IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Garcez, A., Gabbay, D. M. & Lamb, L. C. (2004). Argumentation Neural
Networks: Value-based Argumentation Frameworks as Neural-Symbolic Learning Systems
(TR/2004/DOC/01). .

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4062/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Argumentation Neural Networks: Value-based Argumentation
Frameworks as Neural-Symbolic Learning Systems

A.S. d’Avila Garcez D.M. Gabbay L.C. Lamb

Department of Computing
City University
Technical Report Series
TR/2004/DOC/01
ISSN 1364-4009



Argumentation Neural Networks:
Value-based Argumentation Frameworks as
Neural-Symbolic Learning Systems

A. S. d’Avila Garcez 'and D. M. Gabbay ?and L. C. Lamb 3

Abstract. While neural networks have been successfully
used in a number of machine learning applications [15, 11],
logical languages have been the standard for the representa-
tion of legal and argumentative reasoning [3, 9]. In this paper,
we present a new hybrid model of computation that allows for
the deduction and learning of argumentative reasoning. We do
so by using Neural-Symbolic Learning Systems, where non-
classical reasoning is representable. We propose a Neural Ar-
gumentation Algorithm to translate argumentation networks
into standard neural networks. We then show a correspon-
dence between the semantics of the two networks. The algo-
rithm works not only for acyclic argumentation networks but
also for circular networks. The approach enables cummulative
argumentation through learning, as the strength of the argu-
ments change over time. Keywords: Neural-Symbolic Sys-
tems, Value-based Argumentation Frameworks, Hybrid Sys-
tems, Argumentation.

1 Introduction

Neural-Symbolic integration concerns the application of
problem-specific symbolic knowledge within the connectionist
paradigm [4]. While neural networks have been successfully
used in a number of machine learning applications [15, 11],
logical languages have been the standard for the representa-
tion of legal and argumentative reasoning [3, 9]. In this paper,
we present a new hybrid model of computation that allows for
the deduction and learning of argumentative reasoning [2].
We do so by using Neural-Symbolic Learning Systems where
nonmonotonic reasoning and a number of other non-classical
logics are representable [6]. Neural-Symbolic Learning Sys-
tems use simple, single hidden layer neural network structures
to represent and learn nonmonotonic, epistemic or temporal
symbolic knowledge with the use of off-the-shelf neural learn-
ing algorithms [7, 8].

Our goal is to facilitate learning capabilities in value-based
argumentation frameworks, as arguments may evolve over
time, with certain arguments being strengthened and others
weakened. Although we do not perform learning experiments
in this paper, we show how the object language of Bench-
Capon’s argumentation networks can be translated into stan-
dard neural networks for learning. The networks are set up

I Department of Computing, City University London, UK
2 Department of Computer Science, King’s College London, UK
3 Instituto de Informatica, UFRGS, Porto Alegre, Brazil

by a Neural Argumentation Algorithm, introduced in this pa-
per. The proof that the neural network computes the stable
model semantics of the logic program associated with the ar-
gumentation network is then given, thus showing that the two
representations are equivalent. The algorithm works not only
for acyclic argumentation networks but also for circular net-
works. As a result, we provide a way to tackle the problem
of circularity in arguments by offering learning as an alter-
native to enable multi-part, cummulative argumentation. As
new information comes along, and arguments in the cycle are
strengthened, the circularity is overcome.

In Section 2, we briefly present the basic concepts of neural-
symbolic systems used throughout this paper. In Section 3,
we introduce the Neural Argumentation Algorithm and prove
that the neural network computes the stable models of the
given argumentation network, thus proving the correctness of
the algorithm. Section 4 concludes the paper and discusses
directions for future work.

2 Neural-Symbolic Learning Systems

An artificial neural network is a directed graph. A unit in this
graph is characterised, at time ¢, by its input vector I;(t), its
input potential U;(¢), its activation state A;(t), and its output
O;(t). The units (neurons) of the network are interconnected
via a set of directed and weighted connections. If there is a
connection from unit ¢ to unit j, then Wj; € R denotes the
weight associated with such a connection.

The activation state of a neuron 7 at time ¢t (A;(t)) is a
bounded real or integer number. The input potential of neuron
i at time ¢ (U;(¢)) is obtained by computing a weighted sum
for neuron ¢ such that Ui(t) = > ; Wi;x;(t), where z;(t) is
the input signal from neuron j to neuron ¢ at time ¢, and
Wi; denotes the weight vector (Ws1, Wia, ..., Win) to neuron
i. In addition, ; (an extra weight with input always fixed at
1) is known as the threshold of neuron i. The neuron’s new
activation state A;(t + At) is given by its activation rule h;,
which is a function of the neuron’s current activation state
and input potential, i.e. A;(t + At) = h;(Ai(t),Ui(t)). The
neuron’s output value O;(t + At) is given by O;(t + At) =
fi(As(t + At)). Usually, f; is the identity function.

The units of a neural network can be organised in layers. A
n-layer feedforward network N is an acyclic graph. N consists
of a sequence of layers and connections between successive
layers, containing one input layer, n — 2 hidden layers and



one output layer, where n > 2. When n = 3, we say that N
is a single hidden layer network. When each unit occurring
in the i-th layer is connected to each unit occurring in the
i+ 1-st layer, we say that N is a fully-connected network.

Let r and s be the number of units occurring in the input
and output layer, respectively. A multilayer feedforward net-
work N computes a function f : R™ — R?® as follows. The
input vector is presented to the input layer at time ¢; and
propagated through the hidden layers to the output layer. At
each time point, all units update their input potential and
activation state synchronously. At time ¢, the output vector
is read off the output layer. In addition, most neural models
have a learning rule, responsible for changing the weights of
the network so that it learns to approximate f given a num-
ber of training examples (input vectors and their respective
target output vectors).

C-ILP [6] is a massively parallel computational model based
on an artificial neural network that integrates inductive learn-
ing from examples and background knowledge with deduc-
tive learning from logic programming. Following [12] (see also
[13]), a Translation Algorithm maps a logic program P into a
single hidden layer neural network A such that A/ computes
the least fixed-point of P. This provides a massively parallel
model for computing the widely used stable model semantics
of P [10]. In addition, N can be trained with examples us-
ing a neural learning algorithm [16], having P as background
knowledge. The knowledge acquired by training can then be
extracted [5], closing the learning cycle [17].

Let us exemplify how C-ILP’s Translation Algorithm
works. Each rule (r;) of P is mapped from the input layer
to the output layer of N through one neuron (V) in the sin-
gle hidden layer of A. Intuitively, the Translation Algorithm
from P to A has to implement the following conditions: (c1)
The input potential of a hidden neuron (NN;) can only exceed
Ny’s threshold (6;), activating N;, when all the positive an-
tecedents of r; are assigned the truth-value ¢rue while all the
negative antecedents of r; are assigned false; and (c2) The
input potential of an output neuron (A) can only exceed A’s
threshold (0.4), activating A, when at least one hidden neuron
N, that is connected to A is activated.

Example 1 (C-ILP) Consider the logic program P =
{BC ~ D — A;EF — A;— B} where ~ stands for default
negation [14/. The Translation Algorithm derives the network
N of Figure 1, setting weights (W's) and thresholds (0's) in
such a way that conditions (c1) and (c2) above are satisfied.
Note that, if N ought to be fully-connected, any other link
(not shown in Figure 1) should receive weight zero initially.
Each input and output neuron of N is associated with an atom
of P. As a result, each input and output vector of N' can be
associated with an interpretation for P. Note also that each
hidden neuron N; corresponds to a rule v of P. In order to
compute the stable models of P, output neuron B should feed
input neuron B such that N is used to iterate the fized-point
operator of P [6]. N will eventually converge to a stable state
which is identical to the stable model of P provided that P is
an acceptable program [1].

In the case of argumentation networks it will be sufficient
to consider definite logic programs (i.e. programs without ~).
In this case, the neural network will contain only positive
weights (W). We will then expand such a positive network to

represent attacks using negative weights from the network’s
hidden layer to its output layer.

Interpretations

Figure 1: A neural network for program P.

In order to use the network N of Figure 1 as a massively
parallel model for Logic Programming, we just have to fol-
low two steps: (¢) add neurons to the input and output layers
of N, allowing it to be recurrently connected; and (i7) add
the corresponding recurrent connections with fixed weight
W, = 1, so that the activation of output neuron A feeds
back into the activation of input neuron A, the activation
of output neuron B feeds back into the activation of input
neuron B, and so on. For instance, given any initial activa-
tion in the input layer of A, (network of Figure 1 recurrently
connected), it always converges to the following stable state:
A = false, B = true,C = false,D = false, E = false, and
F = false, that represents the unique fixed-point of P.

3 Argumentation Neural Networks

In the value-based argumentation framework defined in [2],
argumentation networks are used to model arguments and
counter-arguments. A typical example in the area is the fol-
lowing moral debate example.

Hal, a diabetic, loses his insulin in an accident through no
fault of his own. Before collapsing into a coma, he rushes to
the house of Carla, another diabetic. She is not at home, but
Hal breaks into her house and uses some of her insulin. Was
Hal justified? Does Carla have a right to compensation? The
following are some of the arguments involved in the example.

A: Hal is justified, he was trying to save his life;

B: It is wrong to infringe the property rights of another;

C: Hal compensates Carla;

D: Hal is endangering Carla’s life;

E: Carla has abundant insulin; and

F': If Hal is too poor to compensate Carla he should be allowed
to take the insulin as no one should die because they are poor.

In [2], arguments and counter-arguments are arranged in an
argumentation network, as in Figure 2, where an arrow from
argument X to argument Y indicates that X attacks Y. For
example, the fact that it is wrong to infringe Carla’s right of
property (B) attacks Hal’s justification (A).

In the argumentation network of Figure 2, some aspects
may change as the debate progresses and actions are taken,
with the strength of an argument in attacking another chang-
ing in time. This is a learning process that can be imple-
mented using a neural network in which the weights encode



the strength of the arguments. The neural network for the set
of arguments {A, B, D} is depicted in Figure 3. The network
is an auto-associative single hidden layer network with input
(A,B,D), output (A,B,D) and hidden layer (hi,hs,hs3). Solid
arrows represent positive weights and dotted arrows repre-
sent negative weights. Arguments are supported by positive
weights and attacked by negative ones. Argument A (input
neuron A), for example, supports itself (output neuron A)
with the use of hidden neuron hj. Similarly, argument B sup-
ports itself (via hz), and so does argument D (via h3). From
the argumentation network, B attacks A, and D attacks A.
The attacks are implemented in the neural network by the
negative weights (see dotted lines in Figure 3) with the use of
h2 and h3.

F"Ci B
D

Figure 2: The moral debate argumentation network.

A

E

Figure 3: A neural network for arguments A, B, D.

The network of Figure 3 is a standard feedforward neural
network that can be trained with the use of a standard neural
learning algorithm. Training would change the initial weights
of the network (the initial belief on the strength of argu-
ments and counter-arguments), according to examples of in-
put/output patterns, i.e. examples of the relationship between
arguments A, B and D. If the absolute value of the weight
from neuron h; to output neuron A is greater than the sum
of the absolute values of the weights from neurons hy and hs
to A, one could say that argument A prevails (in which case
output neuron A should be activated in the neural network).

We shall implement the above behaviour using C-ILP net-
works. The Neural Argumentation Algorithm introduced be-
low takes an argumentation network as input and produces a
C-ILP neural network as output. These networks use a semi-
linear activation function h(z) = He#_,ﬁ — 1 and inputs in
{~1, 1} to enable effective learning.* This has to be taken into
account by the algorithm. We do so by defining Apin € (0,1)
as the minimum activation for a neuron to be considered ac-
tive (or true), and Amaz € (—1,0) as the maximum acti-
vation for a neuron to be considered non active (or false).
We assume, for mathematical convenience and without loss
of generality, that Amez = —Amin- Now, we need to define

4 A differentiable function such as h(z) is necessary, e.g., if a gra-
dient descent learning algorithm is to be used. The parameter
B is responsible for defining the slope of the function. Typically,
B=1.

the values of Amin, W's and 0’s such that the neural network
can compute the behaviour of the argumentation framework.
The values are set by the algorithm, and come from the proof
of Theorem 1, which shows that the neural network indeed
computes the behaviour of the argumentation framework. The
network can then be run, as exemplified in the sequel, to com-
pute the prevailing arguments.

Definition 1 An argumentation mnetwork has the form
A = < a,attack,v >, where a is a set of arguments, attack C
a? is a relation indicating which arguments attack which other
arguments, and v is a function from attack to {0,1}, which
gives the relative strength of an argument. If v(as,aj) = 1
then a; is said to be stronger than oj. Otherwise, oy is said
to be weaker than o;.

Given a definite logic program P, consider that the atoms of
P are numbered from 1 to n such that the input and output
layers of A are vectors of length 7, where the i-th neuron
represents the i-th atom of P.

Neural Argumentation Algorithm

1. Given an argumentation network A with arguments

a1,Q2,...,0n, make P = {r1 : a1 — ai,r2 : az —
Q2. T3 Qp — Qn b

2. Let Amin >0, W >0and W <0;

3. Calculate W > (1,/BAmin) (In (14 Amin)

in (]- - Amin));
4. For each rule 7 of P (1 <1< n):
(a) Add a neuron N; to the hidden layer of N;

(b) Connect neuron «; in the input layer to N; and
set the connection weight to W;

(¢c) Connect N; to neuron «; in the output layer and
set the connection weight to W;

(d) Set the threshold of all hidden and output

neurons to zero;

5. Set g(z) = as the activation function of the
neurons in the input layer of NP
6. Set h(z) as the activation function of the neurons
in the hidden and output layers of N.E
7. For each (ay, 0y ) € attack, do:
(a) Connect hidden neuron N; to ouptut neuron oj;
(b) If v(ai,a;) =0 then
i. Set connection weight W' > h_l(Amin) — WAmin;
(¢) If v(ai,a;) =1 then
i. Set the connection weight W’ < (h™'(—Ami)) —
W)/Amin;

8. If N ought to be fully-connected, set all other
connections to zero.

Note that the programs P obtained from an argumentation
network will always have the form of a set of rules r; : a; — .

5 In this way, the activation of the neurons in the

input layer of N, given by each input vector i, will
represent an interpretation for P.

6 In this way, a gradient-based learning algorithm, such as Back-
propagation, can be applied on N.



As a result, differently from in the C-ILP Translation Algo-
rithm [6], in which rules having more than one antecedent are
accounted for, here there is always a single antecedent per rule
(ai). This allows us to use Amin > 0 and 0 = 0 when using the
algorithm to calculate W and W’. In addition, the fact that
W > 0 and W’ < 0 fits very well with the idea of arguments
having strengths (W), and attacks also having strengths (W').
Of course, one could restrict W and W' to intervals. In the
above algorithm, we leave this open to the user. The values
of W and W’ could, for example, be defined by an audience
using any voting system [2]. In this system, at some point, an
accumulation of attacks with different strengths - neither be-
ing individually stronger than the argument being attacked
- might produce a value Y, W; that overcomes W. This is
naturally the way that neural networks work. All we need to
make sure is that the neural network computes the prevailing
arguments of an argumentation framework, according to the
following definition.

Definition 2 (N computes A) Let (o, o) € attack. We say
that a neural network N' computes the prevailing arguments of
an argumentation framework A if (i) and (i) below hold. (i)
If o is stronger than oy then output neuron oy will not be ac-
tivated when input neurons o; and oy are both activated, and
(i3) If a; is weaker than aj then the activation of input neu-
ron o; will not be individually responsible for output neuron
a; being deactivated when input neuron oy is activated.

Theorem 1 (Correctness of Argumentation Algorithm) For
each argumentation network A, there ezists a feedforward
neural network N with ezactly one hidden layer and semi-
linear neurons such that N' computes A.

Proof. First, we need to show that the positive neural net-
work computes P. When r; : o — a; € P, we need
to show that (a) if a; > Amin in the input layer then
a; > Amin in the output layer. We also need to show that
(b) if i < —Amin in the input layer then a; < —Amin
in the output layer. (a) In the worst case, the input poten-
tial of hidden neuron N; is W Amin, and the output of N;
is h(WAmin). We want h(WAmin) > Amin. Then, again
in the worst case, the input potential of output neuron o
will be W Amin, and we want h(W Amin) > Amin. As a re-
sult, W > hil(Amin)/Amin needs to be verified, which gives
W > (1,/BAmin) - (In (1 4+ Amin) — In (1 — Amin)), as in the
algorithm. The proof of (b) is analogous to the proof of (a).
Now, we need to show that the addition of negative weights to
the neural network implements the attacks in the argumenta-
tion network. When v(as,a5) = 1, we want to ensure that
the activation of output neuron oy is smaller than —Amin
whenever both hidden neurons N; and Nj are activated. In
the worst case scenario, N; presents activation Amin while Nj
presents activation 1. We have h(W + AminW') < —Amin.
Thus, we need W' < (A7 (—=Amin)) — W)/Amin; this is ob-
tained directly from the Argumentation Algorithm. Simi-
larly, when v(ai,a;) = 0, we want to ensure that the activa-
tion of output neuron aj is larger than Amin whenever both
hidden neurons N; and Nj are activated. In the worst case
scenario, now N; presents activation 1 while N; presents ac-
tiwation Amin. We have h(AminW + W') > Amin. Thus, we
need W' > hil(Amin) — W Amin; again, this is obtained di-
rectly from the Argumentation Algorithm. This completes
the proof. O

Our next step is to run the neural network to find out which
arguments prevail in a situation. The key to running the net-
work properly is to connect output neurons to their corre-
sponding input neurons using weights fixed at 1, so that the
activation of output neuron A, for example, is fed into the
activation of input neuron A the next time round. This im-
plements chains such as A attacks B, B attacks C, C attacks
D, and so on, by propagating activations around the network.
The following example illustrates the dynamics of argumen-
tation neural networks.

Example 2 (Argument Computation) Take the case in
which an argument A attacks an argument B, and B attacks
an argument C, which in turn attacks A in a cycle. In order to
implement this in a neural network, we need three hidden neu-
rons (hi, ha, hs), positive weights to explicitly represent the
fact that A supports itself (via hi), B supports itself (via ha),
and so does C (via hs). In addition, we need negative weights
from hi to B, from he to C and from hs to A to implement
attacks (see Figure 4). If the value of argument A (i.e. the
weight from h1 to A) is stronger than the value of argument
C (the weight from hs to C, which is expected to be the same
in absolute terms as the weight from hs to A), C cannot attack
and defeat A. As a result, A is activated. Since A and B have
the same value, B is not activated, since the weights from hy
and hz to B will both have the same absolute value. Finally, if
B is not activated then C will be activated, and a stable state
{A,C} will be reached in the network. In Bench-Capon’s model
[2], this is precisely the case in which colour blue is assigned
to A and B, and colour red is assigned to C with blue being
stronger than red. Note that the order in which we reason does
not affect the final result (the stable state reached). For exam-
ple, if we started from B successfully attacking C, C would not
be able to attack A, but then A would successfully attack B,
which would this time round not be able to successfully attack
C, which in turn would be activated in the final stable state
{A,C}. If, however, all the weights are the same in absolute
terms, no argument is supposed to win. In this case, neither of
output neurons A,B,C will be activated for any input given,
indicating precisely this situation. The neural network does
not loop, but always stabilises in [-1,-1,...,-1], which is what
one would expect.

The implementation of the network’s behaviour (weights
and biases) must be such that, when we start form a number
of positive arguments (input vector [1,1,...1]), weights with
the same absolute values cancel each other producing zero
as the output neuron’s input potential. Generally speaking, a
neuron with zero or less input potential is then deactivated,
while a neuron with positive input potential is activated. We
conclude by discussing two alternative implementations of the
moral debate example.

Example 3 (Moral Debate Neural Network) We apply the
Neural Argumentation Algorithm to the argumentation net-
work of Figure 2, and obtain the neural network of Figure 5.
From the Translation Algorithm, we know that Amin > 0 and
W > 0. Let us take Amin = 0.5 and W =5 (recall that W is
the weight of solid arrows in the network). Following [9], we
reason about the problem by grouping arguments according to
the features of life, property and fact. Arguments A, D and F
are related to the right of life, arguments B and C are related



to property rights, and argument E is a fact. We may argue
whether property is stronger than life but facts are always the
strongest. If property is stronger than life then v(B,A) =1,
v(D,A) =1, v(C,B) =1, v(C,D) = 1, v(E,D) = 1, and
v(F,C) = 0. From the Neural Argumentation Algorithm,
when v(ai,a;) = 0 we must have W' > —1.4, and when
v(ay, ) = 1 we must have W' < —12.2. The actual value of
each attack may depend on the audience. Nevertheless, pro-
vided the above condition on W' are satisfied, according to
Theorem 1, the network will compute the expected prevailing
arguments, as follows: F does not defeat C, C defeats B, E de-
feats D and, as a result, we obtain {A,C,E} as the acceptable
set of arguments. Nonetheless, if life is considered stronger
than property then v(F,C) = 1 now, and as a result, F defeats
C and, since C is defeated, it cannot defeat B, which in turn
cannot defeat A (because life is stronger than property). Thus,
we obtain the set {A,B,E,F} of acceptable arguments.” This
shows that two different lines of argumentation will provide
the same answer to the question of whether Hall was justi-
fied (A), but two different answers to the question of whether
Carla has the right to compensation (C).

WP
s

T
A B (©

Figure 4: A circular argumentation neural network.

Figure 5: The moral-debate example as a neural network.

4 Conclusion and Future Work

In this paper, we have presented a new hybrid model of com-
putation that allows for the deduction and learning of argu-
mentative reasoning. The model combines value-based argu-
mentation frameworks and neural-symbolic learning systems

7 The complete set of argument values in this case is: v(B, A) =
0, v(D,A) =1, v(C,B) = 1, v(C,D) = 0, v(E,D) = 1, and
v(F,C) = 1. The values of W' are calculated in the same way as
before.

by providing a translation from argumentation networks to
C-ILP neural networks, and a theorem showing that such a
translation is correct. The model works not only for acyclic
argumentation networks but also for circular networks and
enables cummulative argumentation through learning.
Experiments on learning argumentation neural networks
capable of evolving over time are currently being conducted.
Complexity issues regarding the parallel computation of ar-
gumentation neural networks in contrast with standard value-
based argumentation frameworks are also being investigated.
We believe that a neural implementation of this reasoning
process may, in fact, be advantageous from a purely compu-
tational point of view due to neural networks’ parallel nature.

REFERENCES

[1] K. R. Apt and D. Pedreschi. Reasoning about termination
of pure prolog programs. Information and Computation,
106:109-157, 1993.

[2] T.J. M. Bench-Capon. Persuasion in practical argument us-
ing value-based argumentation frameworks. Journal of Logic
and Computation, 13:429-448, 2003.

[3] A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An ab-
stract, argumentation theoretic approach to default reason-
ing. Artificial Intelligence, 93:63-101, 1997.

[4] 1. Cloete and J. M. Zurada, editors. Knowledge-Based Neu-
rocomputing. The MIT Press, 2000.

[6] A.S.d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic
knowledge extraction from trained neural networks: A sound
approach. Artificial Intelligence, 125:155-207, 2001.

[6] A.S.d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-
Symbolic Learning Systems: Foundations and Applications.
Perspectives in Neural Computing. Springer-Verlag, 2002.

[7] A. S. d’Avila Garcez and L. C. Lamb. Reasoning about
time and knowledge in neural-symbolic learning systems. In
S. Thrun, L. Saul, and B. Schoelkopf, editors, Advances in
Neural Information Processing Systems 16, Proceedings of
the NIPS 2003 Conference, Vancouver, Canada, To appear
2004. MIT Press.

[8] A. S. d’Avila Garcez, L. C. Lamb, K. Broda, and D. M.
Gabbay. Applying connectionist modal logics to distributed
knowledge representation problems. International Journal of
Artificial Intelligence Tools, (to appear) 2004.

9] D.M. Gabbay and J. Woods. The law of evidence and labelled
deduction: A position paper. Phi News, 4, October 2003.

[10] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In Proceedings of the fifth Logic Program-
ming Symposium, pages 1070-1080, 1988.

[11] S. Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall, 1999.

[12] S.Holldobler and Y. Kalinke. Toward a new massively parallel
computational model for logic programming. In Proceedings
of the Workshop on Combining Symbolic and Connectionist
Processing, ECAI 9/, pages 68-77, 1994.

[13] S. Holldobler, Y. Kalinke, and H. P. Storr. Approximating the
semantics of logic programs by recurrent neural networks. Ap-
plied Intelligence Journal, Special Issue on Neural Networks
and Structured Knowledge, 11(1):45-58, 1999.

[14] J. W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1987.

[15] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing internal representations by error propagation. In D. E.
Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
volume 1, pages 318-362. MIT Press, 1986.

[17] G. G. Towell and J. W. Shavlik. Knowledge-based artificial
neural networks. Artificial Intelligence, 70(1):119-165, 1994.



