can be used to analyse the results of different
specification prioritisations reasoning classically, and
to evolve specifications that contain conflicting view-
points in a principled way.

‘We developed a tool for clustered revision and used
a simplified version of the light control case study to
provide an early validation of the tool. We believe that
this approach provides the engineer with more freedom
to make appropriate choices on the evolution of the
requirements, while at the same time offering rigour-
ous means for evaluating the consequences that such
choices have on the specification.

Our approach is not only a technique for revising
requirements specifications using priorities, but also a
methodology for handling evolving requirements. The
emphasis of the work is on the use of priorities for
reasoning about potentially inconsistent specifications.
The same technique can be used to check the con-
sequences of a given specification and to reason about
“what if” questions that arise during evolutionary
changes.

One of the main issues in any existing and new formal
reasoning technique for requirements engineering is the
scalability problem. We believe that there is no uni-
versal solution to this problem and that it should be
looked into and tackled on a case by case basis. Re-
quirements for a given software system might for in-
stance be formalised as a ground first-order logic the-
ory, in order to make the reasoning process decidable.
In our approach, a number of heuristics about the be-
haviour of the ordering < have been investigated. The
use of DNF greatly simplifies the reasoning, but the
conversion to DNF sometimes generates complex for-
mulae. One possibility currently under research is the

25

safety includes (in DNF):

update + behaviour include (in DNF): user_in A alarm A elapsed_Ts A gte lux> A de fault lights’
((—defaultlights' A nolights') V (~de fault_lights' A —alarm)V
(—noldights’ A —alarm) V (=~default_lights' A —elapsed_T3)V
(—no_lights' A —elapsed T5))

result 2: user_in A alarm A elapsed T3 A gteluxa A default_lights’ A no_lights’

Figure 4: Conflict with safety rule sy4.

use of Karnaugh maps in order to find “minimal” DNF
representations of the sentences.

The work described in this paper pressuposes the ex-
istence of a prioritisation theory for requirements spe-
cification. How to prioritise the requirements is a com-
plex issue and it is outside of the scope of the research
covered in this paper. We intend to look at these issues
in the future.

Also, we intend to apply different Machine Learning
[13] techniques to revise requirements specifications [7,
12]. Consider, for instance, the Light Control example
of Section 3. Assume that a person in a particular
office needs to have a light scene that violates the eco-
nomy properties of the specification. This is a scenario
which, in terms of Machine Learning, can be seen as
an example to be learned. This example, when trained,
may evolve the specification into a consistent new spe-
cification. In fact, Machine Learning techniques may
add new concepts to the specification, according to the
scenarios available for training. Differently from Belief
Revision, though, Machine Learning techniques do not
normally guarantee consistency of the new specifica-
tion, nor that the principle of Minimal Change is sat-
isfied. A comparative analysis of these two methods of
theory revision in the context of requirements evolution
would be highly desirable.

6. REFERENCES

[1] C. A. Alchourrén and D. Makinson. On the logic
of theory change: Contraction functions and their
associated revision functions. Theoria, 48:14-37,
1982.

[2] N. D. Belnap, A useful four-valued logic. Modern
Uses of Multiple-Valued Logic, eds. G. Epstein
and J. M. Dunn, Reidel Publishing Company, pp.
7-37, 1977.

[3] N. C. A. da Costa, On the theory of inconsistent
formal systems. Notre Dame Journal of Formal
Logic, 15(4):497-510, 1974.

[4] D. Dufty, C. MacNish, J. McDermid and P.
Morris, A Framework for Requirements Analysis
Using Automated Reasoning, Proceedings of
CAiSE95, LNCS 932, Springer, 68-81, 1995.

[5] S. Easterbrook and B. Nuseibeh, Using
ViewPoints for Inconsistency Management. In
Software Engineering Journal, 11(1): 31-43,
BCS/IEE Press, January 1996.

[6] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer
and B. Nuseibeh, Inconsistency handling in
multi-perspective specifications, IEEE
Transactions on Software Engineering, 20(8),
569-578, 1994.

[7] A. S. d’Avila Garcez, A. Russo, B. Nuseibeh and
J. Kramer. Combining Abductive Reasoning and
Inductive Learning to Evolve Requirements
Specifications. IEE Proceedings - Software

150(1):25-38, 2003.

[8] Peter Géardenfors. Knowledge in Fluz: Modeling
the Dynamics of Epistemic States. A Bradford
Book - The MIT Press, Cambridge, Massachusetts
- London, England, 1988.

[9] C. Heitmeyer and R. Bharadwaj, Applying the
SCR Requirements Method to the Light Control
Case Study, Journal of Universal Computer
Science, Special Issue on Requirements
Engineering: the Light Control Case Study,
Vol.6(7), 2000.

[10] D. Gabbay and A. Hunter, Making inconsistency
respectable 1: A logical framework for
inconsistency in reasoning, Foundations of
Artificial Intelligence Research, eds. Ph. Jorrand
and J. Kelemen, LNCS 535, pp. 19-32, Springer,
1991.

[11] M. R. Huth and M. D. Ryan. Logic in Computer
Science: Modelling and Reasoning about Systems.
387 pages. Cambridge University Press, 2000.

[12] A. van Lamsweerde and L. Willemet, Inferring
Declarative Requirements Specifications from
Operational Scenarios, IEEE Transactions on
Software Engineering, Special Issue on Scenario
Management, 1998.

[13] T. Mitchell, Machine Learning, McGraw Hill,
1997.

[14] B. Nebel. Syntax based approaches to belief
revision. Belief Revision, pages 52-88, 1992.

[15] B. Nuseibeh, J. Kramer and A. Finkelstein, A
Framework for Expressing the Relationships
Between Multiple Views in Requirements
Specification, IEEE Transactions on Software
Engineering, 20(10): 760-773, October 1994.

[16] S. Queins et al., The Light Control Case Study:
Problem Description. Journal of Universal
Computer Science, Special Issue on Requirements
Engineering: the Light Control Case Study,
Vol.6(7), 2000.

[17] O. Rodrigues, Structured Clusters: A Framework
to Reason with Contradictory Interests, Journal of
Logic and Computation, 13(1):69-97, 2003.

[18] M. D. Ryan. Default in Specification, IEEE
Proceedings of International Symposium on
Requirements Engineering (RE93), 266-272, San
Diego, California, January 1993.

[19] G. Spanoudakis and A. Zisman. Inconsistency
Management in Software Engineering: Survey and
Open Research Issues, Handbook of Softawre
Engineering and Knowledge Engineering, (ed.)
S.K. Chang, pp. 329-380, 2001.

[20] D. Zowghi and R. Offen, A Logical Framework for

Modeling and Reasoning about the Evolution of Re-
quirements, Proc. 3rd IEEE International Symposium
on Requirements Engineering RE’97, Annapolis, USA,
January 1997.

The Impacts of Software Design on Development Effort — a
Differential Evolution Approach

Paivi Ovaska
Teaching researcher

Lappeenranta University of Technology
Department of Information Technology
P.O. Box 20 53851 Lappeenranta
Finland
+358 40 5339231

paivi.ovaska@Iut.fi

ABSTRACT

In this study we analyzed the relationship between software
design and development effort (development time) in a real life
software project by using a novel approach called differential
evolution. The two subsystems developed separately in two
subprojects were analyzed to make comparisons between these
two. It was found out that coupling between modules had the
greatest influence on the software development effort in the
situation, where human and organizational factors in software
development were strongly present. In the other subsystem,
where the whole development work was handled better, the size
measure was the most important factor that affected the software
development effort. These results are much line with the other
research results, where software size as well as cohesion and
coupling are reported the most important factors affecting to the
cost of software development. The results of this study also
suggest that differential evolution approach is suitable for
analysing the relationships between software design and
development effort.

Keywords

Software design, differential evolution, case study

1. INTRODUCTION

It is well known that software systems typically exceed their
estimated development costs. There are many factors that can
affect exceeding of development costs in software project. These
factors include system gructural factors as well as human and
organizational factors [1], [2]. One of the most important factors
reported in the research is the size of the system to be developed
[31, [4], [22], [23]. Many measures of the software size ranging
from the number of lines of the source code to functional size
measures such as function points have been proposed [5]. Size can
be measured in various ways at different phases of the software
development ranging from the requirements analysis phase to the
coding phase [6]. In addition to size, many other properties such
as cohesion and coupling (telling the complexity of a system) have
been mentioned as the cost factors [7], [8].

Alexandre Bern

Researcher
Lappeenranta University of Technology
Department of Information Technology

P.O. Box 20 53851 Lappeenranta
Finland

bern@lut.fi

The work described in this paper had several different but
interconnected objectives. First, we wanted to better understand
the relationship between software design and the development
effort (development time) from structural as well as human and
organization point of views. We wanted to find out which design
properties including size, coupling and cohesion have a clear
relationship to the development effort. Second, we wanted to get
experience on gathering needed data from the design phase
described in design specification documents. We were interested in
the limitations of industrial design specifications and information
that could be extracted from these specifications. Third, we
wanted to get experience of using differential evolution (DE) in
analyzing the relationships between software design and
development effort.

The next part of this paper (Section 2) describes the research
settings. In section 5 is explained the research subject and
methods. Section 4 explains the results of this study. In Section 5,
we discuss the research results and topics for the further study.

2. RESEARCH SETTINGS

2.1 Design metrics

The main goal in developing the metrics was to create a set of
metrics that would characterize our system best based on the
experience from the project development. We also wanted these
metrics to be gathered as much as possible from the design phase.
This was our second goal. The third goal was to create metrics that
would be as independent on each other as possible.

The metrics used in our study and related to them attributes
are listed in Table 1. All these metrics are directed to single
modules, not to entire subsystems. The subsystems are evaluated
on the basis of the values of the attributes of the metrics.

Among all definitions around coupling and cohesion [9], [10],

[2], we used the following basis to these metrics in our study:

Coupling. According to [11], pp. 375, coupling can be
defined as follows: “Coupling is a measure of interconnection

27

among modules in a program structure. Coupling depends on the
interface complexity between modules, the point at which entry or
reference is made to a module, and what data pass across the
interface.” During the analysis and design phase, we can measure
intermodular coupling by the number of relationships between the
subsystems [2], pp.110. According to this definition, coupling
measures the amount of interconnections (references) between
modules. Here, two different metrics for coupling are used.

Attribute @, refers to the number of modules to which the

module being studied refers, whereas attribute @, defines the

number of modules referring to the module being studied.

Cohesion. According to [11], pp. 374, cohesion is “a measure
of the relative functional strength of a module.” Within the limits
of this project, cohesion is defined as a number of aggregations,
compositions and relations in the class diagram of a module.
Stronger cohesion should be achieved in order to implement an
internally strong module.

Table 1. Attributes (design properties)

Attribute | Metric name Description
a, KLOC Number of Kilo Lines Of Code in a
module
a, NOC Number Of Classes in a module
. Number of modules referring to this
a Coupl 1
3 ouping module
a, Coupling 2 Number of modules this module
refers to
Number of aggregations,
as Cohesion compositions and relations among
classes of a module
Number Of Use Cases of a
ag NOoucC
module
Number Of Submodules
a, NOS
forming a module
ay NOD Number Of Databases connected to
a module

2.2 The studied system

The system studied was implemented in a Finnish
telecommunications company and consists of two subsystems, a
CORBA-based (Common Object Request Broker Architecture),
highly distributed server (let it be subsystem B) and a centralized
client (let us call it subsystem A).

The user requests a service through the user interface that can
be either mobile or World Wide Web (WWW). The service fetches
the requested information, processes it and returns the reply to
the user.

The platform was mainly designed for the needs of the
international market and has to support interfaces for different
kinds of external systems, e.g. SMS (Short Message) centers,
WAP (Wireless Application Protocol) gateways, other platforms,
billing systems etc. The needs of the international market posed
additional demands on the user interfaces; for example, they
should be localizable to any language and should show the results
in a country-specific manner. This also posed challenges on
subsystem B: it has to be possible to dissipate the information all
over the world, different kinds of information protocols must be
supported and so on.

Subsystem A is responsible for the wuser interfaces,
authentication and authorization as well as for the interfaces to
external systems. It converts the end-user’s request to a standard
request for subsystem B, replies to the standard reply from
subsystem B and sends the reply back to the end-user. Subsystem
A does not know the location of the information maintained by
subsystem B or how that information is retrieved from the
information resources all over the world. This requirement was not
well implemented; subsystem A was dependent on the types of
information resources residing in subsystem B.

Subsystem B is responsible for dynamically resolving the
information resources to be used by examining the request and
routing it to the right information resource. To do that, subsystem
B uses CORBA (Common Object Request Broker) Trading
Service. The main requirement for subsystem B is high
configurability: new information resources and services should be
added to it by simply configuring it and adding the new modules
to the system. Subsystem B is geographically distributed. The
distribution is implemented using CORBA technology.

2.3 Data collection

We collected two separate subsets of data: one for subsystem A
and the other one for subsystem B. These data were later used to
compare the subsystems. Based on the specification documents,
we succeeded to define the number of sub-modules and databases
as well as the coupling and cohesion for some of the modules of
both subsystems. The rest of the information was re-engineered
from the implementation codes.

Some of the specification documents were not up-to-date, which

made it necessary to study the implementation codes more
carefully. The UML diagrams turned out to be unreliable for some
modules; they were re-engineered using the Together 5.5
development tool for application modeling and round-trip
engineering for Java and C++ [12].

The numbers of lines of codes were obtained by using an
application for counting the lines of code downloaded from the
Web [13]. When counting the numbers of lines, comments were
ignored.

The extracted values of the attributes are shown in Table 2 for
subsystem B and Table 3 for subsystem A, respectively. The

28

values that define the development times were taken from the
project management software (Niku Workbench).

In the Table 2 and Table 3, we have corrected development time of

Table 3: The values of the attributes of subsystem A.

Attribute B, B, B, B, B B

some modules according to knowledge about the heterogeneous a, 1 6 1 2 10 3
professional competence of some developers and the assumption
that it has a strong effect to development effort [14]. In a, 20 13 3 8 118 14
subsystem B (Table 3), only the development time for one module
is corrected (by dividing the time by 0.76), whereas for subsystem a; 2 0 1 1 5 5
A (Table 4), the development times are corrected for all six
modules. The corrected coefficients were based on the a, 2 > 2 3 2 !
COMQMO.H PCAP Cost Driver factor (PCAP, Programmer as 6 9 0 0 10 9
Capability) in [14], pp.48.
Table 2: Values of the attributes of subsystem B. ag 19 6 8 7 17 3
Attribut, A A A A A, | 4
ribute 1 2 3 4 5 6 a, 1 3 1 1 4 1
a, 1 7 3 4 1 1 a, 0 0 0 0 1 1
a, 9 53 43 47 23 10 Uncorrected
development 1220 1488 934 950 966 1141
a, 4 2 1 4 3 1 time (h)
C 1]
dy 4 2 4 D R orrection s | 1as | 1as | 115 | 076 | 115
coefficient
as 5 65 30 21 9 10 Corrected
devel t | 1061 1294 812 826 1271 993
a, 10 7 12 3 13| 7 evelopmen
time (h)
a, 1 2 1 1 1 2
ag 0 4 1 1 0 0
3. RESEARCH SUBJECT AND RESEARCH
Uncorrected METHOD

development | 540.5 | 634.5 | 889.5 | 712 | 417 | 579
time (h)

Correcti
orrection 10 | 076 | 10 | 10| 10| 10
COeZilClenl‘

Corrected
development | 540.5 835 889.5 | 712 | 417 | 579

time (h)

The aim of this study was to analyze the impact of software
design on the development effort in an industrial project. We
created the design metrics that characterized our system best using
the practical experiences from project. This experience showed
that there were problems with module integration especially in
subsystem A. This suggested to us that there were problems with
interfaces between modules. Based on this knowledge, we created
the hypothesis for our study: coupling impacts mostly on the
development effort. This hypothesis is to be proved in this study.

The development effort in this study refers to the effort needed
for the design, implementation and module testing of a module.

To study the impact of design on development effort we
considered two novel methods: a non-linear global optimization
method called Differential Evolution Algorithm (DEA) and a
modeling method based on an Artificial Neural Network (ANN)
[16], [17], [18], [19]. The insufficient amount of data (only six
modules per subsystem) made it impossible to use the latter
approach and gave us an opportunity to try a novel but already
popular and widely used approach to global optimization,
Differential Evolution (DE).

29

Traditional optimization methods, such as exhaustive search,
analytical optimization and the Simplex method [20] were not
considered because of the trickiness of the objective function:
trickiness is based on a difficult structure obtained by combining
several equations (each module has its own equation that depicts
the model as shown in the equation) into one objective function.
The other reason is that there are restrictions (in intervals)
involved for optimization.

Based on the metrics suite, the development effort of the
subsystems’ modules was estimated by using a linear model

containing the attributes of the metrics suite as the variables. The
linear model was selected for the reason that it is given by a simple
D-dimensional function formed by a sum of variables and related
to them linear coefficients, but it still has the capability of
estimating the development effort with sufficient precision. The
model is given by equation (1).

H(xl,xz,...,xg):bl)c1 +D,x, ...+ byxg (1)

The variables of the above equation refer to the attribute of the

metrics suite in such a way that variable X, corresponds to
attribute @; and variable Xg corresponds to attribute dg,

respectively. The coefficients of the model labelled by bk (k=

1...8) define the significance rate of the corresponding attributes.
The attributes are thought to be significant if the values of their
coefficients are positive, which cause them to influence on the
value of the function. When the values of the coefficients are
known, assigning the corresponding values to the variables of the
model gives the development effort of the corresponding module.

The values of the coefficients of the model were defined by
minimizing the corresponding objective function by the DEA. The
objective function is given by equation (2).

6 H, -h S \H, —h
W(bl,bz,...,bn):LZ 00—| n "l 5 10 —| T
m m= hm m m= hm
@

In the above equation,

b, The coefficient of the n™ attribute

m The number of the modules of a subsystem

H The value of the cost estimation function

™ (equation (1)) for the module referred by m.
h The value of the measured development

m

effort of the module referred by m.
As a result, W returns the mean error between the measured and
estimated development effort of all six modules. For some

modules, we adjusted coefficients bk (k = 1...8), which are
defined for the cost estimation function of the subsystem’s

modules in order to minimize the value of W. In the ideal case, the
value of the objective function is zero, which means that the cost

estimation function returns the same value as the value of the
measured development effort for all six modules of a subsystem.

To minimize the objective function, the two following DE
schemes were used: DE/best/1/bin [15] and DE/rand/1/bin [21].
Since the schemes produced the same results, they are given only
once.

4. RESEARCH RESULTS

In this section we describe the results of the DE analysis.
The analysis is divided into two parts: identification of significant
attributes (the attributes greater than zero) and measuring the
importance of those attributes. Once the significant attributes are
identified, they are measured for their importance. A significant
attribute is thought to be important if, when excluded from the
model, it causes an increase to a certain degree in the value of the
objective function when optimized again. A high degree of increase
means that the model is not capable of fitting the data well
without the excluded attribute thus making that attribute very
important. The most affective attributes are defined through the
combined use of the significance and importance measures.

4.1 Identification of significant attributes

Table 4 shows the values of the coefficients of the model,
which were obtained by minimizing the objective function when
taking all six design properties (i.e. attributes). The table illustrates

that for subsystem B the significant attributes are d, (NOC), d,
(coupling 1), a, (coupling 2), ds;(NOUC), and a,(NOS),
whereas for subsystem A these attributes are @ (coupling 1),

a, (coupling 2), ds (cohesion), and d; (NOUC), respectively,

since the values of the corresponding coefficients are greater than
zero. The last row of the table contains the values of the objective
function, which is the mean percentile error between the measured
and estimated development effort of all six modules.

As the Table 4 shows, for both subsystems, the coefficient
values differ significantly from each other. Some design properties
that influence the development effort of subsystem A have no
influence on the development effort of subsystem B and vice
versa.

30

Table 4: The values of the coefficients of the model

Values of Values of
Coeff subsystem A subsystem B

b, 0.0 0.0

b, 0.0 10.5
b, 110.0 4.8

b, 200.5 68.8
b, 21.5 0.0

b 16.4 3.1

b, 0.0 120.6
by 0.0 0.0

w 5.8 2.6

4.2 Measuring the importance of the attributes

We measured the importance of each attributes by excluding
each attribute in turn from the model. Now, the rest of the
attributes got different values producing different object function
results as presented in Table 5.

Table 5: A summary of the mean errors between the
measured and estimated development effort

Excluded w w
attribute (subsystem A) (subsystem B)
none 5.8 2.6
b, N/A N/A
b2 N/A 10.5
b, 8.1 3.0
b, 28.1 123
b, 6.7 N/A
b, 8.5 3.8
b, N/A 5.3
by N/A N/A

N/A in the table above means that the corresponding attribute
is not significant (please refer to Table 4). The increase in the error
is illustrated in Table 6.

31

Table 6: The value of the increase in the error (%) while
excluding significant attributes one by one from the model

Excluded The increase in | The increase in
attribute the error in | the error in
subsystem A subsystem B

a 1 - -

a, - 299%

a, 41% 44%

a, 297% 367%

as 15% -

a 6 - -

a, - 101%

a 3 - -

4.3 Analysis of the results
The results suggest that the most important attribute is a,

(coupling 2). When excluding this attribute from the model, the
error increases up to 297% for subsystem A and 367% for

subsystem B (Table 6). This means that attribute @, has a very

strong correlation with the development effort. The value of a,
was also very high for both subsystems. Coupling 1 (attribute

a5) also clearly correlates with the development error for both

subsystems and gets high values especially in the case of
subsystem A.

In subsystem B, attributes @, (NOC, number of classes) and

a, (number of submodules) had a strong correlation with

development effort as well. And again, in the analysis of

subsystem A, cohesion (attribute @,) showed some correlation

with the development effort.
Human and organizational aspects of the software
development in these projects can explain these different results of
analysis of the subsystems. Subsystem A was implemented
within the same site by experienced developers who used
prototyping to design the interfaces between the modules.
Subsystem B was developed in different sites by less experienced
software engineers. They did not use any prototyping to help
interface design in this subsystem, and the developers confronted
sizeable problems when integrating the modules, because the
interfaces between them had not been properly designed.

5. CONCLUSIONS

This study focused on analyzing the relationships between
software design and development effort in a single ndustrial
software project. We created a design metrics suite that
characterized our practical system best and gave us possibility to
collect data mostly from design phase. We wanted to understand
system structural properties as well as human, organizational and
process factors. To create the metrics suite, we used our
experiences obtained from the system development. Based on this
metric suite, we defined the coefficients of the model estimating
the development effort of the system under the study using a
global non-linear optimization method, a differential evolution
algorithm.

We found out in our study that coupling between the
modules was the most important design property that affected the
software development effort in the situation where human and
organizational factors in software development were strongly
present. In our study, these factors were lack of competence of
software developers, poor coordination of the development work
and poor designing of interfaces between the modules. In the other
subsystem, where development was better managed, the size
measure (number of classes in the module) affected mostly the
development effort. These results are much line with research
results, where software size [3], [4], [22], [23] and complexity
metrics (coupling and cohesion) [7], [8] have reported as the most
important factors affecting on the software costs. We also noticed
that software design specifications were not up-to-date in our
project and we had to using re-engineering in order to get some
metrics information from the source code.

The results of this study also suggest that the differential
evolution approach is suitable for analyzing software development
effort and encourage us to analyze other industrial projects too. In
the scope of this study, it seems that the attributes of the design
metrics suite used are not completely independent. Future
research could focus on studying the interdependences of the
design attributes. The results show that excluding specific
attribute from the model had an nfluence on the values of the
coefficients of the other attributes as well as of the result. This
phenomenon remains to be interpreted. Increasing the value of a
specific significant attribute by, for instance, one percent and
studying how this change affects the other significant attributes
can perform local sensitivity analysis of the attributes.

32

REFERENCES

B. Bruegge & A. H. Dutoit, Object-Oriented Software
Engineering: Conquering Complex and Changing Systems.
Prentice Hall, 2000, ISBN: 0-13-489725.

(1]

(2]

B. Henderson-Sellers, Object-Oriented Metrics: Measures of
complexity, Prentice Hall, New Jersey, 1996. pp 39-40

[3] L.Briand, J.Daly, V.Porterm, J. Wiist,”Exploring the
relationshiops between design measure and software quality
in object-oriented systems”, Journal of Systems and Software

51, p. 245-273, 2000.

[4] Lionel C. Briand, Jirgen Wiist, “The Impact of Design
Properties on Development Cost in Object-Oriented
Systems”,Software Metrics Symposium, 2001, METRICS
2001, 7th International Proceedings on Software Metrics,
London, UK. 4-6 April 2001, Pages: 260 — 271, ISBN: 0-

7695-1043-4.
(5]

H.D Rompach, “Design Measurement: Some Lessons

Learned” , IEEE Software, pp.17-25, March 1999
[6] N.Fenton, S.L. Pfleeger, Software Metrics. A Rigorous and
Practiclal Approach. International Thomson Computer Press,

London 1997.

L. Briand, J. Daly, J. Wiist, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems, IEEE

(7]

Transactions on Software Engineering 25 (1), 91-22, 1999

L. Briand, J. Daly, J. Wiist, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,

(8]

Empirical Software Engineering Journal, 3(1), 1998

[9] D.P. Darcy, C.F. Kemerer, “Software Complexity: Toward a
Unified Theory of Coupling and Cohesion, IDSc Workshop,
Management Information Research Center, Spring 2002,
http://misrc.umn.edu/workshop/spring2002/Darcy_020802.p

df

[10] Franck Xia, “Module Coupling: A Design Metric”,
Proceedings of the 1996 Asia-Pacific Conference on Software
Engineering. Seoul, South Korea, 4-7 Dec. 1996, Pages: 44 —
54, ISBN: 0-8186-7638-8.

[11] Roger S. Pressman, Software Engineering, A Practitioner’s
Approach, 4th edition, The McGraw-Hill Companies, Inc..
ISBN: 0077094115, p. 129.

[12] The official Web-site of the TogetherSoftTM Corporation:
TogetherSoft, a Development Tool for an Application
Modeling and Round Trip Engineering for Java and C++.
Web-document, URL: http://www.togethersoft.com/.
[Referred 22.09.2002].

[13] Lines of Code Counter, Dr. John Dalbey’s Web-page on
Web-server of Dep. of Comp. Sc., California Polytechnic
State University, Web-document, URL:
http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.ht
ml; [Referred 22.09.2002].

[14] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita
Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy,
Donald Reifer and Bert Steece, Software Cost Estimation
with COCOMO 11, Prentice-Hall, Inc., 2000, ISBN: 0-13-02-
6692-2.

[15] Rainer Storn, “On the Usage of Differential Evolution for
Function Optimization” (Editors: Smith, M.H., Lee, M.A.,
Keller, J., Yen), 1996 Biennial Conference of the North
American. Fuzzy Information Processing Society, 1996.
NAFIPS. Berkeley, CA, USA. 19-22 June 1996. Pages: 519 —
523. ISBN: 0-7803-3225-3.

[16] Ali Idri, Taghi M. Khoshgoftaar, Alain Abran, “Can neural
Networks be easily Interpreted in Software Cost
Estimation?”, Proceedings of the 2002 IEEE International
Conference on Fuzzy Systems,FUZZ-IEEE'02, Honolulu,
HI, USA, 12-17 May 2002, Volume: 2, Pages: 1162 — 1167,
ISBN: 0-7803-7280-8.

[17] Gavin R. Finnie and Gerhard E. Wittig, “Al Tools for
Software Development Effort Estimation” (Editors: Purvis,
M. Bond Univ., Gold Coast, Qld., Australia). Proceedings of
the 1996 International Conference on Software Engineering:
Education and Practice, Dunedin, New Zealand. 24-27 Jan.
1996, Pages: 346 — 353, ISBN: 0-8186-7379-6.

[18] A.R. Venkatachalam, “Software Cost Estimation Using
Artificial Neural Networks”, Proceedings of the 1993

33

International Joint Conference on Neural Networks, IICNN
'93-Nagoya, October 25-29, 1993, Volume 1, Pages: 987 —
990, ISBN: 0-7803-1421-2.

[19] W. Pedrycz, J.F. Peters, S. Ramanna, “ A Fuzzy Set
Approach to Cost Estimation of Software Project” (Editor:
Meng, M.), IEEE Canadian Conference on Electrical and
Computer Engineering, 1999, Edmonton, Alta, Canada, 9-12
May 1999, Volume: 2, Pages: 1068 — 1073, ISBN: 0-7803-
5579-2.

[20] Juha Haataja, Optimointitehtévien ratkaiseminen. CSC —
Tieteellinen laskenta Oy, 2. painos, 1995, in Finnish.

[21] Jouni Lampinen,”Multi-Constrained Nonlinear Optimization
by the Differential Evolution Algorithm”, A Document
Proposing an Extension for the Differential Evolution
Algorithm (DEA) for Handling Non-linear Constrain
Functions, Web-document, URL:
http://www.it.lut.fi/opetus/01-
02/010778000/DECONSTR.PDF. [Referred 29.09.2002].

[22] Walston, C.E, P.C. Felix (1977), ”A Method of Programming
Measurement and Estimation”, IBM Systems Journal, 55-73

[23] Halstead, Maurice H (1977), Elements of Software Science,
Operating, and Programming

An Explanation Reasoning Procedure Applicable to Loop
Transformation in Compiler

Mariko Sasakura
Graduate School of Natural Science and
Technology, Okayama University
Tsushima-Naka 3-1-1
Okayama, 700-8530, Japan

sasakura@momo.it.okayama-u.ac.jp

ABSTRACT

In this paper, we discuss a case that we apply the abduc-
tive procedure to some loop transformation in a parallelizing
compiler. For the loop transformation, the compiler should
investigate data dependences in loops. However, it is some-
times uncertain about whether there are data dependences
or not. To cope with this uncertainty problem, we make
use of the abductive procedure to present programmers the
analyses of data dependences by the compiler and to assist
some compiler construction. The procedure generates rules
and declarations dynamically according to the output from
the compiler, and infers the rules. The combination of paral-
lelizing compilers and the abductive procedure may improve
the intelligence of parallelizing compilers.

1. INTRODUCTION

In this paper, we discuss a case that we apply the abduc-
tive procedure to some loop transformation in a parallelizing
compiler.

A parallelizing compiler transforms a sequential program to
a parallel program. Parallelization of a sequential program
is done by transforming sequential loops to parallel loops.
There are many loop transformation methods that have been
proposed [3]. A parallelizing compiler detects loops that can
be executed in parallel and applies proper transformation
methods to the loops.

We can detect whether a loop can be parallelized or not by
checking data dependences of the loop : if there is no data
dependence, the loop can be parallelized. However, the de-
tection is not so easy, because the complete analysis of data
dependences takes too much time for the compiler. Thus, a
compiler may infer that some loops cannot be parallelized
if it cannot confirm that there is no data dependence. This
rule can be briefly represented as an extended logic pro-

Susumu Yamasaki
Graduate School of Natural Science and
Technology, Okayama University
Tsushima-Naka 3-1-1
Okayama, 700-8530, Japan

yamasaki@momo.it.okayama-u.ac.jp

do 10i =1, 100
A(i+1) = B(i)
C(i) = A()

10 continue

Figure 1: A loop which has a data dependence

gram like the following (A more precise description is given
in Section 3.):

parallelize < —dependence
—parallelize < dependence
—parallelize <+~ —dependence

where parallelize means the loop can be executed in parallel
and dependence means there are data dependences in the
loop. — denotes explicit negation and ~ denotes negation as
failure. We will give brief explanation about them in Section
2.

A parallelizing compiler transforms sequential loops to par-
allel loops, because most of execution time of a program
is spent for loops. The process of parallelization consists
of two steps: data dependence analysis and loop transfor-
mation. The loops in which the compiler knows no data
dependence, are transformed in parallel loops.

If there are more than one access to a variable or an element
of an array in a loop, and the execution result is changed
when the order of the accesses is changed, we call there is
data dependence in the loop. For example, the loop in Fig. 1
has data dependence on the array A.

The existence of data dependence results in the existence
of the integer number solution for equations which are con-
structed by subscripts of arrays in a loop. However, in prac-
tice, it takes too much time to solve the equations precisely.
Therefore, compilers must check data dependences by sim-
ple test such as the GCD test [4] or the omega test [21].
These tests check evidences of no data dependence in short
time. However, these tests cannot check all cases of no data
dependence. In other words, there are cases that there is no
data dependence but the tests cannot find them.

Even though a complier infers that a loop cannot be paral-
lelized, in some case, there may be no data dependence in
the loop. If we give programmers the explanation why the

34

compiler infers that the loop cannot be parallelized, they
sometimes give more information such that “I know that
there is no data dependence in the loop” and let the com-
piler know that the loop can be parallelized. Thus, we use
the explanation reasoning procedure which is based on the
abductive procedure with a parallelizing compiler. The pro-
cedure will give programmers the reason why the compiler
infers the loop cannot be parallelized.

The outline of the explanation reasoning procedure for par-
allelizing compilers is as follows:

1. The compiler analyzes data dependences of loops.

2. If there are loops that cannot be parallelized, the ex-
planation reasoning procedure generates an extended
logic program from the analysis of the compiler and
shows which part of data dependences are unknown.

3. Programmers give the data dependence information, if
possible.

4. The compiler parallelizes the loops using the informa-
tion.

Most dominant abductive procedures are shown and/or fol-
low the interpretations as in [8, 11, 12, 13, 16, 33], which are
based on negation as failure rule (as in [6, 17]), apart from
the two-valued stable model in [9] and from the well-founded
model in [20]. The procedure may be available even in dis-
tributed environments, as in [31]. The points of the present
procedure are as follows.

e It is based on the abductive procedure for an extended
logic program, while the extended logic program is ex-
pressive owing to two kinds of negation.

e It dynamically generates an extended logic program
from the analysis of the compiler.

e Soundness and completeness of the procedure are re-
lated to model theory such that it can be implemented
exactly by what is expressed and what the program
means.

2. AN EXPLANATION REASONING PRO-
CEDURE

Extending the procedure [7] applicable to general logic pro-
grams, we have a contradiction-free proof procedure, which
is applicable to extended logic programs with capability
of dynamically eliminating contradictory derivations. The
contradiction-free proof procedure consists of two deriva-
tions, succeeding and failing derivations. It is sound with
respect to semantics of the original program, if it is consis-
tent. When the original program is inconsistent, its sound-
ness is supported by semantics of the transformed program
with exceptions, where the original program is transformed
to the program with exceptions by introducing Kowalski-
Sadri exceptions (as in [15]). This soundness differs from
the soundnesses of the procedures in [1, 18, 19]. The se-
mantics for the program with exceptions can be defined by
means of the fixpoint of T's e I's in terms of the operator of

[1], however, the relation between the expected procedure
and the fixpoint (not always the least) is made clear in [32].
The semantics is based on model theory, while there is some
rule priority techniques in [2].

An extended logic program (ELP, for short) is a set of clauses
of the form:

LeLi,...,Lm~Lmi1,... ,~Ln (0<m<n),

where L and L; are literals (that is, atoms or their ex-
plicit negations), and “~” stands for the negation as fail-
ure. L of the clause is said to be its head, and L1, ..., Ly,
~Lmy1,... ,~ Ly its body. L and L; are literals, where
a literal is an atom A or its explicit negation —A ([1, 9]).
For an atom A, =L means —A if L = A, and =L means A if
L = —A. The pair of A and —A is said to be complementary.

A goal is an expression of the form:

«— Li,...,L;m,~Lmt1,... ,~Ln (0<m < n),

where L; are literals. The goal is denoted by O if it contains
no literal. The instance of a goal is an expression obtained
from the goal by substituting some terms for variables.

A clause, a goal or a term is said to be a ground clause, a
ground goal or a ground term, respectively, if it contains no
variables.

In the ground version where variables are not contained in
any clause and goal, the essential rules of the procedure are
settled so that the following requirements are satisfied.

(1) (Contradiction elimination) In case that <« [succeeds, I
is in memory in a succeeding derivation so that ! prevents
« =l from succeeding.

(2) (Coherence principle) In case that < [succeeds, «— -l
fails.

(3) (Negation as failure) In case that « [fails with I (or
~1) in memory, « ~1 succeeds. In case that < [succeeds,
«— ~ fails.

To construct the procedure involving three cases as above
shown, we prepare for

(a) the set of literals to be concerned with the succeeding
derivation in the case of (1) (the suclit set, for short), to
prevent resolutions from some succeeding derivations, and

(b) the set of ground literals to be concerned with the case
of (3) for negation as failure (the naf set, for short).

In the procedure for an ELP @, M~ (in a goal) stands for
a literal, or negation as failure for a literal. The explana-
tion reasoing procedure consists of two derivations which
are mutually recursive as follows. The soundness is to be
guaranteed by some model defined by alternating fixpoint
method (like [25, 26]) applied to extended logic programs
with Kowalski-Sadri exceptions (as in [15]), while the pro-
gram with exceptions is obtained by a little static trans-
formation, and the proof procedure is implemented dynam-
ically for the escape from contradictory derivations. The

35

formal theory is in [22, 32].

1. A succeeding derivation (suc):
A succeeding derivation from a goal G of length h(h > 0) is
a sequence

(G(]y ZO, A0)9 ceey (Ghy Zh, Ah):

where ¥y, ..., X are suclit sets, Ag, ..., Ap are naf sets
and the sequence is organized by the following rules. The
above derivation is denoted by

(G09 207 A0) = suc (Gh1 Zh: Ah)-

When Gpr, = 0O, the derivation halts and we say that Go
succeeds.

(Rules) Let Gx = «— My ,...,M;’, where M; is selected

by the rule R. (Gk41, Xk+1, Ak+t1) is obtained from (Gk, Xk, Ak)

by:
(sucl) In case that there is L « Ni7,... , N € P such that
M7 = L, and there is no L' in X such that L = =L/,

Gk+1 = HM?a 9Mi,119N{V9"' sstqu—la--- 7M771
Spp1={M | M e X} U{L}.

(suc2) In case that M;" =~ L and L € Ay,

Gk;+1 = HMl e ,Mi_l,Mi+1,... ,Mn,
Y1 = Zg, Apr1 = Dg.

(suc3) In case that M;” = ~ L, L & Ay, and there is a failing
derivation ({< L},¥k, Ax U{L}) =5 (0, A"),

Gry1= « M, ... M1, My, ... My,
! ’
Yri1 =X, Apyr = AL

2. A (finitely) failing derivation (ff):
For a set H of goals, a (finitely) failing derivation of length
h (h > 0) is a sequence

(H07 207 A0)7 R | (Hh7 Zh7 Ah)7

where Hy = H,O ¢ Hy for 1 <k < h, 3o, ..., X} are suclit
sets, Ao, ..., Ap are naf sets and the sequence is organized
by the following rules. The above derivation is denoted by

(Ho, X0, A0) =57 (Hny Zh, Ap).

When Hp, = (), the derivation halts and we say that each
goal in Hy fails.

(Rules) Assume that Hy = Hy, U {«— M{,... , M}, where
M;” is selected by the rule R in «— M7 ,... M, .

(ff1) In case that M = L:

(ff1-1) If L is a ground literal and there is a succeeding
derivation

(“ _'L,Ek,Ak) = suc (D: leAl)s

then

Hpyp1 = Hl’c,Ek+1 =Y Ag1 = A

(F1-2) I VL' € S : [L # —L'], then

Hyy1 = H,U{G1,... ,Gn},
k1 = g, Apg1 = Ag,

where

_ ~ ~ g~ i~ ~ ~
Gj= « MY, ... ,M> Ni~ ... Ni~ M,,... My,

q;

if there is L «— N{~ ... N}~ € Q (1 <j <m,m #0).

(ff1-3) If L is not equal to any head of any clause by means
of (ff1-2), then

Hiy1 = Hiyy Sp1 = Sk, A1 = Ag.

(ff2) In case that M = ~ L (a ground literal) and L € Ay,

Hk+1:HI;U{<;Mf‘a"-9 i’ilsMi’lla'--Mv’:}a
Lit1 = Lk, Agt1 = Ag.

(f£3) In case that M;” = ~L, L ¢ Ay, and there is a suc-
ceeding derivation (« L, g, Ag) =sue (0,5, A"),

Hpy1= Hi, Xkp1 =X, Appr = AL

For the ground ELP, the presented procedure can be com-
plete with respect to the model, which guarantees the sound-
ness of the procedure. If the ground ELP is an infinite set,
then the procedure is of infiniteness. From applicative views,
the generated ELP to represent the objects in software en-
gineering may be finite such that the procedure can work
with respect to the model in the sense of soundness and
completeness. For the soundness, see [32].

As regards the completeness of the contradiction-free pro-
cedure, the program with exceptions is to be assumed with
its semantics. For the completeness, the similar technique
as in [14, 30] may be available, although the technique is
developed for the class of general logic programs containing
only negation as failure but not explicit negation, and we
have not completely proved that the technique is all right:
The complete procedure for general logic programs may be
developed to operate on the extended logic program with ex-
ceptions, by just replacing treatments of atoms with those
of literals. A contradiction-free procedure to operate on the
original program is regarded as behaving by simulating the
complete procedure for the program with exceptions, by cut-
ting off exceptions through the executions.

As another aspect, we have a problem of whether a non-
grounded version of the coherence principle may be built-in
or not, where a non-grounded version of negation as failure
is in [24, 27, 28, 29):

«— L succeeds with the empty substitution
=+« L fails.

36

3. LOOP PARALLELIZATION WITH THE
EXPLANATION PROCEDURE

In recent works, compilers often allow programmers to in-
dicate parts that has no data dependence. The process of
parallelization by such compilers is:

1. The compiler perform data dependence analysis.

2. The compiler transforms loops in which it knows there
is no data dependence.

3. Programmers check the parallelized program and if
there are loops that really has no data dependence but
the compiler cannot find it, then programmers indicate
it to the compiler.

4. The compiler transforms loops according to the indi-
cation of programmers.

The problem is an interface between programmers and the
compiler: how programmers know the loops which really
could be parallelized but are not by the compiler. The points
are:

e There are three kinds of status about data dependence.
The compiler knows that there are data dependences,
the compiler finds that there is no data dependence,
and the compiler cannot find that there is no data
dependence.

e In general, there are many loops and many data depen-
dences in a program. It is not easy for programmers
to find a loop from the data of all of the loops.

We propose to use an extended logic program as an interface
between programmers and a compiler. An extended logic
program can naturally describe three kinds of status as pos-
itive literal, negative literal and negation as failure. An ex-
planation reasoning procedure of an extended logic program
is suitable for programmers to pick out a non-parallelized
loop and check why the loop is not parallelized.

In general, a parallelizing compiler infers whether a loop can
be executed in parallel or not:

e Check data dependences of the variables and arrays
which are accessed more than once in the loop. This
is an analysis of dependence vectors [5].

e If all the variables/arrays have no data dependence,
the loop can be parallelized. Otherwise, it cannot.

These rules are represented as an extended logic program:

parallelizer, «— —dependenceyi,... ,dependenceyn,

—parallelizer, <+ dependencey1

—parallelizer, «+ dependenceyr
—parallelizer, <~ —dependenceyi

—parallelizer, <~ —dependenceyn,

where parallelizer, means the loop L can be parallelized,
and dependencey; means a variable or an array V; in the
loop has data dependence.

These rules are generated by the explanation reasoning pro-
cedure dynamically according to the information from the
compiler. Also the declarations as below are added dynam-
ically.

—dependenceyy «—

dependencey; <

Then the explanation reasoning procedure performs the ab-
ductive procedure on these rules. The naf set denotes the set
of variables/arrays whose data dependences the compiler is
uncertain about. If we give the information about the data
dependence of them, the loop may be parallelized.

EXAMPLE 1. The following ELP, which is generated by
the compiler, denotes the rules and declarations about a
loop in Fig. 2.

parallelizer, «— —dependence,, ~dependencey, ~dependence.
—parallelizer, + dependence,

—parallelizer, < dependencep

—parallelizer, < dependence.

—parallelizer, «+~ —dependence,

—parallelizer, «+—~ —dependencey

—parallelizer, <~ —dependence.

—dependencep «—

—dependencee «—

A compiler knows that the array b and ¢ have no data de-
pendence but it is uncertain about the array a, because of
indirect references.

For a goal « —parallelizer, there are three rules whose
head is —parallelizer. If we choose

—parallelizer, «—~ —dependencey

the second goal is «+—~ —dependences. The failing derivation
is invoked with —dependencep, but there is a clause

—dependencep «—

then < —dependencep holds, <+~ —dependencey does not
hold, and <« —parallelizer, does not hold.

If we choose
—parallelizer, <~ —dependence,

the second goal is <+~ —dependence,. The failing derivation
is invoked with < —dependence,. There is no rule whose
head is —dependenceq, so < —dependence, does not hold.
Then ~ —dependence, holds, and < —parallelize;, holds.
The naf set is {—~dependence,}.

It means the loop in Fig. 2 is not parallelized because of
the uncertainness of data dependences of the array a. If
programmers feel certain that there is no data dependence
about the array a, they can inform the compiler of the in-
formation as adding a clause —dependence, <. Then the
compiler can know that it can parallelize the loop.

37

do 10i =1, 100

b(i) = a(idx(i))

c(i) = b(i) * a(idx(i))
a(idx(i)) = a(idx(i)) * 2

10 continue

Figure 2: A loop with indirect references

do 201 = 3, 100
do 18 j = 5, 100
a(i,j) = b(i, j+5)
b(i,j) = ai, j-1)
c(i) = a(i,)
18 continue
20 continue

Figure 3: An example for the loop distribution

4. LOOP TRANSFORMATION WITH THE
EXPLANATION PROCEDURE

We can know a certain loop transformation method is appli-
cable or not to a loop, by checking dependence vectors of the
loop. A dependence vector describes data dependence [4].

DEFINITION 1. A dependence vector DepVec(S,T,v)
on a variable v between a statement S and a statement T
is a set of elements dep(dv(S, T,v),k), where k is a sort of
dependence: flow dependence, anti dependence or output
dependence. dv(S,T,v) is a vector which satisfy the follow-
ing definition.

dv(S,T,v) = (di,---,dn)
= (dit, ++ ydin) — (dj1," -+ ,djn),

where (di1,- - ,din) and (ds1,--+ ,din) are the former and
the latter iterations respectively for the execution of state-
ments S and 7.

We describe conditions of dependence vectors for applying
a loop transformation method to a loop, as a logic program.
By using an explanation reasoning, we can know that a cer-
tain loop transformation method can be applied to a loop
or not, and parallelize the loop or a part of the loop.

Let us see an example. There is a loop transformation
method called loop distribution which divides a loop into
two loops. If it makes that one of the loops has no data de-
pendence, then we can parallelize the loop. The loop distri-
bution can be applied if there is no data dependence between
the divided two loops.

The condition for applying a loop distribution can be de-
scribed as a clause of a logic program as the following.

LoopDistribution(p, k) < AllL(~ EzistRevDep(S,T,p,k)),

where EzistRevDep(S, T, p, k) is a literal which holds when
there is at least one data dependence from statement T' to
statement S on the loop p when S is before the kth line of the
source code and T is after. AlIL(f) is a literal which holds
when f holds for any dependence vector in the specified loop.

expara rules program.dvdata
Please input a literal:
LoopDistribution(i,4)
LoopDistribution(i,4) is TRUE. In the case
Success set is

AllL:

not ExistRevDep: S=3 T=4 #=a p=i k=5

not ExistRevDep: S=3 T=5 #=a p=i k=5

not ExistRevDep: S=3 T=4 #=b p=i k=5
Fail set is

not AllL:

ExistRevDep: S=3 T=4 #=a p=i k=4
ExistRevDep: S=3 T=5 #=a p=i k=4
ExistRevDep: S=3 T=4 #=b p=i k=4

Figure 4: The result for the query of the loop dis-
tribution

Fig. 3 shows two nested loops: the loop variable of the outer
loop is i and the loop variable of the inner loop is j. We
call the outer loop as loop; and the inner loop as loop;. The
loop; can be parallelized but the loop; cannot be parallelized
because of the data dependences between the sentence 3 and
4 on the array a and b.

See the example to ask whether the loop distribution can be
applied or not. Fig. 4 shows the output of our system when
we input LoopDistribution(i,4) which is the query about the
loop distribution of loop; between the sentence 4 and 5. The
answer is TRUE that means we can divide the loop; into two
parts: one is from the sentence 1 to 4, and the other is the
sentence 5. Then we can parallelize the outer loop of the
former part and the complete loops of the latter part.

5. CONCLUDING REMARKS

In this paper, we report that we apply the abductive proce-
dure to loop transformation in a parallelizing compiler. We
dynamically generate an extended logic program which in-
cludes rules and declarations according to the analyses by
the compiler, and show why the compiler infers a loop can-
not be parallelized.

In the field of parallelizing compilers, one of important topics
is how we choose proper loop transformation methods. One
of the solutions is that programmers may give additional
information and assist the compiler [10, 23]. Our experience
may be useful and improve the solution.

However, to apply our procedure to the real cases, more
works will be necessary. We have to consider whether there
is more suitable description of dependence vector to rep-
resent conditions for other loop transformation methods,
whether the procedure on extended logic programs can be
performed in reasonable time, how programmers pick up
a loop from many loops in a program, and whether this
method is useful in practical use.

6. REFERENCES
[1] J. J. Alferes, C. V. Damasio, and J. M. Pereira. A
logic programming system for nonmonotonic
reasoning. J. Automated Reasoning, 14:93-147, 1995.

[2] A. Analyti and S. Pramanik. Reliable semantics for
extended logic programs with rule priotization. J. of
Logic and Computation, 5:303-324, 1995.

38

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
transformations for high-performance computing.
ACM Computing Survey, 26(4):345-420, 1994.

U. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, 1988.

U. Banerjee. Loop Parallelization. Kluwer Academic
Publishers, 1994.

K. L. Clark. Negation as failure. In H. Gallaire and J.
Minker (eds.), Logic and Databases, pages 151-177,
1995.

P. M. Dung. An argumentation-theoretic foundation
for logic programming. J. of Logic Programming,
22:151-177, 1995.

K. Eshghi and R. A. Kowalski. Abduction compared
with negation by failure. In Proc. of 6th ICLP, pages
234-255, 1989.

M. Gelfond and V. Lifschitz. The stable model
semantics for logic programs. In Proc. of 5th ICLP,
pages 1070-1080, 1988.

M. W. Hall, T. J. Harvey, K. Kennedy, N. McIntosh,
K. S. McKinley, J. D. Oldham, M. H. Paleczny, and
G. Roth. Experiences using the parascope editor: an
interactive parallel programming tool. SIGPLAN
Notice, 28(7):33-43, 1993.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive
logic programming. J. of Logic and Computation,
2:719-770, 1992.

A. C. Kakas, R. A. Kowalski, and F. Toni. The role of
abduction in logic programming. In D. M. Gabbay, C.
J. Hogger and J. A. Robinson (eds.), Handbook of
Logic in Artificial Intelligence, Vol.5,, pages 235—-324.
Oxford Science Publications, 1998.

A. C. Kakas and P. Mancarella. Preferred extensions
are partial stable models. J. of Logic Programmimg,
14:341-348, 1992.

A. C. Kakas and F. Toni. Computing argumentation
in logic programming. J. of Logic and Computation,
9:515-562, 1999.

R. A. Kowalski and F. Sadri. Logic programs with
exceptions. In Proc. of 7th International Conference
on Logic Programming, pages 598—613, 1990.

R. A. Kowalski and F. Toni. Abstract argumentation.
Artificial Intelligence Law, 4:275-296, 1996.

J. W. Lloyd. Foundations of Logic Programming, 2nd,
Eztended Edition. Springer-Verlag, 1993.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio.
Contradiction removal within well-founded semantics.
In Proc. of 1st International Workshop on Logic
Programming and Nonmonotonic Reasoning, pages
105-119, 1991.

P. M. Pereira, N. Joaquim, J. N. Aparicio, and J. J.
Alferes. Non-monotonic reasoning with logic
programming. J. of Logic Programming, 17:227-263,
1993.

(20]

(21]

(22]

23]

[24]

[25]

(26]

27]

28]

(29]

(30]

(31]

(32]

(33]

39

T. Przymusinski. Every logic program has a natural
stratification and an iterated least fixed point model.
In Proc. of 8th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages
11-21, 1989.

W. Pugh and D. Wonnacott. Eliminating false data
depenedences using the omega test. In Proceedings of
the ACM SIGPLAN’92 conference on programming
language design and implementation, pages 140-151,
1992.

M. Sasakura. Concentric circle diagrams for visualizing
a reasoning process on an extended logic program. In
PDPTA’02, Volume I, pages 253—-259, 2002.

M. Sasakura, K. Joe, Y. Kunieda, and K. Araki.
Naraview: an interactive 3D visualization system for
parallelization of programs. International Journal of
Parallel Programming, 27(2):111-129, 1999.

J. C. Shepherdson. Negation in logic programming. In
J. Minker (ed.), Foundations of Deductive Databases
and Logic Programming, pages 19-88, 1987.

A. Van Gelder. The alternating fixpoint of logic
programs with negation. J. of Computer and System
Sciences, 47:185—221, 1993.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The
well-founded semantics for general logic programs. J.
ACM, 38:620-650, 1990.

S. Yamasaki. A denotational semantics and dataflow
construction for logic programs. Theoretical Computer
Science, 124:71-91, 1994.

S. Yamasaki. SLDNF resolution with non-safe rule
and fixpoint semantics for general logic programs.
Theoretical Computer Science, 160:283-303, 1996.

S. Yamasaki and Y. Kurose. Soundness of abductive
proof procedure with respect to constraint for
non-ground abducibles. Theoretical Computer Science,
206:257-281, 1998.

S. Yamasaki and Y. Kurose. A sound and complete
procedure for a general logic program in
non-floundering derivations with respect to the
3-valued stable model semantics. Theoretical
Computer Science, 266:489-512, 2001.

S. Yamasaki and M. Sasakura. Towards distributed
programming systems with visualizations based on
nonmonotonic reasoning. International Conference on
Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet(CD-ROM) 76,
2001.

S. Yamasaki and M. Sasakura. A contradiction-free
procedure with visualization for extended logic
programs. In Proc. of SSGRR02, 4, 2002.

J.-H. You and L. Y. Yuan. On the equivalence of
semantics for normal logic programs. J. of Logic
Programming, 22:211-222, 1995.

Agent-Based Support for Requirements Elicitation
Chad Coulin, Didar Zowghi

Department of Software Engineering, University of Technology Sydney
PO Box 123 Broadway NSW 2007 Australia

{chadc, didar}@it.uts.edu.au

ABSTRACT

The elicitation of requirements is a difficult and expensive
process but critical to the overall success of any system
development. So far relatively little work has been devoted to
providing intelligent tool support for this complex and labor-
intensive activity. The quality of requirements from the elicitation
process currently depends greatly on the experience and expertise
of the participating requirements engineers, and the commitment
and cooperation of the system stakeholders.

In this paper we describe an agent-based approach to intelligent
tool support for requirements elicitation. Given the multiple roles
a requirements engineer must perform during elicitation, we
suggest a multi-agent system (MAS) may be developed as an
intelligent assistant for this process. It is proposed that some of
the tasks performed by requirements engineers during the
elicitation process may be supported and in some cases automated
by individual agents or several agents working cooperatively.

It is expected that the use of intelligent agents would produce
better requirements in terms of their completeness, correctness,
consistency and clarity. This would be achieved partly by
improving the elicitation process through greater efficiency with
respect to time and cost, and increased effectiveness by way of
rigorous and structured execution.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications —
Elicitation methods, Methodologies, Tools.

General Terms
Design, Theory.

Keywords
Requirements elicitation, intelligent tool support, agents, roles,
multi-agent system.

1. INTRODUCTION

Requirements elicitation is a very complex process involving
many activities with multiple techniques available to perform
those activities [7]. The multi-disciplinary nature of tool support
for requirements elicitation only adds to this complexity with
strong relationships to the fields of knowledge engineering,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WITSE ’03, September 1, 2003, Helsinki, Finland.

Copyright 2003 ACM 1-58113-000-0/00/0000...$5.00.

artificial intelligence, information systems, cognitive psychology
and the social sciences. This is in addition to the large body of
work in the obvious and more general areas of systems, software
and requirements engineering.

It is generally understood that requirements are elicited rather
than captured or collected. This implies both a discovery and
development element to the process [5]. Requirements may be
elicited from a variety of sources including the many different
types of possible stakeholders in the future system, and
documentation and processes from the existing systems.

Few attempts have been made to develop intelligent tools to
support requirements elicitation especially where there is direct
interaction with human stakeholders without the need for a
requirements engineer driving the process or the use of a semi-
formal modeling and analysis technique. In order to improve the
quality of requirements and the elicitation process itself we
introduce the use of agents as intelligent support for the
requirements engineer during this phase of system development.

The paper is structured as follows: Section 2 explains the meaning
of agents as intelligent assistants in the context of the
requirements elicitation process. Section 3 describes a multi-agent
based approach to the requirements elicitation process. The use of
agents for domain knowledge is examined in Section 4, and in
Section 5 we investigate the particularly challenging area of
discourse agents with respect to requirements elicitation. Finally
in Section 6 we present a discussion with some conclusions and
possibilities for future work.

2. INTELLIGENT AGENTS

We use the definition of an agent as a computer system situated in
some environment that is capable of flexible autonomous action
in order to meets its designed objectives [4]. In this definition
there is additional importance placed on the term ‘flexible’ in that
it refers to the responsive, pro-active and social nature of agents.

For our purposes an agent can further be described as an active
software component or entity utilizing intelligent technology in
terms of its communication with is environment and its dynamic
behavior [9]. Another important point to make is that agents may
be organized into a hierarchy or social structure in order to
interact and perform tasks with other agents and entities within
that system [2].

Therefore three key concepts concerning agents can be defined as
autonomy, adaptation and cooperation [1]. By this it is meant that
an agent should have the ability to make independent decisions
without external intervention, be aware of its environment and
able to make changes to its behavior accordingly, and interact
with other agents and entities and in some cases work
cooperatively with them [6].

40

Agents are different to objects in the traditional software
engineering sense in that an agent must ultimately exhibit control
over its own behavior [4]. However agents may depend on other
entities such as knowledge bases and the Internet to be able to
meet their goals and complete their tasks. We take the view that
an agent may act as a proxy for a requirements engineer in order
to perform one or more tasks on their behalf.

The advantages of using agents include the ability to manage and
reference large amounts of real time and historical data, and have
greater control and consistency over the output and results of the
process. This includes assuring that equal attention is paid to both
the problem and solution domains, and that the final
documentation and presentation conforms to accepted standards.

Agents could also enable the automation of some of the more
mundane tasks a requirements engineer is required to perform
during the elicitation process. This is particularly important given
the time consuming nature of requirements elicitation especially
when dealing with complex systems and large organizations.

3. AMULTI-AGENT APPROACH

3.1 Roles of the Requirements Engineer
Multi-agent systems are typically very complex and difficult to
develop. Despite this it is more likely that a multi-agent system
would be developed to support some of the many activities
performed by a requirements engineer as opposed to a single ‘fat’
intelligent agent providing all the functionality. This is mainly
due to the nature and behavior of agents, and the state of
technology currently available.

We can begin to investigate the implementation of a multi-agent
agent system for requirements elicitation by examining the
various roles performed by the requirements engineer during this
process.

A fundamental part of the entire requirements engineering process
is related to project management. This activity involves more than
the obvious decision-making and prioritization tasks. Project
managers are also commonly required to initiate meetings with
stakeholders, produce project status reports to inform stakeholders
of progress, remind stakeholders of their responsibilities, and
answer questions from stakeholders regarding the project, the
process, and the system being developed.

When eliciting requirements by conducting interviews the
requirements engineer does not only ask questions and record the
responses but also must guide and assist the participants in
answering these questions in order to elicit the most correct,
complete and relevant information. The interviewer is also
responsible for ensuring that participants feel comfortable and
confident with the process in order to achieve the best possible
results from this activity.

Conflicts between stakeholder requirements are inevitable. When
this occurs the requirements engineer is often required to act as a
mediator in working towards a suitable resolution. All elicited
requirements must be validated and verified against each other
and the previously established goals of the system. This may
involve various semi-formal and formal modeling and analysis
activities.

Requirements engineers are often required to assume the roles of
the developer community during requirements elicitation such as
system architects, designers, programmers and testers. Decisions
made during the requirements stage will inevitably effect the later
phases of system development.

The responsibility for the output of the elicitation process also lies
with the requirements engineer. Typically this exists in the form
of a requirements document or detailed system model. This role is
particularly important as it represents the results of the elicitation
process and forms the foundation for the subsequent project
phases. Evaluation of the elicitation process and the work
performed by the requirements engineer is based on these
resultant artifacts which in some situations will form the basis of a
contractual agreement as in the case where a system is to be
developed for an organization by an external supplier.

3.2 Elicitation Activity Agents
For each of the roles detailed in the previous subsection we can
identify one or more possible types of intelligent agent
application to support the required activities.

3.2.1 Personal Assistant Agents

Personal assistant agents could be responsible for proactively
organizing and driving the project tasks of human stakeholders
and assisting the execution of these tasks by providing the
necessary guidance proactively and when requested.

3.2.2 Information Acquisition Agents

Information acquisition agents could be used to search through
existing documentation and knowledge bases to validate existing
requirements and to discover new ones.

3.2.3 Elicitation Technique Agents

Elicitation technique agents could be used to interview, model,
analyze and document requirements based on stakeholder input.
Additional sub-agents could be developed to check for conflicts
and consistency of requirements during elicitation, inform the
stakeholders of the specifics, and advise on possible solutions.

Surveys are one of the most common elicitation techniques used
by requirements engineers and include questionnaires and
structured and unstructured interviews [3]. Agents may be used to
design and propose questions based on meta-models and schemas,
case stories, and abstractions of previously developed systems. It
is also possible to conduct surveys based on goal refinement and
other knowledge acquisition techniques.

Scenario and task analysis involves ‘walking’ stakeholders
through existing or proposed system operations and defining each
possible step and exception condition. An agent may be used to
model, simulate and incorporate feedback for the described
operations from either a user or system perspective. The use of
graphical representation is especially useful during this process
and could be incorporated into the behavior of the agent.

Some elicitation techniques are inherently more suited to the
possibility of implementation through agents than others. These
elicitation agents may be arranged into a structure with a parent or
decision agent responsible for selecting the appropriate elicitation
technique and agent to employ depending on information about

41

the system stakeholders and other environmental constraints such
as time and the availability of resources.

Agents may also be used to support rapid prototyping and other
agile methods used for requirements elicitation. This could
involve the use of interactive software construction agents during
the early stages of system development. Further investigation is
also required into how agents may be used to support
observational and ethnographical techniques during requirements
elicitation.

In practice requirements elicitation is an iterative process and
typically a combination of techniques is used to discover and
develop system requirements. For example a requirements
engineer may conduct a follow-up discussion with the system
stakeholders after validating the information gathered in a prior
interview by observing the existing system in use.

3.2.4 Administration Management Agents
Administration management agents could perform much of the
day-to-day administration tasks often assigned to the requirements
engineer such as reserving meeting rooms and other resources,
producing and distributing regular status reports, and reminding
stakeholders of their obligations.

3.3 Agent Coordination

In the multi-agent system required to perform the various tasks a
requirements engineer must conduct during the requirements
elicitation process the agents would need to run concurrently and
not interfere or conflict with each other. In some cases it may be
necessary for agents to work cooperatively in order to satisty their
individual goals. For this reason it is critical to ensure that agents
in this type of environment do no have conflicting goals and
adhere to defined coordination strategies and protocols.

We can take the simple example of a decision agent required to
determine which elicitation techniques are best utilized for a
particular project and which of the stakeholders to involve. In this
case the requirements engineer informs the web-based agent of
basic project and organizational details. The agent has access to a
knowledge base of various elicitation techniques, the conditions
under which they can be performed, and their respective strengths
and weaknesses.

This is combined with information from stakeholders captured via
an online questionnaire on their individual details, the goals and
constraints of the project, the problem domain, and the
availability of resources. The system includes a feedback
mechanism also via an online questionnaire to evaluate the
relative success or failure of the selected elicitation techniques.
As a result the agent is able to reference past experiences for
future questionnaires and decisions, and therefore continuously
improving the performance of the system.

Furthermore a series of sub or contractor agents may be employed
to perform the necessary subsequent tasks. An administration
agent could be used to arrange a meeting where the appropriate
elicitation agent would develop and conduct a structured
interview based on the predetermined high-level goals and
constraints defined for that particular system development project.
The parent decision agent would need to communicate the
number of participants and the type of meeting to the
administration agent which may then in turn schedule the meeting

based on the electronic calendars of individual participants and
reserve an appropriately sized and equipped conference room.

A personal assistant agent would be responsible for reminding the
stakeholder participants of the interview and determining any
prerequisite tasks each stakeholder must perform prior to the
meeting. The elicitation agent may decide to use a template,
model or analogy to support the interview or employ an
information acquisition agent to retrieve documentation of the
existing system to use as the basis for further inquiry. Here the
elicitation agent would need to communicate to the information
acquisition agent the scope of the search and the type of
information required.

It is beyond the scope of this paper to delve further into the
specific details of the intelligent and behavioral aspects of the
proposed agents although it is tempting to do so. However we can
see from this example how the communication and coordination
between agents in a multi-agent system is paramount to its
success.

4. AGENTS FOR THE DOMAIN

Domain knowledge represents an important part of requirements
engineering however the collection of domain knowledge is a
very time consuming process. During requirements elicitation
both the problem and solution domains need to be examined. This
type of information can be exploited for requirement engineering
in a variety of ways.

Requirements engineers will use previous experience in the
domain as a kind of mental template for group discussions and
interviews. Domain analogies and abstractions of existing
situations are used as baselines to acquire information in order to
identify and model possible solution systems. This also provides
the opportunity to reuse specifications from like and unlike
domains, and validate new ones against existing domain
knowledge as detailed in the work of Sutcliffe and Maiden [8].

Agents could be implemented as experts to provide assistance in
not only the collection of domain knowledge but also its
presentation for further information acquisition activities. We can
define a domain expert as having an extensive knowledge of the
domain area, the ability to identify similarities and differences
between domain instances, and access to a catalogue of existing
examples in the given domain for reference.

Therefore it is possible to conceptualize an intelligent agent
working in cooperation with a domain knowledge base to support
the requirements engineer during the elicitation and modeling of
requirements.

5. DISCOURSE AGENTS

Discourse agents that can actively participate in conversations
directly with one or more human subjects at a time present us
with some unique and complex challenges. Requirements
engineers often use group discussions involving multiple
stakeholders in elicitation. Examples of this include focus groups
and joint application development (JAD) groups. In these cases
the requirements engineer may or may not be required to have
significant domain expertise in order to facilitate discussions.

We can investigate the difficulties of developing discourse agents
by examining the role of group discussion facilitator that is often

42

performed by the requirements engineer during elicitation. In this
environment the requirements engineer is not only responsible for
managing and guiding the other participants on the topics
established for discussion but also to inquire when more
information or clarification is required on a subject and maintain
the relevance of all discussions to the problem at hand. It is
important that the requirements engineer ensures that all parties
represented in the discussion group are given sufficient
opportunity to voice their positions and provide appropriate input
to the conversations.

The requirements engineer is sometimes also required to negotiate
on behalf of absent stakeholders, validate previously established
requirements with the current group of participating stakeholders,
and mediate disagreements between stakeholders.

To perform these tasks effectively a requirements engineer must
not only be able to just see and hear the participants but also
analyze their body language and speech patterns. The
requirements engineer uses this type of information throughout
the elicitation process to gauge the level of importance and
understanding of requirements within the group and detect
possible conflicts and concerns the stakeholders might have.

It is difficult to envisage an intelligent agent capable of
conducting this role given the technologies currently available. In
this case an extremely complex system of both software and
hardware would be required with substantial multimedia and
sensory capabilities. Despite this is it interesting to look at how
intelligent agent technologies might contribute to this area in
future research.

6. DISCUSSION

From our preliminary investigation it has been determined that
there are many conceivable applications of agents in the activities
performed during requirements elicitation however whether or not
one or more of these can be successfully implemented into an
intelligent multi-agent system to support the requirements
engineer in this process is yet to be completely examined both
theoretically and practically.

Multi-agent systems provide us with some significant new
opportunities and advantages over the more traditional expert
systems. Typically multi-agent systems integrate several general
tasks that can be personalized to the individual user as opposed to
expert systems that perform a limited number of specific tasks in
a fixed manner for all users. Agent-based applications are
inherently more active, adaptive and mobile than expert systems
in their behavior and interaction with users and other information
sources.

It is worth mentioning that such multi-agent systems as proposed
in this paper are currently very expensive and complicated to
design and build. Additional obstacles such as the cultural change
and acceptance of multi-agent systems within organizations
would also need to be addressed for this type of technology to be
adopted. Given this it is more realistic that single agents will be

43

developed for generic applications such as searches and
scheduling and then modified and applied to requirements
engineering as opposed to multi-agent systems being designed
and built specifically for requirements elicitation activities.

More research on agent development, architecture and application
is still needed, especially in social environments and multi-agent
systems where the issues of conflicts between agents, load
balancing, belief revision, and the re-organization of agent
commitments are still being examined.

It is not suggested that agents present a substitute for the roles of
the requirements engineer but instead that certain elements of the
requirements elicitation process may be automated, supported and
improved through the implementation of an intelligent agent-
based system.

We believe that the development of information systems presents
a particularly good opportunity to apply this type of technology in
both the early and later stages of requirements elicitation due to
the large body of work in this area and the volume of available
and relevant literature, domain expertise and case stories.

7. REFERENCES

[1] Dardenne, A., van Lamsweerde, A., and Fickas, S. 1993.
Goal-directed requirements acquisition. Science of Computer
Programming 20, 3-50.

[2] Giorgini, P., Kolp, M., and Mylopoulos, J. Multi-Agent and
Software Architectures: A Comparative Case Study in

Proceedings of AAMAS ’02, Bologna, Italy, May 2002.
[3]

Goguen, J. A., and Linde, C. Techniques for Requirements
Elicitation in Proceedings of RE *93, San Diego, CA,

January 1993, 152-164.

Jennings, N. R., Sycara, K., and Wooldridge, M. 1998. A
Roadmap of Agent Research and Development. Autonomous
Agents and Multi-Agent Systems 1, 7-38.

(4]

[5] Jirotka, M., and Goguen, J. (Ed.) Requirements Engineering:
Social and Technical Issues. Academic Press, London, UK,

1994.

Kim, M., Lee, S., Park, 1., Kim, J., and Park, S. Agent-
Oriented Software Modeling in Proceedings of APSEC ’99,
Takamatsu, Japan, December 1999, 318-325.

(6]

[7] Nuseibah, B., and Easterbrook, S. Requirements
Engineering: A Roadmap in Proceedings of The Future of

Software Engineering, Limerick, Ireland, May 2000, 35-46.

Sutcliffe, A., and Maiden, N. 1998. The Domain Theory for
Requirements Engineering. IEEE Transactions on Software
Engineering 24 (3), 174-196.

Zhou, Y., and Pan, Y. 2000. Agent-Oriented Analysis and
Modeling. ACM SIGSOFT Software Engineering Notes 25
(3), 36-40.

(8]

(]

DCBL: A framework for Dynamic Control of Behavior
based on Learning

Patrice VIENNE
INSA Lyon, PRISMa, Bat. B. Pascal,
69621 Villeurbanne Cedex, France

pvienne@if.insa-lyon.fr

ABSTRACT

This paper describes the DCBL (Dynamic Control of Behav-
ior based on Learning) framework that aims to aid develop-
ing systems that dynamically control application behavior.
It relies on learning abilities to make the application able
to improve autonomously its behavior even when the con-
text changes. The framework is used to increase the QoS of
a set of applications. The behavior is controlled to reduce
the risk that the supplied QoS exceeds a specified minimal
level. The DCBL framework significantly decreases software
development cost while the learned behavior still fulfills the
application requirements.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features—Frameworks; 1.2.6 [Artificial Intelligence]:
Learning

Keywords
Reinforcement Learning, Quality of Service, Software devel-
opment

1. INTRODUCTION

Within a computer system, applications running in a chang-
ing context may have several alternatives to fulfill their ob-
jectives. A decision making process is then needed to provide
the application with suitable behavior. Such applications
have to dynamically adapt their behavior to improve it ac-
cording to some criteria. In this paper, the criterion is an
utility indicator that measures the overall system Quality of
Service (QoS: “A set of qualities related to the collective be-
havior of one or more objects”, ISO[2]). Then the behavior
of the system applications is adjusted in order to maximize
this utility. The more direct way to handle this problem is
to make each application able to adapt its behavior based
on its own utility indicator. However, a specific solution
has to be developed for each application and interactions
between applications are not taken into account (i.e., the

44

Jean-Louis SOURROUILLE
INSA Lyon, PRISMa, Bat. B. Pascal,
69621 Villeurbanne Cedex, France

sou@if.insa-lyon.fr

overall utility cannot be maximized). Thus, this solution is
not reusable and has a very high development cost. A bet-
ter option is to extract from the application all the elements
contributing to the decision making process and to gather
them in a control system middleware layer. Now, the over-
all system utility is easier to maximize since a global view
is available. Moreover, only one decision process have to be
built and well defined interfaces with applications makes it
reusable.

To deal with behavior adaptation, two ways are possible.
The first way is to find a specific algorithm. Unfortunately,
this is a tremendous work as every possible change in the
context must be envisaged during the development. Further-
more, the general decision problem is NP-difficult[3], and
therefore a heuristic should be used[1]. The second way lies
on learning techniques. They cannot ensure that the maxi-
mum utility will be reached, but as the learning system gains
experience it progressively increases the relevance of the con-
trol. Furthermore, the learning performs autonomously (i.e.
without human intervention)[4] and online (i.e. applications
run simultaneously). As the context may change, learning is
performed almost uninterruptedly, making the system able
to adapt its behavior at any time. The use of such learning
techniques presents two major advantages: (i) the control
system is very general and widely reusable; (ii) developers
do no more need to find detailed solutions for the system
behavior.

This paper describes DCBL, a framework for developing a
control system using a learning technique. DCBL also pro-
vides the system with a mechanism that aims to finely con-
trol the trials and errors inherent in the selected learning
algorithm. First the used learning technique is outlined,
and then the control system architecture and its working
principles are detailed.

2. LEARNING TECHNIQUE

Learning techniques can be classified into three main groups:
supervised learning, unsupervised learning and reinforce-
ment learning.

In supervised learning, the expected output y; is available for
each possible input x;. Learning requires searching for the
function f by successive modifications such that: Vi, f(z;) =
y;. The evaluation of the function f is based on the predic-
tion error f(z;) — y;. In most cases, learning is performed
on a training set and then the discovered function is used in
a real context.

Unlike supervised ones, unsupervised learning techniques do
not require knowing outputs. Parameters are adjusted only

based on input data and a set of predefined constraints.
These learning techniques are usually used for clustering and
classification problems.

Reinforcement learning [6] is a mix of supervised and un-
supervised techniques. Unlike supervised learning, the ex-
pected output does not need to be available for a given input.
However, a reinforcement signal characterizing the behavior
is required. The learning process relies on this signal that
takes the form of penalties and rewards.

This last group of learning techniques seems the most ap-
propriate to solve the problem of adaptation in a changing
context: (i) expected outputs are usually unknown, and they
may change in dynamic contexts; (ii) it is often easy to find
information about behavior quality.

2.1 Q-Learning

Q-Learning [7] is a reinforcement learning technique that
copes with state succession. Let 4 denote the set of avail-
able actions and S the set of available states. The goal of
Q-Learning is to estimate the value Q(s,a) for each pair
< s,a> where s € S and a € A. Q(s,a) stands for the
long-run payoffs obtained by taking action a in the state s.
In other words, Q(s,a) is the benefit to take action a in state
s.

For each time step, the state s;y1 follows the state s; by
taking the action a¢. While doing this, the reinforcement
signal r is received and Q(s¢,at) is updated:

Q(st,at) = Q(st, az) +Oé(7“ —Q(s¢,at) +7max (Q(st41, a)))
(1)

The correction of Q(s¢,a:) is reduced using a learning rate
coefficient « in the range [0,1] and can be split into two
parts: 7 — Q(s¢, at) makes the estimated value of the bene-
fit tends towards the value of the received reinforcement r,
and Yy maXaec.4 (Q(stH, a)) stands for the benefit of the new
state, characterized by the best state-action pair reduced by
the coefficient . In practice, the learning algorithm end-
lessly repeats the following steps: (1) receiving the rein-
forcement signal and the new state, (2) updating the bene-
fit of taking the selected action in the previous state using
the received reinforcement signal and the current state, (3)
choosing and executing an action.

2.2 Action selection

Action selection is an important step in the learning process
and several strategies are possible. The first way consists
in always choosing the action a given the state s so that
Q(s,a) has the highest value. This strategy, called greedy
action selection, cannot generally be used to find optimal
behavior: early convergence makes the learning process in-
efficient. A subset of actions is used regardless of the others.
On the opposite, a uniformly random action selection is a
good choice to visit all state-action pairs, but the resulting
behavior has no relationship with the learned one.

The way to select the action should be a judicious mix of ex-
ploration (random action selection) and exploitation (greedy
action selection). Furthermore, it is preferable to select more
frequently an action that leads to a high-valued benefit, and
less often an action that leads to a low-valued one. The
“softmax” function based on Boltzmann formula [5] uses
these principles and give the probability to select the action
a given a state s:

45

(2)

be A

T is a parameter used to give more or less importance to an
action that leads to a high-valued benefit. The more 7 has
a high value, the more the action selection tends to be done
randomly. On the opposite, when the value of 7 is close to
0, action selection looks like the greedy one.

3. DCBL FRAMEWORK

The behavior of a system can be characterized by its over-
all utility. It stands for the quality of the service that
the system provides from the user’s point of view. The
Dynamic Control of Behavior based on Learning (DCBL)
framework copes with execution context adaptation of ap-
plications based on a reinforcement learning technique. It
aims to increase the probability to maintain system utility
above a predefined threshold.

3.1 General view

A major advantage of DCBL is that elements contributing
to the decision making process are extracted from the ap-
plications and arranged to form the control system. In their
remaining parts, applications only deal with execution of
the choices made in the control system. Both parts of the
system interact via input and output interfaces (fig. 1).
The control system lies on a reinforcement learning algo-
rithm, which requires the current state and the reinforce-
ment signal: (i) the state is deduced from the perceptions
supplied by applications (i.e., a set of values that specify the
situation of the system in its context); (ii) from the monitor
values provided by the application, the system utility is built
and its variation gives the required reinforcement signal. A
synthesis step realizes the transformation from perceptions
and monitors to state and utility.

The decision system being separated from applications, it
can handle several applications simultaneously. Only the
simple case of one application is presented in this document,
but all principles remain valid in the general case.

s N\

Control system

Decision
mechanism
selection

Learning
decision mechanism

Utility

4

2 =
]
§ Exploitation
[Synthesis] decision mechanism

2 A A
S 4 -
a S
I :
£] = <y

Input interface
Application

Output interface

I = J

N

Figure 1: DCBL framework

Context

3.2 Operating principles
3.2.1 Utility and minimal utility

System utility is a control system built-in data. Its estima-
tion depends on the developer’s description of the monitors:
a valid area of value is provided for each of them. The util-
ity is maximal if all monitor values are in the center of their
validity area. The utility tends to the minimal utility if at
least the value of one monitor tends to the limit of its valid-
ity area.

The control system aims to discover a behavior that maxi-
mizes the system utility and reduces the risk that the utility
goes below the minimal utility.

This description of the system room for maneuver based on
each monitor makes the developer’s work much more easy
as he only has to handle one dimension of the problem (i.e.
one monitor) at a time.

3.2.2 Decision mechanism

The system decisions are made using a Q-Learning algo-
rithm associated with an action selection strategy based on
“softmax” function. This requires state-action pairs explo-
ration that may lead to a system utility below the mini-
mal utility. Moreover, the system learns in an incremental
way depending on how the system interacts with its context:
which event occurs and when. .. Therefore, utility variation
with time is not a strictly increasing function although it
tends to increase. In other words, the system may adopt
a behavior that is unable to maintain the utility above the
minimal threshold. To avoid such a situation, the control
system includes an additional decision mechanism. This ex-
ploitation mechanism uses a greedy action selection without
learning. It should be initialized in such a way that the sys-
tem is able to stay in its room for maneuver.

A decision mechanism selection step is responsible for the
choice between learning and exploitation mechanisms.

3.2.3 Operating scenario

The activity of the decision system is organized in time
steps. At each step a complete decision making process takes
place: synthesis of inputs, selection of a decision mechanism,
action selection with the decision mechanism and applica-
tion of the selected action. On figure (2), several time steps

«—Minimal utility

Sufficient utility/

Good utility__

5t4\-6 St+4
St+7 515 :""-.
Stra
——Learning
- — - Exploitation

Figure 2: Simplified decision mechanism selection
scenario

show in a simplified way how the decision mechanism is se-
lected. The space of states is composed of four utility areas
separated by thresholds. At time step t, the system is in
state s; and the utility is good. The learning mechanism is
used in order to discover a new behavior that fits better with
the context. At time step ¢ + 3, the utility becomes insuf-
ficient, meaning that learning may well increase the risk to
lead the utility below the minimal threshold. The learning
decision mechanism is then replaced by the exploitation one.
Exploitation takes place (from ¢t+3 to t+5) until the system
utility reaches good utility threshold at time step t+6. Then
the system starts a new learning period.

3.2.4 Utility threshold determination

During the scenario of figure (2), the only use of the learn-
ing mechanism may lead to state s} 4, in which bounds are
exceeded. To reduce the risk to reach such a configuration,
DCBL relies on the well-tried behavior of the exploitation
decision mechanism. As sufficient and good utility thresh-
olds are used to change the decision mechanism, they are
essential in the utility control process.

The sufficient utility threshold depends on the ability of the
exploitation mechanism to control the utility of the system.
During execution, this threshold is adjusted to reduce the
risk of constraint violation. The good utility threshold de-
pends only on exploitation mechanism: the value should be
low enough to be reached at exploitation time, and high
enough to increase the sufficient utility area necessary for
learning. This threshold is also adjusted dynamically.

3.3 Operating modes

Exploitation mechanism relies on its associated behavior to
maintain the system QoS within a specified range. If a better
behavior is discovered using learning abilities, the exploita-
tion mechanism should be updated to include the improve-
ments. With such an upgrade ability, the system constantly
adapts itself to its changing context. Exploitation mecha-
nism modification changes the benefit of taking an action
rather than others in a given state.

Upgrading the system is not risk-less: the behavior may be
upgraded although it does not improve the system QoS. To
avoid these side effects, three operating modes are intro-
duced: (i) Exploitation mode simply uses the exploitation
mechanism; (ii) Learning mode uses the learning mechanism
without any restriction; (iii) Evaluation mode is a restricted
use of the learning mechanism: the “softmax” action selec-
tion is replaced by the greedy one, and learning does not take
place anymore. This operating mode evaluates the relevance
of the discovered behavior to decide whether the exploita-
tion decision mechanism should be upgraded or not.
Q-Learning representation makes partial upgrade possible
(i.e., state-action pairs can be modified independently): af-
ter evaluation, states will be upgraded when encountered
enough times without significant decrease in utility. Partial
upgrade is useful to reduce evaluation duration with little
effects on the control system reliability.

3.4 Indicatorsand operating mode selection
At each time step, the system tries to change its operating
mode. Mode change is based on indicators that represent
the internal configuration of the system.

Two utility indicators are introduced to characterize the be-
havior associated with each decision mechanism. They are

meant to be the relevance of each decision mechanism. Util-
ity indicators estimation is based on a recent average of the
global utility while using the specified decision mechanism.
These indicators are named U_exploitation and U_learning.
To be relevant, utility indicators must be evaluated over
enough consecutive time steps. Moreover, as the context
may change in time, the reliability of indicators decreases
if they are not updated in the current operation mode. To
address this problem, reliability indicators are associated
with each operating mode (R_ezploitation, R_learning and
R_evaluation): their value increases when the system is in
the corresponding operating mode, and decreases otherwise.
Reliability thresholds are used to decide whether these in-
dicators are good, sufficient or insufficient, just as utility
thresholds for system utility measurement (cf. 3.2.4).
Finally the failure indicator depends on the ability of the
exploitation mechanism to maintain the system in its room
for maneuver. The system fails if the utility goes below the
minimal utility threshold and it comes back to non-failure
if its utility reaches the good threshold (fig. 2).

On figure (3), the operating mode selection is detailed de-
pending on the current mode of the system. At Upgrade
stage, exploitation behavior is modified to take into account
the discovered improvements.

Evaluation Mode

Exploitation Mode

Learning Mode

)

! [Failure] N [Failure] &
: N v;\"’&e\ 1 ¢ £
[Falure ! 3 l S 3 léﬁs‘
l | 1, |
o—(1) | l [Insufficient | 2 linsifficignt
[Goz%d utility] i <l> R_exploitation] ! R_exploitation]

-

Figure 3: Operating mode selection detail

3.5 Parameter variation

Dynamically adjusting some parameters improves the sys-
tem QoS. Two main principles are described.

First, the system room for maneuver can be reduced if a bet-
ter behavior is discovered during execution. With a smaller
room for maneuver, the system average QoS will be signifi-
cantly improved. All the system parameters are updated to
fit the new local room for maneuver.

Second, some parameters depend on the relationship be-
tween system and time steps succession. For example, how
many time a newly discovered behavior should be evalu-
ated before exploitation upgrade 7 Those parameters can
be dynamically adjusted to take into account the time steps
succession, making DCBL more efficient and application-
independent.

47

4. CONCLUSION

DCBL is a framework for Dynamic Control of Behavior
based on Learning. As a major advantage, DCBL maintains
the system QoS above a minimal threshold. Trial and errors
learning requires the exploration of a subset of the space of
states to discover new behavior that better fits the context.
Several introduced mechanisms increase the system average
QoS, while maintaining the current one above a threshold.
Another advantage of DCBL is its ability of self adapta-
tion to a changing context. A behavior that was efficient at
a time may progressively be replaced by another one that
turns out to be better in the current context. To keep self
adaptation ability, the system does not stop learning, even
when a very efficient behavior has been found. However,
the system learns less to take advantage of the discovered
behavior.

Using DCBL does not require to perfectly know the appli-
cation area. Only objectives and an initial, relevant enough,
behavior need to be defined by the developer. Then the sys-
tem will autonomously evolve upon this ground to improve
the delivered QoS. Moreover, a good way to use DCBL is
to develop a unique application for several slightly different
contexts. At run time, each application will evolve to find a
behavior that fits well its specific context.

As the control system does not have specific relationships
with the operating system, it will be easily made reusable.
On the other hand, applications do not include the decision
making process, which is common to all applications.

This work only begins and all the possibilities have not been
studied yet. The use of the control system can be extended
to any system lying on a decision making process. Fur-
thermore, it would be interesting to include in DCBL other
learning techniques.

5. REFERENCES

[1] J. L. Contreras and J. L. Sourrouille. A Framework for
QoS Management. In TOOLS’39, pages 183-193. IEEE
Press, 2001.

[2] ISO/IEC. Quality of Service, Guide to Methods and
Mechanisms. Technical Report ISO/IEC 13243 Draft
1.0, ISO/IEC, 1997.

[3] C. Lee and D. Siewiorek. An Approach for Quality of
Service Management. Technical Report
CMU-CS-98-165, CMU, 1998.

[4] L. Steels. When are robots intelligent autonomous
agents 7 Journal of Robotics and Autonomous Systems,
15:3-9, 1995.

[5] P. Stefan and L. Monostori. On the Relationship
between Learning Capability and the
Boltzmann-Formula. In Engineering of Intelligent
Systems, pages 227-236. IEA /AIE, 2001.

[6] R.S. Sutton and A. G. Barto. Reinforcement Learning
:an Introduction. MIT Press, 1998.

[7] C.J. C. H. Watkins and P. Dayan. Q-Learning.
Machine Learning, 8:279-292, 1992.

