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Optimized Cross-Organizational Business Process Monitoring:
Design and Enactment
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aSchool of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands

Abstract

Organizations can implement the agility required to survive in the rapidly evolving business landscape by
focusing on their core business and engaging in collaborations with other partners. This entails the need
for organizations to monitor the behavior of the partners with which they collaborate. The design and
enactment of monitoring, in this scenario, must become flexible and adapt as the collaboration evolves. We
propose an approach to flexibly design and enact cross-organizational business process monitoring based on
Product-Based Workflow Design. Our approach allows organizations to capture monitoring requirements,
optimize such requirements, e.g. choosing the monitoring process with lowest cost or highest availability, and
enacting the optimal monitoring process through a service-oriented approach. Optimization, in particular,
is made efficient by adopting an Ant-colony optimization heuristic. The paper also describes a prototypical
implementation of our approach in the ProM framework.

Keywords: Business Process Monitoring, Product-Based Workflow Design, Ant Colony Optimization,
Service-based Systems.

1. Introduction

Information is produced and travels across the world at an ever increasing speed making the world
increasingly connected. In such a connected world, nothing remains local and any economically relevant
event in a specific geographical area, e.g. economic downturns, natural disasters, or political upheavals, may
hold significant effects on organizations on the other side of the world. Only agile businesses, that can flexibly
redesign or reconfigure their operations, can survive in such an environment. Organizations often implement
agility and flexibility through simplification, focusing on their core business, and engaging in collaborations
with partners to maintain and possibly improve the required level of quality and cost-effectiveness.

Collaboration, in the form of delegation, outsourcing, or partnership, requires control. As stated by
agency theory, when principals delegate tasks to agents, they have to prevent the agents’ possible oppor-
tunistic behavior and to detect the possible unsuitability of agents to execute the task assigned to them [14].
In a governance perspective, collaboration entails the need for control. The technology supporting collab-
oration must therefore support risk management in collaborative settings. This is especially true in highly
regulated industries, such as banking or healthcare, where companies strive to achieve the balance between
internal simplification, increasing collaborations with external partners, and compliance to regulations and
service levels required by the industry [23]. In such an environment, consumer trust can dramatically de-
crease if organizations do not guarantee the declared service levels by continuously monitoring their business
environment. Control in collaborative settings represents a challenging task, since many of the assumptions
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characterizing intra-organizational settings, e.g. relatively stable business process specifications and homo-
geneous IT landscapes, do not longer hold. In other words, control and, therefore, the technology required
to implement it, must adapt to dynamically changing business and IT environments.

Control in collaborative settings is first established through contracts, which define the agreements
among partners, making them liable if the specified obligations are not met during the enactment of the
collaboration. Contracts, however, represent a passive method for coordination, and they should always
be coupled with the active monitoring of the actual enactment of the collaboration [26]. Monitoring in
cross-organizational settings should reflect the agility and flexibility typically characterizing such contexts.
The monitoring of cross-organizational processes should be flexibly redesigned as the collaboration evolves,
e.g. processes (or parts of them) are outsourced to new partners, partners are substituted, or new contracts
to regulate the collaboration are deployed.

In this context, this paper proposes an approach and a prototype for designing and enacting flexible
monitoring of cross-organizational business processes. The approach is based on Product-Based Work-
flow Design (PBWD), a scientifically-grounded method to design business processes using a clean-sheet
approach [25, 31, 33]. We use PBWD to design the monitoring process, that is, the orchestration of sources
of monitoring information in the collaboration to detect the correct execution of cross-organizational busi-
ness process. In order to do this, we extend PBWD with features to derive the best monitoring process
for a given partner in the collaboration in non-functional terms, i.e. monitoring at the lowest cost, with
the highest availability of monitoring information, and with the highest quality of monitoring information,
or a combination thereof. In particular, we propose an Ant Colony Optimization (ACO)-based heuristic
to maximize the utility function of the monitoring stakeholder under generic constraints specified on cost,
availability, and quality of the monitoring information.

To the best of our knowledge, our approach is the first to consider the issue of designing optimal business
process monitoring processes and to apply evolutionary techniques for obtaining a solution to the problem.
The paper also contributes the prototypical implementation of a new plugin of the ProM framework spe-
cific for ACO-based optimization in PBWD and a Web service-based system for the enactment of optimal
monitoring processes.

The paper is organized as follows. The next section contextualizes the problem of cross-organizational
process monitoring. Then, Section 3 describes our approach from the methodological and architectural per-
spectives. Section 4 discusses the implementation of the approach, while conclusions are drawn in Section 5.

2. Related Work on Process Monitoring

Monitoring of cross-organizational business processes has been investigated, from a requirements en-
gineering perspective, in [10] and [21]. In order to achieve a successful collaboration, both papers stress
the importance of process- and communication-oriented mechanisms to transmit relevant information to
interested parties across the network. Similarly, [6] considers the need to define external information re-
quirements, i.e. information required by a consumer from its providers, in order to correctly monitor and
enforce a multiparty contract. The business process management literature approaches the issue of cross-
organizational business process monitoring mainly from a modeling point of view. Several are the examples,
in fact, of approaches and methodologies to capture cross-organizational business processes requirements,
and, more specifically, monitoring or process tracking requirements (e.g. [8]). Concerning the monitoring
execution, architectural support for cross-organizational business processes has been considered in the Cross-
Flow [18] and CrossWork [19] projects. Their focus, however, is on the single organization and on how to
(automatically) derive the infrastructure required to capture monitoring information.

Our approach fills the gap between the modeling and architectural approaches to cross-organizational
business process monitoring. We combine a method for capturing monitoring requirements, based on PBWD,
with the automated generation of the monitoring infrastructure, obtained as the orchestration of monitoring
services. When monitoring requirements are stable, our approach allows their optimization and, conse-
quently, the derivation of an optimized monitoring infrastructure for the partners involved in the collabora-
tion. As monitoring requirements evolve, our approach allows the seamless reconfiguration of the monitoring
infrastructure.
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Monitoring has been extensively investigated also in the context of Web-service based business processes.
Web service-based processes can be intrinsically considered cross-organizational, since each orchestrated Web
service can in principle be exposed by a different organization. In this context, we can distinguish between
intrusive and non-intrusive monitoring [20]. The former interleaves service and monitoring activities at
runtime, whereas the latter separates the business from the monitoring logic, since information relevant
for monitoring can be captured non-intrusively while a process is executing. Our approach builds on non-
intrusive monitoring, encapsulating relevant monitoring services in monitoring Web services. These are
orchestrated according to the logic captured in the monitoring requirements.

The only applications of evolutionary optimization techniques to the case of (Web-service based) business
process management can be found in the context of Web service composition, that is, choosing a set of
concrete Web services among a set of candidates to fulfill a given process specification, under a set of
constraints on cost and/or QoS. Genetic algorithms have been applied in [22], ant colony optimization in [35],
and hybrid evolutionary techniques [34, 4]. We were not able to find specific applications of evolutionary
optimization techniques to the case of process monitoring optimization.

To summarize, this paper tackles a relevant problem in the area of cross-organizational business process
management, i.e. the definition of optimal monitoring processes, given the requirements of the stakeholders
involved in the collaboration. To solve our problem, we use a specific evolutionary optimization techniques,
i.e. Ant Colony Optimization (ACO). A more thorough discussion of the suitability of ACO for our problem
is presented later after having introduced our architectural framework and the optimization problem.

This paper extends a preliminary version of the framework presented in [7] by discussing the implemen-
tation of the framework within the ProM framework and by proposing an Ant Colony Optimization-based
solution to the optimization of monitoring processes.

3. A Framework for Cross-Organizational Process Monitoring

Our framework is shown in Figure 1. It combines the steps for the design and enactment of monitoring
processes and the required architectural support. The framework comprises two types of actors: the Mon-
itoring Stakeholder (MS) and the Service Providers (SPs). MS is the actor willing to build a monitoring
process for a given collaborative business process. In most cases, MS is the customer of such process, but
generally it can be any actor in the collaboration having interest in monitoring the execution of the process,
e.g. a 3rd party auditor, a public agency, or one of the collaborating actors. SPs are the actors collaborating
for provisioning the business process that MS needs to monitor.

SPs capture monitoring information on their internal infrastructure and make it available to MS to
build a customized monitoring business process. For instance, MS can use the progress information made
available by SPs to achieve a global vision on the status of its orders along a complex supply chain. In the
information system or process engine of a service provider SP, monitoring information can be captured from
various sources and through different mechanisms, such as (i) native APIs of the SP’s ERP system, e.g. SAP
monitoring architecture, workflow or BPEL engine, or IBM Websphere business monitor [9] and (ii) ad-hoc
instrumentation of SP’s business process management infrastructure, e.g. through the development of event
captors or other online process inspection techniques [20]. Irrespective of how monitoring information is
captured, SP makes such information available to MS through a Web service, exposing an operation for
each information product that may be required by MS for monitoring purposes.

In a service-oriented architecture, SPs publish their monitoring services in a service registry (Step 0 in
Figure 1) and MS browses the registry to get service descriptions and to compose the complete monitoring
information from its components, e.g. the progress information on a holiday booking may be built from
the progress information of the flight booking, the hotel booking and the travel insurance booking. Such a
hierarchical structure of monitoring information is similar to the concept of a product data model from the
PBWD approach, and is therefore modeled in a monitoring product data model, i.e. a MON-PDM. The
composition of the MON-PDM is supported by a component of our framework, i.e. MON-PDM Design (Step
1). As we will show, there can be different ways to satisfy monitoring requirements of MS characterized by
different values of non-functional properties, such as cost, and the MON-PDM allows for specifying these
different ways of obtaining monitoring information.
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Figure 1: The Cross-Organizational Business Process Monitoring Framework

The second step in our framework therefore involves the optimization of MON-PDM. Optimization
concerns finding the optimal path in MON-PDM according to the requirements of MS (Step 2). For instance,
SPs can attach price information to their monitoring service in order for MS to build a monitoring process
with minimum cost. Eventually, the selected path in MON-PDM can be executed by MS to monitor the
execution of the business process. Execution of the monitoring process involves navigating the MON-
PDM along the optimal path in MON-PDM through the invocation of the Web services implementing the
operations belonging to such a path (Step 3). In the remainder these three steps are further elaborated
upon.

3.1. PBWD for capturing Cross-Organizational Process Monitoring Requirements (Step 1)
PBWD is a scientifically grounded method for business process (re)design [25]. The focus of this method

is on the design of processes that deliver informational products, the so-called workflow processes. The
PBWD methodology takes the structure of the informational product, which is described in a Product Data
Model (PDM), as a starting point to derive a process model. Informational products are, for instance, a
decision on an insurance claim, the allocation of a subsidy, or the approval of a loan. Based on the input
data provided by the client or retrieved from other systems, the end (informational) product is constructed
step-by-step. In each step new information is produced based on the specific data available for the case.
Over recent years, PBWD has shown to be a successful business process (re)design method [25, 32].

The PDM describes the composition of the informational product by explicitly modelling the information
elements and the operations that compile new information products based on input information products.
The information needed to monitor a business process may be modelled in a similar way. The PDM allows
to easily model the different ways a certain information product can be composed, or the different sources an
information product may originate from by including alternative paths to assemble the final informational
product. This is illustrated with an example after elaborating on the formal definition of a PDM.
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3.1.1. Formal definitions
In our framework, a MON-PDM is a tuple 〈IP,OP 〉, where IP = {ipx}x=1,...,X is the set ofX information

products ipx and OP = {opi}i=1,...,I is the set of I operations opi. The operations determine how one or
more information products are combined to produce a new information product, i.e.

OP ⊆ ℘(IP )× IP

A special information product root constitutes the root of the monitoring PDM, that is, the correct
composition of monitoring information for MS obtained by the monitoring services.

An operation opi in a PDM leads to one and only one information product px. Such an information
product is the output O of the operation opi, i.e. O(opi) = ipx. The set of information products required
to execute an operation opi is the input set IS of opi, i.e., given ipx = O(opi), IS(opi) = {ipy} s.t.
{{ipy} × ipx ∈ OP}. An operation is a leaf operation when its input set IS is empty.

Because of alternative paths in the PDM, an information product ipx can be produced by more than one
operation opi ∈ OP . In our framework, such set of operations is the set of preceding operations PREC(ipx),
with PREC(ipx) = {opj ∈ OP : O(opj) = ipx}.

A complete path p is a subset of operations in the PDM leading to the production of the root information
product, starting from a set of leaf operations. Formally, a complete path p satisfies the following three
conditions:

p ⊆ OP (1)
∃opi∈p[O(opi) = root] (2)

∀opi∈p[IS(opi) = ∅ ∨ ∀ipx∈I(opi)∃opj∈p[O(opj) = ipx]] (3)

Condition 3, in particular, states that if an operation opi belongs to p, then all operations leading to
products belonging to the input information products of operation opi have to be part of p, unless the input
of an operation is the empty set, i.e. the operation opi is a leaf operation. This condition allows the recursive
definition of a complete path, from the root element to the leaf operations. In the remainder of the paper
we refer to P as the set of all possible complete paths p in a given PDM.

Figure 2 shows an example of a simple monitoring PDM referring to a customer (MS) monitoring a
make-to-order process that the provider (SP1) has outsourced to two contractors (SP2 and SP3). The root
element ip1 of the PDM represents the correct monitoring information required by the customer. This is the
combination of information on the status of the order (ip3) and on the expected delivery date (ip2). While
the expected delivery date can only be produced by the provider, status information can be obtained directly
by the provider (ip4) or by combining status information made available by the two contractors (ip5 and
ip6). It can be the case, in fact, that status information of an order made available by the provider is less
accurate but cheap, for instance belonging to the set {waiting, in progress, terminated}. Status information
produced by contractors may be more detailed and up-to-date and, consequently, more expensive. If an order
is in progress, for instance, a contractor may also provide the percentage of processing activities already
completed. Knowing more about the internal progress of contractors, customers may be able to better
synchronize their internal processes that rely on the outsourced process. The path p1 = {op1, op3, op5} is,
for instance, a complete path. The path p2 = {op1, op2, op4, op7} is not complete, since it does not include
op6, which would be implied by the presence of op7 and by condition 3 of the above definition.

3.2. Optimal Paths in MON-PDM using Ant Colony Optimization (Step 2)
We define the optimal path in MON-PDM as the path that satisfies best the non-functional requirements

of MS. The requirements of MS are captured by the following optimization problem.
We consider a set of C independent quality dimensions, indexed by c = 1, . . . , C. For each dimension,

we define a partial utility function vc(p). The utility V (p) of a path p is given by the weighted sum of the
partial utility functions, that is V (p) =

∑
c[wc ·vc(p)] . Our optimization problem (P1) concerns finding the
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Figure 2: Example of MON-PDM with non-functional characterization of operations

complete path p in the set of all possible paths P that maximizes the weighted sum of the partial utilities,
given a set of side constraints:

P1: max
p∈P

V (p) s.t.

vc(p) ≥ Tc, c = 1, . . . , C

For illustration purposes, in this paper we consider the non-functional requirements cost, availability,
and (data) quality to characterize MS requirements (C = 3). As shown in the following, their partial utility
functions vc(p) and, consequently, the utility function V (p) are normalized between 0 and 1. Note that
our framework could accommodate other possible non-functional requirements, as long as their normalized
utility function is defined.

Cost (cost, c = 1) represents the cost of the execution of a path p in MON-PDM. It is the cost sustained
by the actors in the collaboration to execute the operations in the path p to provide monitoring information.
Costs are summative, that is, the cost of a path p is determined as the sum of the costs of operations opi

belonging to p [1, 24]. From a utility perspective, cost is a negative requirement, that is, the utility of an
operation for MS decreases as cost increases. In formulas, the partial utility function for cost is:

v1(p) = 1−
∑

opi∈p cost(opi)
|{opi ∈ p}|

where cost(opi) is the cost of the individual operation opi belonging to p and, by construction, 0 ≤
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cost(opi) ≤ 1, for all opi.

Quality (qual, c = 2) represents the quality of the path p as perceived by MS. Quality of monitoring
information should be intended as fit for use, i.e. the ability of a piece of information to satisfy the monitoring
information requirements of its user. Fit for use quality of operations opi belonging to a path p is aggregated
using the minimum value of data quality of all operations opi [1]. Hence:

v2(p) = min
opi∈p

qual(opi)

where qual(opi) is the quality of the individual operation opi as perceived by MS, with 0 ≤ qual(opi) ≤ 1.

Availability (avai, c = 3) represents the probability that the root element of MON-PDM is produced,
that is, it becomes available after the execution of the path p. This is obtained by multiplying the probability
of producing the results of all operations opi in the path p [1, 24]:

v3(p) =
∏

opi∈p

avai(opi)

where avai(opi) is the probability that the individual operation opi will produce its result, i.e. the prob-
ability that O(opi) is produced by opi, with 0 ≤ avai(opi) ≤ 1.

Figure 2 shows possible values for the non-functional requirements of operations in our running example.
For instance, the path p1 = op1, op2, op3, op5 is the minimum cost path, i.e. the one that maximizes V (p)
with w1 = 1 and w2 = w3 = 0. Specifically, V (p1) = 0, 75. If a constraint on quality is introduced, e.g.
v2(p) > 0, 4, then p2 = op1, op2, op4, op6, op7 becomes the optimal cost path with respect to this constraint,
with V (p2) = 0, 64, and v2(p2) = 0, 5. In our framework, the service providers publish cost, quality, and
availability information for each monitoring services in the service registry.

Since the MON-PDM is a hypergraph, the optimization problem can be seen as a (hyper)graph opti-
mization problem. In particular, let us consider only the cost requirement, i.e. w2 = w3 = 0, without
side-constraints. Since costs are summative, the utility of an operation can be seen in this case as the
distance between two information products that the operation connects in the MON-PDM. Thus, our op-
timization problem becomes equivalent to a shortest-path problem, where the shortest path in MON-PDM
links the root information product to an imaginary node that connects all leaf operations. Hypergraph
shortest-path optimization with summative weights can be solved in polynomial time (see the algorithms
in [2]). When quality and availability are considered, however, the weight of arcs in the graph are no longer
summative and, therefore, our problem becomes NP-Hard [2]. In this paper we propose a heuristic solution
to our optimization problem, based on ACO [13].

We will demonstrate that our heuristic algorithm is able to evaluate the optimal path p in reasonably
complex MON-PDMs in a time that is negligible if compared to the time required for determining the
optimal path through exhaustive search.

3.2.1. Ant Colony Optimization of PDM
ACO is a meta-heuristic discrete optimization strategy that mimics the behavior of ants while searching

for food [2, 11]. Initially, ants wander randomly. After having found a source of food, they will return to
the colony to give the news to fellow ants, leaving a pheromone trail on their path. When new ants will
be looking for food, they are not likely to travel randomly, but they will follow a path with high level of
pheromone, reinforcing it, since they know it will bring them to a source of food. Over time, however,
pheromone starts to evaporate. The pheromone is more likely to evaporate on long (or, as in our case, low
utility) paths, since it takes more time to an ant to walk through them. Conversely, the trail is likely to
remain fresh on short (high utility) paths. Hence, short paths are the ones that will be marched over more
frequently by ants and for which the pheromone has less time to evaporate. Following the pheromone trail
dynamics, after some time the ants’ behavior will converge to identify the optimal path between the colony
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and the source of food. As discussed in more detail later in this section, ACO optimization is also able to
comfortably manage side constraints on additional quality criteria [2, 11].

Although there exist extensions for continuous optimization [28], the ACO meta-heuristic has been
developed primarily to solve discrete optimization problems [11]. ACO has been applied to several real
world problems [16], such as project scheduling or network routing and load balancing [27], which are
combinatorial in nature, as the problem we consider in this paper. Among the approximate methods to
solve combinatorial problems, ACO can be classified as a probabilistic tree search, i.e. constructive methods
building mapping solutions to a tree structure. Tree search methods are generally best suited to problems of
graph optimization. They are usually opposed on methods based on local search, such as genetic or memetic
algorithms [17, 5].

Among other possible evolutionary optimization techniques, we argue that ACO minimizes the abstrac-
tions required to develop an efficient optimization algorithm to solve our problem. In order to apply an
evolutionary optimization techniques to a concrete problem, two sorts of abstraction must be thought of,
i.e., the fitness function and the mapping between the actual problem and the solution space of the chosen
technique [15]. The former defines the criteria that will be optimized, whereas the latter is required to
translate the solutions of the problem at hand into a representation that can be handled by the optimization
technique, e.g. the space of chromosomes for genetic algorithms or the position of particles in the case of
particle swarm optimization. As in all graph optimization problems, in our case the solution space required
by ACO coincides with the solution space of the real problem. That is, the optimal path in the PDM
coincides with the optimal path discovered by ants in ACO, without the need for further abstraction, such
as complex mappings to chromosome structures in the case of genetic/memetic algorithms.

Algorithm 1 shows the pseudo-code of our ACO-based algorithm for solving the optimization problem
P1. The algorithm comprises the procedures ACOAlgorithm and ACOSearch. ACOSearch represents the
search of an optimal path made by an individual ant in the colony ANT (a set of ants). ACOAlgorithm is
the main procedure.

ACOAlgorithm uses a number itn of iterations. In each iteration, the MON-PDM is walked through by
the ants in the set ANT, i.e. a colony of ants, starting from its root information element. For each ant,
ACOAlgorithm first calls the ACOSearch procedure to determine the complete path p for that specific ant
(line 6). Then, it calculates and stores the amount of pheromone that has to be left on the complete path
discovered by the ant (lines 7, 8). At the end of an iteration, i.e. after all ants in the colony have walked
through the MON-PDM, the pheromone trail is updated all at once using the partial updates (line 14).
Using iterations involving a population of ants is required in ACO optimization to avoid early commitment
of ants to a non-optimal path. If, for instance, the complete path found by the first ant is far from optimal
and the pheromone trail is updated directly by the first ant, then other ants are likely to reinforce such non
optimal path.

While during the enactment of the monitoring process the MON-PDM is traversed bottom-up, i.e. from
the leaf operations to the root information element, during the optimization ants traverse the MON-PDM
top-down, i.e. starting from the root. The procedure ACOSearch implements the individual ant’s logic for
selecting a complete path while trying to wander from the root of the MON-PDM to its leaf operations.
When visiting an information product ipx, the ant selects the operation to follow according to a uniform
probability distribution determined by the amount of pheromone currently deposited on the operations
PREC(ipx) (line 2). In particular, given PREC(ipx) and the amount of pheromone τn(opj) deposited on
operation opj ∈ PREC(ipx) at iteration n, the ant selects the operation opj with probability p(opj) defined
as:

p(opj) =
τn(opj)∑

opj∈PREC(ipx) τn(opj)

In other words, the higher the pheromone deposited on an operation, the higher the probability the ant
will choose that operation. The randomness introduced by this choice in an ant’s behavior prevents the
algorithm to commit to early, non-optimal choices for determining the optimal path. For the first ant, all
operations in the PDM are initialized with the same level of pheromone, such that the first ant has an equal
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Algorithm 1 ACO optimization algorithms for MON-PDM optimization
1: procedure ACOAlgorithm(root, ANT , itn)
2: initialize: n = 0, Vopt = 0, popt = ∅
3: while mcpm+1 6= false do
4: for all ant ∈ ANT do
5: p←−
6: ACOSearch(root, ant, p)
7: Calculate utility V (p)
8: Calculate partial pheromone update
9: if popt = ∅ ∨ V (p) ≥ Vopt then

10: Vopt ←− V (p) . update optimal utility value
11: popt ←− p . update current optimal path
12: end if
13: end for
14: perform pheromone update
15: n←− n+ 1
16: end while
17: return popt

18: end procedure

1: procedure ACOSearch(ip, ant, p)
2: select op ∈ PREC(ip) using pheromone distribution
3: p←− p ∪ op
4: if IS(op) = ∅ then return . op is leaf operation
5: else . offspring the ant on IS(op)
6: for all ip′ ∈ IS(op) do
7: ACOSearch(ip′, ant, p)
8: end for
9: end if

10: end procedure

9



probability of choosing any operation while walking through MON-PDM.
If the chosen operation opj is a leaf operation, then the procedure stops (line 4). Otherwise, the

ACOSearch procedure is called recursively on all information elements in IS(opj) (line 7). The for loop
in procedure ACOSearch is required to offspring the ant when visiting an operation op(j) for which the input
set IS(opj) is not a singleton. When, in fact, an operation requires more than one information product to
be executed, then all such information products have to be included in the path discovered by the current
ant. The offspring of ants while exploring the MON-PDM allows our algorithm to guarantee condition 3
defining a complete path. This is a customization of the ACO meta-heuristic required to fit the problem of
optimization over PDMs.

Generally, in ACO optimization the pheromone is updated using a function of fitness [13]. The fitness
function captures the degree of fit between a specific direction chosen by an ant and the objective of the
ant. In our case, the objective of the ant is to walk through the MON-PDM along a complete path, whereas
the fit is defined by the utility that the ant finds along the path, i.e. ants look for the complete path with
highest utility. Hence, we use the utility function V (p) as fitness measure.

Given the complete path p discovered by an ant ant, the partial amount of pheromone ψant(opi) that
the ant leaves on an operation opi belonging to p is given by the utility of the path V (p), that is:

ψant(opi) = V (p), ∀opi ∈ p.

Given the set of ants ANT in an iteration of the ACOAlgorithm procedure, the pheromone level of an
operation opi in the MON-PDM at a new iteration n+ 1 is calculated as follows:

τn+1(opi) = β · τn(opi) +
∑

ant∈ANT

ψant(opi),

where β is the evaporation coefficient, comprised between 0 and 1.
In case the optimization problem includes side constraints, then the pheromone update has to keep this

into account. Specifically, an ant leaves a pheromone trail only if the complete path it has found satisfies the
side constraints. Hence, the partial amount of pheromone ψant(opi) in case of side constraints is as follows:

ψant(opi) =
{
V (p) if p satisfies side constraints

0 otherwise

A detailed evaluation of our ACO algorithm performance is reported in the Appendix.
The ACO algorithm for calculating the optimal path in MON-PDM has been implemented as a plugin

of the ProM framework.
ProM is an extensible framework supporting a wide variety of process mining techniques in the form of

plug-ins1 [30]. Process mining is concerned with the extraction of knowledge about a business process from
its process logs, that is, the traces left by process execution in the information system(s) executing such
process [29]. Process mining enables the discovery and analysis of several perspectives of business processes,
ranging from control flow to the structure of the social network of the actors executing processes. ProM
is implemented in Java; its core is available under the GNU public license, while the more than 400 ProM
plugins can be downloaded under the L-GPL license.

Although mainly related to process mining techniques, ProM plugins also implement other business
process analysis and improvement techniques. In this paper, we exploit the plugins supporting the design
of Product-Based Workflows. ProM already provided a plugin for the design of PDMs. We extended ProM
by implementing a plugin for the optimization of PDMs. In particular, our plugin allows the specification
of the parameters and side constraints of the optimization problem P1 and solves the optimization problem
using the ACO heuristic presented in Section3. On top of the support to the design and optimization of
PDMs provided by the extended ProM, we also developed a lightweight Web service-based component for
the enactment of the monitoring processes, which is discussed in the next section.

1www.promtools.org/prom6
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Figure 3: MON-PDM optimization in ProM

Figure 3 shows a snapshot of the MON-PDM optimization component implemented as a plugin of ProM
5.2. In particular, the upper left PDM is the sample PDM that we use for the evaluation of our algorithm,
where we highlighted the information products becoming part of the optimal complete path. The lower
right PDM is the optimal complete path resulting from the application of the algorithm. Note that MS can
specify its non-functional requirements using the parameters setting form.

As discussed in the next section, after calculating the optimal path in MON-PDM, MS is now ready to
execute the optimal MON-PDM. The tool support to this action is described in Section 4.

4. Enacting Cross-Organizational Process Monitoring (Step 3)

The optimal path in the PDM represents the blueprint for implementing the monitoring process satisfying
best the requirements of MS. Once the optimal path is determined, the final step is to support its automated
execution.

The literature proposes two solutions for executing a PDM. The first solution translates the PDM into a
process model using the algorithms described in [33]. The process model can then be deployed and enacted
by a workflow engine [31]. The second solution directly executes the PDM, using a process engine for
the execution of operations in the PDM and a recommendation system to suggest the next operation to
the user [32]. Both solutions have to tackle the problem of uncertainty in the execution of a PDM. An
information product in the PDM, in fact, can be produced by executing different operations, and it is up to
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Figure 4: Enactment of optimal path for business process monitoring

the user to decide which operations to choose to produce a certain information product when multiple ways
are possible. The first solution captures such uncertainty in the specification of the process model, whereas
the second solution delegates the management of uncertainty to the recommendation system acting in pair
with the process engine.

Our optimization of the MON-PDM removes this uncertainty. With the algorithm described in Algo-
rithm 1, in fact, we obtain a complete path p in which each information product is deterministically produced
by the execution of one specific operation or a set of operations. As a consequence, we decided to develop
our own specific, lightweight support to the MON-PDM execution. In summary, we developed:

• a component to optimize the MON-PDM, as a plugin of ProM 5.2;

• a lightweight engine directly executing the optimal monitoring process orchestrating the monitoring
services as specified by the optimal path in the MON-PDM.

As depicted in our framework in Figure 1, each operation in the MON-PDM is implemented by a Web
service published in the Service Registry. Our Monitoring Enactment component receives the complete path
from the MON-PDM Optimization component. Each operation in the MON-PDM contains a reference to
the Web service operation implementing it.

As shown in Figure 4, our implementation involves a form for the execution of operations, i.e. invoking
monitoring Web services, and contextual information for MS, i.e. highlighting the operation that is currently
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being executed (two leaf operations in Figure 4). Note that while executing leaf elements MS is asked to fill in
the input of the operation to start the monitoring process, whereas for non-leaf operations input information
is already filled in using the output of previously executed operations. The operation is physically executed
by invoking the corresponding operation in the monitoring Web services published by SPs. In case of non-
leaf operations the value returned by the preceding Web service invocations is temporarily stored and reused
when necessary for subsequent invocations to other Web services required for executing the MON-PDM.

Our automated derivation of monitoring processes allows managing the evolution of both monitoring
requirements and monitoring services. If the monitoring requirements of MS change, for instance MS wants
to possibly increase the quality of monitoring information or new monitoring services become available,
then MS can re-run the optimization using a modified optimization problem and reconfigure the monitoring
process. Given the fact that we use a service-oriented approach, new versions of monitoring services can be
plugged-in a monitoring process as long as their interface is consistent with the existing version.

Note also that in our framework the execution of a PDM fails when an operation fails to produce the
output element. This is a limitation of our approach when compared to direct PDM execution [32], which
can deal with operations failure by executing alternative operations, if available, to obtain the required
information elements.

Concerning the technical architecture, we use Java Web services. Examples of instrumentations of the
OpenESB BPEL engines and the YAWL workflow engine for building monitoring services are discussed
in [8].

5. Conclusions

Delegation and outsourcing of non-core activities represent viable ways for companies in dynamic business
settings to increase their business value. In order to support the need for control over outsourced operations
emerging from such a scenario, in this paper we presented a framework to support the definition and imple-
mentation on-the-fly of monitoring infrastructures for cross-organizational business processes. Monitoring
requirements (functional and non-functional) are captured in a PDM. The PDM is then optimized to satisfy
the monitoring stakeholder requirements. Optimization is achieved through an ACO-based heuristic, which
performs reasonably well even on complex product data models resulting from the analysis of a real world
practice case study. Eventually, our framework supports also the enactment of cross-organizational moni-
toring through an engine, implemented as a plugin of the ProM framework, which can directly execute the
optimal path discovered in the PDM.

We envision two directions for future work. First, we will focus on the support to design the product data
models, designing and implementing advanced methods for annotating monitoring services, retrieving those
from the registry, and combining them in a product data model. Concerning the PDM optimization, we will
focus on improving our heuristic solution of the product data model optimization problem by considering
different heuristics, e.g. based on genetic algorithms. In the same direction, we want to extend the type of
monitoring utility functions, considering also not separable utility functions.
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Appendix - Evaluation of the PDM Optimization Algorithm

We evaluated our ACO algorithm keeping as reference the optimal solution calculated using exhaustive
search of all possible complete paths.

The evaluation considers a fairly complex PDM, with 45 operations and 50 information products (I = 45,
X = 50), showing a total of 13 complete paths to produce the root element. This PDM represents a real
world PDM defined for the process of awarding unemployment benefits in the Netherlands [31]. Since the
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Table 1: Experimental evaluation of the MON-PDM optimzation algorithm.

Experiment
Number

Parameters
[itn, |ANT |]

Performance
pi1

Performance
pi2

Execution
time (ms)

1 [1, 25] 100% 100% ≤ 2

2 [1, 20] 99, 61% 98% ≤ 2

3 [1, 10] 98, 33% 80% ≤ 1

4 [1, 5] 91, 57% 20% ≤ 2

5 [2, 5] 94, 10% 78% ≤ 3

6 [3, 5] 99, 17% 95% ≤ 4

7 [4, 5] 99, 50% 97% ≤ 7

8 [5, 5] 100% 100% ≤ 9

original PDM contained only information on the cost of the operations, we generated randomly all missing
values of availability and quality.

An experiment in our evaluation is determined by a specific configuration of the number of iterations,
i.e. the value of itn, and the number of ants in a colony, i.e. the cardinality of the set ANT . We run
R = 50 replications in each experiment. In each experiment, we use the value β = 0.5 for the pheromone
evaporation, which has been found to be experimentally good in [12].

Given pr and popt as the optimal paths obtained in a replication r and through the manual exhaustive
search, respectively, we defined the performance indicators pi1 and pi2 of the PDM optimization algorithm
as follows.

The first performance indicator pi1 captures the percentage ratio of the expected value of the utilities of
pr and popt on the set of replications defining one experiment, that is:

pi1 =
E[V (pr)]
E[V (popt)]

· 100.

The second performance indicator pi2 is the average number of times within an experiment in which a
replication succeeded in finding the optimal path popt, that is:

pi2 =
∑R

r=1 sucr(pr)
R

· 100.

where the function suc(pr) is defined as:

sucr(pr) =
{

1 if pr = popt

0 otherwise

Table 1 shows the results of our experimental evaluation. Optimal performance in terms of both quality
and accuracy is achieved by using either one iteration with 25 ants or 5 iterations with 5 ants. Experiments
involving one iteration, however, show an overall better performance in terms of execution time. From the
point of view of the application of our framework, the time required to optimize the MON-PDM remains in
the order of the tens of milliseconds, which is negligible when compared to the time required for executing
the monitored business process or, of course, the time needed for manually calculating the optimal path
through exhaustive search.

Note that, while convergence of ACO algorithms to the optimal solution has been analytically demon-
strated [3], the analysis of the time required to find an optimal solution and the extraction of guidelines for
the design of ACO algorithmic components, e.g. optimal number of iterations or ants in an iteration, are
still open research questions [13]. In our problem, we found that, while optimal accuracy (pi2) is achieved
by a minimum set of ants (25 in our case), used either in one large or several small iterations, increasing the
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number of ants in an iteration generally shows better performance than increasing the number of iterations
maintaining a fixed ant population. Theoretically, these results apply only to our specific problem and
cannot be generalized to other contexts without further investigation.
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