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ABSTRACT
Conducting experiments on large scale musical datasets of-
ten requires the definition of a dataset as a first step in the
analysis process. This is a classification task, but metadata
providing the relevant information is not always available
or reliable and manual annotation can be prohibitively ex-
pensive. In this study we aim to automate the annotation
process using a machine learning approach for classification.
We evaluate the effectiveness and the trade-off between accu-
racy and required number of annotated samples. We present
an interactive incremental method based on active learn-
ing with uncertainty sampling. The music is represented
by features extracted from audio and textual metadata and
we evaluate logistic regression, support vector machines and
Bayesian classification. Labelled training examples can be
iteratively produced with a web-based interface, selecting
the samples with lowest classification confidence in each it-
eration.

We apply our method to address the problem of instrumen-
tation identification, a particular case of dataset definition,
which is a critical first step in a variety of experiments and
potentially also plays a significant role in the curation of
digital audio collections. We have used the CHARM data-
set to evaluate the effectiveness of our method and focused
on a particular case of instrumentation recognition, namely
on the detection of piano solo pieces. We found that uncer-
tainty sampling led to quick improvement of the classifica-
tion, which converged after ca. 100 samples to values above
98%. In our test the textual metadata yield better results
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than our audio features and results depend on the learning
methods. The results show that effective training of a clas-
sifier is possible with our method which greatly reduces the
effort of labelling where a residual error rate is acceptable.

1. INTRODUCTION
Digital libraries are growing quickly to sizes that render
many research tasks too time consuming and costly when
performed manually. Although standard library classifica-
tion should include relevant classification data, the situa-
tion in practice is that metadata is heterogeneous. It often
comes from different sources, has been encoded by different
standards and is of unknown quality and reliability. This
situation is similar to other fields, such as health, geography
and marketing, where the concepts and methods associated
with the keyword Big Data have recently gained attention
in many areas of research and applications. In order to ef-
ficiently annotate and index digital collections of music, the
statistical and machine learning techniques that enable au-
tomation need to become part of the research method in
digital musicology.

We are working on the adaptation of Big Data to musicology
in the current Digital Music Lab1 project. As part of this
project we apply automatic classification methods to define
datasets for music research. Even answers to simple ques-
tions, like the instrumentation of a piece, are not straight-
forward to extract from existing metadata. With datasets
that reach millions of audio, video and symbolic informa-
tion items, manual labelling takes too long and is too costly.
Therefore automatic classification is needed to reduce the
human labelling effort and make large scale music research
possible.

But even with automatic classifiers, a certain amount of
training data is usually needed for supervised training. In
this paper, we present an application of uncertainty sam-
pling and active leaning in an effort to minimise the amount
of training data needed for building high-performance clas-
sifiers. We furthermore employ unsuperwised training in
conjunction with Restricted Boltzmann Machines in an ef-

1AHRC project AH/L01016X/1, http://dml.city.ac.uk
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fort to further improve the classification performance using
the remaining data yet to be labelled.

2. RELATED WORK
Underwood et al. [19] present a principal example of the ap-
plication of automatic classification algorithms to big datasets:
They classify fiction literature from the period 1750-1850 by
“point of view” into first person versus third person, with
high accuracy on a pre-annotated set of 288 items, and ap-
ply their method for further analysis on a dataset of over
30,000 titles.

The task of instrument identification is not new to the disci-
pline of Music Information Retrieval (MIR). Earlier work,
such as Chétry [5] focuses on identifying instruments in
isolated instrument recordings, whereas later work such as
Giannoulis and Klapuri [10] handles mixed instruments in
polyphonic audio.

It should be noted that the problem of instrument iden-
tification is indeed related but is certainly not identical to
the problem at hand: instrumentation identification is moti-
vated by our need to characterise recordings according to the
entire set of instruments taking part in a track (in the con-
text of classical music this can be thought of as one possible
way of sub-genre classification). With very few exceptions,
this variant of the problem has not so far been approached in
the literature. One such exception is provided by Schedl and
Widmer [16], who use web-mining and a purely text-based
approach to obtain information about band members and in-
strumentation for Rock tracks. Barbedo and Tzanetakis [2]
apply audio-based instrument recognition to polyphonic au-
dio by extracting segments in which individual instruments
appear in isolation. Brown [4] apply MFFC-based classifica-
tion to detect specific instruments (clarinet and saxophone)
and carefully select their test set to contain these instru-
ments in isolation. Itoyama et al. [14] combine source sepa-
ration methods with Bayesian instrument classification and
successfully apply their instrument identification techniques
to mixtures of 2-3 instruments. All the above citations make
valuable contributions to the field, yet do not provide a fea-
sible direct solution to our particular problem due to per-
formance limitations and due to the crucial difference in the
problem formulation as explained above.

3. THE CHARM DATASET
In this study we use a dataset published by the AHRC Re-
search Centre for the History and Analysis of Recorded Mu-
sic (CHARM) (2004-2009). It contains digitised versions of
nearly 5000 copyright-free historical recordings, dated (1902-
1962) as well as metadata describing both the provenance of
the recordings and the digitisation process.

The richness of annotations in the CHARM dataset as well
as its size render it a good subject of musicological analysis
using computational methods. Table 2 shows the distribu-
tion of included records over time, with the most included
items being recorded between 1920 and 1950. The com-
posers with the most recorded pieces in the dataset are Schu-
bert, Mozart, Bach, Beethoven, Brahms, Wagner, Haydn
and Chopin.

3.1 Ground Truth for Piano Solo
For our first classification experiments and to bootstrap our
sampling process we annotated a sample of 591 recordings
in the CHARM dataset regarding to their instrumentation
by listening into the acoustic content of the pieces as well as
taking into account the existing metadata. A histogram of
those annotations is given in Table 1.

Instrumentation Count
piano solo 133
orchestra 123
vocal + orchestra 64
chamber 42
choir 40
vocal + piano 40
violin + piano 37
string quartet 25
vocal + organ 20
organ 13
piano + orchestra 9
piano duet 7
violin 7
piano quartet 6
harpsichord 5
vocal 5
cello + piano 4
vocal + harp 3
organ + orchestra 2
violin + harpsichord 2
banjo 1
brass 1
oboe + piano 1
viola + piano 1
Total 591

Table 1: Histogram of our expert annotations on the
CHARM data subset.

In the present paper we focus on whether pieces are an-
notated as piano solo or otherwise. The piano solo cate-
gory marks music that contains only piano as an instrument
through the whole recording. Out of all annotated pieces,
133 fall into this category, and 458 recordings were anno-
tated as the mutually exclusive category not solo piano.

Decade Num. Records
N/A 1740
1900 177
1910 114
1920 1060
1930 694
1940 900
1950 182
1960 6

Table 2: The number of recordings in the entire
CHARM dataset ordered by decade.



Artist Composer Notes Title
519 246 335 1074

Table 3: Number of unique terms in each metadata
field.

4. FEATURE EXTRACTION
For representing the CHARM dataset to the classifier, we
extracted a set of features representing the different sources
of information. In order to compare their effectiveness, we
extracted features from the metadata and audio, and later
test their individual and combined effect on classification
performance in Section 6.2.

4.1 Metadata
One of the outputs of CHARM is a spreadsheet contain-
ing manually created metadata for the entire dataset. The
spreadsheet associates with each file name several metadata
fields, some related to the recording itself (such as title,
artist, composer) and some relating to the digitisation pro-
cess (including stylus weight and speed). Additionally, there
is a field titled ”Notes” which sometimes includes some in-
formation about instrumentation (e.g. in some piano solo
recordings, but certainly not all, it contains the string ”Pi-
anoforte solo”), it is often empty, and sometimes also in-
cludes other notes inserted by the CHARM team.

Since the different fields potentially have different contribu-
tions to our classification task, and in order to avoid ex-
tremely sparse representations, we applied a standard bag-
of-words feature extraction, separately to each metadata
field.

We transferred the contents of the metadata spreadsheet to a
MySQL database, and extracted the bag of words frequency
vectors in the following manner: For each of the relevant
fields (Title, Artist, Composer, Notes), we created a separate
list of words containing all the words that appear in that field
across the entire database. Table 3 contains the number of
unique terms found for each of those fields.

For each file, we then collected the term frequencies in four
separate vectors (one for each field), with a dimensional-
ity corresponding to the respective number of unique terms.
The vectors were then concatenated to yield the metadata
features x ∈ R2174.

4.2 Instrumentation Audio Features
In order to estimate instrumentation directly from poly-
phonic audio, we employed the efficient automatic music
transcription method of Benetos et al. [3]. The transcrip-
tion system is based on probabilistic latent component anal-
ysis, which is a spectrogram factorisation technique that is
able to produce a pitch activation matrix (useful for multi-
pitch detection) but also an instrument contribution matrix
(useful for instrument assignment experiments).

In specific, the model takes as input a normalised log-frequency
spectrogram Vω,t and approximates it as a bivariate proba-
bility distribution P (ω, t), which is in turn decomposed as:

P (ω, t) = P (t)
∑
p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p) (1)
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Figure 1: Extracted instrumentation features for an
orchestral recording from the CHARM database.
Index s corresponds to (from left to right): piano1,
piano2, piano3, cello, clarinet, flute, guitar, harpsi-
chord, oboe, violin, tenor sax, bassoon, and horn.

where P (ω|s, p, f) are pre-extracted spectral templates for
pitch p and instrument s, which are shifted across log-frequency
according to parameter f . P (t) is the spectrogram energy
(known quantity), Pt(f |p) is the time-varying log-frequency
shifting for pitch p, Pt(s|p) is the instrument contribution,
and Pt(p) is the pitch activation. All unknown parameters
can be estimated iteratively using the Expectation-Maximi-
sation algorithm (15-20 iterations are required for conver-
gence).

In order to extract instrumentation features, the instrument
contribution Pt(s|p) is used. We first create a joint prob-
ability distribution of instruments, pitches and time using
estimated parameters:

P (s, p, t) = Pt(s|p)Pt(p)P (t) (2)

Subsequently, we marginalise the joint distribution in or-
der to compute a probability of each instrument across all
pitches, for the complete duration of each recording:

P (s) =
∑
p,t

P (s, p, t) (3)

For the specific experiments, the transcription system used
a dictionary of pre-extracted templates for bassoon, cello,
clarinet, flute, guitar, harpsichord, horn, oboe, piano, tenor
sax, and violin. Templates were extracted using isolated
note samples from the RWC database of Goto et al. [11],
as well as the MAPS database of Emiya et al. [8]. The
length of s was 13, covering 3 piano templates as well as one
template for each other instrument. As an example, Figure 1
shows the instrumentation features x ∈ R13 extracted for an
orchestral music recording.

4.3 Combined Features
It has been shown that the combination of different feature
types can improve performance of classification methods.
We therefore generate combined features by concatenating
all metadata and audio features, resulting in feature vectors
x ∈ R2187.



1 . . . h

. . . v

W

c

b

Figure 2: A simple Restricted Boltzmann Machine
with four visible, two hidden, and no bias units.

4.4 RBM Feature Transformation
The large dimensionality and sparsity of the features de-
scribed above motivates the use of a feature-transform that
might potentially reduce the dimensionality and increase the
efficiency of the feature representation. Restricted Boltz-
mann Machines (RBMs) can be used for learning such a
transformation that furthermore increases the complexity of
functions which can be represented by linear models such as
Support Vector Machines (SVMs) (see Section 5.3).

The RBM is an undirected, bipartite graphical model con-
sisting of a set of r units in its visible layer v and a set of
q units in its hidden layer h (Figure 2). The two layers are
fully inter-connected by a weight matrix Wr×q and there ex-
ist no connections between any two hidden units, or any two
visible units. Additionally, the units of each layer are con-
nected to a bias unit whose value is always 1. The weights
of connections between visible units and the bias unit are
contained in the visible bias vector br×1. Likewise, for the
hidden units there is the hidden bias vector cq×1. The RBM
is fully characterised by the parameters W, b and c.

In its original form, the RBM has binary, logistic units in
both layers. The activation probabilities of the units in the
hidden layer given the visible layer (and vice versa) are de-
termined by the logistic sigmoid function as p(hj = 1|v) =
σ(cj + Wj·v), and p(vi = 1|h) = σ(bi + W ′i·h) respectively.
Due to the RBM’s bipartite structure, the activation proba-
bilities of the nodes within one of the layers are independent,
if the activation of the other layer is given, i.e.

p(h|v) =

q∏
j=1

p(hj |v) (4)

p(v|h) =

r∏
i=1

p(vi|h) . (5)

This property of the RBM makes it suitable for learning a
non-linear transformation of an input feature space [6]. This
is typically carried out in two steps: (1) unsupervised pre-
training, and (2) supervised fine-tuning of the model[13].
Pre-training is done using the Contrastive Divergence algo-
rithm [12], and fine-tuning using backpropagation [15].

Transformed features obtained after each of these steps, when
used with the original features, have been found to improve
the performance on a classification/prediction task [13]. In
the present paper, we transform the audio features with an
RBM trained only in an unsupervised manner.

5. ACTIVE LEARNING WITH INCREMEN-
TAL TRAINING SETS

We formulate the task of detecting whether a pieces instru-
mentation corresponds to piano solo or not as a binary clas-
sification task:

y = classify(x) (6)

Here, y ∈ {0, 1}2 is the binary representation of the class
(1 representing piano solo and 0 any other instrumentation)
and x ∈ R corresponds to the feature vector describing the
record in question.

In this paper we explore how automatic classifiers can be
trained to high performance using a minimal amount of data
training data. With the perspective of building interactive
access and research tools for large music collections, we fol-
low the paradigms of incremental and interactive data col-
lection. The data collection is controlled by active learning,
i.e. the learning systems determines which data next to re-
quest labels for from the human annotator [1, 17].

In order to facilitate incremental data collection, we imple-
mented a web interface based on Wolff et al. [20]. The
gamified interface provides annotators with an additional
incentive to contribute, while allowing annotations to be dis-
tributed in time and in space. The system’s training data
can be updated either after each submission, or alternatively,
submissions can be accumulated and processed as batch if
the user base grows and heavier traffic is expected.

Figure 3: A screenshot of the gamified web interface
for incremental annotation.

Depending on the algorithm, learning from added training
data can be accomplished by retraining models with the ex-
tended training sets or by online learning, which allows mod-
els to adapt to new training data by modifying some of the
learnt parameters. In the experiments below, we simulate
active learning by incrementally sampling from the training
data and retraining the models.

5.1 Uncertainty Sampling
In our experiments we select new training samples using a
confidence measure. The goal is to query the human an-
notator about samples that the automatic classifier is most

2Alternatively y ∈ {−1, 1}, depending on normalisation.



uncertain about. To this end we define confidence measures
which describe the confidence of a model for classifying a
specific sample.

The definition of this measure and possible alternatives de-
pend on the classifier type. For probabilistic classifiers, we
measure uncertainty using the classifier’s prediction proba-
bility of both classes. Let x be the feature vector, then we
derive the confidence as the sum of the absolute values of
the probability estimates:

confidence = |P (y = 1|x)− 0.5|+ |P (y = 0|x)− 0.5| (7)

For the SVM algorithm described in Section 5.3, where this
estimate is not available, we use the distance of x to the
hyperplane w which was learnt to separate the classes.

We now describe the algorithms evaluated in our experi-
ments. Our experiments are based on the implementations
in the python framework scikit-learn3.

5.2 Logistic Regression
A standard tool in classification, Logistic Regression (LREG)
can be used to predict a binary target vector from a binary
input. The conditional probability of an output given the
input is defined by

Pw(y = ±1 | x) =
1

1 + e−ywᵀx
. (8)

Here, w is a weight vector, x corresponds to the input fea-
tures of a record and y is the output classification.

In our experiments we use the liblinear4 implementation as
included in scikit-learn. We chose to use the L2-norm for
penalising unmatched training data, a stopping criteria tol-
erance of 10−8 and add a constant intercept to the model.
We furthermore employ only weak regularisation using a reg-
ularisation factor of C = 100000.0. For further details on
the optimisation procedure see Yu et al. [21].

5.3 Support Vector Machines
A SVM [7] is a non-probabilistic binary linear classifier which
constructs a hyperplane in a high- or infinite-dimensional
space, which can be used for classification or regression.
This mapping to a higher-dimensional space than the one
in which features originally reside helps in achieving lin-
ear separability which may not always be the case in the
lower-dimensional space. Moreover, the mapping is designed
to ensure that dot-products may be computed efficiently in
terms of the variables in the original space, by defining them
in terms of a kernel function selected to suit the problem.
The hyperplanes in the higher-dimensional space are defined
as the set of points whose dot-product with a vector in that
space is constant. And while there may be many hyper-
planes which classify a given set of features correctly, the
SVM chooses the one that represents the largest separa-
tion, or margin, between two classes. This is known as the
maximum-margin hyperplane. The samples on the margin
are known as Support Vectors.

3http://scikit-learn.org
4http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Given a training set of feature-label pairs (xi, yi) where xi ∈
Rn and y ∈ {1,−1}, the SVM requires the solution of the
following optimisation problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (9)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0,

where the function φ maps the training feature vectors xi
into the higher-dimensional space. C > 0 is the penalty
parameter of the error term. K(xi,xj) ≡ φ(xi)

Tφ(xj) is
the aforementioned kernel function.

While several different kernels of differing complexities are
available, in the present work we employ a linear kernel
which is defined as K(xi,xj) = xTi xj . This linear SVM can
be solved efficiently by gradient methods such as coordinate
descent [9].

We here compare the implementation based on liblinear,
with parameters C = 105 as well as the stochastic gradient
descent version directly implemented in scikit-learn, which
we call Stochastic Gradient Descent (SVMGD).

5.4 Multinomial Naive Bayes
A Multinomial Naive Bayes (BAY) classifier is a probabilis-
tic model. The conditional probability of a record d belong-
ing to class c is computed as

P (c|d) ∝ P (c)
∏

1≤k≤n

P (xk|c) (10)

where n is the feature vector size and xk the k-th feature
element. We use a multinomial distribution with Laplacian
smoothing as the event model P (f |c). The underlying as-
sumption of Naive Bayes is that the features are indepen-
dent, which is generally a simplification. Nevertheless, it has
been been used successfully in text classification [22]. The
probabilities can be updated incrementally, thus supporting
online learning.

6. EXPERIMENTS
For our experiments we used 4-fold cross-validation, which
split the ground truth data into randomly selected sets of
training data used for fitting the classifiers, and test sets for
analysing their generalisation performance: The data were
split into four subsets. Special characteristics of the meta-
data such as artists were not considered when splitting the
dataset. In each of four iterations, three subsets were used as
training sets and the remaining one as test set. The param-
eters concerning regularisation during training of the differ-
ent classifiers as reported in Section 5 where determined in
previous experiments on the CHARM dataset.

6.1 Overall Performance
In this section we compare the different machine learning
algorithms with regard to their ability to learn the desired
classification task. We here use the combined metadata and
audio features to provide the maximal amount of informa-
tion to the classifiers. Table 4 compares the different algo-
rithms in terms of their classification performance and the
training examples needed. All classifiers are able to correctly

http://scikit-learn.org
http://www.csie.ntu.edu.tw/~cjlin/liblinear/


classify the test data with less than 6% error rate given the
full training set. In particular, the SVM-based and RBM
approaches achieve less than 3% error, RBM providing the
top performance in this comparison. The online-learning
BAY algorithm shows the worst performance, which is in
line with earlier experiments, and motivates future exper-
iments on the parametrisation of online learning with un-
certainty sampling. Given the high dimensionality of the
combined features, the good performance of the algorithms
is probably related to close relations of terms such as artists
or further annotations in the metadata features to the piano
solo classification. Regarding this property, CHARM is not
exceptional and the good results should very well apply to
other datasets.

In order to assess the effectiveness of uncertainty sampling
as described in Section 5.1, we also analyse how fast the al-
gorithms converge to their final performance when the train-
ing set grows incrementally. The number of training samples
needed is determined as the point where an algorithm’s per-
formance does not exceed its performance for the full train-
ing set (final err) by more than 1%. Considering that the
measured standard deviation of the algorithms along the
cross validation folds averages around 1%, we choose this
heuristic as an indicator of the effectiveness of our approach
of uncertainty sampling.

In Figure 4, the test set performance of SVM is plotted
for uncertainty sampling (“Confidence-based selection”, blue
curve) and Random selection (green curve) for adding train-
ing data. While the blue curve reaches the final performance
with only 85 training examples, the performance of random
selection only converges to the same performance with all
training examples.

As can be seen in the first column of Table 4, uncertainty
sampling can achieve improved performance earlier – with
less training data – for all classifiers. Random sampling does
only reach its best performance with the full or considerably
larger training sets. Table 4 also reports the classification er-
ror difference at the number of training constraints sufficient
for uncertainty sampling to approach its best performance
within 1%. We call this a plateau. Except for the RBM
approach, the random sampling performs worse than uncer-
tainty sampling when this plateau is reached. The RBM
features allow better results even when no uncertainty sam-
pling is used.

Figure 5 shows the confidence of classifications on the test
set for SVM. The blue curve corresponding to uncertainty
samling reaches higher confidence on the unknown test set
when compared to random sampling. While the training
set confidence (not plotted here) is low due to the explicit
selection of such data, we find that selecting this data is
beneficial for faster learning and better generalisation.

6.2 Feature Type
It has been shown that feature information also strongly in-
fluences a classifier’s generalisation performance. We com-
pared the performance of metadata, audio and combined
features. Our experiments showed that metadata features
performed well with or without the audio features. Audio
features on the other hand only allowed for low performance

Figure 4: Test set performance of SVM. The bottom
blue curve corresponds to uncertainty sampling, the
top green curve measures random sampling.

Figure 5: Confidence of classifications on the test
set for SVM. The bottom blue curve corresponds to
uncertainty sampling, the top green curve measures
random sampling.

with an error around 10% when used on their own, as is
plotted for logistic regression in Figure 6. Still, uncertainty
sampling outperforms random sampling on small training
sets.

When examining the confidence values, again with logistic
regression, for the different feature types as plotted in Fig-
ure 7, we found that acoustic features actually lost confi-
dence on the test set after starting with high confidence.
This might be related to a misinterpretation of audio fea-
tures relating to the labels that gathers high confidence and
misleads the iterative optimisation. Still, the performance
reported for acoustic features is similar to the human per-
formance for classifying isolated instruments into 9 classes
based only on listening as reported by Srinivasan et al. [18].

6.3 Batch Sizes
We tested various sizes of increment batches, for their influ-
ence on the overall test set performance using LREG. The
results are plotted in Figure 8. The different batch sizes’
performances are indicated by different colours. Clearly, the
batch sizes do influence the performance of the classification,



method first plateau err@plateau rand.err@plateau final err train err
LREG 55 3.06 8.67 3.23 0.0
SVM 85 2.210 6.63 2.21 0.0

SVMGD 140 2.38 5.10 2.38 0.0
LREG + RBM 325 2.04 3.40 2.04 0.0

BAY 55 5.10 5.78 5.95 0.68

Table 4: Overall classification performance of the tested algorithms in percentage of misclassifications. “first
plateau” counts the training samples needed to reach the final performance within 1% in our uncertainty
sampling approach. The performance of uncertainty (err@plateau) and random sampling (rand.err@plateau)
for this point are reported. The rightmost columns list the test and training error for the full training set.

Figure 6: Performance of the audio features for ran-
dom and uncertainty sampling. The performance is
relatively low in both cases.

Figure 7: Comparison of feature types’ effects on the
confidence of test set classifications. Audio features
perform badly with large training sets.

Figure 8: Comparison of different increment sizes
over growing training sets. Smaller increments show
better performance with few training data.

especially with small numbers of training data. Small batch
sizes gain higher performance and a batch size of 5 items
added per training cycle seems optimal.

7. CONCLUSION
Using instrumentation recognition as a test case, we pre-
sented an efficient method for dataset definition by means
of active machine learning and uncertainty sampling. The
experimental results were obtained from the CHARM data-
set, which we extended with new instrumentation annota-
tions. By comparing different algorithms and parameters we
demonstrated how this approach can be used to obtain good
classification results with significantly reduced amounts of
manual annotation: Our experiments showed that particu-
larly SVM-based methods with re-training of the model in-
between iterations provided good classification results, while
the online learning BAY had lower performance. Being the
only online learning algorithm reported here, BAY is still
attractive because of the related lower computational costs.

Our analysis confirms that the application of uncertainty
modelling greatly reduces the number of training examples
needed, by up to 87% in comparison to random sampling.
Our comparison of feature types highlighted the influence
of metadata information for the task at hand, and although
the combination with audio features did not reduce perfor-
mance it seems the current application can be addressed
with metadata sufficiently.



7.1 Future Work
We are looking forward to applying this experiment in a
real-time active learning experiment involving the gamified
version of the data collection interface as presented above.
The presented method can be directly applied to the anno-
tation of (music) datasets with similar metadata.

Where metadata is lacking, more research is needed into
audio features that provide more relevant information to
the task of instrumentation recognition. For instance, rep-
resentation of the audio features learned by the RBM can
be further improved with the additional fine-tuning step as
mentioned in Section 4.4.

The resulting interfaces and learning methods will be fur-
thermore employed in the AHRC Digital Transformations
project Digital Music Lab for annotating large scale music
data in an interactive infrastructure for music research.
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