

City, University of London Institutional Repository

Citation: Comuzzi, M., Vonk, J. & Grefen, P. (2010). Continuous Monitoring in Evolving

Business Networks. Paper presented at the Confederated International Conferences:
CoopIS, IS, DOA and ODBASE,, 25-10-2010 - 29-10-2010, Crete, Greece. doi:
10.1007/978-3-642-16934-2_14

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4081/

Link to published version: https://doi.org/10.1007/978-3-642-16934-2_14

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Continuous Monitoring in Evolving Business Networks

Marco Comuzzi, Jochem Vonk, Paul Grefen

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.comuzzi, j.vonk, p.w.p.j.grefen}@tue.nl

Abstract. The literature on continuous monitoring of cross-organizational
processes, executed within virtual enterprises or business networks, considers
monitoring as an issue regarding the network formation, since what can be
monitored during process execution is fixed when the network is established. In
particular, the impact of evolving agreements in such networks on continuous
monitoring is not considered. Also, monitoring is limited to process execution
progress and simple process data. In this paper, we extend the possible
monitoring options by linking monitoring requirements to generic clauses in
agreements established across a network and focus on the problem of
preserving the continuous monitorability of these clauses when the agreements
evolve, i.e. they are introduced, dropped, or updated. We discuss mechanisms
to preserve continuous monitorability in a business network for different types
of agreement evolution and we design a conceptual and technical architecture
for a continuous monitoring IT infrastructure that implements the requirements
derived from such mechanisms.

Keywords: Monitoring, Business Network, Agreement Evolution.

1 Introduction

In collaborative settings, where autonomous parties perform part(s) of a business
process governed by an established agreement/contract, continuous assurance of a
process can be defined as the set of methodology and tools for issuing audit reports
and assessing compliance to agreements simultaneously with, or within a reasonably
short period after, the occurrence of relevant events in the process. Compared to ex-
post assurance, which relies on ex-post audit trails, continuous assurance enables
providers and consumers to achieve unprecedented benefits, in terms of reduced costs
for information collection, search, and retrieval, and more timely and complete
detection of deviations from contracts. Moreover, continuous assurance allows the
application of recovery actions on-the-fly, further reducing the risks associated with
deviations occurrence [1],[2].

Faster market dynamics and fiercer competition have pushed organizations to
engage in complex, Internet-enabled, highly dynamic collaborations, referred to as
virtual enterprises (organizations) or collaborative business networks [3],[4],[5]. Such

collaborations entail the enactment of cross-organizational business processes, which
are regulated by agreements established between the participants constituting the
business network. Because of the high variability of the environment in which they
are situated, however, agreements in a network may evolve during the network
lifetime. We argue that the evolving nature of business networks poses additional
challenges for continuous assurance of cross-organizational business processes, since
the IT infrastructure supporting assurance should adapt to enable and preserve
continuous assurance in reaction to evolution.

Assurance is constituted by two phases, namely the monitoring and the auditing
phases [2]. From an individual actor’s perspective, monitoring concerns the collection
of relevant information regarding the agreements established with other actors in the
network. Examples of monitoring information are: the process execution progress and
exceptions, data produced during the process execution, response times of invoking
services, choices made and process paths taken in the process execution (and the
argumentation leading to those choices), etc. Proper monitoring represents a
prerequisite for correct and complete auditing, i.e. checking the compliance of process
execution with constraints set by agreements. In this paper we focus on the
monitoring phase, and, therefore, on continuous monitoring of cross-organizational
business processes. Our objective is to study how to guarantee continuous monitoring
in a business network in which agreements evolve during the network operation.

Research on continuous monitoring in cross-organizational processes shows three
main limitations. First, monitoring is usually limited to the reporting of the status
(progress and simple process-level variables) of a process execution to interested
parties [4], [6]. Second, monitoring and the setup of the IT monitoring infrastructure
is always considered in 1:1 settings, i.e. the monitoring by one consumer of the
processes outsourced to one specific provider [6]. Third, the setup of the monitoring
infrastructure is considered only in the network formation phase [3], [4], i.e., at the
time an agreement is established and fixed (it cannot change anymore). In our
approach, continuous monitoring is not limited to the status of processes, but it rather
concerns monitoring requirements of a consumer derived from any clause that may be
included in an agreement. In addition, we consider the possibility for agreements in
the network, and, consequently, the monitoring requirements of participants, to
evolve, extending the scope of monitoring beyond the 1:1 setting. Eventually,
because of evolving agreements, we consider the need for the IT monitoring
infrastructure to be constantly updated to be able to facilitate the continuous
monitoring in such evolving business networks.

In this paper, after having introduced a running example and the main concepts
related to collaborations in business networks (in Section 2), we classify the types of
evolution of business networks (Section 3) and discuss mechanisms to preserve the
continuous monitorability of agreements in reaction to their evolution (Section 4).
Then, we design the conceptual and technical architecture of the continuous
monitorability IT infrastructure of one actor in a business network (Section 5). A
prototype implementation of the architecture and mechanisms is presented next
(Section 6) and the paper ends with related work (Section 7), conclusions and an
outline of future work (Section 8).

2 Business networks

To introduce the concepts related to business networks, we first consider a running
example of a Business Network (BN) in the healthcare domain. The example is a
simplification of a real-world teleradiology process extensively described in [7]. A
representation of the BN at a given moment in time is shown in Fig. 1. A set of
business actors participate in the BN (GP, PC, HOS, and SIS in the example). In their
internal processes, general practitioners (GPs) and private clinics (PCs) rely on a
hospital (HOS) to provide a radiology service. Each process comprises a sequence of
blocks, i.e. structured set of activities. A block may be either executed internally by a
business actor or outsourced to another business actor in the BN. In the example, HOS
runs internally the scan acquisition (sa) and the result transfer (rt) blocks, and
outsources the scan interpretation (si) to a scan interpretation service provider (SIS).

The cross-organizational collaboration among actors in the BN is regulated by
established contracts, e.g. on service levels, and by internal or industry-level policies.
We use the generic term agreement to identify the artifacts regulating the
provisioning of processes among business actors in the BN. Agreements are
constituted by a set of clauses, which capture the individual cross-organizational
constraints on the BN operation.

Fig. 1. Example BN in healthcare industry

As a sample, we consider the following three types of clauses that may appear in
agreements between actors in the BN of Fig. 1:

• C1: HOS allows GP to get information about the quality of acquired scans;
• C2: HOS must guarantee that scan interpretation is performed by two

different scan interpreters, and their identity should be traceable by PC;
• C3: SIS must guarantee that scan interpretation is performed by two

different scan interpreters, and their identity should be traceable by HOS.
For continuous monitorability, C1 requires HOS to make available information

regarding the quality of scan acquisitions to GP. C3 requires SIS to disclose
information on the identity of the interpreters of the scan to HOS. Similarly, C2
requires HOS to disclose information on the identity of the scan interpreters to PC. The
continuous monitoring of the clauses defined for the BN in Fig. 1, therefore, can be
guaranteed if service providers, i.e. HOS and SIS, expose suitable monitoring
capabilities to match the monitoring information requirements of their consumers, i.e.
GP, PC, and HOS, respectively. We define a monitoring capability of a provider in the
network as the ability to provide the specific monitoring information required by

GP (General Practitioner) HOS (Hospital) SIS
(Scan Interpretation Service)

PC (Private Clinic)

C1
C3

sa si rt

Outsourced process block

Process block executed internally

C Agreement with clause C

C2

consumers for continuously monitor a given clause. Monitoring capabilities exposed
by a business actor are queried by consumers to obtain the information required for
checking the compliance of process execution with clauses that apply to it.

Note that in our example, a dependency exists between clauses C3 and C2, since
HOS cannot guarantee the continuous monitoring of C2 if it cannot access the
information required to monitor C3, i.e., the identity of scan interpreters. The
monitoring capabilities to match the information requirements of PC is built by HOS
using the information obtained through the monitoring capabilities exposed by SIS to
let HOS monitor C2. Hence, monitoring capabilities may be either native or
aggregated. Native capabilities refer to information that can be captured within the
business domain of the provider of the monitored clause, e.g. SIS exposes a native
monitoring capability to HOS for monitoring C3 and HOS exposes a native capability
to GP for monitoring C1. Aggregated monitoring capabilities are built by the provider
of a clause through information obtained by the monitoring capabilities of other
providers to which it outsources part of its process, e.g. HOS exposes an aggregated
capability to PC for monitoring C2.

3 Modeling evolving business networks

In this section we introduce a formal model of business networks and their
evolution. The model allows us, in Section 4, to describe algorithmically the
mechanisms for the preservation of continuous monitorability in reaction to evolution.

3.1 Modeling business networks

 Our model of a business network relies on a set of simplifying assumptions. With
these assumptions, we limit the complexity of our notation without losing focus on
the main principles behind our monitorability preservation mechanisms. We discuss
later in Section 4 how such assumptions can be relaxed in more complex scenarios:

1. One actor contributes only one process to the network;
2. Any pair of actors in the network, i.e. a provider and a consumer, can

establish at most one agreement;
3. We consider single-entry, single-exit, block-structured processes [8];

blocks are not hierarchically structured, i.e. a process is constituted by a
flat set of blocks structured according to common business process
patterns, such as sequential, conditional or parallel execution, and loops.

4. For the provider, a clause in an agreement always refers to one specific
block in the process contributed to the BN;

5. A block in a process can be outsourced to at most one actor;
A business network BN is defined as:

ܰܤ ൌ ,ܶܥܣۃ ܴܱܲ, ۄܴܩܣ

where ACT is the set of actors, PRO the set of processes, and AGR the set of
agreements. BN has A actors acta:

ܶܥܣ ൌ ሼܽܿݐ௔ሽ௔ୀଵ,…,஺.

Because of assumption 1, we can write:

ܴܱܲ ൌ ሼ݋ݎ݌௔ሽ௔ୀଵ,…,஺

where proa is the process contributed by the actor acta.
For a process proa we define the set BLKa of its Ka blocks:

௔ܭܮܤ ൌ ൛ܾ݈݇௔,௞ೌ
௕௧ ൟ௕௧ א ሼூே,ை௎்ሽ

௞ೌୀଵ,…,௄ೌ

A block blk may be either executed internally by acta (block type bt = IN), e.g. the
block sa in HOS’s process in Fig. 1, or outsourced to another actor actb (bt = OUT),
e.g. block si for HOS in Fig. 1. In the remainder, we will make the block type bt
explicit only when necessary.

We capture the outsourcing relation through the predicate:

൫ܾ݈݇௔,௞ೌݕܤ݀݁ݐݑܿ݁ݔ݁
ை௎், ௕൯ݐܿܽ

which evaluates to true if the block ܾ݈݇௔,௞ೌ
ை௎் is outsourced by acta to actb, and to

false otherwise.
An agreement always regulates the outsourcing relationship between actc

(consumer) and actp (provider). Hence, given the set of all possible agreements P, we
define the set of agreements AGR in place in the BN as:

ܴܩܣ ൌ ൛ܽ݃ݎ௖,௣ א ܲ: ௖,௞೎݈ܾ݇׌
ை௎் א ௖ܭܮܤ ר ൫ܾ݈݇௖,௞೎ݕܤ݀݁ݐݑܿ݁ݔ݁

ை௎், ௣൯ݐܿܽ ר ,௖ݐܿܽ ௣ݐܿܽ א ൟܶܥܣ

For each actor acta, we define the provider set PS(acta) as the set of actors to which
acta outsources part of its process, and the consumer set CS(acta) as the set of actors
that have outsourced part of their processes to acta:

ܲܵሺܽܿݐ௔ሻ ൌ ൛ܽܿݐ௝: ௔,௝ݎ݃ܽ׌ א ܴܩܣ ר ௝ݐܿܽ א ൟܶܥܣ
௔ሻݐሺܽܿܵܥ ൌ ൛ܽܿݐ௝: ௝,௔ݎ݃ܽ׌ א ܴܩܣ ר ௝ݐܿܽ א ൟܶܥܣ

An agreement agrc,p is constituted by Lc,p clauses. We define the set of Lc,p clauses
CLAc,p of the agreement agrc,p as:

௖,௣ܣܮܥ ൌ ቄ݈ܿܽ௖,௣,௟೎,೛ቅ
௟೎,೛ୀଵ,…,௅೎,೛

Note that, because of assumption 4, from the point of view of the provider actp, a
clause ݈ܿܽ௖,௣,௟೎,೛ always refers to one specific block ܾ݈݇௣,௞೛. This association between
clauses and blocks is captured by the predicate:

݋ܶݏݎ݂݁݁ݎ ቀ݈ܿܽ௖,௣,௟೎,೛, ܾ݈݇௣,௞೛
௕௧ ቁ

which evaluates to true if ݈ܿܽ௖,௣,௟೎,೛ refers to ܾ݈݇௣,௞೛, and to false otherwise. In Fig. 1,
for actor HOS, C1 refers to the block sa, whereas C2 refers to the block si outsourced
to SIS. Similarly, for SIS, C3 refers to a block executed internally.

From the provider point of view, outsourcing entails also a relation between
clauses. Specifically, if a provider actp has outsourced a block of its process prop to
another provider actd, and actp has also established a clause ݈ܿܽ௖,௣,௟೎,೛ with an actor
actc, with actc ∈ CS(actp), which refers to the outsourced block, then a link exists

between the clauses ݈ܿܽ௖,௣,௟೎,೛and the clause ݈ܿܽ௣,ௗ,௟೛,೏that regulates the provisioning
of the process prod to actp by actd. We say in this case that ݈ܿܽ௣,ௗ,௟೛,೏ is a projection
of ݈ܿܽ௖,௣,௟೎,೛ . The projection relation between clauses is captured by the predicate:

݋ܶݏݐ݆ܿ݁݋ݎ݌ ቀ݈ܿܽ௖,௣,௟೎,೛, ݈ܿܽ௣,ௗ,௟೛,೏ቁ

In Fig. 1, the predicate projectsTo can be used to capture the relation between the
clauses C2 and C3. Specifically, with an abuse of notation, if we write C2 as
݈ܿܽ௉஼,ுைௌ,ଶ and C3 as ݈ܿܽுைௌ,ௌூௌ,ଷ, then the predicate
,൫݈ܿܽ௉஼,ுைௌ,ଶ݋ܶݏݐ݆ܿ݁݋ݎ݌ ݈ܿܽுைௌ,ௌூௌ,ଷ൯ holds for the shown BN. Although not
explicitly modeled, we hypothesize that clause projection can only occur between
semantically related clauses. In our example, both C2 and C3 refer to the four eyes
principle on scan interpretation.

Providers expose monitoring capabilities to match monitoring requirements,
derived from the establishment of clauses. The actor acta exposes a set of Ma
monitoring capabilities MCPa:

ܥܯ ௔ܲ ൌ ൛݉ܿ݌௔,௠ೌ
௠௧ ൟ௠௧אሼே஺்,஺ீீሽ

௠ೌୀଵ,…,ெೌ

A monitoring capability may be either native (monitoring capability type mt=NAT)
or aggregated (mt=AGG). In the remainder, we will make the monitoring capability
type mt explicit only when necessary.

3.2 Modeling evolution of business networks

Since we aim at designing the continuous monitoring IT infrastructure of one actor
in the BN, in modeling evolution of BNs we take the vantage point of an individual
actor acta in the BN. Thus, evolution concerns the modifications of the agreements in
which acta is involved, as either a provider or a consumer. We distinguish between
two evolution categories: clause- and agreement-level evolution; within each
category, we identify several evolution types. An evolution type is modeled by listing
the changes that it implies on the BN. Specifically, the BN in the as-is situation is
compared to the BN in the to-be situation, i.e. the BN resulting from the application
of the evolution type.

Clause-level evolution. This concerns the insertion or deletion of clauses in an
existing agreement in which acta is involved (an update of a clause is a sequential
combination of a deletion and insertion). We identify four types of clause-level
evolution:

1. Insert clause in provider-side agreement (INS_PSC): it occurs when a new
clause claj,a,n , with n=Lj,a+1, is added to an existing agreement with a
consumer actj, with actj ∈ CS(acta):

௝,௔ܣܮܥ
௧௢ି௕௘ ൌ ௝,௔ܣܮܥ

௔௦ି௜௦ ׫ ൛݈ܿ ௝ܽ,௔,௡ൟ

2. Insert clause in consumer-side agreement (INS_CSC): it occurs when a
new clause claa,j,n, with n=La,j+1, is added to an existing agreement with a
provider actj, with actj ∈ PS(acta):

௔,௝ܣܮܥ
௧௢ି௕௘ ൌ ௔,௝ܣܮܥ

௔௦ି௜௦ ׫ ൛݈ܿܽ௔,௝,௡ൟ

3. Delete clause in provider-side clause (DEL_PSC): it occurs when a clause
claj,a,l, with 1 ≤ l ≤ Lj,a, is removed from an existing agreement with a
consumer actj, with actj ∈ CS(acta).

௝,௔ܣܮܥ
௧௢ି௕௘ ൌ ௝,௔ܣܮܥ

௔௦ି௜௦ ך ൛݈ܿ ௝ܽ,௔,௟ൟ

4. Delete clause in consumer-side agreement (DEL_CSC): it occurs when a
clause claa,j,l , with 1 ≤ l ≤ La,j is removed from an existing agreement with
a provider actj, with actj ∈ PS(acta).

௔,௝ܣܮܥ
௧௢ି௕௘ ൌ ௔,௝ܣܮܥ

௔௦ି௜௦ ך ൛݈ܿܽ௔,௝,௟ൟ

Clause-level evolution is typical of highly regulated industries, such as the
financial or healthcare industries. For what concerns the financial industry, for
instance, changes of regulations, such as the introduction of the Sarbanes-Oxley act
[9] in the US (and similar regulations in Europe), or the new lending policies for
banks following the world economic crisis in 2009, introduce new constraints on BN
processes without modifying, in most cases, the structure of the network and,
therefore, without introducing new agreements.

Agreement-level evolution. Agreement-level evolution implies changes in the set
of agreements AGR. In particular, we focus on the insertion and deletion of an empty
agreement, i.e. an agreement agrb,a without clauses (CLAb,a= ∅), in which clauses can
be added through clause-level evolution. From the continuous monitorability of acta
perspective, the establishment of a new agreement agrb,a is constituted by the
insertion of an empty agreement agrb,a followed by the insertion of a new clauses
(i.e., INS_PSC evolution type for each clause to be included). Similarly, the deletion of
an established agreement is a sequence of clause deletion for each clause in the
agreement, followed by the deletion of the resulting empty agreement.

We identify four types of agreement-level evolution:

1. Insert empty provider-side agreement (INS_PSA): it occurs when the actor
acta becomes provider for a new consumer actb:

௧௢ି௕௘ܴܩܣ ൌ ௔௦ି௜௦ܴܩܣ ׫ ൛ܽ݃ݎ௕,௔ൟ

2. Insert empty consumer-side agreement (INS_CSA): it occurs when the
actor acta outsources a process segment to another actor actb:

௧௢ି௕௘ܴܩܣ ൌ ௔௦ି௜௦ܴܩܣ ׫ ൛ܽ݃ݎ௔,௕ൟ

3. Delete empty provider-side agreement (DEL_PSA): it occurs when acta
cancels a business relationship with a consumer actb:

௧௢ି௕௘ܴܩܣ ൌ ௔௦ି௜௦ܴܩܣ ך ൛ܽ݃ݎ௕,௔ൟ

4. Delete empty consumer-side agreement (DEL_CSA): it occurs when acta
cancels a business relationship with a provider actb:

௧௢ି௕௘ܴܩܣ ൌ ௔௦ି௜௦ܴܩܣ ך ൛ܽ݃ݎ௔,௕ൟ

Agreement-level evolution occurs in many traditional virtual enterprise scenarios;
new consumers may be discovered, or partners in the network can decide, for cost or
quality reasons, to outsource part of their processes to an external party [4], [6].

4 Algorithms for preserving continuous monitorability

When evolution occurs, the continuous monitorability of new and existing
agreements may be disrupted. Hence, the continuous monitorability IT infrastructure
of the actor acta involved in an evolution type needs to undertake some corrective
actions to reestablish the continuous monitorability of the agreements in which acta is
involved. In the following we describe algorithmically and by example such
corrective actions for each evolution type.

ܧܴܷܦܧܥܱܴܲ .01 ׸ ,൫݈ܿܽ௕,௔,௡ܥܵܲ_ܵܰܫ ,௕ݐܿܽ ௔൯ݐܿܽ // n=Lb,a+1
௔,௠ೌ݌ܿ݉ .02 ൌ ,൫݈ܿܽ௕,௔,௡ݕݐ݈ܾ݅݅ܽ݌ܽܥ݈݀݅ݑܤ ,௕ݐܿܽ ௔൯ݐܿܽ
,௔,௠ೌ݌൫݉ܿݎ݋ݐ݅݊݋ܯݐ݁ܵ .03 ݈ܿܽ௕,௔,௡, ௔൯ // link the new capability to the new clauseݐܿܽ
04. END PROCEDURE

05. PROCEDURE:: ݕݐ݈ܾ݅݅ܽ݌ܽܥ݈݀݅ݑܤ൫݈ܿܽ௖,௣,௟ , ,௖ݐܿܽ ௣൯ݐܿܽ
06. ܾ݈݇௣,௞೛

௕௧ ൌ ൛ܾ݈݇: ܾ݈݇ א ௣ܭܮܤ ר ൫݈ܿܽ௖,௣,௟݋ܶݏݎ݂݁݁ݎ , ܾ݈݇൯ൟ // identify the block to which clause refers
07. IF ܾݐ ൌ block is executed internally // ܰܫ
௣,௠೛݌ܿ݉ .08

ே஺் ൌ ൫݈ܿܽ௖,௣,௟݌ܿܯݐܽܰ݁ݐܽ݁ݎܥ , ௣൯ //actp (provider) creates native capabilityݐܿܽ
09. ELSE // block is outsourced
௢ݐܿܽ .10 ൌ ቄܽܿݐ: ݐܿܽ א ר ܶܥܣ ݕܤ݀݁ݐݑܿ݁ݔ݁ ቀܾ݈݇௣,௞೛, ቁቅ // identify outsourcerݐܿܽ
11. ݈ܿܽ௣,௢,ெ೛,೚ାଵ ൌ ൫݈ܿܽ௖,௣,௟ݐ݆ܿ݁݋ݎܲ , ,௣ݐܿܽ ௢൯ // project the clauseݐܿܽ
௢,௠೚݌ܿ݉ .12 ൌ ݕݐ݈ܾ݅݅ܽ݌ܽܥ݈݀݅ݑܤ ቀ݈ܿܽ௣,௢,ெ೛,೚ାଵ, ,௣ݐܿܽ ௢ቁ // call to external provider (recursive)ݐܿܽ
௣,௠೛݌ܿ݉ .13

஺ீீ ൌ ൫݈ܿܽ௖,௣,௟݌ܿܯ݃݃ܣ݁ݐܽ݁ݎܥ , ,௢,௠೚݌ܿ݉ ௣൯ // aggregate returned monitoring capabilityݐܿܽ
14. END ELSE
15. return ݉ܿ݌௣,௠೛ // return the capability
16. END PROCEDURE

(a) algorithm

(b) example

Fig. 2. Monitorability preservation algorithm for evolution INS_PSC

Insert clause in provider-side agreement (INS_PSC). When a new clause clab,a,n,
with n=Lb,a+1, is introduced, acta must check whether the monitoring capability to
match actb’s new monitoring requirements can be built on the fly. If the creation of a
monitoring capability for a new clause is not successful, the actor can either decide to
include the new clause in the agreement (the clause will not be continuously
monitorable), or not to include the new clause in the agreement. The decision depends
on the risk exposure policy of the actor, which is out of scope in this paper. In this
paper, we assume that the creation of monitoring capabilities is always successful.

The steps to be followed by the provider acta to build a monitoring capability for a
new clause clab,a,n are shown in the procedures in Fig. 2a. These use the four
primitives CreateNatMcp(), Project(), CreateAggMcp(), and SetMonitor(), which
capture the functionality of the continuous monitorability IT infrastructure as follows:

as-is situation to-be situation

HOS

Aggregated monitoring capabilityNative monitoring capability

HOS=acta; PC=actb; SIS=acto
C2=clab,a,n; C3=claa,o,Ma,o+1

SISPC HOS SISPC C3C2

─ CreateNatMcp(cla, act) represents the creation by the provider act of a new
native monitoring capability for the continuous monitoring of the clause cla by
its consumers. This involves the retrieval of the monitoring information required
by consumers, e.g. through a native monitoring API or the instrumentation of
the IT infrastructure on which the block to which the clause cla refers is
executed;

─ Project(cla, act, actc) represents the projection of a clause cla towards an actor
actc made by the consumer act of a process provided by actc. The projection
triggers the establishment of a new clause clap, which is returned by the
execution of the primitive. From the modeling perspective, after the execution
of this primitive the predicate projectsTo(cla, clap) will evaluate to true;

─ CreateAggMcp(cla, mcp, act) represents the creation by the provider act of a
new monitoring capability ݉ܿ݌௡

஺ீீ built as the aggregation of information
retrieved from the capability mcp, exposed by one of the act’s providers;

─ SetMonitor(mcp,cla,act) represents the creation made by the provider act of the
mechanism that enables the consumer of the clause cla, to use the monitoring
capability mcp to obtain the information required for monitoring the clause cla.

In Fig. 2a (line 5 onward), first acta identifies the block to which the new clause
refers. If such block is not outsourced, then the (native) monitoring capability to
match the consumer’s new monitoring information requirements is built by the
provider, using the CreateNatMcp() primitive. If the block is outsourced, then acta
must (i) project the new clause towards the provider of the block and (ii) request the
creation of the capability, which will be aggregated by acta for guaranteeing the
monitoring of the new clause to actb. Note that the mechanism is recursively iterated
till the outsourcer that can natively provide the information required for monitoring
the new clause is found.

In our example (see Fig. 2b) PC and HOS may agree on a new clause, such as C2
(traceability of scan interpreters). PC, for instance, may be required by a new
regulation for improving transparency towards patients to provide the identity of two
different scan interpreters for every scan request. HOS identifies that the new clause
refers to a process block that is outsourced to SIS and, therefore, projects the clause C2
on C3 and forwards the request for the new monitoring capability to SIS. The identity
of the scan interpreters can be natively captured and made available by SIS to HOS.
Therefore SIS exposes a native monitoring capability to HOS, who may apply a
domain specific translation or integrate it with internal information before making it
available, as an aggregated monitoring capability, to PC.

Insert clause in consumer-side agreement (INS_CSC). This case is not relevant from
the point of view of acta. The consumer acta will rely, in fact, on the provider actj to
provide the monitoring capability that matches acta’s monitoring information
requirements derived from the insertion of a new clause claa,j,n.

Delete clause in provider-side agreement(DEL_PSC). This case is also not relevant
from the point of view of acta, since the deletion of a clause does not introduce new
monitoring information requirements for the actors in CS(acta). In other words, there
is no garbage collection made by the provider of the monitoring capabilities that are
no longer used by consumers for monitoring established clauses. We argue, in fact,

that a monitoring capability may be reused in the future to satisfy the monitoring
information requirements of new consumers.

01. PROCEDURE::ܣܵܥ_ܵܰܫ൫ܽܿݐ௔, ௔,௕൯ݎ݃ܽ
02. FORALL j: ܽܿݐ௝ א ௔ሻݐሺܽܿܵܥ
03. FORALL c: ݈ܿ ௝ܽ,௔,௖ א ௝,௔ܣܮܥ ר ൫݈ܿ݋ܶݏݎ݂݁݁ݎ ௝ܽ,௔,௖, ܾ݈݇௔,௞ೌ

௕௧ ൯ ר ݐܾ ൌ ר ܷܱܶ
൫ܾ݈݇௔,௞ೌݕܤ݀݁ݐݑܿ݁ݔ݁

௕௧ , ௕൯ݐܿܽ
04. ௝݈ ൌ ௔,௕ܮ ൅ 1
05. ݈ܿܽ௔,௕,௟ೕ ൌ ൫݈ܿݐ݆ܿ݁݋ݎܲ ௝ܽ,௔,௖, ,௕ݐܿܽ ௔൯ // Create projected clauseݐܿܽ
௔,௕ܣܮܥ .06

௧௢ି௕௘ ൌ ௔,௕ܣܮܥ
௔௦ି௜௦ ׫ ቄ݈ܿܽ௔,௕,௟ೕቅ // Add clause to set of existing clauses

௕,௠್݌ܿ݉ .07 ൌ ݕݐ݈ܾ݅݅ܽ݌ܽܥ݈݀݅ݑܤ ቀ݈ܿܽ௔,௕,௟ೕ, ,௔ݐܿܽ ௕ቁ // actb creates and returns new capabilityݐܿܽ
௔,௠ೌ݌ܿ݉ .08

஺ீீ ൌ ൫݈ܿ݌ܿܯ݃݃ܣ݁ݐܽ݁ݎܥ ௝ܽ,௔,௖, ,௕,௠್݌ܿ݉ ௔൯ // acta creates new aggregated capabilityݐܿܽ
௔,௠ೌ݌ሺ݉ܿݎ݋ݐ݅݊݋ܯݐ݁ܵ .09

஺ீீ , ݈ܿ ௝ܽ,௔,௖ , ௔ሻ // link new capability to new clauseݐܿܽ
10. END FORALL
11. END FORALL
12. END PROCEDURE

(a) algorithm

(b) example

Fig. 3. Monitorability preservation algorithm for INS_CSA evolution

Delete clause in consumer-side agreement (DEL_CSC). The deletion of a clause
݈ܿܽ௔,௝,௟ೌ,ೕ in which the actor acta appears as a consumer is allowed only if ݈ܿܽ௔,௝,௟ೌ,ೕ is
not a projection of any already existing clause. In other words, the deletion of
݈ܿܽ௔,௝,௟ೌ,ೕ is allowed only if the set ቄ݈ܿܽ: ݈ܿܽ א ௔,௝ܣܮܥ ר ݋ܶݏݐ݆ܿ݁݋ݎ݌ ቀ݈ܿܽ, ݈ܿܽ௔,௝,௟ೌ,ೕቁ ר
௝ݐܿܽ א .௔ሻቅ is not emptyݐሺܽܿܵܥ

In our example of Fig. 1, clause C3 cannot be removed, since it is the projection of
C2 and HOS will not be able to let PC monitor C2 without the information obtained by
SIS for monitoring C2. Clauses that represent a projection of existing clauses that acta
has with its consumers can only be deleted when the agreement in which they appear
is removed afterwards (see evolution type DEL_CSA).

Insert empty consumer-side agreement (INS_CSA). When an actor acta outsources
part of a process to a new provider actb, then acta should coherently project the
existing clauses in agreements with actors in CS(acta) towards actb and modify its
monitoring capability accordingly. In Fig. 3b, PC and HOS have agreed in the as-is
situation on a clause similar to C2 (four-eyes principle on scan interpretations).
Starting from the situation in which HOS executes internally the whole radiology
process, HOS outsources part of the process to SIS. HOS needs to project C2 to regulate
its relationship with SIS, i.e. creating the clause C3 that guarantees the four-eyes
principle on the service provided by SIS. In the to-be situation, HOS has new
information requirements for the continuous monitorability of C3, which should be
matched by a suitable monitoring capability exposed by SIS, i.e. for the traceability of
the scan interpreters. HOS will use such capability to update the capability exposed to
GP, which now becomes aggregated.

HOS=acta; PC=actj; SIS=actb
C2=claj,a,c; C3=claa,b,lj

HOS

Aggregated monitoring capabilityNative monitoring capability

PC HOS SISPC C3C2 C2

as-is situation to-be situation

The monitorability preservation algorithm for evolution type INS_CSA is shown in
Fig. 3a. The algorithm uses the procedure BuildCapability() already defined for
evolution type INS_PSC.

Insert empty provider-side agreement (INS_PSA). From the point of view of
preserving continuous monitorability, this type of evolution does not imply any
corrective actions by acta. The creation of suitable monitoring capabilities is required
from acta only when the empty agreement will be filled in with new clauses (see
INS_PSC evolution type).

Delete provider-side agreement (DEL_PSA). In this case an agreement between the
provider acta and one of its consumers actb is cancelled. No specific actions should be
taken in this case by acta to preserve continuous monitorability.

Delete consumer-side agreement (DEL_CSA). In this case an agreement between the
provider acta and one of its providers actb is cancelled. If the agreement is empty, then
no specific actions should be taken by acta to preserve continuous monitorability.
01. PROCEDURE::ܣܵܥ_ܮܧܦ൫, ,௔,௕ݎ݃ܽ ,௔ݐܿܽ ௕൯ݐܿܽ
02. FORALL l: ݈ܿܽ௔,௕,௟ א ௔,௕ // for every clause still in the agreement agra,bܣܮܥ
03. FORALL j: ܽܿݐ௝ א ௔ሻݐሺܽܿܵܥ
04. FORALL c: ݋ܶݏݐ݆ܿ݁݋ݎ݌൫݈ܿ ௝ܽ,௔,௖, ݈ܿܽ௔,௕,௟ ൯
௔,௠ೌ݌ܿ݉ .05

ே஺் ൌ ൫݈ܿ݌ܿܯݐܽܰ݁ݐܽ݁ݎܥ ௝ܽ,௔,௖൯ // Create new native capability
௔,௠ೌ݌ሺ݉ܿݎ݋ݐ݅݊݋ܯݐ݁ܵ .06

ே஺் , ݈ܿ ௝ܽ,௔,௖ሻ // Link clause to new native capability
07. END FORALL
08. END FORALL
09. ܾ݈݇௔,௞ೌ

ை௎் ൌ ൛ܾ݈݇: ܾ݈݇ א ௔ܭܮܤ ר ൫݈ܿܽ௔,௕,௟݋ܶݏݎ݂݁݁ݎ , ܾ݈݇൯ ר ,ሺܾ݈݇ݕܤ݀݁ݐݑܿ݁ݔ݁ ௕ሻൟ //selectݐܿܽ
outsourced block
௔ܭܮܤ .10

௧௢ି௕௘ ൌ ൛ܭܮܤ௔
௔௦ି௜௦ ך ܾ݈݇௔,௞ೌ

ை௎்ൟڂ൛ܾ݈݇௔,௞ೌ
ூே ൟ // mark originally outsourced block as internal

11. END FORALL
12. END PROCEDURE

(a) algorithm

(b) example

Fig. 4. – Monitorability preservation algorithm for evolution DEL_CSA

If the agreement is not empty, the it contains clauses that are the projection of one
or more clauses established between acta and its consumers (see evolution type
DEL_CSC). For each of this clauses ݈ܿܽ௔,௕,௟ೌ,್, established by acta with a provider actb,
the preservation of continuous monitorability is made possible only if acta re-sources
internally the block that was originally outsourced to actb (and to which
݈ܿܽ௔,௕,௟ೌ,್ refers). In our example (see Fig. 4b), when the agreement between SIS and
HOS is deleted, it will still contain the clause C2, since it represents the projection of
C3. HOS will first re-source internally the scan interpretation process. Then, HOS
needs to check whether some of the clauses that it has established with its own
consumers, e.g. C2 with PC, require information made available by SIS’s monitoring
capabilities for continuous monitoring. If this is the case, then HOS creates a new
native monitoring capability that substitutes the capability originally obtained through

HOS=acta; PC=actj; SIS=actb
C2=claj,a,c

HOSPCHOS SISPC C3 C2C2

Aggregated monitoring capabilityNative monitoring capability

as-is situation to-be situation

the aggregation of SIS’s capability. The monitorability preservation algorithm for
evolution type DEL_CSA in the generic case is shown in Fig. 4a.

After having discussed the mechanisms for the preservation of monitorability, we
can now go back to the simplifying assumptions adopted in the modeling of business
networks made in Section 3.1. We argue that the relaxation of assumptions 1 and 2
leads to a more complex notation, but it does not change the rationale behind our
monitorability preservation mechanisms. Relaxing assumptions 3, 4, and 5 should
result in more complex primitives for the creation of aggregated monitoring
capabilities and projections of clauses. As a sample, the relaxation of assumption 4
implies that a block can be outsourced to more than one actor. In our example, in
order to maintain the four-eyes principles, the scan interpretation may be outsourced
by HOS to two different scan interpretation services, each of which provides a single
scan interpretation. The projection of clauses needs to be updated is such a way that
every clause of type C2 established by HOS with a consumer triggers the
establishment of two different clauses, one for each scan interpretation service. The
aggregation of capabilities should be modified in such a way that the capability
exposed by HOS to its consumers combines the identity of the scan interpreters
retrieved from the capabilities exposed by the scan interpretation services to which
the service is outsourced. Improved mechanisms that account for the relaxation of our
simplifying assumptions are target of future research.

5 Architecture of continuous monitoring infrastructure

From the definition of the continuous monitoring problem in BNs and the discussion
of the mechanisms for preserving continuous monitorability in reaction to evolution,
we derive the list of functional requirements for the Continuous Monitoring
Infrastructure (CMon‐I) of a business actor acta in a BN (see Table 1). We distinguish
between requirements relevant when acta is a provider in the BN (see PRO in the
second column of Table 1), a consumer in the BN (CON), or both. Requirements
REQ1-2 derive from the need for acta to provision monitoring capabilities to
consumers and to access the capabilities of providers, whereas REQ3-8 derive from
the need to preserve continuous monitorability in reaction to evolution of the
agreements that involve acta.

From the list of requirements, we derive a conceptual architecture for CMon‐I. We
present a two-level decomposition of such an architecture. The level-1 decomposition
of the architecture is shown in Fig. 5. The required functionality to support continuous
monitoring is clustered in several modules. Fig. 5 shows the requirements that are
implemented by each module. The monitoring client (MC) retrieves the capabilities
and monitoring data from the actors in the provider set. Monitoring data are provided
by the monitoring service (MS) module. The evolution manager (EM) detects changes
in the BN and instructs the monitoring capability builder (MCB) to create a new
monitoring capability, using, if necessary, the provider capabilities retrieved through
MC. Note that a business actor in a BN, i.e. HOS in Fig. 1, acts at the same time as a
provider and a consumer, whereas business actors at the edges of the network, i.e. PC

or SIS in Fig. 1, participate only as consumers or providers of business processes. In
the latter case, the architecture, shown in Fig. 5, can be simplified to include only
those modules, which satisfy the requirement that are relevant for that role (as
indicated in Table 1).

Table 1. – Functional requirements for CMon‐I

REQ1 PRO CMon‐I allows the provisioning of the monitoring capabilities referring to the process
that acta is contributing to the actors in CS(acta), covered by the primitive SetMonitor()
of Section 4.

REQ2 CON CMon‐I allows acta to access the monitoring capabilities of actors in PS(acta)
REQ3 both CMon‐I allows acta to detect the evolution of the agreements in the BN, either at

agreement‐ or clause‐level
REQ4 both CMon‐I has access to the agreements (including process specifications) that acta has

established with other actors in the BN, either as a consumer or a provider
REQ5 PRO CMon‐I allows acta to build native monitoring capabilities to match the monitoring

information requirements of actors in CS(acta) [see the primitive CreateNatMcp() of
Section 4]

REQ6 PRO CMon‐I allows acta to build aggregated monitoring capabilities to match the monitoring
information requirements of actors in CS(acta) as aggregation of monitoring
capabilities of actors in PS(acta) [see the primitive CreateAggMcp() of Section 4]

REQ7 both CMon‐I allows acta to project clauses across the network in reaction to evolution [see
the primitive Project()of Section 4]

REQ8 both CMon‐I allows acta to detect if a new monitoring capability needs to be created in
reaction to evolution. In this case, CMon‐I starts the creation of a new, aggregated or
native, monitoring capability

Fig. 5. Level 1 decomposition of CMon‐I architecture

We make the assumption that CMon‐I is situated within a generic Business Process
Management (BPM) infrastructure, on which the actor runs its processes. Such BPM
infrastructure is constituted by a process execution engine, an E-Contracting system,
which can be triggered for the projection of clauses, an Agreement Repository, which
stores the agreements established by an actor, either as a provider or a consumer, and
a Compliance (Auditing) Engine, which checks the satisfaction of clauses during
process execution according to the information captured through monitoring
capabilities of actors in PS(acta).

Our decomposition of the CMon‐I architecture is iterated until we identify only
modules that implement at most one of the requirements, so that a clear separation of

Evolution Manager
(EM)

Monitoring Client
(MC)

REQ 2

REQ 3

REQ 4

REQ 7

REQ 8

acta CMon-I

Agreement
Repository

E-Contracting
System

Process
Execution

Engine

Compliance
Engine

= External BPM infrastructure components

actc
PS(acta)

actb
CS(acta)

MS

Monitoring Service
(MS)

REQ 1

Monitoring
Capability Builder

(MCB)
REQ 5 REQ 6

MC

concerns is reached in which each module provides functionality to satisfy one
specific requirement. Hence, the level 2 decomposition, i.e. the internal conceptual
architecture of the CMon‐I modules, is shown only for those modules that implement
two or more requirements in the level 1 decomposition, i.e. MCB and EM (see Fig. 6).

Fig. 6. Conceptual architecture of MCB and EM

Since new monitoring capabilities should be created when evolution occurs in the
BN, EM commands the Monitoring Capability Factory (MC‐F) to create a new
capability when required from a detected evolution. In response to requests from EM,
MC‐F instantiates a new Monitoring Capability Aggregator (MC‐A), which
implements the aggregation of native or external, i.e. from actors in PS(acta),
capabilities to provide the monitoring capability required by the actors in CS(acta).
The instantiation of a new MC‐A can be seen as the result of the execution of the
primitives CreateNatMcp() or CreateAggMcp() introduced in Section 4.

A separate module (NMC‐E) is required to extract native monitoring capabilities
from the process engine on which acta executes the processes contributed to the BN.
Most of the commonly used workflow engines provide a native monitoring API for
inspecting the execution of process instances. This is the case, for instance, of the
BPELMonitor API for the Open-ESB BPEL Open source engine (see
http://wiki.open-esb.java.net/Wiki.jsp?page=BPELMonitor), or the YAWL Observer
interface for the YAWL engine [10]. Similar native monitoring interfaces are also
available in commonly used ERP packages. NMC‐E sits on top of such native API to
extract the information required for monitor a clause.

For what concerns EM, the ARM provides access to the external Agreement
Repository. ED is responsible for analyzing agreements, detecting the evolution of the
BN. ED may either poll ARM for retrieving new agreements, or new agreements may
be proactively pushed by ARM to ED. ED runs the business logic of the mechanisms
discussed in Section 3 and may trigger the projection of contracts, implied by the
execution of the Project() primitive introduced in Section 3, and the construction of
new monitoring capabilities, e.g. in reaction to INS_PSC evolution. CPE is responsible
of managing the projection of clauses and interacts, therefore, with the external E-
contracting system. MCF‐C controls the MC‐F in MCB for requesting new monitoring
capabilities. MCF‐C is also connected to MC, in order to establish access to the
monitoring capabilities provided by providers in PS(acta).

6 Implementation

As a proof of concept, the continuous monitoring approach has been implemented
in the PROXE (PROcesses in a Cross-organizational Environment) system. PROXE
is based on the Business Process Web Services (BP-WS) framework, the aim of
which is to ‘open-up’ black-box Web Services. BP-WS services expose the enclosed
business processes through a set of standard interfaces, so that service consumers can
monitor, control, and synchronize with the service execution progress of the service
provider [11].

Fig. 7 shows the implementation architecture of the PROXE system (excluding
those components and interfaces that are not relevant for the work presented in this
paper). The teleradiology process has been used as a test scenario to validate the
continuous monitoring approach implemented in the system. As can be seen in the
figure, three parties (GP, HOS, and SIS) are included and their systems are connected
through the ACT and MON interfaces. The ACT interface is used to invoke the
service and is handled by the invoker module. The MON interface is used to monitor
service execution and is backed by the CMon‐I modules.

Fig. 7. Implementation Architecture

 The process that is performed by HOS, i.e., the teleradiology process as shown in
Fig. 1, is executed on a BPEL process engine (OpenESB BPEL Engine on the
GlassFish Web Application Server). The scan interpretation part of this process is
however outsourced and is executed on the YAWL workflow system [10] by SIS.
Both process engines have their own mechanisms to expose monitoring information.
The BPEL Monitor is an addition to the BPEL Engine and can be directly accessed
through its API. YAWL exposes process events to a, so called, ObserverGateway.
This ObserverGateway passes the events to the YAWL Monitor Web Service, which
subsequently stores the relevant information contained in an event into a database. On
request by the CMon‐I, e.g., as a response to a query posed by HOS to retrieve the
scan interpreters identity, the YAWL Monitor Web Service retrieves the desired
monitoring information from the database.

Each party has its own database, in which the agreements and clauses are stored.
Any component within the BPWS, i.e., Teleradiology BPWS and Scan Interpretation

BPWS, can access the database. This is required to validate calls to the BPWS against
the contract. For the CMon‐I component, access is required as explained in the
previous section. The process engines and databases are part of the BPM
infrastructure, as defined in Section 5. The e-contracting systems and compliance
engines, which are also part of the BPM infrastructure, have not been included in the
PROXE system as they do not address the core issues of continuous monitoring.

SIS is only a provider in the business network, so SIS has only native monitoring
capabilities, indicated through the single connection of CMon‐I/MCB to the YAWL
Monitoring WS. HOS acts as both a consumer (of SIS) and provider (to GP). The
CMon‐I/MC of HOS is therefore connected to the MON interface of SIS (and will
aggregate the monitoring information retrieved through this interface if required by
GP) and CMon‐I/MCB is connected to the BPEL Monitor (to provide native
monitoring capabilities to GP. GP acts as a consumer only and retrieves the required
monitoring information of HOS through the exposed MON interface. The connections
to the databases are used to access the stored agreements and clauses.

As an example of agreement evolution, we use the outsourcing by HOS of the scan
interpretation to SIS (evolution type INS_CSA, see Figure 3). For the
implementation, this type evolution implies that the retrieval of the identities of scan
interpreters is moved from the BPEL Monitor of HOS to the YAWL Monitor WS of
SIS. YAWL provides two API methods to acquire the required information:
getUserWhoIsExecutingThisItem():String and get_whoStartedMe():String. HOS’s
CMon‐I/MCS transforms the returned results into terminology that is expected by GP.

In the current PROXE system, the creation of a monitoring capability related to a
clause is done manually. For example, discovering that the four-eyes principle can be
supported through the identification of the persons who performed the specific scan
interpretation task (and that they should not be the same person) and that this
information, in turn, can be retrieved through some specific API calls, is done
manually. A (semi-)automatic translation is considered future research.

7 Related Work

Business process monitoring has been largely investigated under the labels of
Business Process Intelligence (BPI) [12] and Business Activity Monitoring (BAM)
[13]. BPI and BAM, however, are situated in the context of stand-alone organizations
and mostly concern process optimization. Auditing for compliance checking has been
investigated by research on process mining [14] and normative reasoning applied in
the context of business process management [15]. Process mining does not represent a
suitable solution for continuous assurance, since it relies on the ex-post analysis of
process logs. Normative reasoning is focused on defining languages for the formal
definition of compliance. Approaches in this category are usually not focused on
cross-organizational processes and they tend to overlook the architectural aspects
related to cross-organizational collaboration enactment.

Research on Web service management has also focused on business process
monitoring and assurance. Research in this area, however, maintains a technological

focus, concerning the definition of XML-based languages for the definition of clear
and precise SLAs [16] or the design of monitoring engines compliant with Web
service technology [17]. An approach for the controlled evolution of Web service
contracts is discussed in [18], but without reference to how such an evolution impacts
the monitoring of the service execution. A methodology for auditing Web service-
based processes is discussed in [19]. Such a methodology, however, is applied only
within the domain of the orchestrator of the collaboration and considers the services
invoked by a business process as black boxes.

Monitoring in the CrossFlow project [6] concerns only information on the progress
of an outsourced process and basic process variables, which are accessible at specific
monitoring points specified in the contract. Moreover, CrossFlow considers 1:1
outsourcing scenario and does not account for the transitivity/aggregation of
monitoring information in a business network. Dynamic cross-organizational
collaboration is also considered in the CrossWork project [4]. In CrossWork,
however, contracts are not considered and monitoring still concerns the progress of
outsourced services. Moreover, the impact of the business network evolution on the
monitorability of cross-organizational processes is not taken into account. Recursive
mechanisms for the definition of goals and processes during the formation of virtual
enterprises are considered by the SUDDEN project [20]. Monitoring requirements and
evolution of a formed network are, however, not considered. The design of cross-
organizational processes with evolving requirements is tackled in [21], but without
explicit focus on monitorability requirements.

Similarly to the monitoring capabilities defined in this paper, the E-Adome
workflow engine [3] introduces the notion of external information requirement, i.e.
information required by a consumer from its providers to enforce and monitor a
contract. External information requirements are not directly linked with contract
clauses. Moreover, the architectural support for monitoring based on such external
information is not specified.

8 Conclusions

This paper analyzes the issue of continuous monitorability of cross-organizational
business processes. In particular, we discuss the case of the evolution of agreements
in a business network and show how the continuous monitoring IT infrastructure
should adapt to preserve the monitorability of agreements. The paper formally
describes algorithms for restoring the continuous monitorability of agreements in
reaction to their evolution. We also discussed the PROXE system, which implements
the requirements for continuous monitorability derived from our modeling of
evolving business networks.

Future work will concern the refinement of our model of business networks,
relaxing the assumptions made in Section 3, and the analysis of alternative forms of
evolution for BNs. We also plan to consider, within the PROXE system, template-
based agreement lifecycles and to link monitoring with control actions to be
undertaken when the compliance to existing clauses in not verified.

References

1. Alles, M. G., Kogan, A., Vasarhely, M. A.: Feasibility and Economics of Continuous
Assurance. Auditing: Journal of Practice and Theory 21(1) (2002)

2. Coderre, D.: Continuous Auditing: Implications for Assurance Monitoring and Risk
Assessment. (2005)

3. Chiu, D. K. W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow View Based E-Contracts in a
Cross-Organizational E-Services Environment. Distrib. Parallel. Dat. 12, 193-216 (2002)

4. Grefen, P., Eshuis, R., Mehandijev, N., Kouvas, G., Weichart, G.: Internet-based support
for Process-Oriented Instant Virtual Enterpises. IEEE Internet Comput Nov/Dec, 30-38
(2009)

5. van Heck, E., Vervest, P.: Smart Business Networks: How the network wins.
Communications of the ACM 50, 28—37 (2007)

6. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: cross-organizational workflow
management in dynamic virtual enterprises. Comput. Syst. Sci. & Eng. 5, 277--290 (2000)

7. Vonk, J., Wang, T., Grefen, P., Swennenhuis, M.: An Analysis of Contractual and
Transactional Aspects of a Teleradiology Process. Beta Technical Report 263, Eindhoven
University of Technology, Eindhoven (2008)

8. Mendling, J., Reijers, H., van der Aalst, W. M. P.: Seven Process Modeling Guidelines
(7PMG). Information and Software Technology 52(2) (2010)

9. Hall, J. A., Liedtka, S. T.: The Sarbanes-Oxley Act: Implication for large-scale IT
outsourcing. Communications of the ACM 50(3), 95-100 (2007)

10. ter Hofstede, A., van der Aalst, W. M. P., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its support environment. Springer (2010)

11. Grefen, P., Ludwig, H., Dan, A., Angelov, S.: An analysis of web services support for
dynamic business process outsourcing. Informtation and Software Technology 48, 1115-
1134 (2006)

12. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business
Process Intelligence. Computers in Industry 53, 321-343 (2004)

13. McCoy, D. W.: Business Activity Monitoring., Gartner Group Research Report ID LE-15-
9727 (2002)

14. van der Aalst, W. M. P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E.: Conformance
checking of Service Behavior. ACM TOIT 8(3) (2008)

15. Sadiq, S., Governatori, G., Namiri, K.: Modeling control Objectives for Business Process
Compliance. In : Proc. 5th BPM Conference, pp.149-164 (2007)

16. Skene, J., Raimondi, F., Emmerich, W.: Service-Level Agreements for Electronic Services..
IEEE Transactions on Software Engineering (forthcoming) (2010)

17. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
WS-BPEL. In : Proc. WWW 2008 (2008)

18. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Evolving Services from a Contractual
Perspective. In : Proc. CAiSE 2009, pp.290-304

19. Orriens, B., van den Heuvel, W.-J., Papazoglou, M.: On The Risk Management and
Auditing of SOA Based Business Processes. In : Proc. 3rd Int. ISoLA Symposium, pp.124-
138 (2008)

20. Mehandjiev, N. D., Stalker, I. D., Carpenter, M. R.: Recursive Construction and Evolution
of Collaborative Business Processes. In : BPM 2008 Workshops, pp.573-584 (2008)

21. Desi, N., Chopra, A. K., Singh, M. P.: Amoeba: A methodology for modeling and evolving
cross-organizational business processes. ACM TOSEM 19(2), Article 6 (2009)

