

City, University of London Institutional Repository

Citation: d'Avila Garcez, A. S. (2005). Proceedings of IJCAI International Workshop on

Neural-Symbolic Learning and Reasoning NeSy 2005 (TR/2005/DOC/01). .

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4099/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Proceedings of IJCAI International Workshop on Neural-
Symbolic Learning and Reasoning

NeSy 2005

A.S. d’Avila J. Elman P. Hitzler

Department of Computing

City University

Technical Report Series

TR/2005/DOC/01

ISSN 1364-4009

NeSy 2005
Neural-Symbolic Learning and Reasoning

Workshop at IJCAI-05

http://ijcai05.csd.abdn.ac.uk/
http://www.neural-symbolic.org/NeSy05/

Edinburgh, Scotland

1st August 2005

NeSy Programme

9.15 Opening

9.30 – 10.30 Keynote: Ron Sun

10.30 – 11.00 coffee break

11.00 – 11.15 (position paper) Pascal Hitzler, Sebastian Bader, Artur Garcez
 Ontology Learning as a Use-Case for Neural-Symbolic Integration

11.20 – 11.45 Ernesto Burattini, Edoardo Datteri, Guglielmo Tamburrini
 Neuro-symbolic programs for robots

11.50 – 12.15 Laurent Orseau
 The Principle of Presence: A Heuristic for Growing Knowledge Structured Neural Networks

12.15 – 13.45 lunch break

13.45 – 14.10 Yuuya Sugita, Jun Tani
 Learning Segmentation of Behavior to Situated Combinatorial Semantics

14.15 – 14.40 Sebastian Bader, Pascal Hitzler, Andras Witzel
 Integrating First-Order Logic Programs and Connectionist Systems – A Constructive
 Approach

14.45 – 15.00 (position paper) Li Su, Howard Bowman, Brad Wyble
 Symbolic Encoding of Neural Networks using Communicating Automata with Applications to
 Verification of Neural Network Based Controllers

15.00 – 15.30 coffee break

15:30 – 15.45 (position paper) Henrik Jacobsson, Tom Ziemke
 Rethinking Rule Extraction from Recurrent Neural Networks

15.50 – 16.15 Jens Lehmann, Sebastian Bader, Pascal Hitzler
 Extracting Reduced Logic Programs from Artificial Neural Networks

16.20 – 17.20 Keynote: Steffen Hölldobler
 Logic Programs and Connectionist Systems

17.30 Closing

NeSy Table of Contents

Keynote talk
Ron Sun, Rensselaer Polytechnic Institute, USA

Ontology Learning as a Use-Case for Neural-Symbolic Integration
Pascal Hitzler, Universität Karlsruhe, Germany
Sebastian Bader, Technische Universität Dresden, Germany
Artur Garcez, City University London, UK

Neuro-symbolic programs for robots
Ernesto Burattini, Universita di Napoli Federico II, Italy
Edoardo Datteri, Universita di Pisa, Italy
Guglielmo Tamburrini, Universita di Pisa, Italy

The Principle of Presence: A Heuristic for Growing Knowledge Structured Neural Networks
Laurent Orseau, INSA-IRISA, France

Learning Segmentation of Behavior to Situated Combinatorial Semantics
Yuuya Sugita, Brain Science Institute, RIKEN, Japan
Jun Tani, Brain Science Institute, RIKEN, Japan

Integrating First-Order Logic Programs and Connectionist Systems - A Constructive Approach
Sebastian Bader, Technische Universität Dresden, Germany
Pascal Hitzler, Universität Karlsruhe, Germany
Andras Witzel, Technische Universität Dresden, Germany

Symbolic Encoding of Neural Networks using Communicating Automata with Applications to
Verification of Neural Network Based Controllers
Li Su, University of Kent, UK
Howard Bowman, University of Kent, UK
Brad Wyble, University of Kent, UK

Rethinking Rule Extraction from Recurrent Neural Networks
Henrik Jacobsson, University of Skoevde, Sweden
Tom Ziemke, University of Skoevde, Sweden

Extracting Reduced Logic Programs from Artificial Neural Networks
Jens Lehmann, Technische Universität Dresden, Germany
Sebastian Bader, Technische Universität Dresden, Germany
Pascal Hitzler, Universität Karlsruhe, Germany

Keynote talk: Logic Programs and Connectionist Systems
Steffen Hölldobler, Technische Universität Dresden, Germany

NeSy Organising Committee

Dr. Artur Garcez is a Senior Lecturer at the Department of Computing at City University, London. He has
over 50 publications on Machine Learning and the integration of Logics and Neural Networks. His research has
evolved from the theoretical foundations of Neural-Symbolic systems to their application in Bioinformatics and
Software Engineering. Dr. Garcez is an author of the book Neural-Symbolic Learning Systems: Foundations
and Applications, published by Springer-Verlag in 2002, and of the forthcoming book Connectionist Non-
Classical Logics, to be published in 2005. He is an area scientific editor (Logics and Neural Networks) of the
Journal of Applied Logic, Elsevier, a member of the editorial board of the International Journal of Hybrid
Intelligent Systems, IOS Press, and a member of the editorial board of the Cognitive Technologies book series,
Springer-Verlag. He has served and serves on the committees of a number of international conferences and
workshops, and has acted as a reviewer for a number of international journals on Logic and Artificial
Intelligence. He is a member of the City and Guilds College Association and a Visiting Research Fellow at the
Department of Computer Science, King's College London. He holds an M.Eng. in Computing Engineering, an
M.Sc. in Computing and Systems Engineering and a Ph.D. (D.I.C.) in Computing. For more information,
please see http://www.soi.city.ac.uk/~aag

Prof. Jeff Elman joined the UCSD Linguistics Department in 1977 after receiving his Ph.D. from University
of Austin at Texas. In 1986, he helped found the Department of Cognitive Science - the first such department in
the world - where he served as Chair from 1994 to 1998. He is currently Professor of Cognitive Science,
Associate Dean the Division of Social Sciences at UCSD, Co-Director of the Kavli Institute for Brain and
Mind, and Director of the Center for Research in Language. Elman is one of the pioneers in the field of
artificial neural networks. His early model of speech perception, the TRACE model, remains one of the major
theories in the field. In 1990 he developed the Simple Recurrent Network architecture (the so-called “Elman
net”) which is today widely used in cognitive science to understand behaviors that unfold over time. His recent
book, Rethinking Innateness: A Connectionist Perspective on Development (with Bates, Johnson, Karmiloff-
Smith, Parisi, Plunkett, 1996), introduces a new theoretical framework for understanding the nature/nurture
debate. Currently, Elman’s research focus is on language processing, development, and computational models
of cognition. He was President of the Cognitive Science Society from 1999 to 2000 and in 2001 was selected as
one of five Inaugural Fellows of the Society. Also in 2001, he was awarded an honorary degree from the New
Bulgarian University.

Dr. Pascal Hitzler is project leader and research assistant at the Institute for Applied Informatics and Formal
Description Methods (AIFB) at the University of Karlsruhe in Germany, where he is involved in national and
international projects on semantic web technologies, including KnowledgeWeb, SEKT, and SmartWeb. He
received a PhD in Mathematics from UCC Cork, Ireland, in 2001, and a Diplom in Mathematics and Computer
Science from the University of Tübingen, Germany, in 1998. His research record lists over 80 publications in
such diverse areas as neural-symbolic integration, semantic web, knowledge representation and reasoning,
lattice and domain theory, denotational semantics, and set-theoretic topology. He serves as a reviewer for
international journals, conferences, and research project applications. He has also been an organizer of
international enhancement programmes for highly skilled students in Mathematics and Computer Science, and
has served as an editor for several books in this area. For more information, please see http://www.pascal-
hitzler.de.

NeSy Programme Committee

Artur d'Avila Garcez (City University London, UK)
Howard Blair (Syracuse University, USA)
Jeff Elman (University of California San Diego, USA)
Dov Gabbay (Kings College London, UK)
Marco Gori (University of Siena, Italy)
Barbara Hammer (TU Clausthal, Germany)
Pascal Hitzler (University of Karlsruhe, Germany)
Steffen Hölldobler (TU Dresden, Germany)
Luis Lamb (Federal University of Rio Grande do Sul, Brazil)
John Lloyd (The Australian National University, Australia)
Vasile Palade (Oxford University, UK)
Asim Roy (Arizona State University, USA)
Antony K. Seda (University College Cork, Ireland)
Jude Shavlik (University of Wisconsin, USA)
Rudi Setiono (National University, Singapore)
Alessandro Sperduti (University of Padova, Italy)
Stefan Wermter (University of Sunderland, UK)
Gerson Zaverucha (Federal University of Rio de Janeiro, Brazil)

NeSy Introduction
The importance of the efforts to bridge the gap between the connectionist and symbolic paradigms of Artificial
Intelligence has been widely recognised. The merging of theory (background knowledge) and data learning
(learning from examples) in neural networks has been indicated to provide a learning system that is more
effective than purely symbolic or purely connectionist systems, especially when data are noisy.

The above results, which are due also to the massively parallel architecture of neural networks, contributed to
the growing interest in developing Neural-Symbolic Learning Systems, i.e. hybrid systems based on neural
networks that are capable of learning from examples and background knowledge, and of performing reasoning
tasks in a massively parallel fashion. Typically, translation algorithms from a symbolic to a connectionist
representation and vice-versa are employed to provide either (i) a neural implementation of a logic, (ii) a logical
characterization of a neural system, or (iii) a hybrid system that brings together features from connectionism
and symbolic Artificial Intelligence.

However, while symbolic knowledge representation is highly recursive and well understood from a declarative
point of view, neural networks encode knowledge implicitly in their weights as a result of learning and
generalisation from raw data. The challenge for neural-symbolic systems, therefore, is to combine neural
networks’ robust learning mechanisms with symbolic knowledge representation, reasoning, and explanation
capability in ways that retain the strengths of each paradigm.

This workshop brings together researchers in the fields of neural-symbolic integration, neural computation,
logic and artificial intelligence, and computational neuroscience, as well as experts in robotics and semantic
web applications of neural-symbolic systems. The workshop aims to focus on principled ways of integrating
neural computation and symbolic artificial intelligence w.r.t. knowledge representation, reasoning, learning,
and knowledge extraction. Towards this goal, the papers in the workshop address all facets of neural-symbolic
integration, including:

• The representation of symbolic knowledge by connectionist systems;
• Integrated neural-symbolic learning approaches;
• Extraction of symbolic knowledge from trained neural networks;
• Integrated neural-symbolic reasoning;
• Biological inspiration for neural-symbolic integration;
• Applications in robotics and semantic web.

The provision of integrated systems for robust learning and expressive reasoning has been identified recently
by Leslie Valiant as a key challenge for computer science for the next 50 years (Journal of the ACM, Vol. 50,
2003). Neural-Symbolic integration can rise to this challenge. The area has now reached maturity, as indicated
by books recently published in the subject, a journal’s dedicated scientific area on logic and neural networks,
research projects, and a book series dedicated to the integration of symbolic and sub-symbolic computation.
There have been isolated workshops in the area in the past, and it is now time for a regular workshop series to
serve as a focal point for the community. We hope Neural-Symbolic Learning and Reasoning will serve this
purpose. We hope it will also become a source for further collaboration between researchers working in the
area.

We would like to take this opportunity to thank the members of the programme committee who helped in
reviewing and selecting the papers submitted to the workshop, our invited speakers, Prof. Ron Sun and Prof.
Steffen Hölldobler, the authors of the papers submitted to the workshop, and the IJCAI-05 workshop chair, Dr.
Carlos Guestrin, for his assistance in the organisation of the workshop.

Edinburgh, August 2005 Artur d’Avila Garcez , Jeff Elman, Pascal Hitzler

Keynote speaker: Prof. Ron Sun

Abstract: The general idea behind hybrid systems, developing more comprehensive models through
integrating a variety of techniques, can be further extended to so called cognitive architectures, that is,
cognitive models that encompass a wide range of cognitive capabilities. Building cognitive
architectures is a difficult task for artificial intelligence and cognitive science. Issues and challenges in
developing cognitive architectures will be outlined, examples of cognitive architectures will be given,
and possible future directions will be sketched.

Short Bio: Dr. Ron Sun is Professor of Cognitive Science at Rensselaer Polytechnic Institute, and
formerly the James C. Dowell Professor of Engineering and Computer Science at University of
Missouri-Columbia. He received his Ph.D in 1992 from Brandeis University.
His research interest centers around studies of cognition, especially in the areas of cognitive
architectures, human and machine reasoning and learning, multi-agent interaction and social
simulation, and hybrid connectionist models. For his paper on integrating rule-based reasoning and
connectionist models, he received the 1991 David Marr Award from Cognitive Science Society. He
has written or edited eight books by various publishers. He is the founding co-editor-in-chief of the
journal Cognitive Systems Research (published by Elsevier). He also serves on the editorial board of
Connection Science, Applied Intelligence, and other journals. He is the general chair and program
chair for COGSCI 2006. He is a member of the Governing Board of International Neural Networks
Society.

Keynote speaker: Prof. Steffen Hölldobler

Abstract: How to represent and reason about structured objects and structure-sensitive processes in a
fully connectionist setting is a long-standing open research problem. Recently, we were able to show
that various semantic meaning operators associated with first-order logic programs can be
approximated arbitrarily well by a feed-forward connnectionist network. By adding recurrent
connections these networks can even approximate the least fixed point of a semantic meaning
operator. However, the problem of how to practically construct such networks for given logic
programs remains. In the talk I will present this approach, discuss its limitations, and present various
approaches for practically constructing connectionist networks for first-order logic programs.

Short Bio: Steffen Hölldobler has received the title of a Dr. rer. nat. in 1988 from the University of
the Armed Forces Munich. During a post-doctoral fellowship at the International Computer Science
Institute in Berkeley, California, from 1989 to 1990 he was introduced to connectionism by Jerome
Feldman and developed the core of his post-doctoral thesis on “Automated Inferencing and
Connectionist Models”. In 1993 he became Professor for “Knowledge Representation and Reasoning”
at the Department of Computer Science of the Technische Universität Dresden. He is currently
director of the International Center for Computational Logic and head of the European Masters
Program in Computational Logic. Steffen Hölldobler has developed various connectionist models for
propositional and first-order reasoning including a connectionist unification algorithm, a connectionist
inference system for first-order Horn Logic (CHCL), a recursive propositional connectionist inference
system for normal logic programs, and a recursive neural network for reflexive reasoning. He has also
shown that the immediate consequence operator of certain classes of first-order logic programs can be
approximated arbitrarily well by feedforward neural networks and, consequently, that the least fixed
point of such programs can be approximated arbitrarily well by recurrent networks with a feedforward
kernel.

Ontology Learning as a Use-Case for Neural-Symbolic Integration
(position paper)

Pascal Hitzler1∗, Sebastian Bader2†, Artur Garcez3

1AIFB, University of Karlsruhe, Germany
2International Center for Computational Logic, TU Dresden, Germany

3Department of Computing, City University London, UK

Abstract
We argue that the field of neural-symbolic integra-
tion is in need of identifying application scenarios
for guiding further research. We furthermore argue
that ontology learning — as occuring in the con-
text of semantic technologies — provides such an
application scenario with potential for success and
high impact on neural-symbolic integration.

1 Neural-Symbolic Integration
Intelligent systems based on symbolic knowledge process-
ing, on the one hand, and on artificial neural networks (also
called connectionist systems), on the other, differ substan-
tially. Nevertheless, these are both standard approaches to
artificial intelligence and it would be very desirable to com-
bine the robustness of neural networks with the expressiv-
ity of symbolic knowledge representation. This is the reason
why the importance of the efforts to bridge the gap between
the connectionist and symbolic paradigms of Artificial Intel-
ligence has been widely recognised. As the amount of hybrid
data containing symbolic and statistical elements as well as
noise increases in diverse areas such as bioinformatics or text
and web mining, neural-symbolic learning and reasoning be-
comes of particular practical importance. Notwithstanding,
this is not an easy task, as illustrated in the sequel.

The merging of theory (background knowledge) and data
learning (learning from examples) in neural networks has
been indicated to provide learning systems that are more ef-
fective than purely symbolic and purely connectionist sys-
tems, especially when data are noisy [16]. This has con-
tributed decisively to the growing interest in developing
neural-symbolic systems, i.e. hybrid systems based on neu-
ral networks that are capable of learning from examples and
background knowledge, and of performing reasoning tasks
in a massively parallel fashion. Typically, translation algo-
rithms from a symbolic to a connectionist representation and
vice-versa are employed to provide either (i) a neural imple-
mentation of a logic, (ii) a logical characterization of a neural

∗Pascal Hitzler is supported by the German Federal Ministry of
Education and Research under the SmartWeb project, and by the
European Commission under contract IST-2003-506826 SEKT.

†Sebastian Bader is supported by the GK334 of the German Re-
search Foundation (DFG).

system, or (iii) a hybrid system that brings together features
from connectionism and symbolic Artificial Intelligence.

However, while symbolic knowledge representation is
highly recursive and well understood from a declarative point
of view, neural networks encode knowledge implicitly in their
weights as a result of learning and generalisation from raw
data, which are usually characterized by simple feature vec-
tors. While significant theoretical progress has recently been
made on knowledge representation and reasoning using neu-
ral networks, and on direct processing of symbolic and struc-
tured data using neural methods, the integration of neural
computation and expressive logics such as first order logic
is still in its early stages of methodological development.

Concerning knowledge extraction, we know that neural
networks have been applied to a variety of real-world prob-
lems (e.g. in bioinformatics, engineering, robotics), and they
were particularly successful when data are noisy. But entirely
satisfactory methods for extracting symbolic knowledge from
such trained networks in terms of accuracy, efficiency, rule
comprehensibility, and soundness are still to be found. And
problems on the stability and learnability of recursive mod-
els currently impose further restrictions on connectionist sys-
tems.

In order to advance the state of the art, we believe
that it is necessary to look at the biological inspiration
for neural-symbolic integration, to use more formal ap-
proaches for translating between the connectionist and sym-
bolic paradigms, and to pay more attention to potential appli-
cation scenarios. We will argue in the following that ontology
learning provides such an application scenario with potential
for success and high impact.

2 The Need for Use Cases
The general motivation for research in the field of neural-
symbolic integration (just given) arises from conceptual ob-
servations on the complementary nature of symbolic and neu-
ral network based artificial intelligence described above. This
conceptual perspective is sufficient for justifying the mainly
foundations-driven lines of research being undertaken in this
area so far. However, it appears that this conceptual approach
to the study of neural-symbolic integration has now reached
an impasse which requires the identification of use cases and
application scenarios in order to drive future research.

Indeed, the theory of integrated neural-symbolic systems
has reached a quite mature state but has not been tested ex-
tensively so far on real application data. From the pioneer-
ing work by McCulloch and Pitts [27], a number of systems
has been developed in the 80s and 90s, including Towell and
Shavlik’s KBANN [33], Shastri’s SHRUTI [31], the work by
Pinkas [29], Hölldobler [21], and d’Avila Garcez et al. [15;
17], to mention a few. The reader is referred to [9; 16;
19] for comprehensive literature overviews. These systems,
however, have been developed for the study of general princi-
ples, and are in general not suitable for real data or application
scenarios that go beyond propositional logic. Nevertheless,
these studies provide methods which can be exploited for the
development of tools for use cases, and significant progress
can now only be expected as a continuation of the fundamen-
tal research undertaken in the past.

The systems just mentioned — and most of the research
on neural-symbolic integration to date — is based on propo-
sitional logic or similarly finitistic paradigms. Significantly
large and expressible fragments of first order logic are rarely
being used because the integration task becomes much harder
due to the fact that the underlying language is infinite but
shall be encoded using networks with a finite number of nodes
[6]. The few approaches known to us to overcome this prob-
lem are (a) the work on recursive autoassociative memory,
RAAM, initiated by Pollack [30], which concerns the learn-
ing of recursive terms over a first-order language, and (b) re-
search based on a proposal by Hölldobler et al. [23], spelled
out first for the propositional case in [22], and reported also
in [20]. It is based on the idea that logic programs can be rep-
resented — at least up to subsumption equivalence [26] — by
their associated single-step or immediate consequence oper-
ators. Such an operator can then be mapped to a function on
the real numbers that can, under certain conditions, in turn be
encoded or approximated e.g. by feedforward networks with
sigmoidal activation functions using an approximation theo-
rem due to Funahashi [13], and (c) more recently, the idea
of fibring neural networks [12], which follows from Gab-
bay’s fibring methodology to combine logical systems [14],
has been used to represent acyclic first order logic programs
with infinitely many ground instances in a (simple, by com-
parison) neural network [5].

In addition to these and a number of other sophisticated
theoretical results — reported e.g. in [4; 5; 6; 7; 20; 23] —,
first-order neural-symbolic integration still remains a widely
open issue, where advances are very difficult, and it is very
hard to judge to date to what extent the theoretical approaches
can work in practice. We argue that the development of use
cases with varying levels of expressive complexity is, as a
result, needed to drive the development of methods for neural-
symbolic integration beyond propositional logic.

3 Semantic Technologies and Ontology
Learning

With amazing speed, the world wide web has become a wide-
spread means of communication and information sharing. To-
day, it is an integral part of our society, and will continue to
grow. However, most of the information available cannot be

Figure 1: The Semantic Web Layer Cake

processed easily by machines, but has to be read and inter-
preted by humans. In order to overcome this limitation, a
world-wide research effort is currently being undertaken, fol-
lowing the vision put forward by Berners-Lee et al. [8] to
make the contents of the world wide web accessible, inter-
pretable, and usable by machines. The resulting extension
of the World Wide Web is commonly referred to as the Se-
mantic Web, and the underlying technological infrastructure
which is currently being developed is referred to as Semantic
Technologies.

In this process, a key idea is that web content should be
provided with conceptual background — often referred to as
ontologies [32] — which allows machines to put information
into context, making it interpretable. These research efforts
are grouped around the so-called semantic web layer cake,
shown in Figure 1; it depicts subsequent layers of functional-
ity and expressiveness, which shall be put in place incremen-
tally. Most recently — having established RDF and RDF-
Schema as basic syntax — the OWL Web Ontology Language
[2; 28], which is a decidable fragment of first-order logic,
has been recommended by the world wide web consortium
(W3C) for the ontology vocabulary.

Conceptual knowledge is provided by means of statements
in some logical framework, and the discussion concerning
suitable logics is still ongoing. Description Logics [3] will
most likely play a major role, as they provide the founda-
tion for OWL, but other approaches are also being consid-
ered. Currently, the development of an expressive rule-based
logic layer on top of OWL for the inference of ontological
knowledge is being investigated. But also fragments of OWL,
including Horn and propositional languages, are being used,
as different application scenarios necessitate different trade-
offs between expressiveness, conceptual and computational
complexity, and scalability.

The construction of ontologies in whatever language, how-
ever, appears as a narrow bottleneck to the proliferation of
the Semantic Web and other applications of Semantic Tech-
nologies. The success of the Semantic Web and its technolo-
gies indeed depends on the rapid and inexpensive develop-
ment, coordination, and evolution of ontologies. Currently,
however, these steps all require cumbersome engineering pro-
cesses, associated with high costs and heavy time strain on
domain experts. It is therefore desirable to automate the on-
tology creation and ontology refinement process, or at least
to provide intelligent ontology learning systems that aid the

ontology engineer in this task.
From a bird’s eye’s view, such a system should be able

to handle terms and synonyms, in order to build abstract
concepts and concept hierarchies from text-based websites.
This basic ontological knowledge then needs to be further
refined using relations and rules, in accordance with estab-
lished or to-be-established standards for ontology representa-
tion. Current systems [10; 11; 25] use only very basic ontol-
ogy languages, but technological advances are expected soon,
since the need for expressive ontology languages is generally
agreed upon.

4 Ontology Learning as Use Case
We argue that ontology learning, as just described, constitutes
a highly interesting application area for neural-symbolic inte-
gration. As a use case, it appears to be conceptually sound,
technically feasible, and of potential high impact. Let us now
give our arguments in more detail.

4.1 Conceputally Sound
Machine learning methods based on artificial neural networks
are known to perform well in the presence of noisy data. If
ontologies are to be learned from such uncontrolled data like
real existing webpages or other large data repositories, the
handling of noise becomes a real issue. At the same time,
we can only expect to be able to make reasonable generaliza-
tions from data given in the form of html pages if background
knowledge is also taken into account. It would be natural for
such background knowledge to be ontology-based and there-
fore symbolic. Furthermore, the required output necessarily
has to be in a logic-based format because it will have to be
processed by standard tools from the semantic web context.
This would require the use of efficient knowledge extraction
algorithms to derive compact symbolic representations from
large-scale trained neural networks.

It looks as though ontology learning requires the inte-
gration of symbolic and neural networks-based approaches,
which is provided by the methods developed in the field of
neural-symbolic integration. Current results and systems in-
dicate that machine learning of ontologies is a very difficult
task, and that the most suitable methods and approaches still
remain to be identified. We believe that in the end mixed
strategies will have to be used to arrive at practical tools, and
due to the above mentioned reasons neural-symbolic learning
systems can be expected to play a significant role.

4.2 Technically Feasible
The specific nature of ontology research led to the develop-
ment of a variety of different ontology representation lan-
guages, and various further modifications of these. Some
of them are depicted in Figure 2. Standardization efforts are
successfully being undertaken, but it is to be expected that a
number of ontology languages of different logical expressiv-
ity will remain in practical use. This diversity is natural due
to the different particular needs of application scenarios.

As we have identified earlier, the different levels of ex-
pressivity correspond well to the specific requirements on
a use case scenario to drive neural-symbolic integration re-
search. Propositional methods can be applied to the learning

Figure 2: Some ontology languages. Arrows indicate inclu-
sions between the languages. Concept hierarches are sim-
ple ’is-a’ hierarchies corresponding to certain fragments of
propositional logic. The standard OWL [2; 28] already comes
in different versions. DLP [18; 34] refers to a weak but prac-
tically interesting datalog fragment of OWL. F-Logic [24;
1] provides an alternative ontology paradigm.

of concept hierarchies or DLP ontologies. Decidable frag-
ments such as the different versions of OWL provide more so-
phisticated challenges without having to tackle the full range
of difficulties inherent of first order neural-symbolic integra-
tion. As for learning, we also expect that the learning of con-
ceptual knowledge should harmonize naturally with learning
paradigms based on Kohonen maps or similar architectures.

4.3 High Potential Impact
The learning of ontologies from raw data has been identified
as an important topic for the development of Semantic Tech-
nologies. These, in turn, are currently migrating into various
research and application areas in artificial intelligence and
elsewhere, including knowledge management, ambient com-
puting, cognitive systems, bioinformatics, etc. At the same
time, ontology learning appears to be a very hard task, and
suitable new learning methods are currently being sought.
Neural-symbolic integration has the potential for significant
contricution to this area and thus to one of the currently
prominent streams in computer science.

5 Conclusions
We have identified ontology learning as a potential use case
for neural-symbolic integration. We believe that this would
further neural-symbolic integration as a field, and provide sig-
nificant contributions to the development of Semantic Tech-
nologies.

Acknowledgement We are greatful for a number of very in-
teresting and stimulating comments by the anonymous refer-
ees, containing substantial further ideas and related thoughts,
which we could not incorporate in full in the final version.

References
[1] Jürgen Angele and Georg Lausen. Ontologies in F-logic. In

Staab and Studer [32], pages 29–50.

[2] Grigoris Antoniou and Frank van Harmelen. Web Ontology
Language: OWL. In Staab and Studer [32], pages 67–92.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

[4] Sebastian Bader and Pascal Hitzler. Logic programs, iterated
function systems, and recurrent radial basis function networks.
Journal of Applied Logic, 2(3):273–300, 2004.

[5] Sebastian Bader, Pascal Hitzler, and Artur S. d’Avila Garcez.
Computing first-order logic programs by fibring artificial neu-
ral network. In Proceedings of the 18th International FLAIRS
Conference, Clearwater Beach, Florida, May 2005, 2005. To
appear.

[6] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler. The
integration of connectionism and knowledge representation
and reasoning as a challenge for artificial intelligence. In L. Li
and K.K. Yen, editors, Proceedings of the Third International
Conference on Information, Tokyo, Japan, pages 22–33. Inter-
national Information Institute, 2004. ISBN 4-901329-02-2.

[7] Sebastian Bader, Pascal Hitzler, and Andreas Witzel. Integrat-
ing first-order logic programs and connectionist systems — a
constructive approach. In Proceedings of the IJCAI-05 Work-
shop on Neural-Symbolic Learning and Reasoning, NeSy’05,
Edinburgh, UK, 2005. To appear.

[8] Tim Berners-Lee, James Hendler, and Ora Lassila. The seman-
tic web. Scientific American, May 2001.

[9] Anthony Browne and Ron Sun. Connectionist inference mod-
els. Neural Networks, 14(10):1331–1355, 2001.

[10] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Com-
paring conceptual, partitional and agglomerative clustering for
learning taxonomies from text. In Proceedings of the Euro-
pean Conference on Artificial Intelligence (ECAI’04), pages
435–439. IOS Press, 2004.

[11] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Learning
concept hierarchies from text using formal concept analysis.
Journal of Artifical Intelligence Research, 200x. To appear.

[12] Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neu-
ral networks. In Proceedings of 19th National Conference on
Artificial Intelligence AAAI’04, pages 342–347, San Jose, Cal-
ifornia, USA, July 2004. AAAI Press.

[13] Ken-Ichi Funahashi. On the approximate realization of contin-
uous mappings by neural networks. Neural Networks, 2:183–
192, 1989.

[14] Dov M. Gabbay. Fibring Logics. Oxford Univesity Press,
1999.

[15] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay.
Symbolic knowledge extraction from trained neural networks:
A sound approach. Artificial Intelligence, 125:155–207, 2001.

[16] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay.
Neural-Symbolic Learning Systems — Foundations and Appli-
cations. Perspectives in Neural Computing. Springer, Berlin,
2002.

[17] Artur S. d’Avila Garcez and Gerson Zaverucha. The connec-
tionist inductive lerarning and logic programming system. Ap-
plied Intelligence, Special Issue on Neural networks and Struc-
tured Knowledge, 11(1):59–77, 1999.

[18] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan
Decker. Description logic programs: Combining logic pro-
grams with description logics. In Proc. of WWW 2003, Bu-
dapest, Hungary, May 2003, pages 48–57. ACM, 2003.

[19] Hans W. Güsgen and Steffen Hölldobler. Connectionist in-
ference systems. In Bertram Fronhöfer and Graham Wright-
son, editors, Parallelization in Inference Systems, volume
590 of Lecture Notes in Artificial Intelligence, pages 82–120.
Springer, Berlin, 1992.

[20] Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda.
Logic programs and connectionist networks. Journal of Ap-
plied Logic, 3(2):245–272, 2004.

[21] Steffen Hölldobler. Automated Inferencing and Connectionist
Models. Fakultät Informatik, Technische Hochschule Darm-
stadt, 1993. Habilitationsschrift.

[22] Steffen Hölldobler and Yvonne Kalinke. Towards a massively
parallel computational model for logic programming. In Pro-
ceedings ECAI94 Workshop on Combining Symbolic and Con-
nectionist Processing, pages 68–77. ECCAI, 1994.

[23] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr.
Approximating the semantics of logic programs by recurrent
neural networks. Applied Intelligence, 11:45–58, 1999.

[24] Michael Kifer, Georg Lausen, and James Wu. Logical founda-
tions of object-oriented and frame-based languages. Journal
of the ACM, 42:741–843, 1995.

[25] Alexander Maedche and Steffen Staab. Ontology learning. In
Staab and Studer [32].

[26] Michael J. Maher. Equivalences of logic programs. In Jack
Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 627–658. Morgan Kaufmann, Los Altos,
CA, 1988.

[27] Warren S. McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. Bulletin of Mathemat-
ical Biophysics, 5:115–133, 1943.

[28] Web ontology language (OWL). www.w3.org/2004/OWL/,
2004.

[29] Gadi Pinkas. Propositional non-monotonic reasoning and in-
consistency in symmetric neural networks. In John Mylopou-
los and Raymond Reiter, editors, Proceedings of the 12th In-
ternational Joint Conference on Artificial Intelligence, pages
525–530. Morgan Kaufmann, 1991.

[30] Jordan B. Pollack. Recursive distributed representations. Arti-
ficial Intelligence, 46(1):77–105, 1990.

[31] Lokenda Shastri. Advances in Shruti — A neurally motivated
model of relational knowledge representation and rapid infer-
ence using temporal synchrony. Applied Intelligence, 11:78–
108, 1999.

[32] Steffen Staab and Rudi Studer, editors. Handbook on On-
tologies. International Handbooks on Information Systems.
Springer, 2004.

[33] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based
artificial neural networks. Artificial Intelligence, 70(1–2):119–
165, 1994.

[34] Raphael Volz. Web Ontology Reasoning with Logic Databases.
PhD thesis, AIFB, University of Karlsruhe, 2004.

Neuro-symbolic programs for robots

Ernesto Burattini*, Edoardo Datteri°, Guglielmo Tamburrini*
*Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”

Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
°Dipartimento di Filosofia, Università di Pisa

Piazza Torricelli 3a, 56126 Pisa, Italy
{ernb,datteri,tamburrini}@na.infn.it

Abstract
This paper introduces a neuro-symbolic behaviour
modelling language (NSBL), which enables one to
specify both reactive and deliberative robotic be-
haviours, and to model both competitive and coop-
erative control functions. Core NSBL is grounded
into the neural processing of propositional clauses,
crucially involving the non-monotonic processing
of unless conditions. Core NSBL suffices to model
a variety of reactive and deliberative processes, be-
havioural sequencing, and competitive control
functions. Extended NSBL is achieved by fibring
neural nets. Fibred neural networks enable one to
deal with the cooperative control of behaviours by
the computation of polynomial functions. A two-
stage translation algorithm for core NSBL
(rules→neural model→FPGA implementation)
provides a powerful tool to meet bounded time re-
sponse constraints for deliberative robotic systems
operating in dynamic environments. The paper also
speculates about how to achieve adaptivity and
neural learning in NSBL-based agents.

1 Motivations and Background
Developing AI and robotic systems which take a clear

advantage from the strengths of both symbolic and neural
processing is a major challenge for neuro-symbolic ap-
proaches [d’Avila Garcez et al., 2002]. In particular, cogni-
tive robotics has been identified as a suitable test bed for
neuro-symbolic integration, insofar as a cognitive robot
must be capable of combining knowledge-based reasoning
and learning with prompt behavioural responses in dynamic
environments [Bader et al., 2005]. Some steps towards
neuro-symbolic cognitive robotics are undertaken in this
paper, which introduces a neuro-symbolic behaviour model-
ling language (NSBL) enabling one to specify and control
the behaviour of robotic agents. Core NSBL (cNSBL, from
now on) is grounded into the neural processing of proposi-
tional clauses, crucially involving the non-monotonic proc-
essing of unless conditions [Aiello et al., 1998]. Extended
NSBL (eNSBL) is achieved by fibring neural nets [d’Avila
Garcez and Gabbay, 2004]. Many behaviour-based systems,
from the extreme case of pure “stretch-reflex” reactive ones

to deliberative or hybrid systems [Arkin, 1998], can be uni-
formly modelled as eNSBL agents. In addition to that,
eNSBL presents distinctive advantages in connection with
the relation between logical and neural models: the close
correspondence between the neural and the eNSBL level of
description allows one to reconstruct the logical model un-
derlying a neuro-symbolic network implemented in a behav-
iour-based system, revealing the embedded decisional struc-
ture. In view of the massive parallelism of rule-based rea-
soning made possible by neuro-symbolic approaches,
NSBL-based agents can be endowed with perceptual and
deliberation capabilities, while meeting at the same time
bounded time response constraints for operation in dynamic
environments.

cNSBL suffices to model a wide variety of reactive be-
haviours and deliberative processes, behavioural sequenc-
ing, and competitive control functions. A two-stage transla-
tion algorithm for cNSBL provides a powerful tool to meet
bounded time response requirements for deliberation proc-
esses carried out by robotic systems. The first stage is the
translation of cNSBL programs into neural networks formed
by binary threshold neurons. In the second stage, the result-
ing neural nets are compiled into VHDL (Very High Speed
Integrated Circuits) code for the FPGA (Field Programma-
ble Gate Array) hardware. This two-stage translation en-
ables one to move on from the theoretical possibility of par-
allel computation of rules demonstrated by the neural mod-
elling of cNSBL operators to the actual FPGA parallel exe-
cution of cNSBL programs [Burattini et al., 2000]. cNSBL
is introduced in section 2, while section 3 explains how a
variety of behaviour based structures are modelled in
cNSBL. Extended NSBL (eNSBL), introduced in section 4,
is achieved by adding fibred neural nets to cNSBL. This
extension enables one to model within eNSBL cooperative
control of behaviours which involves the computation of
polynomial functions – notably potential field navigation
[Latombe, 1991].

The neuro-symbolic treatment of sets of propositional
rules for both monotonic and non-monotonic reasoning in
AI systems is significantly connected to the present work on
cNSBL. To begin with, the development of a neuro-
symbolic shell for diagnostic expert systems [Burattini and
Tamburrini, 1992] paves the way to meeting the bounded
time responses required in selective domains of diagnostic

problem solving (such as fault diagnosis in nuclear power
plants) by means of massively parallel neural computation.
A similar motivation suggests the opportunity of adopting a
neuro-symbolic approach in cognitive robotics too, for a
robotic system endowed with the inferential capabilities of
these expert system shells would be able to perform effi-
ciently forms of hypothesize-and-test reasoning that are
involved in a variety of perceptual and decision-making
tasks, while meeting at the same time the strict temporal
constraints imposed by action in real environments. More-
over, translation algorithms for systems of propositional
rules are available (see, for example, [Aiello et al., 1995;
Aiello et al., 1998]), that enable one to generate neural ma-
chinery for the non-monotonic processing of unless and
until operators, in addition to outputting networks of binary
threshold units for computing logic programs formed by
general propositional clauses, as in [Hoelldobler and Ka-
linke, 1994]. The neural processing of non-monotonic rea-
soning is achieved there by proper use of inhibitory neural
signals. Finally, the above mentioned two-stage translation
algorithm [Burattini et al., 2000] enables one to move from
these systems of rules for non-monotonic reasoning to their
neural representations, and from these to their FPGA im-
plementations.

The concluding remarks presented in sect. 5 concern the
development of basic adaptivity of NSBL agents and proper
ways of achieving more extensive adaptivity by neural rein-
forcement learning.

2 Core NSBL
Behaviour-based robotics is a relatively recent area of robot-
ics research, which focuses on the development of adaptive
robots that operate in real (not simulated) environments un-
der restrictive temporal constraints. A distinctive modelling
strategy is pursued in behaviour-based robotics, which
analyses adaptive capabilities as resulting from the coordi-
nated activities of behaviours representing system sub-
capacities. Adaptive navigation, for instance, is often mod-
elled as coordinated activities of ‘going towards the target’
and ‘avoiding obstacles’. In behaviour-based systems, be-
haviours are typically parallel and asynchronous, and coor-
dination mechanisms arbitrate between simultaneously ac-
tive behaviours in order to drive system effectors [Arkin,
1998].

In this section we introduce cNSBL, a neuro-symbolic
language for modelling behaviour-based systems. cNSBL is
based on the IMPLY and UNLESS operators of the lan-
guage NSL [Burattini et al., 2000]. With respect to NSL,
cNSBL introduces additional constraints on the semantic
interpretation of propositional variables (that will be pre-
sented in the next section). IMPLY and UNLESS operators
take cNSBL sentences as arguments; a cNSBL sentence is a
propositional literal, a conjunction or else a disjunction of
propositional literals. One associates to each literal li a dis-
tinct neural element li. We stipulate that the truth-value of
each propositional literal can be True, False, or Undefined.
These values are readily associated to the firing state of
weighted−sum non-linear thresholded neurons (NSN), so

that if a literal li and its negation ~li are represented as dis-
tinct NSN neurons li and ~li, respectively, one can encode
the value True of li by the firing of li, the value False by the
firing of ~li, and the value Undefined by the quiescence of
both neural elements. For an early approach following these
general guidelines, see [von Neumann 1956].

The main reason for adopting this kind of representation
in the present context is that robotic systems may be com-
pelled to act even when no information is available about
the truth-value of some given sentence. In particular, the
action to undertake in the absence of such information may
differ from the actions that the system would undertake if
the sentence were either (known to be) true or (known to be)
false. Some pertinent examples are discussed in section 3.
Similar representational issues arise in connection with
neuro-symbolic approaches to diagnostic problem solving
[Burattini and Tamburrini, 1992].

Let P={pi} (0 < i < n) and Q={qj} (0 < j < m) be sets of
propositional literals (for some n, m ∈N). Let P∧ the
conjunction of the elements of P, and let Q∨ be the
disjunction of the elements of Q; let s be a literal.
IMPLY(P∧, s) is intuitively interpreted as “IF the
conjunction of literals P∧ is true THEN s is true” and
UNLESS(P∧, Q∨, s) is intuitively interpreted as “IF the
conjunction of literals P∧ is true and the disjunction of
literals Q∨ is false or undefined THEN s is true”.
Appropriate three-valued truth-tables for computing the
truth-value of literals, conjunctions, and disjunctions of
literals are those given in [Kleene, 1952] p. 334. Two addi-
tional operators are introduced in NSL: ATLEAST(P∨, k, s)
interpreted as “IF j≥k literals of the disjunction P∨ are true
THEN s is true”, and ATMOST (P∨, k, s) interpreted as “IF
j≤k literals of the disjunction P∨ are true THEN s is true”.
Well-formed IMPLY and UNLESS statements are called
cNSBL rules. Let x, y be NSNs; let U(x)∈{0,1} be the out-
put of x; and let Wx,y ∈R be the weight of the connection
from x to y. Each cNSBL literal li will be encoded as a dis-
tinct NSN neuron li

. Accordingly, the translation algorithm
into NSN for the UNLESS(P∧, Q∨, s) rule outputs the NSN
network in he t Figure 1 below: 1p

2p

np

1q

2q

mq

1 -1

… …

θ(s*) = n - ε1

1

-1

-1

s*

Figure 1 Neuro-symbolic translation of UNLESS(P∧, Q∨, s).

The threshold value of unit s* is n-ε (with 0 < ε < 1), the
weights of the connections from each of the n units pi repre-
senting the truth of the elements of P∧ and st are set to 1, and
the weights from all the qi and s* are set to -1. This neural
network captures the intended semantics of UNLESS(P∧, Q∨,
s) insofar as s* fires (at time t+1) if and only if all the units
representing the elements of P∧ fire at time t, and no unit

representing an element of Q∨ fires at time t. Let us note that
activation of at least one unit representing an element of Q∨
inhibits the s* unit, even when all P∧ neurons are simultane-
ously firing.

It is worth noting that the cNSBL proposition (pi∨~ pi) is
not a tautology; in particular, pi is undefined when both neu-
rons encoding the truth and the falsehood of pi are inactive.
As illustrated in section 3 below, this possibility turns out to
be relevant for developing non-monotonic inference mod-
ules embedded in behaviour-based systems. In the underly-
ing NSN net, both neurons encoding pi and ~pi are inactive
if they have not been activated by some other neurons of the
net or by an external source. On the basis of an epistemic
interpretation, we refer to this state of affairs as the lack of
support for the truth-value of pi or the truth-value of ~ pi.
The lack of support for the truth-value of a variable is
clearly distinct from its falsehood, and paves the way for
non-monotonic cNSBL processing of rules.

3 cNSBL behaviour-based agents
Let us turn now to describe how behaviour-based agents are
modelled in cNSBL. These agents are represented as a com-
bination of two layers, one modelled as a set of cNSBL
rules that we call for short “cNSBL layer”,, the other one
including sensory transduction and motor actuation mecha-
nisms. At each time t (assuming discrete time), the state of
the cNSBL layer is given by the truth-values of n proposi-
tional variables Q={q1,…qn}. Distinct subsets S and A of Q
play the following distinctive roles (see Figure 2):
• the values of the variables belonging to S (the set of

sensory variables) are determined by a sensory trans-
duction mechanism;

• the values of the variables that belong to A (the set of
motor variables) determine the behaviour of the mo-
tor actuation mechanism(s), e.g., the motors of the
system run forward if and only if the variable a1 ∈ A
is true. A one-one correspondence between these mo-
tor variables and the actions in the motor actuation
layer is required.

Q

sensory transduction motor actuation

S A

cNSBL layer

sensory and
motor layer

Figure 2 The structure of cNSBL behaviour-based agents.

Actions can be durative or discrete, as in [Nilsson, 1994].
If M is a durative action, its execution starts when Mon∈A
becomes true, and continues on until Mon is no longer true
(see Figure 3). Each discrete action is connected to two mo-
tor variables of the cNSBL layer. Mon triggers action M, and
Mend becomes true when M has been completed (see Figure

4). It is required that the truth-value of the latter variable is
determined by the motor actuation layer alone, and cannot
be controlled by other cNSBL variables.

durative action M

Mon

motor actuation
layer

cNSBL layer

Figure 3 Durative actions.

discrete action M

Mon

motor actuation
layer

cNSBL layer

Mend

Figure 4 Discrete actions.

No additional constraints on sensory transduction and
motor actuation mechanisms are imposed at this level of
generality. Just to make one concrete example, these
mechanisms can be implemented on the basis of the GNU-
licensed ARIA environment for programming mobile robots
[ARIA] (the sensory layer is obtained with the getSonar-
Reading function, and the motor actuation is based on the
move function, issuing a discrete action).
A finite set of cNSBL propositions (a cNSBL program)
specifies how the values of some cNSBL variables in Q at
time t+1 depends on the value of the variables in Q at time
t. Two sub-sets of Q are not controlled by cNSBL rules: the
sensory variables, which are fixed by the sensory transduc-
tion mechanism, and a subset of motor variables that signal
the end of a discrete action (like the Mend in Figure 4). A
simple version of Braitenberg vehicle #1 [Braitenberg,
1984], that goes forward if there is light, can be modelled
using the IMPLY operator only, with the rule IMPLY(light,
go), where the sensory variable light is true iff the sensor
detects light, and the system motor goes forward iff the mo-
tor variable go, triggering a durative action, is true. The op-
erator UNLESS can be used to stop motion in case the robot
bumper senses an obstacle; this is achieved by the rule
UNLESS(light, b, go), where b (a sensory variable) is true
iff the bumper hits an obstacle. The value of some state
variables at time t+1 (in this example go) depends on the
value of the state variables at the previous time instant, in a
way that is defined by the cNSBL program.

In more general terms, each behaviour b of the system is
construed as a function from a set Ib∈Q of input variables to
a set Ob∈Q of output variables. Clearly, cNSBL behaviours
may compute trivial Ib/Ob transformations like “if there is
light, then turn on the motor”. It is worth noting, however,
that a cNSBL behaviour can embody expert system capa-
bilities, thus making action dependent on more complex
inference processes, which take internal and sensory vari-
ables as inputs. A robotic system endowed with these infer-
ential capabilities would be able to carry out a wide variety
of knowledge-based perceptual processes (such as classifi-

cation of objects presented in various perceptual modalities)
and decision-making processes (such as inferences to the
best explanation). This possibility is demonstrated in [Burat-
tini and Tamburrini, 1992; Aiello et al., 1998], where simi-
lar neuro-symbolic machinery is used to implement shells
for diagnostic expert systems carrying out hypothesize-and-
test inference processes.

Attempts to model perception-action coordination behav-
iours with cNSBL require that inputs and outputs of behav-
iours should be coded as finite sets of propositional vari-
ables. This constraint does not prevent one to interface the
cNSBL layer with continuous-state sensory and motor
mechanisms, via quantization mechanisms; sensory cNSBL
variables, in that case, may be used to encode discrete con-
ditions directly depending on sensory data, which include
both local conditions like “there is a door in front of the
robot” as well as global conditions like “the door of the
kitchen is open”. And cNSBL behaviours may be used to
model the decision modules of the system, that infer the
right action to do based on the current situation. A discrete-
state approach for modelling the decision (inferential) mod-
ules of behaviour-based robots is typically adopted in com-
petitive, winner-takes-all arbitration mechanisms for action
selection in robotic systems [Tyrrell, 1993]. It is also sup-
ported by investigations in cognitive ethology that are rele-
vant for biologically inspired robotic approaches: prominent
models of animal behaviour are distinctively based on dis-
crete (mutually incompatible) behavioural repertoires, and
discrete sets of internal conditions causally related to behav-
iour [McFarland and Sibly, 1975]. More significantly, the
quantization of variables involved in action selection is
adopted in behaviour-based robotics as well. In [Nilsson,
1994], production rules are used to connect discrete condi-
tions, evaluated against sensory data, with distinct actions,
to achieve perception-action coordination in robots. And
Arkin [Arkin, 1998] points to discrete encoding of behav-
iours by production rules as well (section 3.3.1). We enrich
this picture here, by showing how many control strategies
typically used in behaviour-based robotics are modelled in
cNSBL. As remarked above, competitive coordination
mechanisms are easily obtained by means of UNLESS and
IMPLY rules. An example is inhibition of behaviours, a key
element of subsumption architectures [Brooks, 1986]. Be-
haviour B inhibits behaviour A if, intuitively, B prevents the
output of A from being sent to the agent’s effectors. Let A
be, for example, a light-detector behaviour that sets variable
a to true iff the corresponding sensor perceives light; and let
B be an obstacle-detector mechanism, which sets b to true
when there is an obstacle in front of the robot; the variable
fon triggers the durative action forward. Inhibition of the link
between A and the forward action by the behaviour B is
straightforwardly obtained by the rule UNLESS(a, b, fon).
See Figure 5.

By combining UNLESS and IMPLY rules, behaviourally
richer systems can be obtained. For example, by adding the
rule IMPLY(b, ton) to the previous UNLESS rule, where ton
triggers a ‘turn’ movement, the system stops forward mo-
tion and turns, when it comes across an obstacle (thus ob-

taining a basic action selection mechanism, that arbitrates
between two mutually exclusive behaviours). But the possi-
bility of distinguishing the falsehood of cNSBL variables
from the lack of support for their truth-value paves the way
for other interesting implementations of inhibition mecha-
nisms. In the example shown in Figure 5, the action forward
is chosen when b is false, and is blocked when b is true. In
some cases, one might want the link between a and fon to be
inhibited if behaviour B is active at all – that is, if B renders
b true or false – and to be restored when behaviour B is in-
active. This is useful, for example, when the higher layer B
is endowed with more efficient and intelligent motor com-
petences, controlling the same actions as the lower layer,
where the lower layer is only a back-up controller to be ac-
tivated in case B is damaged. In such cases, we might want
to undertake different actions (incompatible with forward)
that are associated to the truth or falsehood of b. The rule
UNLESS(a, (b∨~b), fon) is to be used in this case. The pos-
sibility of distinguishing when a behaviour return a false
value from its inactivity is fundamental for additivity (the
possibility of adding other layers on top of the existing
ones) and robustness (the capacity of the system to maintain
basic functionalities when higher layers don’t work)
[Brooks, 1986]. This possibility is distinctively offered by
cNSBL.

behaviour B

behaviour A forwarda

b

fon

motor actuation
layer

cNSBL layer

Figure 5 Basic inhibition

Moreover, the possibility of detecting the lack of support
for the truth or falsehood of some propositional variable
enables one to enrich the inferential capabilities of behav-
iour-based systems towards non-monotonic reasoning.
Figure 6 shows a sketch of an assistive behaviour-based
robot, capable of pushing and moving heavy objects in col-
laboration with humans. The system chooses actions to exe-
cute next on the basis of several factors, including the mo-
tion of the human user and various properties of the envi-
ronment. It includes also a module that detects if the user
intends to change the previously planned trajectory (be-
cause, for example, the environment changed in a way that
is not perceivable by the robotic system, or because the user
has to engage in a more urgent task). The human intention
detector module controls a propositional variable a, that is
true if the human's plan is (supposedly) changed, and false if
the human intention is to continue with the previous plan.
All of these reasoning capabilities are modelled as modules
taking as inputs many sensory variables, and drawing chains
of deductively valid conclusions ultimately resulting in the
values of {a, ... , g} variables. On the basis of those vari-
ables, the module action generator sets to true a variable
included in a set Act={h, ... , z} of action triggering vari-

ables. It is desirable that the system reacts to the lack of
support for a in a way that is distinct from the reaction to its
truth and its falsehood; for example, if the system cannot
detect the intention of the user – because of incomplete in-
formation – a cautious reaction would be that of slowing the
speed of the end-effector motion, and possibly ask explicitly
if the user wants to abandon the current plan. As in the pre-
vious example, we have three distinct ways of reacting to
three different conditions –true, false, or undefined a; and
the choice depends non-monotonically on the presence or on
the absence of a definite truth-value for a among the prem-
ise of the inference.

action
generator

human
intention
detector

environment
properties

human
motion
detector

a

b

c
d

e

f
g

h
i

z
...

Act

Figure 6 Inhibition and non-monotonic inference

Let’s turn now to show how other coordination mecha-
nisms are modelled by means of cNSBL. Discrete actions
can be linearly sequenced [Arkin and MacKenzie, 1994] by
appropriately combining IMPLY rules, and exploiting the
motor variables that signal the end of the action. With the
following rules a sequence of going backward, turning, and
going forward is obtained:

IMPLY(a, backwardon)
IMPLY(backwardend, turnon)
IMPLY(turnend, forwardon)

Conditional sequences, like those encoded in FSA dia-
grams [Arkin, 1989], in Robot Schemas [Lyons and Arbib,
1989] and in teleo-reactive programs [Nilsson, 1994] are
achieved by a combination of UNLESS and IMPLY rules
that switch between competitive actions when some internal
or sensory conditions obtain. Note that behaviours can be
inhibited and released by other behaviours, by simply set-
ting their output variables to “neither true nor false”; the
same possibility is implemented in many languages for be-
haviour-based programming, such as the Behavior Lan-
guage [Brooks, 1990] where behaviours are activated by
preconditions. In the following section we describe how to
obtain other coordination mechanisms by means of eNSBL.

4 Extended NSBL
cNSBL is not sufficiently powerful to specify some familiar
robotic behaviours and control functions. Cooperative coor-
dination mechanisms (as used in potential field navigation,
see [Latombe, 1991]) are a prominent case in point. Addi-
tional computational tools are introduced here, in order to
develop a wholly neuro-symbolic approach to this robotic
design problem. In the resulting extended NSBL framework,

behaviours are modelled as NSN (corresponding to sets of
cNSBL rules), as fibred Neural Nets, (fNN for short, intro-
duced in [d’Avila Garcez and Gabbay, 2004]), or as a com-
bination of both. eNSBL is obtained by representing fNNs
as real-valued variables, and by extending the semantics of
IMPLY and UNLESS statements so as to admit real-valued
variables as arguments. Let A and B be feedforward net-
works of n and m neurons respectively, with single output
neurons; for each neuron i (with 0<i<n and 0<i<m respec-
tively), 1i ik

() { (),..., ()}i iI t x t x t= is the vector of ki inputs of i;
Wi={Wji}, 0<j< ki

, is the set of the weights of the connections
from other neurons to i; Ui(t) = gi(Ii(t), Wi) is the input po-
tential of i; and Oi(t+1)= hi(Oi(t), Ui(t), Θi), where Θi is a
threshold, is the output of i at time t+1. Let us recall the
fibring function and fNN definition given in [d’Avila Gar-
cez and Gabbay, 2004]:
• A fibring function ϕi from A to B maps the weights Wj

of B to new values, depending on the values of Wj and
on the input potential Ii of the neuron i in A;

• B is said to be embedded into A if ϕi is a fibring func-
tion from A to B, and the output of neural unit i in A
is given by the output of network B. The resulting
network, composed of networks A and B, is said to be
a fibred neural network (see Figure 7).

A

network B

Figure 7 A Fibred Neural Network

eNSBL is obtained from cNSBL by allowing neurons to
embed other neural networks via fibring functions. For each
embedding neuron i of the network, there is a nested fibred
neural network Ni, that is, a set {N1, …, Nn} of feedforward
neural networks such that Ni ∈{N1, …, Nn} is embedded
into a neuron of Ni-1, 2 i n≤ ≤ . The network N1 (at the top
of the nesting hierarchy) has its own inputs, possibly con-
nected to sensors or other state variables of the system. The
fibring function φi associated to the embedding neuron i is
such that the weights of N1, …, Nn are set to 0 if the input
potential of i is below the threshold, otherwise they are set
to default values; in the latter case, the default values are
such that the nested fibred neural network Ni, calculates a
desired function of its inputs. According to the definition of
fNN, the output of i is given by the output of Ni,. As proved
in [d’Avila Garcez and Gabbay, 2004], fibred neural net-
work can approximate any polynomial function to any de-
sired degree of accuracy. More specifically, fNNs may be
used to calculate attractive or repulsive potentials, or coop-
erative coordination among behaviours; and, for each fibred
neural network Ni,, the corresponding embedding neuron i

turns “on” or “off” the embedded network, by intervening
on its weights.

The output of neuron i is represented as an eNSBL real
value (which we refer to by the superscript ‘e’). IMPLY and
UNLESS statements are interpreted in eNSBL in a special
way. The statement IMPLY(a, be) is interpreted as “if a is
true, then the feedforward network embedded in the NSN
neuron represented by be will fire, and the value will be
stored in be itself”. No additional constraints are imposed on
the other neurons of embedded networks. Let’s consider the
following example of a potential field navigation mecha-
nism based on eNSBL. In potential fields systems, the over-
all heading of the system is obtained by a vectorial sum of
two virtual “potentials”, one attracting the system towards
the target position, the other one repelling it from obstacles.
Typically, (a) the attractive potential is mathematically rep-
resented as a vector, whose direction points towards the
goal, and whose magnitude is directly proportional to the
distance between current point and goal or some sensory
cue; and (b) the repulsive potential is represented as a vector
whose direction points away from perceived obstacles, and
whose magnitude is inversely proportional to the distance
between robot and obstacles. A typical equation for the cal-
culation of the repulsive vector magnitude is

0 fo r x d
x1 - fo r 0 x d
d

m a g n i tu d eV
>⎧ ⎫⎪= ⎨ ≤ ≤⎪⎩

⎪
⎬
⎪⎭

where x is the distance perceived by a range detector de-
vice (a ultrasonic or infrared sensor), and d is the maximum
distance that the sensor can perceive. Figure 8 shows a
sketch of the neural circuitry for calculating the potential
fields.

p

q

b

c

m motor heading

Ob=r(sonar_readings)

Oc=a(local_pos,map)

Om=Ob+Oc

s

Figure 8 fNN for potential fields navigation

This example includes six NSN neurons, three of which
(b, c, and m) embed nested fNNs. The nested fNN embed-
ded in b calculates a repulsive potential, with sonar readings
as input. As for the vector magnitude, the network embed-
ded in b is composed by two neural sub-nets, one calculat-
ing the 0 x d≤ ≤ part of the equation, and the other being a
neuron which fires iff x > d and inhibits the result of the
other sub-net (see Figure 9).

The nested fNN embedded into c calculates an attractive
potential, taking as input the local position of the robot and
a map that represents the target position; and the fNN em-
bedded into m blends the repulsive and attractive potentials
by vectorial sum into one heading to be sent to the motors.
Each of the three computations is triggered by a NSN neu-

ron, that is, by a cNSBL variable. The eNSBL program for
this network is:

IMPLY(p, be)
IMPLY(q, ce)
IMPLY(s, me)

where the truth of propositional variables p, q, and s enables
the networks embedded in neurons b, c, and m, respectively,
to fire and compute a value for the eNSBL variables be, ce,
and me (the latter being connected to the motor layer). In
particular, by virtue of the last IMPLY statement, variable s
activates the fNN that calculate motor commands by coop-
erative coordination [Arkin, 1998].

x

Θ=d+ε

inhibition
link

b

Figure 9 The network for the repulsive potential

By linking each embedding neuron to a triggering neuron
(and respectively, to a propositional variable) via IMPLY
statements as above, it is possible to design action selection
circuitry (including inhibition and sequencing) by cNSBL
rules. In Figure 10 the sketch of a simple eNSBL circuitry is
shown that arbitrates between four behaviours – avoid ob-
stacles, wander, move to goal, and escape predators. The
labels marked with * specify the computation carried out by
embedded nested fNNs, whose result is stored in the corre-
sponding variable. Dashed arrows represent inhibitory con-
nections (see section 3).

avoid*

wandering*

move to goal*

flee predator*

ae

we

ge

fe

cea

w

g

f

cooperative
coordination

actuators

eNSBL motor
actuation
layer

Figure 10 An action selection eNSBL circuitry.

The eNSBL rules
IMPLY(a, ae)
UNLESS(w, (g∨f), we)
UNLESS(g, f, ge)
IMPLY(f, fe)

store in variables ae, we, ge, fe a repulsive potential, a wan-
dering heading, an attractive potential, and a flee heading
respectively; the second rule determines inhibition of the
‘wandering’ behaviour by the ‘move to goal’ and the ‘flee
predator’; the third rule determines the inhibition of ‘move
to goal’ by ‘flee predator’. The neural translation of this
circuitry is straightforward from the description of eNSBL
presented above.

5 Concluding remarks
In this paper we have presented cNSBL, a neuro-symbolic
modelling language for behaviour-based systems, and
eNSBL, an extended version of cNSBL obtained by fibring
neural networks. The expressiveness of cNBSL and eNSBL
as a behaviour-based system modelling language has been
illustrated by means of various examples of action-selection
mechanisms, inference systems for hybrid agents, and po-
tential fields navigation. The close relationship between the
cNSBL-eNSBL level and the logical level, inherited by NSL
and shown in section 2, represents one of the distinctive
advantages with respect to other languages proposed in the
field of behaviour-based robot modelling.

Future work will explore limitations and potentialities of
cNSBL and eNSBL for behaviour-based modelling. In par-
ticular, we will be concerned with adaptation and learning.
Adaptation in eNSBL systems can be obtained by changing
the perception-action transformation embedded in the
eNSBL programs, so as to better fit environmental and task
constraints. A straightforward form of adaptation for a com-
petitive coordination mechanism is to modify the priority
list of behaviours, by selectively modifying (adding and
removing) inhibition links among behaviours. This is read-
ily done in cNSBL, assuming that the set of the different
priority orderings of behaviours is reasonably small: a pro-
positional variable is introduced for each priority list; this
variable can be activated by some sensory configuration
detecting mechanism; IMPLY and UNLESS statements are
added to the program, that selectively activate one behav-
ioural output (and inhibit the others) when this propositional
variable is true.

More interesting, dynamic forms of adaptation and learn-
ing are allowed by eNSBL, by devising proper fibring func-
tions for embedded networks. Reinforcement learning
[Nehmzow and Mitchell, 1995] is a case in point. Fibring
functions map the current weights of the embedded net-
works into other weights, depending both on the current
weights and the inputs to the embedding neurons. Suppose
that an ‘avoid’ network (calculating a repulsive potential) is
embedded in the avoid neuron of Figure 11, receiving 0 or 1
inputs from synaptic connections with other neurons of the
NSN. If Wavoid(t) is the array of weights of the embedded
network at time t, a and b are the activation values of pre-
synaptic neurons, and c1, c2 are reinforcement constants, a
simple form of reinforcement learning operating at run-time
is obtained by the following fibring function:

Wavoid(t+1)=(Wavoid(t)+(a*c1)-(b*c2))

Every time a or b neurons are active, a reinforcement
learning step is issued; in particular, if a is active, each
weight is incremented by c1, and if the neuron b is active
then the weights are decremented by c2. Neurons a and b
issue positive and negative reinforcement learning, respec-
tively. This simple form of reinforcement learning, similar
to the learning momentum strategy in behaviour-based ro-
botics [Clark et al., 1992], is readily obtained by fibring
functions and embedded networks; it exploits the remark-
able feature of fibred neural networks, in which the training
of embedded networks follows directly from the firing of
the embedding networks [d’Avila Garcez and Gabbay,
2004].

Other reinforcement factors are easily added by taking
into account other pre-synaptic neurons in the fibring func-
tions. And higher-level cNSBL modules can guide the learn-
ing and adaptation of lower-level embedded networks, by
activating and inhibiting reinforcement neurons. This oppor-
tunity paves the way to the development of multi-layered
systems akin to hybrid behaviour-based architectures [Gat,
1998].

avoid

Wavoid(t+1)=φ(Iavoid,Wavoid(t))
a

b

c

motor actuation
layer

Figure 11 Reinforcement learning in embedded networks

Backpropagation learning may be applied to a knowledge
base solely consisting of IMPLY operators of cNSBL, if one
modifies in a suitable way the neural representation of these
operators. This possibility is demonstrated by the translation
algorithm introduced in [d’Avila Garcez and Zaverucha,
1999] from general logic programs to neural networks with
bipolar semi-linear neurons, instead of the networks of bi-
nary threshold neurons used here for the translation of
IMPLY clauses. Both kinds of network provide parallel
processing models for sets of IMPLY operators, but only the
neural net specified in [d’Avila Garcez and Zaverucha,
1999] can be trained by the standard backpropagation algo-
rithm. This learning procedure can be adopted in order to
refine the knowledge base formed by the IMPLY operators
that were originally fed into the translation algorithm [Tow-
ell and Shavlik, 1994].

Future work on NSBL will be concerned with these learn-
ing problems, adopting the distinctive perspective of cogni-
tive robotics, which requires one to perform learning and
reasoning without violating bounded-time response con-
straints. From this perspective, challenging issues are now
being posed in perceptual cognition, concerning the devel-
opment of modules which allow robotic systems to perform
categorical classification and object recognition. And cru-
cially, the design and processing opportunities afforded in
this domain of investigation by neuro-symbolic approaches
in general, and by NSBL in particular, will have to be

probed on the basis of both computer simulations and actual
robotic platforms.

References
[Aiello et al., 1995] Aiello, A., Burattini, E., Tamburrini, G.

(1995), "Purely neural, rule-based diagnostic systems. I,
II” International Journal of Intelligent Systems, Vol. 10,
pp. 735-769.

 [Aiello et al., 1998] Aiello, A., Burattini, E., Tamburrini,
G. (1998), “Neural Networks and Rule-Based Systems”,
in Leondes C. D. (ed.), Fuzzy Logic and Expert Systems
Applications, Academic Press, Boston, MA.

[Arkin, 1989] Arkin, R.C. (1989), "Motor Schema-Based
Mobile Robot Navigation", International Journal of Ro-
botics Research, Vol. 8, No. 4, pp. 92-112.

[Arkin, 1998] Arkin, R.C. (1998), Behavior-based robotics,
The MIT Press.

[Arkin and MacKenzie, 1994] Arkin, R.C., MacKenzie, D.
(1994), "Temporal Coordination of Perceptual Algo-
rithms for Mobile Robot Navigation", IEEE Transac-
tions on Robotics and Automation, Vol. 10, No. 3, pp.
276 - 286.

[ARIA] ActivMedia Robotics Interface for Applications
(ARIA), see
http://robots.activmedia.com/ARIA/index.html

[Bader et al., 2005] Bader S., Hitzler P., Hoelldobler S.
(2005), “The integration of connectionism and first-
order representation and reasoning as a challenge for ar-
tificial intelligence”, manuscript.

[Braitenberg, 1984] Braitenberg V. (1984), Vehicles, MIT
Press, Cambridge, MA.

[Brooks, 1986] Brooks, R.A. (1986), "A Robust Layered
Control System for a Mobile Robot", IEEE Journal of
Robotics and Automation, pp. 14-23.

[Brooks, 1990] Brooks, R.A. (1990), “The behavior lan-
guage”, A.I. Memo 1227, Artificial Intelligence Labora-
tory, MIT, Boston, MA.

[Burattini et al., 2000] Burattini, E., De Gregorio, M., Tam-
burrini, G. (2000), “NeuroSymbolic Processing: non-
monotonic operators and their FPGA implementation”,
in Proceedings of the Sixth Brazilian Symposium on
Neural Networks (SBRN 2000), IEEE Press.

[Burattini and Tamburrini, 1992] Burattini, E., Tamburrini,
G. (1992), “A pseudo-neural system for hypothesis selec-
tion”, International Journal of Intelligent Systems, vol.
7, pp. 521-545.

[Clark et al., 1992] Clark, R.J., Arkin, R.C., Ram, A.
(1992), "Learning momentum: online performance en-
hancement for reactive systems", in Proceedings of the
1992 IEEE International Conference on Robotics and
Automation, Vol. 1, Nice, France, pp. 111-116.

[d’Avila Garcez et al., 2002] d'Avila Garcez, A. S., Lamb,
L. C., Gabbay, D. M. (2002), “A Connectionist Induc-

tive Learning System for Modal Logic Programming”,
in Proceedings of 9th IEEE International Conference on
Neural Information Processing (ICONIP'02), Singapore,
November 2002.

[d’Avila Garcez and Gabbay, 2004] d'Avila Garcez, A. S.,
Gabbay, D. M. (2004), “Fibring Neural Networks”, in
Proceedings of 19th National Conference on Artificial
Intelligence (AAAI 04), San Jose, California, USA,
AAAI Press.

[d’Avila Garcez and Zaverucha, 1999] Avila Garcez, A.S.,
Zaverucha, G. (1999), “The connectionist inductive
learning and logic programming system”, Applied Intel-
ligence, Vol. 11, pp. 59-77.

[Gat, 1998] Gat, E. (1998), "On Three-Layer Architectures",
in Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.),
Artificial Intelligence and Mobile Robots: Case Studies
of Successful Robot Systems, The AAAI Press, pp. 195-
210.

[Hoelldobler and Kalinke, 1994] Holldobler, S., Kalinke, Y.
(1994), “Toward a new massively parallel computational
model for logic programming” in Proceedings of the
Workshop on Combining Symbolic and Connectionist
Processing, ECAI 94.

[Kleene, 1952] Kleene, S. C. (1952), Introduction to Meta-
mathematics, North-Holland, Amsterdam.

[Latombe, 1991] Latombe, J.C. (1991), Robot Motion Plan-
ning, Kluwer Academic Publishers, Norwell, MA.

[Lyons and Arbib, 1989] Lyons, D.M., Arbib, M.A. (1989),
"A Formal Model of Computation for Sensory-Based
Robotics", IEEE Transactions on Robotics and Automa-
tion, Vol. 5, No. 3, pp. 280-293.

[McFarland and Sibly, 1975] McFarland, D.J., Sibly, R.M.
(1975), "The Behavioural Final Common Path", Phi-
losophical Transactions of the Royal Society of London
Series B, Biological Sciences, Vol. 270, No. 907, pp.
265-293.

[Nehmzow and Mitchell, 1995] Nehmzow, U., Mitchell, T.
(1995), "The Prospective student's Introduction to the
Robot Learning Problem", Technical Report Series,
UMCS95 -12-6, the Department of Computer Science,
Manchester University.

[Nilsson, 1994] Nilsson, N. (1994), "Teleo-reactive pro-
grams for agent control", Journal of Artificial Intelli-
gence Research, Vol. 1, pp. 139-158.

[Towell and Shavlik, 1994] Towell G.G. , Shavlik J. W.
(1994), “Knowledge-based artificial neural networks”,
Artificial Intelligence, Vol. 70, pp. 119-165.

[Tyrrell, 1993] Tyrrell, T., Computational Mechanisms for
Action Selection, PhD Thesis, University of Edinburgh,
Centre for Cognitive Science, 1993.

[von Neumann, 1956] von Neumann, J. (1956), “Probabilis-
tic logics and the synthesis of reliable organisms from
unreliable components”, in C.E. Shannon, J. Mc Carthy
(eds.), Automata Studies, Princeton U. P.

The Principle of Presence:
A Heuristic for Growing Knowledge Structured Neural Networks

Laurent Orseau
INSA/IRISA

35000 Rennes, France
lorseau@irisa.fr

Abstract

Fully connected neural networks such as multi-
layer perceptrons can approximate any given
bounded function provided they have sufficien-
t time. But this time grows quickly with the number
of connections. In lifelong learning, the agent must
acquire more and more knowledge in order to solve
problems growing in complexity. In this purpose,
it does not sound reasonable to fully connect huge
networks. By applying the point of view of local-
ity, we hypothesize that memorization only takes
what one perceives and thinks into account. Based
on this principle of presence, a neural network is
constructed for structuring knowledge online. Ad-
vantages and limitations are discussed.

1 Introduction
We take the lifelong learning point of view [Thrun, 1998].
An agent must be able to re-use its knowledge to learn sever-
al problems, which is a key issue for solving more and more
complex problems. Re-using knowledge does not only mean
to know when to use it, but also to organize knowledge so
that it is easily accessible to be re-used. In this paper, we
do not focus on how to solve complex problems, but prin-
cipally on how such organization can be made. In this ob-
jective, knowledge representation should be understandable,
not only for the user, but more importantly for the agent it-
self, so that it can access to well-defined concepts. At a given
time, the number of concepts the agent knows can be gigan-
tic and a priori not necessarily correlated. Fully connected
neural networks (FCNN) that learn with backpropagation are
interesting tools for solving single problems, but have severe
drawbacks in terms of lifelong learning and continual inter-
action with the environment [Robins and Frean, 1998]. Such
networks are often said to require learning times in

���
,
�

being the number of connections; for big nets, having thou-
sands or even more inputs, outputs and neurons, such times
are prohibiting. FCNN are also prone to catastrophic forget-
ting: learning a single new item can make the network forget
all it has learned. Whereas knwoledge may grow unbound-
ed, neurons can even not be added online since weights are
randomly initialized and connected to all inputs and outputs:
knowledge is thus temporarily lost, if not worse, until the new

neuron is optimized. Therefore, we seek for locality [Bottou
and Vapnik, 1992] in learning (memorization and optimiza-
tion).

Based on everyday life observation, we hypothesize that
what one memorizes only depends on the concepts that are
active at that time and call it the principle of presence. Af-
ter having investigated the consequences of such a strong hy-
pothesis, a neural network is constructed which advantages
and disadvantages are discussed.

2 The Principle of Presence
Simon is playing chess against one of his friends. He is confi-
dent he will soon win the game. Unfortunately, his opponent
plays a move that crosses his plans. Surprised and disappoint-
ed, Simon gives up. Later, in another chess game against his
friend, the same situation happens. Simons recognizes it and
avoids making the same mistake. He has obviously learned
something at the end of the first game. But what has Simon
memorized? Has he taken all his knowledge into account,
even if he knows billions of things? One should be aware
of the really fast learning Simon performed. Does this seem
plausible that billions of modification have occured for this
single learning example?

A possible answer is meta-learning, e.g. [Hochreiter et al.,
2001], which describes how to learn the learning algorith-
m itself, adapting it to different situations. But this kind of
learning requires not only examples of functions, but also ex-
amples for each function. Infants learn also very quickly, but
they can’t have sufficient data to create a good learning algo-
rithm. There must be some kind of heuristic prior to meta-
learning.

We argue that Simon has only memorized what is most sig-
nificant to the situation: what he sees, hears, etc. and what he
thinks (see Fig. 1). But what he does not think (music, s-
port or whatever) is in great quantity and is of little relevance.
This is due to the fact that most of one’s acquired concepts
are totally uncorrelated. This principle is in fact a focusing
mechanism.

2.1 Definitions
We first define the principle of presence in a very general
framework:

Definition 1 Concept: a concept is a basic perception skill
or action skill or a combination of concepts (macro-concept).

Bishop

Queen

(b)

Queen

Bishop

Queen

Check

Will takeWill take

Lose Lose

MoveMove

... ...

(a)

Queen

Bad
Situation

Check

Figure 1: (a) Simon has just seen that willing to take his
opponent’s bishop led himself to lose his queen. (b) Simon
memorizes this new situation by taking only active present
perception events and active ideas into account.

A concept cannot be made of itself, though.

Definition 2 Activity: a concept is said to be active if it is
presently used or has been used in the short past.

It can be considered as still being in a short term memo-
ry. If a concept is embodied in a computation unit, using it
means that the corresponding unit has delivered a non-zero
computation result.

Definition 3 Principle of presence: when memorising an un-
known situation, only active concepts are taken into account.

This means links, no matter what their function is, are only
created between active concepts.

The main advantage of this principle is that the size of the
agent’s knowledge does not directly influence the number of
connections a concept can have.

The principle of presence has reasonable pratice plausibil-
ity. Since the number of concepts can be huge and potentially
infinite, memorizing a concept by linking it to all the other
concepts (no matter how), basic or compound, needs as many
resources, which number increases with knowledge. Memo-
rizing only active concepts requires drastically less memory
resources: it does not depend on what the agent knows, but
rather on what the agent “thinks” at the time of memorization.

In this article, action events will not be considered and only
a limited class of macro-concepts will be described.

2.2 Implications
The first consequence is that the working space is not the
same for each concept. Links to other concepts depend on
which ones were active when the situation was being memo-
rized.

The second consequence is that concepts have only a pos-
itive form at the time of their creation: they can be in an
active state, possibly fuzzy, or in an inactive state. Since inac-
tive concepts are not taken into account, inactivity must exist.
However, inhibitory links could be created between existing
concepts but for now only the positive form is discussed. Ba-
sic concepts (inputs) may only be active to signify the pres-
ence of an interesting event; the rarer the better. Higher level
concepts must also be created in a similar fashion.

Another consequence concerns generalization. A concept
represents the co-activation of other concepts. So they seem
to be a conjunction of concepts, thus being monomials at the
time of creation. Then, generalization is the fact of deleting
links from unusefull concepts that are only noise. The goal
is to determine which right conjunction of monomials should
activate the given concept.

In fact, it can be a bit more than this. Suppose the concept�
to learn is (� and � and (� or �)), � , � , � and � being

known concepts. There can be different cases. If � , � , � and
� are all present at the time of memorization, then the new
concept will be made of these four ones, and first stands for
their co-activation. It is then possible to generalize to

�
, be-

cause all needed links to the four concepts already exist. But
if the first given co-activation is ����� , then memorization
does not take � into account and it becomes harder to model�

without adding links. For homogeneity with the worst case,
the links created at the same time as the concept only form a
monomial (conjunction). Generalization on these links will
also keep a monomial form. The final purpose is that once
the concept is created and has a stable meaning, new links
can be added one by one toward it.

Also, the principle of presence is adapted to online learn-
ing since creation of concepts depends on what is presently
active. It is then possible to quickly learn a new situation,
which is important for an agent that is continually interacting
with its environment and needs fast reactivity.

Of course, what is active is sometimes not sufficient to take
the best decision, and the heuristic of presence loses informa-
tion: it might happen that the inactivity of a concept is also
relevant to the target concept. How to take inactivity into ac-
count? One way is to add, for each concept, the complemen-
tary concept. But all the interest of the principle is lost, since
it is like taking every concept into account. Another way is to
create inhibitory connections between a concept which must
be active and another one which must not be. The issue is not
trivial, though.

In this article, we will focus only on the positive case. Gen-
eralization capabilities are reduced, but this is only the first
part of a system where dynamics enhance the expression pow-
er1. So we need generalization skills for representing con-
cepts by eliminating noise links, but it is not needed to be the
best possible.

3 Neural Network Implementation

Neural networks (NN) are interesting computing and learning
devices since they use the connectivity property of graphs,
which is a very general framework, and knowledge acquisi-
tion can be statistical. They are also universal approximators
and have high generalization capabilities.

The principle of presence has a natural expression in terms
of graphs, since concepts depend one on the other. Adding
weights on connections enables generalization capabilities.
Nodes, embodying monomial concepts, have a threshold to
decide when to be active in function of their input concepts.

1Note that only the dynamic part of a Turing Machine can gen-
erate generalization, since the static part is a raw lookup table.

An interesting propertie of such neurons is that two dif-
ferent concepts cannot (or hardly) be embodied in a single
neuron. For example, usual neurons in FCNN can learn to
be activated by two independent concepts, e.g. (� and �)
or (� and �). This neuron, having then multiple functions,
is ambiguous. How can knowledge be re-used if its struc-
ture is ambiguous? Every higher neuron must disambiguate
the meaning by adding connections to take the context into
account. Knowledge is hard to re-use.

Interestingly, all weights being equal, the same neuron also
models (� and �) or (� and �), and (� and �) or (�
and �) even if those examples were not in the training set.
This can be easily seen in a MOFN rule [Towell and Shavlik,
1993], which have a similar generalization power as neurons
and are of the form:

if (� of the following � antecedents are true) then ...

The neuron computes then:

if � of � ��� ��� ��� �	� then activate.

If the concepts were really initially independent, they now
overlap. In fact, when � is close to ��
�� there is a combina-
torial explosion
������� � in the number of monomials the neu-
ron can embody, and this is the source of its generalization
power: a neuron with one more input can represent twice as
many formulas. This is a common issue with subset knowl-
edge extraction algorithms, e.g. [Saito and Nakano, 1988].

Moreover, if during learning the two concepts are actually
not independent, they have to be redistributed among other
neurons. This kind of operation can lead to temporary loss
of knowledge and need re-learning. This is not acceptable
in lifelong learning, because if an already re-used concept is
moved, not only this concept have to be re-learned, but also
all the concepts that were using it. Generalization and ambi-
guity are very correlated.

Constraining neurons to be either disjunctive or conjunc-
tive avoids ambiguity and the explosion of representation and
allows knowledge to be easily re-used. As mentioned by
[Towell and Shavlik, 1993], this is equivalent to setting �
to either 1 or � .

In monomials, generalization is done by deleting noise
variables. Stochastically, this means slightly lowering the
weights of variables thought to be noise, and increasing the
others.

The principle of presence creates monomial concepts.
Some other neurons could represent only disjunctions, where
links could be added from monomial neurons one by one. It
seems difficult to see how links could be added to create dis-
junctions if nothing can tell toward which concept such a link
should be created. Fortunately, in supervised learning, this
is easily done since the teacher points out the target concept;
only this kind of macro-concept will be described.

3.1 A First Implementation
In a first approximation, intermediate concepts (in the hid-
den layer) will only be composed of input events. Only the
target concept will have links from intermediate concepts,
thus creating a simple 3-layer feedforward network, where
hidden nodes are intermediate concepts in monomial form,

whereas outputs are targets in disjunctive form. The glob-
al network is thus in Disjunctive Normal Form (DNF). D-
NF are widely used formulas, e.g. [Oyama et al., 2004;
Bojarczuk et al., 2004], because they are easy to understand.
Knowledge extraction [Tickle et al., 1998; Darbari, 2001]
should then be very easy.

In respect of locality, we choose the ����� disjunction in-
stead of the usual � : indeed, the � operator tends to distribute
knowledge among hidden neurons whereas the ����� operator
does not, since only one neuron is chosen for activating the
output. This is rather similar to a Winner Takes All model.

Hidden neurons thus represent monomials. But they are
not totally symbolic: as for usual neurons, they compute the
weighted sum of input concepts and have an activation func-
tion. The constraint is that they must have the possibility to
be inactivated. Activation function is then piecewise continu-
ous. The threshold � is set to ��� �!
"� , � being the number of
incoming links and need not change. The sum of the weights
is normalised. Initially, all weights are set equals to �!
"� . In
this way, if all links have the same weight (and thus the same
importance), their corresponding source neuron must all be
activated to activate the neuron. If one link is unusefull, it-
s weight will decrease to zero, whereas the weights of the
other links will grow. Since each remaining weight is higher
than �!
"� , all of the corresponding inputs must be activated
to activate the neuron.

However, if two weights are small enough, the neuron can
still have the form of (� and � and (� or �)). With four
links, the threshold is set to ��#%$&
!' . If, after learning, (*)��(,+-#.$/
!' and (,01#.(,2.#3��
�4 , then ����� and ��� �
activates the neuron to 0.5. Anyway, this is not often meant
to happen and the learning algorithm will tend to avoid this.

In what follows, indice 5 will always be for an output neu-
ron, 6 for hidden ones and 7 for inputs.

The hidden neuron 6 computes its output value on the input
vector 8 by following (2). �:9 is the set of neurons which are
connected in output to neuron 6 with weight (9 .

; 9=<>8@?:#BAC>D 0FE (G9 C 8 C (1)

H 9=<>8@?:# IJ K%L if
; 9 <>8@?�MN� 9� if
; 9=<>8@?�OP�Q E"RTSUEV RTSUE otherwise

(2)

Ouput neurons compute their value with (3).H=W <>8@?:#P�����9 D 0@X < L �Y(W 9 H 9Z<>8@?[? (3)

In supervised learning, there are two cases of prediction
error on a target concept: either it is not sufficiently activated
or it is not activated at all when it should be. In the first case,
the hidden neuron that activated the output neuron is modified
by algorithm 1. In the second case, there are two possibilities:\ a new hidden neuron is created,\ an existing hidden neuron is modified.

A criterion could be defined to select which action to do,
probably based on a threshold on the minimal distance be-
tween the monomial formed by the activated inputs and each
hidden neurons. We make the extreme choice of creating a
new neuron and optimizing the closest existing one.

These mechanics are described in the following sections.
Since knowledge is structured a priori, there is no need to
restructure it later, so that already re-used concepts remain
consistent with respect to target concepts.

3.2 Creating Neurons
Initially, the network contains only inputs and outputs, no hid-
den neuron and no connection.

When a neuron is created, representing a new concept, it
is connected to any active input with each weight equal to�!
 � . An output link toward the target neuron is also added,
initially set to the value that the concept should have had to
correctly activate the target concept: typically 1 for the �����
disjunction and � W < 8�?�� H W <>8@? for the � , � W < 8�? being the
desired value of output neuron 5 for the input vector 8 .

The principle of presence enables the weights not to be ran-
domized. Adding neurons also makes the system not to be
prone to local minima as for backpropagation. At worst, the
learning set is entirely memorized. This may not seem inter-
esting for systems that search for the best generalization ca-
pabilities, but when addressing the lifelong learning problem,
learning totally specific cases is necessary.

This is also interesting as the network will not generate
random outputs because of unmodified weights: the rejection
rate is initially high. This can also be useful for the system to
know if it knows something, which is a particularly interesting
scheme for autonomous agents.

3.3 Optimizing Neurons
When a neuron is inactive, its output is zero. The goal of
optimizing a neuron is to eliminate the noise parameters.

Since a newly created neuron is a monomial that is only ac-
tive for a specific case, neurons are inactive when they should
be modified. Backpropagation cannot work in this case.

For each output neuron, since the ����� function selects on-
ly one hidden neuron, only this one will be modified. This is,
in fact, a heuristic for locality in sight of lifelong learning. If
the output neuron had a � function, error would be distribut-
ed between several hidden units, thus tending to distribute
knowledge.

For an output neuron 5 , if there exists a hidden neuron �
such that

��#%�����������9 D 0�X <>(W 9 H 9 <>8@?Y?"� (4)

it is modified by algorithm 1, otherwise if there exist a hidden
neuron ��� such that

����# ����� �����9 D 0 X <>(W 9
; 9=<>8@?� 9 ?"� (5)

it is modified by algorithm 1, otherwise no modification is
done.

This means that if there exists a hidden neuron which out-
put was used for setting the value of the output neuron, then

it is modified. Otherwise, we seek for a neuron that may not
be yet general enough.

3.4 Optimization Algorithm
For an output 5 , once the hidden neuron 6 has been chosen,
then if it exists, it is modified by algorithm 1. 	 is the learning
rate.

Algorithm 1
��
 # �TW <>8@? � H=W <>8@?� #
	�� ��
 �
if (H C�� L and

��
 � L) or (H C # L and
��
�� L)� 9 C # ����� < � � < �,� (9 C ?[?

else� 9 C # � ����� < � �Y(9 C ?
��� #�� C>D�� �"!#�&D 0 E%$'&)(�*,+#- � � 9 C �
� + # � C D����.!/� D 0FE0$1&)(324+#- � � 9 C �
� #%����� < � � � � + ?
if (�65# L) 7�798 � 9�:

if (H C�� L); (9 C # � 9 C 22=<
else; (G9 C # � 9 C 22?>

The output weight is modified by (6), but is bounded in@ L � �BA . ; (W 9 #'	 ��
 H 9 (6)

The boundaries prevent the concept from deviating from the
type of meaning it is intended to have. Inhibitory output con-
nections would be in contradiction with the meaning of the
hidden neuron. Excitatory links do not need to grow above 1
either.

The key idea is that a fraction of the weights from the
“faulty” neurons is re-distributed among the other weights.
� � (respectively � +) is the maximum “amount” of weights
that can be transfered from active (inactives) ones to (active)
inactive ones. If

��
 � L (
��
�� L), inactive (active) weights

are moved toward active (inactive) ones.
This algorithm ensures � C>D 0FE (G9 C # � , so that H 9=< 8,C�? # �

if 8DC is the situation that was used to create the neuron.
It has many differences with the standard backpropagation.

The main one is that it is semi-hebbian: weights can be modi-
fied upward or downward with only positive or only negative
feedback. We call it semi-hebbian because for a given error,
some weights are lowered and others are raised although there
is no negative input. This can be a very important feature for
a robot in continual interaction with its environment: as it
must avoid negative reinforcements, it should be able to gen-
eralize with only positive examples. Furthermore, if a robot
learns by reinforcement learning, it must avoid negative rein-
forcements (the negative examples) but must still generalize.
However, negative examples are sometimes needed.

Another difference is that usually the number of hidden
neurons is limited in order to avoid overfitting. Our algo-
rithm generalizes “freely”: for an unknown case, it tries to

generalize and learns it by heart. Thus generalization is not
a property of limiting the number of resources (but still tends
to limit it). This is very interesting for lifelong learning, since
one never knows if cases are specific or can be generalized. It
must then be able to learn by heart. But this may not be inter-
esting if one has to find out a complex approximated function
from very limited data: it might rote learn the training set with
little generalization. We will see that there are some tricks to
force generalization is such cases, though.

The error is also not backpropagated on multiple hidden
layers. This is based on the idea that if a concept � V uses
another concept � � in input, � � has its own meaning and does
not depend on the error generated by � V . We will also see
later that the meaning of � � should be stable. But this does
not appear in our case since there is only one hidden layer.

This algorithm looks like incremental symbolic concep-
t learning algorithms, e.g. [Sanchez et al., 2002], but the
weights allow smooth and very local modifications: only one
neuron is slightly optimized after a given example. This can
be more accurate for fast on-line statistical learning. This
also implies a better robustness to noise compared to non-
statistical methods. On the other hand, convergence proofs
may be harder to provide.

3.5 A Simple Example

Suppose the system must learn the monomial concept AB and
that it is provided with examples such as ABC, ABD, ABE,
but not AB.

Initially, inputs are the letters of the alphabet, there is no
hidden neuron and the output neuron

�
is the target concept

AB to be learned. There can be as many inputs as wanted: as
long as they are not activated, they are not taken into account
in the learning process. There is no connection.

The sample ABC is provided to the inputs, thus activating
A, B and C but not the other inputs. The network infers 0 be-
cause no hidden neuron can give an answer. Since the output
should be 1, a new neuron is added and, obviously, no neuron
is optimized. The new neuron � V has 3 connections, from
inputs A, B and C, each having its weight set to 1/3. � ��� is
set to 2/3 and the ouput weight (�� ��� is set to 1 (see Fig. 2a).� V will then only be activated if A, B and C are simultane-
ously active, but it will be so also for any vector subsumed by
ABC, e.g. ABCD, ABCEF. The network then answers 1 and
no modification is needed.

The second sample ABD does not activate � V :; � � < ��� ��?1# �/
�$ and H � � < � � � ? # L . The target
neuron is still not activated, so a new neuron � � is added
with links from A, B, and D and a link toward the output
neuron. But this time, an existing neuron can be optimized:; � �
!� � � # � . (� �) and (� � + are increased, whereas(� � 0 is lowered. (� � � is not modified because it already
has its maximum value (see Fig. 2b). Because weights are
kept normalized, the input vector ABC always activate � V to
1.

When next presenting ABE,
; � � � �=
�$ and L � H � � � � :� V and

�
are activated, so no neuron is added. But � V is

optimized, again lowering (��� 0 and increasing the two other
weights. � � is not modified (see Fig. 2c).

 2N

 1N

1

1

2/3
1/3

1/3 1/3

>1/3

<1/3

>1/3

(c)(b)(a)

>>1/3

<<1/3

>>1/3

1

1

2/3
1/3

1/3 1/3
T

E

D

C

B

A

2/3

1

T

N

T

E

D

C

B

A

2/3

1/3

1/3

1/3

 1N 1

E

D

C

B

A

2/3

 2N

Figure 2: (a) The new neuron � V is created with 3 connec-
tions. (b) � V is generalized while � � is created. (c) � V is
generalized, � � is not modified.

After a few more samples, (� � 0 will reach 0, whereas(� �) and (� � + will be equal to 1/2. � V now represents
the concept AB as does the target neuron.

Because the learning algorithm is semi-hebbian, general-
ization has occured only with positive examples, whereas
backpropagation needs negative examples to lower weights.

3.6 Neuron Deletion
The neural network may grow fast because it is initially very
selective (conjunctions) and generalizes while adding neuron-
s. Many neurons contribute to generalize the others, and are
no more needed. They ought to be deleted, as they are redun-
dant. It should be noted, though, that some neurons may stay
totally specialized and are never generalized while being im-
portant. A deletion criterion has to be defined in this purpose.
The algorithm allows to count the number of times each neu-
ron/concept has been used. A simple criterion can then take
this into account. A more complex one can also be based on
the ratio between the number of times the neuron has received
a positive error, meaning it needs to generalize, and a nega-
tive error, for specialization. Examples will be given in the
experiments.

4 Experiments
In order to determine whether this principle is plausible or
not, we tested it on artificial tasks and on a more cognitively
plausible one.

4.1 Monks
The artificial Monks tasks are often used to test learning sys-
tems [Thrun et al., 1991]. There are six variables 8 V to 8��
with respectively 3, 3, 2, 3, 4 and 2 modalities. The output
is binary. Each variable is 1-of-k encoded on inputs. Results
are averaged on 10 trials per task.

First Task
The rule to learn is (8 V #.8 � or 8�	 #3�). There are 124
learning examples selected from the 432 possibilities, with
no noise.

The problem is in DNF and should be easily learned in 4
rules. But data is sparse and there are few positive examples,
which the system needs to generalize. To simulate forcing
generalization by limiting resources, a criterion for neuron

deletion is used between each pass through the training set.
A neuron is deleted if it has not been activated more than
5 times or if � �
 <>� R � � L ? M L�� $, � R and � � being
the number of negative and positive errors � W <>8@? � H=W <>8@? the
neuron received. 	 is set to 0.3 and training stops when there
are no more errors on the training set.

80% of the time, the network learns the minimal rule set
with 4 neurons, acheiving 100% correctness after a mean of
6 passes through the training set. This is 50 times faster than
for backpropagation, which also acheives 100% correctness.
Sometimes a rule is divided in two parts or specific cases are
not deleted. The remaining times (20%), the network have
more difficulty to find a stable state and often delete general-
ized neurons. Around 28 passes are then needed for a maxi-
mum of 5% of error. There is no error on the training set, but
a rule is split and leaves some unseen cases aside. Maybe a
better deletion criterion could avoid this.

Second Task
The rule to learn is exactly two of the six attributes have
their first value.

This is in MOFN form and the system cannot generalize
to the desired formula. All it does is learning the training
set of 169 examples by heart. When 	 # L�� � and without
deletion criterion, the rate of success is around 76.6% with
54 neurons. After adding the complementary inputs and with
the same deletion criterion as for the first task, the mean rate
is 85.4% with 21 neurons.

Third Task
The rule to learn is (8 	 # $ and 8 � #B�) or (8 	 5# ' and8 � 5# $). There was 5% noise (misclassifications) in the train-
ing set of 122 examples.

	 is set to L�� $ and the learning phase is stopped after 50
passes. At the end of learning, neurons are deleted if they
have been activated less than 5 times. Here, the criterion of
the first task is not valid because of the misclassifications:
neurons with many errors cannot be considered as unusefull.
Since the rule contains negative parts, the principle of pres-
ence alone is not sufficient to learn it: there were about 26
errors on the training set and the system acheived 68.8% cor-
rectness on the test set.

If complementary inputs are added, it rises to 87.2% in a
average of 34 passes, sometimes acheiving exactly as good
as backpropagation with weight decay on a standard network
with 97.2% of correctness. In fact, in this latter case, there is
only one neuron with two non-zero connections representing
(8�	 5# ' and 8 � 5# $). Again, a better deletion criterion may
lead to more frequent high results.

4.2 The NETtalk Task
[Sejnowski and Rosenberg, 1988] proposed a neural architec-
ture for mapping input letters to phonemes. Several tasks are
described but we focus on learning from the 20,012 word-
s dictionary. A window of seven letters is presented to the
network, which has to predict the phoneme corresponding to
the central letter. The inputs are the 26 letters of the alpha-
bet plus one “Silence” input. A distributed output representa-
tion of phonemes was used. For simplicity outputs are the 54
phonemes and intonations. This does not seem to change the

Table 1: Results for the NETtalk task; ��� is the number of
frozen neurons, � � is the total number of neurons at the end
of the sequence of words, � Q is the number of connections.

Words � � � � � Q %
1000 0 3939 31512 68.5
2000 458 4445 35560 74.5
3000 841 2124 16992 74.6
4000 1049 3283 26264 76.0
5000 1266 4640 37120 76.6
9000 2055 2055 16440 78.3

Table 2: Results for the NETtalk task after 5000 words; � 2
is the minimum number of activations a neuron must have,� � is the number of neurons in the net, all of them satisfying
� 2 , � Q is the total number of connections.

� 2 � � � Q %
0 10543 84344 77.0
1 4419 35352 75.4
2 2516 20128 75.4
16 753 6024 74.0
256 240 1920 69.6
2048 76 608 63.7
4096 48 384 59.2
8192 30 240 46.9

results. Words are selected in random order and are moved
trough the window. The best results were obtained with 120
hidden neurons, reaching a performance of 90% after more
than 5 passes through the dictionary. The purpose is not to
beat NETtalk performance, but to show the validity of the
principle of presence, even with the basic implementation.

In NETtalk, each neuron had 210 connections, making a
total of 25200. In our case, each neuron has 8 connections,
because there is only one active letter at the same time. Of
course, the expression powers are completely different.

	 is set to 0.05. When the number of non-frozen hidden
neurons exceeds 4000, those having less than 5 activations
are deleted and the others are frozen. Neurons have also been
deleted after the last step. Such a buffered long-term memory
is interesting for lifelong learning agents: it allows to quick-
ly memorize very specific examples and to keep them only if
they are useful enough. Results are reported in Table 1. After
5000 words, performance did not improve sufficiently com-
pared to the number of neurons added: it was learning the set
by heart.

Table 2 shows the consequences on the performance when
deleting neurons. Neurons have not been frozen during learn-
ing of 5000 words. Those with too few activations are then
deleted. Many neurons are used only for very specific cas-
es and have been added to help generalizing another neuron.
This criterion seems accurate because performance decreases
slowly compared with the large number of neurons deleted.
The effects of free generalization are appearing: despite the
number of neurons, the system has really generalized.

Of course, if the complementary inputs had been given in-

stead of the letters – the unit is active if and only if the letter
is not present – the results would have been dramatic. The
principle of presence seem to be seriously correlated with the
way people represent things.

Results show that our basic implementation generalizes
quite well and may have a real cognitive plausibility.

5 Discussion
The temporal framework is a typical case where this principle
can eliminate many a priori unusefull weights. For examples,
a fully connected feedforward network with the 26 letters of
the alphabet encoded 1-of-k in input, with 1 hidden neuron,
and taking 5 time steps into account, needs 26 5 connection-
s. With the principle of presence, each neuron would have 5
connections: for the same number of weights, there can be 26
times more neurons. If the problem to learn needs the gener-
alization skills we described, then the principle of presence is
an interesting heuristic.

If two unrelated problems use completely different input
sets, the principle of presence will not make them interact.
This allows an agent to learn different basic concepts a lot
more quickly than if the same ambiguous learning resources
were used.

Even if the implementation we give yet achieves fair result-
s, it does not address some important issues. It seems that our
more important concern will be to define the stability of the
representation of a concept and how it can then be re-used. It
could be a refined definition of the freezing process described
in the NETtalk task.

5.1 Limitations
If the user has a fixed number of inputs, a limited training set
and needs the best generalization possible, the principle of
presence is not appropriate.

The purpose of the described system is not to address learn-
ing as it is generally done for single problems. It is not intend-
ed to be used for finding the best approximation from a limit-
ed training set. On the contrary, the framework it is meant to
be used in is lifelong learning with continual interaction with
the environment, which is quite the opposite of problems ad-
dressed by FCNN and backpropagation.

5.2 Possible Extensions
From the basic implementation, some extensions are being
developped in order to enable the full representation power
of the framework described in section 2.

Disjunctions and Inhibitory Links
The target concept is in disjunctive form. But when it was
first created, it was a simple monomial. For example, it can
first be an abstract concept such as a word; later, a disjunctive
link from the concept of the image representing the meaning
of that word can be added. A concept is then a disjunction
between its own monomial and the other concepts.

For simplicity, newly created concepts have been reduced
to monomials. However, it may be interesting to lower the
threshold � , so that even incomplete information can activate
the proper concept. But we emphasize that independent con-
cepts must not be embodied in a single unit.

The expression power is yet limited by the fact that connec-
tions have only positive weights: if a neuron must represent
a general rule to which it exists an exception case, it cannot
learn to exclude a single fact and will only learn the gener-
al rule with a lowered ouput weight. To solve this problem,
we mentioned the fact that the system will be used with dy-
namics, but there is also a static way to address this issue.
Still in the supervised learning paradigm, it is possible to add
a new concept representing the exception case and to inhibit
the general one. As for disjunctions, this may be easier with
supervised learning because the target concept to be modified
is pointed out.

Partially connecting neurons generate an automatic sub-
suming, which is sometimes not wanted: if neurons � V and� � represent respectively the two different concepts AB and
ABC, then ABC activates both � V and � � . The ����� output
function can then select � � if its output weight is greater than
the one of � V . Currently, even if the learning phase will tend
to do this as in the NETtalk task, it does not sound acceptable
for knowledge representation: � V should not be active. Here
again, an inhibitory link from � � to � V could handle this.

Action Concepts
The system we propose does not take action concepts into
account, since this requires an action selection scheme we do
not present here. Actions are not outputs because the purpose
of the system is to learn with reinforcements.

Macro-concepts
Macro-concepts allow to re-use already acquired knowledge
and thus it is not needed to re-learn complex concepts that are
used in other contexts: a simple link from this concept to the
new one is sufficient. Any neuron can then be considered as
an input and the principle of presence can create a link from
this concept toward a new one.

A concept should be re-used only once its meaning is sta-
ble, because the meaning of the higher concept would change
at the same time the meaning of the lower concept is changed.
As there can be many levels, knowledge would then be very
unstable.

Another problem is that locality is not entirely respected:
when a macro-concept is active, the concepts it is made of
are also active. When a new concept is created, links from
the macro-concept and all its components are all taken into
account. The number of connections would thus grow with
the size of knowledge (but still very slowly compared to FC-
NN). One would prefer to create only a link from the macro-
concept, saying that activations of its components are “eaten”
by the macro.

But suppose one has three concepts AB, AC, AD. If a new
concept EA must be learned from the examples EAB, EAC,
EAD, since activations of A are eaten by the concepts AB,
AC, AD, then the new concept cannot generalize to EA be-
cause there is no link from the concept A. If EA alone never
appears in the environment, it cannot be created as a concept.
Other alternatives are being considered.

Unsupervised Learning
It would be interesting to integrate unsupervised learning in
order to create general concepts that often occur in the en-

vironment, but which are not directly targeted by supervised
learning. By combining it with macro-concepts, it could seri-
ously limit the number of connections by finding regularities.

Before learning words, it can learn regularly appearing se-
quences of words, and then use it in higher level concepts.

6 Related Work
The consequences of the principle of presence has an interest-
ing relation with Minsky’s knowledge lines (K-lines) [Min-
sky, 1980]. K-lines can be made of K-lines or of basic agents,
as concepts can be made of concepts or of basic ones. His
K-Recursion principle is quite similar to the principle of p-
resence: “it will suffice to attach the new K-line [� � �] to just
the currently-active K-nodes!”. However, there are yet differ-
ences since our concepts are totally feedforward and do not
re-activate lower-level concepts. In some way, one might see
the principle of presence as a mini-theory of K-lines. Minsky
does not describe how generalization occurs.

Béroule [Béroule, 2004] also uses a kind of principle of
presence in a temporal framework, creating paths for coin-
cidence detection. Each new node creates a new branch of
the path and has connections from the presently active input
(not past) and from the last active concept which represent
the past. In our framework, it can be seen as adding a neu-
ron after each time step, creating very specialized markovian
paths, whereas we wait for some error feedback, which al-
lows to take more past concepts into account. His network is
not weighted and does not generalize by deleting meaningless
connections.

7 Conclusion
The principle of presence is a heuristic for creating new neu-
rons with connections only from active neurons or inputs. Its
most important advantages are that the number of connection-
s does not depend on the number of inputs nor on the size of
the knowledge, and structures it. This may be an important
principle for lifelong learning robots, continually interacting
with their environment.

The main drawback is that the neurons cannot take inactive
inputs into account. Actual work aims to fill this gap.

Results show that some tasks are well adapted to this strong
heuristic. We believe these are general cognitive tasks. More-
over, the purpose of the proposed architecture is to be used in
a system where generalization is also available via dynam-
ics. Based on this architecture, dynamical problems can be
addressed with a growing long-term memory and fast on-line
generalization capabilities.

References
[Béroule, 2004] D. Béroule. An instance of coincidence de-

tection architecture relying on temporal coding. IEEE
Transactions on Neural Networks, Special Issue on Tem-
poral Coding for Neural Information Processing, DeLiang
Wang & al. (Eds.), 15(5):963–979, 2004.

[Bojarczuk et al., 2004] C. C. Bojarczuk, H. S. Lopes, A. A.
Freitas, and E. L. Michalkiewicz. A constrained-syntax
genetic programming system for discovering classification

rules: application to medical data sets. Artificial Intelli-
gence in Medecine, 30(1):27–48, January 2004.

[Bottou and Vapnik, 1992] L. Bottou and V. L. Vapnik. Lo-
cal learning algorithms. Neural Computation, 4(6):888–
900, 1992.

[Darbari, 2001] A. Darbari. Rule extraction from trained
ANN: A survey. Technical Report WV-2000-03, Knowl-
edge Representation and Reasoning Group, Department
of Computer Science, University of Technology, Dresden,
Germany, July 2001.

[Hochreiter et al., 2001] S. Hochreiter, A. S. Younger, and
P. R. Conwell. Learning to learn using gradient descent.
In Lecture Notes on Comp. Sci. 2130, Proc. Intl. Conf. on
Artificial Neural Networks (ICANN-2001), pages 87–94.
Springer: Berlin, Heidelberg, 2001.

[Minsky, 1980] M. L. Minsky. K-lines: A theory of memory.
Cognitive Science, 4:117–133, 1980.

[Oyama et al., 2004] S. Oyama, T. Kokubo, and T. Ishi-
da. Domain-specific web search with keyword spices.
IEEE Transactions on Knowledge and Data Engineering,
16(1):17–27, 2004.

[Robins and Frean, 1998] A. V. Robins and M. R. Frean. Lo-
cal learning algorithms for sequential learning tasks in
neural networks. Journal of Advanced Computational In-
telligence, 2(6):107–111, 1998.

[Saito and Nakano, 1988] K. Saito and R. Nakano. Medical
diagnostic expert system based on PDP model. In Pro-
ceedings of IEEE International Conference on Neural Net-
works, volume 1, pages 255–262. San Diego, CA: IEEE,
1988.

[Sanchez et al., 2002] S. Nieto Sanchez, E. Triantaphyllou,
J. Chen, and T. W. Liao. An incremental learning algo-
rithm for constructing boolean functions from positive and
negative examples. Computers and Operations Research,
29(12):1677–1700, 2002.

[Sejnowski and Rosenberg, 1988] T. J. Sejnowski and C. R.
Rosenberg. NETtalk: a parallel network that learns to read
aloud. In Neurocomputing: foundations of research, pages
661–672. MIT Press, 1988.

[Thrun et al., 1991] S. Thrun, T. Mitchell, and J. Cheng. The
MONK’s comparison of learning algorithms. Introduction
and survey. S. Thrun, J. Bala, E. Bloedorn and I. Bratko,
Pittsburg, Carnegie-Mellon Univ., 1991.

[Thrun, 1998] S. Thrun. Lifelong learning algorithms. In
Learning to learn, pages 181–209. Kluwer Academic Pub-
lishers, 1998.

[Tickle et al., 1998] A. B. Tickle, R. Andrews, M. Golea,
and J. Diederich. The truth will come to light: direc-
tions and challenges in extracting the knowledge embed-
ded within trained artificial neural networks. IEEE Trans-
actions on Neural Networks, 9(6):1057–979, November
1998.

[Towell and Shavlik, 1993] G. G. Towell and J. W. Shavlik.
Extracting refined rules from knowledge-based neural net-
works. Machine Learning, 13(1):71–101, October 1993.

Learning Segmentation of Behavior to Acquire Situated Combinatorial Semantics

Yuuya SUGITA Jun TANI

Lab. for Behavior and Dynamic Cognition
Brain Science Institute, RIKEN

Hirosawa 2-1, Wako-shi, Saitama 3510198, JAPAN
Email:{sugita, tani}@bdc.brain.riken.jp

Abstract

We present a novel connectionist model for acquir-
ing the semantics of a simple language through the
behavioral experiences of a real robot. We focus
on the “combinatoriality” of semantics and exam-
ine how it can be generated through experiments.
Our experimental results showed that the essential
structures for situated semantics can self-organize
themselves through dense interactions between lin-
guistic and behavioral processes whereby a certain
generalization in learning is achieved. Our analy-
sis of the acquired dynamical structures indicates
that an equivalence of compositionality appears in
the combinatorial mechanics self-organized in the
neuronal nonlinear dynamics. The paper discusses
the essential differences between the mechanisms
of compositionality based on conventional linguis-
tic or computational approach and that based on our
proposed dynamical systems approach.

1 Introduction
Compositionality of mental process is essential in various
complex cognitive tasks, including linguistic processing. The
diversity of linguistic meaning is explained in terms of the
infinite number of possible combinations of finite concepts.
In other words, the meaning of an unseen sentence can be
understood as a combination of the meanings of the known
words.

The conventional AI-based models as well as cognitive
theories, employ pre-defined “symbols” to generate combi-
natorial expressive power. The symbolic systems assume
that the continuous interaction process between an agent
and its environment can be segmented clearly into a set of
atomic concepts a priori [Roy, 2002; Iwahashi, 2003]. Based
on this assumption, various categorization methods are in-
vestigated in order to articulate the concepts from the ana-
logue spatio-temporal patterns [Baillie and Ganascia, 2000;
Siskind, 2001].

However, we consider that the mechanisms for both con-
ceptual segmentation and composition should be acquired at
the same time in a co-dependent way in order to learn the sit-
uated combinatorial semantics. Here our question is how a

cognitive agent can realize the combinatorial mental manipu-
lations based on the analogue sensory-motor competency.

In this paper, we evaluate the generalization capability of
our connectionist scheme [Sugita and Tani, 2005], in which
a simple embodied language can be acquired without provid-
ing any symbolic representations a priori. In this scheme,
learning is achieved by means of mutual interactions be-
tween the linguistic process, dealing with given word se-
quences, and the behavioral process, dealing with the expe-
rienced sensory-motor flow. The hallmark of this approach
is the self-organization of the necessary structures for em-
bodied language as the result of such interactions. The pro-
posed scheme is examined by conducting behavior-language
acquisition experiments using a real mobile robot. We ana-
lyze the types of structures that should be self-organized in
order to acquire situated semantics that can exhibit general-
ization in learning. Our discussion of the results leads to alter-
native interpretations of the symbol grounding problem and
compositionality based on the dynamical systems perspective
[Schoner and Kelso, 1988; Beer, 1995; van Gelder, 1998].

2 Task
The experiments are conducted using a real mobile robot with
an arm and various sensors, including a vision system. The
robot learns a set of behaviors by acting on some objects as-
sociated with two-word sentences consisting of a verb fol-
lowed by a noun. Although our experimental design is lim-
ited, it suggests an essential mechanism for acquiring situated
compositional semantics through the minimal combinatorial
structure of this finite language [Evans, 1981].

The robot experiments consist of the training phase and the
testing phase. In the training phase, our neural network model
learns a part of possible associations between sentences and
corresponding behavioral sensory-motor sequences of a robot
in a supervised manner. In the testing phase, the network’s
ability to generate the corresponding correct behavior by rec-
ognizing the given sentences is examined. We also evalu-
ate the system’s generalization ability by examining whether
appropriate behaviors can be generated from unlearned sen-
tences based on learned sentences.

The mobile robot was built for this experiment in our lab-
oratory. The mobile robot is equipped with three actuators
for two wheels and a rotational joint on the arm, a colored
vision sensor, and three torque sensors on both the wheels

a colored camera

an arm joint wheels

red block

blue block

green block

(a) Our mobile robot (b) The initial configuration

(c) POINT-R (d) PUSH-B (e) HIT-G

Figure 1: The mobile robot (a) starts from a fixed home posi-
tion in the environment and (b) ends each behavior by point-
ing at (c), pushing (d), or hitting (e) either the red, blue, or
green object.

and the arm (Figure 1a). The robot operates in an environ-
ment where three colored objects (red, blue, and green) are
placed on the floor (Figure 1b). The positions of these ob-
jects can be varied as long as the robot sees the red object
(R) on the left-hand side of its field of view, the blue object
in the middle (B), and the green object (G) on the right-hand
side at the start of every trial of behavioral sequences. We
adopt a fixed arrangement of the objects for simplifying be-
havioral learning, particularly to reduce the required training
and computation time for learning. Despite this limitation,
our experimental setting still preserves enough complexity
to observe the minimal combinatorial properties in associa-
tions between sentences and behavioral patterns. The color
information is still important for robust behavior generation
because the narrow sight of the robot ensures (about 60 de-
grees) that at least one of the objects is out of sight, except
near the starting position.

There are nine behavioral categories that the robot is ex-
pected to learn: pointing at, pushing, and hitting each of
three objects located on the floor. These categories are de-
noted as POINT-R, POINT-B, POINT-G, PUSH-R, PUSH-
B, PUSH-G, HIT-R, HIT-B, and HIT-G (Figure 1c,d,e). The
robot learns these behavioral categories through supervised
learning. In order to gather data for supervised training, the
sensory-motor sequences corresponding to each of these be-
havioral categories are generated through the manual-steering
of the robot using a remote controller. It should be noted that
no categorical cues are provided to the robot in learning, in-

"push red"

"push left"

"push blue"

"push center"

"push green"

"push right"

PUSH-R

PUSH-G

PUSH-B"hit blue"

"hit right"

"hit center"

"hit green"

"hit red"

"hit left"
HIT-R

HIT-B

HIT-G

"point blue"

"point left"

"point red"

"point center"

"point green"

"point right"

POINT-R

POINT-G

POINT-B

Figure 2: The correspondences between sentences and behav-
ioral categories. For each behavioral category, there are two
corresponding sentences.

stead the categorical structures should be self-organized only
through experiencing various sensory-motor sequences and
associated sentences provided during training.

The robot learns sentences that consist of one of the three
verbs: point, push, and hit followed by one of the six
nouns: red, left, blue, center, green, and right. We
note that the labels are introduced for the ease of our under-
standing. From the robot’s point of view, they are merely
nine unknown lexical symbols and they should be labeled as
w1, w2, · · ·, w9. Therefore, the robot cannot get any informa-
tion regarding the meaning of the word from the word itself.
The meanings of these 18 possible sentences are defined in
terms of fixed correspondences with the nine behavioral cat-
egories (Figure 2). For example, “point red” and “point
left” correspond to POINT-R, “point blue” and “point
center” to POINT-B, and so on.

In these correspondences, because of the fixed arrangement
of the objects in the environment, “left,” “center,” and
“right” have exactly the same meaning as “red,” “blue,”
and “green,” respectively. These synonyms are introduced
to observe how the behavioral similarity affects the acquired
linguistic semantic structure. Moreover, it should be noted
that any isolated concepts concerning the objects are not pre-
sented to the robot. The objects are taught as targets of actions
in which their information, such as color, shape, and weight,
is inseparably embedded in the sensory-motor flow associated
with behaviors. The robot should understand the meanings of
the objects in terms of the possible actions carried out upon
them, such as pointing at, approaching, pushing, and hitting.

3 Proposed Model
3.1 General Scheme
We propose a connectionist model which acquires the embod-
ied semantics of a simple language on the task design outlined
in the previous section. First, this subsection describes the ba-
sic ideas of our proposed connectionist model. The details of
each computational algorithm, as well as the module archi-
tectures employed in the proposed scheme, will be described
in the subsequent subsections.

Our model is composed of two loosely coupled connec-
tionist networks referred to as the recurrent neural network
with parametric bias nodes (RNNPB) [Tani, 2003; Tani and
Ito, 2003], one for the linguistic module and the other for
the behavioral module, as shown in Figure 3. The linguistic
module learns to recognize a set of sentences, which is rep-
resented as sequences of words, while the behavioral module
learns a set of sensory-motor sequences. The association be-

the current word input context

Linguistic Module

Interaction via PB binding

the current motor/sensor input context

motor command to be executed
/ sensory prediction

Behavioral Module

10

50

10 4

70

3

3 23

-
+

training sentence

prediction of
the next word

learning error

update of PB

PB vector of
the sentence

PB vector of
the behavior

-
+

training behavioral pattern

learning error

update of PB

3

6 4

4

6 4

Figure 3: Our model is composed of two RNNPBs, one for
a linguistic module and the other for a behavioral module.
Each square represents a set of nodes, and the associated dig-
its denote the number of nodes used in the task. The solid
lines denote the information flow in the forward computation
and dotted lines denote the flow of the learning error back-
propagated to the PB nodes. In the learning process, the PB
nodes are iteratively computed through interactions between
both the modules.

tween a sentence and its corresponding behavior is achieved
by means of self-organization of both modules through their
mutual interactions.

The RNNPB is based on the Jordan-type recurrent neu-
ral network (RNN) [Jordan and Rumelhart, 1992] but is en-
hanced with a specialized mechanism for modulating its own
dynamic function using the so-called parametric bias (PB)
nodes allocated in the input layer. The RNNPB can both gen-
erate and recognize sequences, and therefore these functions
of RNNPB can be interpreted as an abstract modeling of mir-
ror systems [Rizzolatti et al., 1996]. In the current setting,
the RNNPB generates word sequences or sensory-motor se-
quences in terms of forward models [Kawato et al., 1987]
predicting the next state from the current state. In this spe-
cific model, the values of the PB nodes are kept constant
throughout a run of the generation of a time sequence once
their values are fixed at the initial time step.

When the PB vectors are set to different values, the RN-
NPB exhibits different forward dynamics, i.e., generating dif-
ferent output sequences, whose mechanism is equivalent to
the parametric bifurcation, which is well known in nonlinear
dynamical systems theory [Wiggins, 1990]. A set of different
target output sequences are embedded in an RNNPB by self-
organizing an adequate mapping between the PB vector and
the output sequences in the learning process. All the training
sequences are learned simultaneously through batch training.
It should be noted that each PB vector value of a target se-
quence is self-determined rather than assigned by an experi-
menter. Once such a mapping is generated, the correspond-
ing PB vector for a given output sequence can be computed
inversely by minimizing the prediction error in the output se-
quence. This can be regarded as the recognition of given se-
quences in terms of the associated PB vector. This PB com-

putation scheme will later be described in greater detail.
The learning process utilizes the error signal back-

propagated [Rumelhart et al., 1986] to the PB nodes, as will
be described in detail later. We implement the constraint that
the PB vector for corresponding behavioral patterns and sen-
tences should converge to approximately the same value in
both modules. In the testing phase, a sentence is first passed
to the linguistic module and then the corresponding PB vector
value is inversely computed. The obtained PB value is then
set in the behavioral module and the corresponding behav-
ioral pattern is generated by the robot. Although the opposite
process, i.e., recognizing behavioral patterns and then gener-
ating the corresponding sentences, is actually possible, it is
beyond the scope of the current paper.

3.2 Algorithmic Description of RNNPB

We review the algorithmic description of the RNNPB [Tani,
2003] before describing the details of each module. The de-
scription focuses on how the PB nodes function in generat-
ing, learning and recognizing a sequence. In this experiment,
every node of the RNNPB yields a real-numbered value be-
tween 0.0 to 1.0.

The RNNPB learns multiple sequences q0, · · · ,qs−1 in a su-
pervised manner through modification of two different types
of parameters: (1) connection weights W which are common
to all training sequences, and (2) PB vectors p0, · · · , ps−1,
each of which is dedicated for a specific training sequence.
Both are simultaneously computed using the conventional
back-propagation through time (BPTT) algorithm [Jordan
and Rumelhart, 1992; Rumelhart et al., 1986] to minimize
the value of the total learning error function E over all the
training sequences defined as follows:

E(W, p0, · · · , ps−1) =
s−1

∑
k=0

Ek(W, pk) , (1)

Ek(W, pk) =
lk−1

∑
t=0

‖rk(t)−ok(W, pk,t)‖2 , (2)

where Ek is the learning error function of the training se-
quence qk, W is a set of all the connection weight values of
the network, pk is a PB vector corresponding to a specific
training sequence qk, s is the number of training sequences,
lk is the length of the training sequence qk, and rkn(t) and
okn(W, pk, t) are the target and output values of node n in the
training sequence qk at a time step t, respectively. It should
be noted that the output values during generating a sequence
qk depend on both the connection weight values W and the
corresponding PB vector pk, but do not depend on the other
PB vectors pk′ ,k

′ � k.
The connection weight values are iteratively computed to

minimize the total learning error E as in the conventional
RNN. Every connection weight value is initialized randomly
and then iteratively updated at every training iteration T in a
gradient descent manner by using the BPTT algorithm.

In contrast, the PB vector pk is computed to minimize the
learning error Ek of each training sequence qk. Each j-th ele-
ment pk j of a PB vector pk is initially set to 0.5, and then it is

iteratively updated at every training iteration T as follows:

δp(T)
k j = −∂E(W (T), p(T)

0 , · · · , p(T)
s−1)

∂pk j

= −∂Ek(W (T), p(T)
k)

∂pk j

(
∵ ∂Ek

∂pk′ j
= 0, ∀k′ � k

)
, (3)

∆p(T)
k j = ηp ·∆p(T−1)

k j + εp(1−ηp) ·δp(T)
k j , (4)

p(T)
k j = p(T−1)

k j + ∆p(T)
k j , (5)

where δp(T)
k j is the delta error back-propagated to the j-th PB

node at a training iteration T , which is computed by using
the BPTT algorithm. εp and ηp are positive coefficients that
determine the learning rate and the time constant of the modi-

fication of the current update, ∆p(T)
k j , of p(T)

k j , the j-th element
of the PB vector pk.

The recognition algorithm basically follows the same up-
date rules for the PB vectors, shown in equations (3) to (5),
where it only updates the PB vector for a given sequence
while the connection weight is constant. For the purpose of
avoiding local minima, it is effective to introduce a Gaussian
noise term that is proportional to the prediction error in equa-
tion (5).

3.3 Linguistic Module
The linguistic RNNPB learns and recognizes the sentences.
Similar to Elman [1990]’s previous work employing the con-
ventional RNN , our linguistic module is trained to predict the
next words in the output nodes from the current word received
via the input nodes. A set of sentences can be learned by dif-
ferentiating the PB vector for each different sentence. This
module has 10 input nodes, 6 PB nodes, 4 context nodes, 50
hidden nodes, and 10 prediction output nodes (cf., Figure 3).

The sentences are represented as sequences of words,
which always start with a fixed starting symbol. The module
has 10 input nodes allocated for nine words (point, push,
hit, red, left, blue, center, green, and right) and one
starting symbol. Each word is locally represented, such that
each input node corresponds to a specific word exclusively
activated with 1.0. Although this input representation scheme
is almost similar to that of Elman’s model, the internal repre-
sentations of the word sequences are very different. The El-
man’s model learns the probabilistic distribution of the next
possible words while our model learns each sentence as a de-
terministic sequence encoded in a distinct PB vector (cf., [Mi-
ikkulainen, 1993]).

3.4 Behavioral Module
The behavioral module learns the behavioral patterns in order
to regenerate them. The module is trained to produce as an
output a prediction of the next motor values as well as part
of the sensory inputs when it receives the current sensory and
motor values as input. All the training sequences are man-
ually prepared by hand-steering the robot in the workspace.
They are then used in the off-line learning phase. A train-
ing behavioral sequence is sampled with three sensory-motor
steps per second during the manual-steering of the robot. The

Motor values

Sensed torque

Size of
colored area

Dominant hue of
colored area

Bottom position of
colored area

right wheel
left wheel

arm joint

leftmost

rightmost
leftmost

rightmost

leftmost

rightmost

wheel
arm

Time step

0 25 50

0.0

1.0

(a) (b)

Figure 4: The sensory-motor sequence representation (a) and
the corresponding robot trajectory (b) for HIT-R is shown as
an example. The robot starts from the home position (step
0). As the robot turns to the red object, the green object
soon disappears (step 4), and the red object is at the center
of the view (step 10-25). The blue object is still to the right
of the view. Subsequently, as the robot moves directly to-
wards the red object (step 25-47), the distance between the
red object and robot decreases (the size and the bottom posi-
tion increases). After this, the robot stops (step 48) and HITs
the red object with its arm (step 49-58).

duration of typical behavioral sequences are of approximately
5 to 25 s, and therefore consist of approximately 15 to 75
sensory-motor steps as shown in Figure 4.

A sensory-motor vector is a real-numbered 26-dimensional
vector consisting of 3 current motor values denoting the an-
gular velocities of the 2 wheels and an angle of the arm joint,
2 measured torque values (an average torque value of both
wheels, and a torque value of the arm), and 21 values encod-
ing the visual image. The visual field is divided vertically into
seven regions, and each region is represented by (1) the frac-
tion of the region covered by the object, (2) the dominant hue
of the object in the region, and (3) the bottom border of the
object in the region, which is proportional to the distance of
the object from the camera. For the region in which there is no
colored area, the hue takes a pre-defined constant value 1.0,
and the bottom border position takes 0.0, which is designated
as distant. In particular, we note that the visual information is
not a priority for the acquisition of semantics. It occupies 21
of the 26 dimensions in the sensory-motor vector only due to
the characteristic nature of visual information.

The module has 26 input nodes for the sensory-motor vec-
tor, 6 PB nodes, 4 context nodes, 70 hidden nodes, 6 output
nodes for the 3 motor commands, 2 predicted torque values
which will be sensed, and a predicted hue value for the cen-
ter region of the visual field (cf., Figure 3). The rest of the
values of the sensory vector are not predicted in order to re-
duce the learning time. The module can enable the robot to
generate behavior appropriately without predicting the entire
sensory-motor vector.

In order to robustly generate each behavioral category, each
category has to be trained with multiple samplings of man-
ually guided robot trajectories in which each trajectory is
slightly different from the others. This training variability
is needed because the robust generation of behavior requires

generalization in learning sensory-motor sequences. In or-
der to generate different sensory-motor sequences within the
same behavioral categories, the positions of the objects in the
workspace are slightly varied (within 20 percent of the dis-
tance traveled by the robot) to generate each training sensory-
motor sequence.

After successful learning, the robot can generate a learned
behavioral pattern from an obtained PB vector. In the ac-
tual behavior generation process, the module takes the actual
sensory-motor vector as input three times per second and gen-
erates the motor commands on the fly. The predicted motor
values are used as the actual motor commands for the robot
in the next time step.

3.5 PB Binding Method
We have already discussed how the linguistic and behav-
ioral modules learn sentences and behavioral patterns, respec-
tively. In this subsection, the novel associative learning mech-
anism referred to as PB binding is explained in detail. Both
modules are trained at the same time and interact with each
other during the learning process. As noted above, the PB
binding method imposes the constraint that the PB vectors,
for a sentence in the linguistic module and for the correspond-
ing behavioral sequence in the behavioral module, should
converge as close as possible to the same value. This con-
straint is implemented by introducing an interaction term into
part of the update rule for the PB vectors in equation (5). Dur-

ing the learning process, the PB vector p(T)
sk of the sentence

sk and the PB vector p(T)
bk

of the corresponding behavioral se-
quence bk are updated at every training iteration T by means
of both the back-propagated error and the mutual interaction
as follows:

p(T)
sk = p(T−1)

sk + ∆p(T)
sk + γL · (p(T−1)

bk
− p(T−1)

sk) , (6)

p(T)
bk

= p(T−1)
bk

+ ∆P(T)
bk

+ γB · (p(T−1)
sk − p(T−1)

bk
) , (7)

where γL and γB are positive coefficients that determine the
strength of the binding. Equations (6) and (7) are the con-
strained update rules for the linguistic module and the behav-
ioral module, respectively. Under these rules, the PB vectors
of sentence sk and behavioral sequence bk attract each other.
In particular, the corresponding PB vectors need not be com-
pletely equalized to acquire a correspondence at the end of
the learning process. The epsilon errors of the PB vectors can
be neglected because of the continuity of the PB spaces.

This binding learning is performed off-line, where the
training of both modules is conducted by using all the pre-
sented pairs of sentences and the corresponding behavioral
sensory-motor time sequences in a single batch. At each iter-
ation in the training, the forward computation and the subse-
quent backward computation for the BPTT are conducted for
all linguistic and behavioral sequences, one at a time. Subse-
quently, the PB vector for each linguistic and behavioral se-
quence is updated by equations (6) and (7) and the connection
weights of both module networks are updated. This forward
and the backward computation for each linguistic and behav-
ioral sequence, computed one at a time does not necessarily
require the time step of the sensory-motor sequence and of
the word sequence to be synchronized.

In the testing phase, the linguistic and the behavioral mod-
ule do not work simultaneously. First, the recognition of a
given sentence is performed in the linguistic module by iter-
atively computing the PB vector. Subsequently, the obtained
PB vector is set in the behavioral module in order to generate
the corresponding behavior.

4 Results
A group of identical learning experiments were conducted
with seven different sets of unbound sentences presented in
Figure 5 in order to clarify the generalization capabilities of
our model. In each experiment, the associations between the
behaviors and the sentences were learned by utilizing both
modules through 50,000 iterations of learning. The linguistic
module learned with a part of 18 possible sentences. The be-
havioral module learned with 90 sensory-motor sequences,
covering all the 9 behavioral categories. These two mod-
ules were trained simultaneously using the binding scheme
described previously. During this training, each different
sentence was bound five times with five slightly different
sensory-motor sequences within its corresponding behavioral
category. In addition, the behavioral module learned the same
90 behavioral sequences without binding. Without this addi-
tional unbound training, the acquired structure in the behav-
ioral module tends to be fragile. This method was necessary
because the linguistic regularity is much stronger than the be-
havioral regularity.

The experiments are classified into three groups based on
the training data that is provided. In the experiments belong-
ing to Group 1, four sentences corresponding to two selected
behavioral categories that share neither the same target object
nor the same action such as pointing at, pushing, or hitting are
excluded from the training data (Figures 5a-c). In the exper-
iments belonging to Group 2, the robot is trained with more
unbalanced training data with the same number of excluded
sentences as in Group 1. Each set of unbound sentences con-
sists of four sentences corresponding to the two selected be-
havioral categories that share either the same target object or
the same action (Figures 5d,e). Group 3 is similar to the first
one except with regard to the decreased number of presented
sentences. The robot learns twelve sentences apart from the
six sentences corresponding to the three selected behavioral
categories that share neither the same target object nor the
same action (Figures 5f,g). With regard to every set of train-
ing data, two trials of experiments were conducted with the
different initial connection weight values of the networks.

After the training phase, the network’s ability to generate
the corresponding correct behavior by recognizing the given
sentences is examined. We also evaluate the system’s gener-
alization ability by examining whether appropriate behaviors
can be generated from unlearned sentences based on learned
sentences. With regard to Group 1, five out of six trials were
successful. In the successful trials, the robot was able to rec-
ognize all the four novel sentences and could generate the
corresponding behaviors. With regard to Group 2, none of
the four trials were successful. In all the trials, the robot was
not able to generalize the training data that was provided, al-
though it was able to understand the sentences that was pre-
sented during the learning phase and was able to generate the

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

point
push
hit

red lef
t
blu

e
cen

ter
gre

en
rig

ht

group 1

group 2

group 3

(a) (c)

(g)(f)

(e)(d)

(b)

Figure 5: Seven different sets of training data are employed
to test the generalization capability of the learning model.
The excluded sentences of each training set are represented
by dashed boxes. For example, the training data (a) contains
14 sentences apart from “point green,” “point right,”
“push red,” and “push left.”

corresponding behaviors. The network could not extract the
underlying regularity from the training data because of the
unbalanced presentation of the bindings but not of the sen-
tences since the linguistic module could learn the syntactic
regularity from the same set of sentences without interact-
ing with the behavioral module in the additional experiments.
With regard to Group 3, only one out of the four trials was
successful. In the failure trials, the robot could not generate
correct behavior from one or two unlearned sentences.

In summation, we conclude that our connectionist model
can acquire a minimal situated combinatorial semantics in
very limited conditions. The model is sensitive to both the
number of the given sentences and the symmetry of the given
examples of bindings, and requires a relatively large fraction
of possible bindings in order to realize the correct generaliza-
tion.

5 Analysis
In order to investigate a possible underlying mechanism for
generating the situated combinatorial semantics, we analyze
the results of a successful experiment in which the robot
learned the training data presented in Figure 5a. In this exper-
iment, four sentences (“point green,” “point right,”
“push red,” and “push left”) were eliminated from the
training data. As mentioned above, the robot could gener-
ate the appropriate behaviors robustly for all the sentences
including unlearned ones.

PB mappings for both modules are examined, as shown in
Figure 6. All the plots are projections of the PB spaces onto
the same surface determined by the PCA method. In this case,
the cumulative contribution ratio is approximately 73%. Fig-
ure 6a shows the PB vectors obtained as the result of recog-
nizing all 18 legal sentences. The PB vectors for 4 unlearned
sentences are surrounded by circles. Figure 6b shows the PB
vectors obtained as the result of training the 90 behavioral
sequences.

The comparison of the PB mappings between both mod-
ules shows that they indeed share a common structure as a

result of the binding. The PB vectors of the unlearned sen-
tences and those of the corresponding behavioral sequences
successfully coincide without binding during learning. This
means that the common global structure emerges from the lo-
cal PB bindings of each corresponding pair of a sentence and
a behavioral pattern. The generalization capabilities of the
both modules underlies the self-organization of the situated
combinatorial semantics.

In these figures, we can observe some structural proper-
ties which reflect the underlying regularities of the provided
training data. In Figure 6a, we can find two different groups
of congruent constellations among the plots of the PB vec-
tors encoding the sentences. All three PB constellations of
the first group, each of which is made up of six PB plots for
the sentences which have a specific verb, appear to be con-
gruent. Similarly, six congruent constellations of the second
group can be observed for the three sentences which have the
same noun. Thus, the combinatorial relationship between the
verbs and the nouns is well represented in the product of these
two congruent structures. It should be noted that this struc-
ture was self-organized without learning all 18 possible sen-
tences. This sort of generalization is accomplished since each
sentence is acquired in the form of relational structure among
others, rather than as an independent instance.

The same geometric regularity is observed in the behav-
ioral PB mapping shown in Figure 6b. Clusters of PB vectors
can be seen for each behavioral category, and the congruent
structure can be seen among them. The distributions in each
cluster are due to the perturbation in the sensory-motor se-
quences in the training data.

The linguistic module affects the behavioral module, al-
lowing the organization of the observed congruent struc-
ture. This congruent structure among the clusters cannot self-
organize when the behavioral module does not have an ap-
propriate structural interaction with the linguistic module be-
cause of the lack of binding or the unbalanced binding.

On the other hand, the behavioral constraints can also af-
fect the structure self-organized in the linguistic module. In
Figure 6a, the PB vectors for pairs of sentences ending with
“red” and “left”, “blue” and “center”, and “green” and
“right”, are quite close. This is due to the fact that these
pairs of nouns have the same meaning in terms of the as-
sociated behavior in our specific task. Recall that the clus-
ters of PB vectors are found for each behavioral category in
the behavioral PB mapping. Without this behavioral con-
straints, six PB vectors for sentences which have a specific
verb are located at each vertex of a 5-dimensional regular
hyper-polyhedron since every noun has identical syntactic
role.

In addition with that, the linguistic module learns the un-
derlying syntax, or the correct order of words in a sentence.
The module can not correctly recognize and generate un-
grammatical sequences of words, which do not consist of a
verb followed by a noun. There exists no PB vector which can
generate any ungrammatical sequences of words precisely, al-
though the module can generate every unlearned sentences as
well as learned ones. As described in the earlier section, a
given word sequence is recognized by means of searching the
optimal PB vector for minimizing the error between the tar-

POINT-R

POINT-B

POINT-G

PUSH-R

PUSH-B

PUSH-G

HIT-R

HIT-B

HIT-G

point red

point left

point blue

point center

point green

point right

push red

push left

push blue

push center

push green

push right

hit red

hit left

hit blue

hit center

hit green

hit right

(a) (b)

Th
e

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

The first principal component

0.8

0.80.2
0.2

Th
e

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

The first principal component

0.8

0.80.2
0.2

point green

PUSH-R

POINT-G

push left

push red

point right

Figure 6: PB plots of the linguistic module (a) and the behavioral module (b) are shown. Both plots are projections of the
PB spaces onto the same surface determined by the PCA method. Unlearned sentences and their corresponding behavioral
categories are hatched.

get sequence and the output sequence, referred to as a recog-
nition error. However, the module generates a significantly
larger recognition error for every illegal sentences than for
the grammatical ones.

It is also noted that the robot achieved each goal-directed
behavior quite robustly against perturbations. For exam-
ple, even when the object was moved slightly during exe-
cuting some behaviors, the robot could follow the directional
changes of the target as long as the target was within its vi-
sion sight. This robust behavioral generation is realized by
generalizing the provided multiple sensory-motor sequences
into the sensory-motor mapping through the learning process.

Based on these observations, one may conclude that cer-
tain generalizations within every module involve the inter-
module associative generalization. Especially, the introduc-
tion of combinatorial structure into the behavioral PB map-
ping realizes the combinatorial interpretation of the behav-
ioral patterns. This can be regarded as the segmentation of a
behavioral pattern into verb and noun parts, nevertheless no
explicit segmentation techniques is employed. This will be
discussed intensively in the next section.

6 Discussions and Summary
Finally, we examine how a cognitive agent can situate the
meaning of a sentence or a combinatorial semantic concept
in a certain task through the learning process. For this pur-
pose, we clarify the difficulties of this problem by referring
to some conventional symbolic AI studies. The symbolic
approach employs two important theoretical foundations in
order to realize the situated combinatorial semantics: (1)
the symbol grounding problem [Harnad, 1990], and (2) the
principle of compositionality [Evans, 1981]. According to
this formalization, the model is decomposed into two mech-
anisms: (1) the representation of a grounded atomic con-
cept, and (2) the rules for combining multiple elemental con-
cepts into a grounded combinatorial concept (cf., [Roy, 2002;
Iwahashi, 2003; Steels and Baillie, 2003]).

We identify one of the difficulties in the embodied lin-

guistic processing as the inevitable dependence of these two
mechanisms in terms of the segmentation of the flow of the
(sensory-motor) information involving the continuous inter-
action of a cognitive agent in an environment [Tani, 1996;
2003]. One assumption about the semantic representation can
easily affect the mechanism of the whole system because of
the dependence. Consider the case that a concept of “an ob-
ject in an environment” is provided for conceptualizing some
temporal event patterns, such as a manipulation of objects
(e.g., [Baillie and Ganascia, 2000]). The introduction of a
concept of an object is based on the idea that a temporal event
can be represented as a combination of an action concept and
its target, namely, an object concept. This means that both
an action concept and a rule for combining an action and ob-
jects need to be introduced at the same time as an object is
assumed as being a segmented entity.

In a learning task similar to ours, a priori segmentation
can make it difficult to acquire the embodied language, nev-
ertheless every symbolic model employs a priori segmenta-
tion. Even when every elemental concept is grounded to some
plausible physical entities or events, their combination can
not be always grounded easily. In other words, it is quite
difficult to learn the situated semantic role of a composi-
tion rule, since it is often too abstracted to be learned from
the provided examples in a grounded manner. For instance,
some symbolic models predefine how the elemental concepts
should be combined into the complex one in the form of
the typed argument structure [Baillie and Ganascia, 2000;
Iwahashi, 2003]. The symbolic approach appears to be plau-
sible from the theoretical point of view, however has essential
difficulties at least in our task in which a robot generates a
behavioral spatio-temporal pattern from a mental representa-
tion.

We proposed an alternative mechanism of the acquisition
of the situated combinatorial semantics based on the dynam-
ical systems approach. In order to avoid the difficulty men-
tioned above, our model does not assume any segmented se-
mantic concepts. The dynamical systems perspective pro-

vides a holistic view, where neither the whole can be divided
into its parts, nor can the meaning of a sentence be divided
into those of its individual words. We could argue that the
meaning of “red” can be understood only as being associated
with the relevant actions of “point,” “push,” and “hit,” but
not by “red” itself. Our examination of the PB mapping has
shown that the meaning of each sentence is structured relative
to other sentences. The observation of the congruence in the
PB mapping indicates that the combinatorial characteristics
between verbs and nouns are well extracted and embedded in
the neuronal dynamics by means of self-organizing combina-
torial mechanics.

In our scheme, there exist no representational entities to
be grounded. Instead, the necessary mechanism of combi-
natoriality can be self-organized in the RNNPB by utilizing
the nonlinear dynamical characteristics of the parametric bi-
furcation. Our objective is not to achieve seamless connec-
tions from the elemental representational entities of “con-
cepts” to the physical world. In our approach, both the lin-
guistic and behavioral processes are constructed on analogue
dynamical systems. Since these two processes share the same
metric space, they can interact in an organic manner. Conse-
quently one dynamical structure emerges as a core mecha-
nism of this cognitive process. Since there are no “symbols”
to be grounded in our approach, the symbol grounding prob-
lem might be regarded as a pseudo-problem in our dynamical
systems views. Since there are no “parts” to be combined, the
principle of the compositionality might deserve reconsidera-
tion in our view.

To the summary, the current study has shown that the se-
mantic combinatoriality can be realized without introducing
any a priori segmented concepts but with employing the
self-organization capabilities of the dynamical networks in
a minimal task setting. We would like to further investi-
gate the other underlying dynamical mechanics of the sym-
bolic phenomena, such as the recursive semantic concepts
as appeared in an embedding sentence, the incremental and
one-shot learning, the language acquisition from sparse train-
ing data, and so on. Also, we point out that our current
model does not consider the communicative aspects of lan-
guage at all, although the meaning of a sentence needs to
be situated in a communicative context actually [Vogt, 2003;
Steels and Baillie, 2003]. Our final goal is achieved when
multiple dynamical communicative agents “see” the symbolic
process in their opponents one another (aka., intersubjectiv-
ity).

References
[Baillie and Ganascia, 2000] J.-C. Baillie and J.-G. Ganascia. Ac-

tion categorization from video sequences. In Proceedings of
ECAI 2000, Amsterdam, 2000. IOS Press.

[Beer, 1995] R.D. Beer. A dynamical systems perspective on agent-
environment interaction. Artificial Intelligence, 72(1):173–215,
1995.

[Elman, 1990] J.L. Elman. Finding structure in time. Cognitive
Science, 14:179–211, 1990.

[Evans, 1981] G. Evans. Semantic Theory and Tacit Knowledge.
In S. Holzman and C. Leich, editors, Wittgenstein: To Follow a
Rule, pages 118–137. Routledge and Kegan Paul, London, 1981.

[Harnad, 1990] S. Harnad. The symbol grounding problem. Phys-
ica D, 42:335–346, 1990.

[Iwahashi, 2003] N. Iwahashi. Language acquisition by robots –
Towards New Paradigm of Language Processing –. Journal of
Japanese Society for Artificial Intelligence, 18(1):49–58, 2003.

[Jordan and Rumelhart, 1992] M.I. Jordan and D.E. Rumelhart.
Forward models: supervised learning with a distal teacher. Cog-
nitive Science, 16:307–354, 1992.

[Kawato et al., 1987] M. Kawato, K. Furukawa, and R. Suzuki. A
hierarchical neural network model for the control and learning of
voluntary movement. Biological Cybernetics, 57:169–185, 1987.

[Miikkulainen, 1993] R. Miikkulainen. Subsymbolic Natural Lan-
guage Processing: An Integrated Model of Scripts, Lexicon, and
Memory. MIT Press, Cambridge, MA, 1993.

[Rizzolatti et al., 1996] G. Rizzolatti, L. Fadiga, B. Galles, and
L. Fogassi. Promotor cortex and the recognition of motor actions.
Cognitive Brain Research, 3:131–141, 1996.

[Roy, 2002] D.K. Roy. Learning visually grounded words and syn-
tax for a scene description task. Computer Speech and Language,
16:353–385, 2002.

[Rumelhart et al., 1986] D.E. Rumelhart, G.E. Hinton, and R.J.
Williams. Learning internal representations by error propaga-
tion. In D.E. Rumelhart and J.L. Mclelland, editors, Parallel
Distributed Processing, volume 1, pages 318–362. MIT Press,
Cambridge, MA, 1986.

[Schoner and Kelso, 1988] S. Schoner and S. Kelso. Dynamic Pat-
tern Generation in Behavioral and Neural Systems. Science,
239:1513–1519, 1988.

[Siskind, 2001] J.M. Siskind. Grounding the Lexical Semantics
of Verbs in Visual Perception using Force Dynamics and Event
Logic. Artificial Intelligence Research, 15:31–90, 2001.

[Steels and Baillie, 2003] L. Steels and J.-C. Baillie. Shared
grounding of event descriptions by autonomous robots. Robotics
and Autonomous Systems, 43:163–173, 2003.

[Sugita and Tani, 2005] Y. Sugita and J. Tani. Learning Seman-
tic Combinatoriality from the Interaction between Linguistic and
Behavioral Processes. Adaptive Behavior, 13(1):33–52, 2005.

[Tani and Ito, 2003] J. Tani and M. Ito. Self-organization of behav-
ioral primitives as multiple attractor dynamics: a robot experi-
ment. IEEE Trans. on Sys. Man and Cybern. Part A, 33(4):481–
488, 2003.

[Tani, 1996] J. Tani. Model-Based Learning for Mobile Robot Nav-
igation from the Dynamical Systems Perspective. IEEE Trans. on
SMC (B), 26(3):421–436, 1996.

[Tani, 2003] J. Tani. Learning to generate articulated behavior
through the bottom-up and the top-down interaction process.
Neural Networks, 16:11–23, 2003.

[van Gelder, 1998] T.J. van Gelder. The dynamical hypothesis in
cognitive science. Behavior and Brain Sciences, 21(5):615–628,
1998.

[Vogt, 2003] P. Vogt. Iterated learning and grounding from holistic
to compositional languages. In S. Kirby, editor, Language Evo-
lution and Computation, Proceedings of the workshop/course at
ESSLLI, pages 76–86. 2003.

[Wiggins, 1990] S. Wiggins. Introduction to Applied Nonlinear Dy-
namical Systems and Chaos. Springer-Verlag, New York, NY,
1990.

Integrating First-Order Logic Programs and Connectionist Systems —
A Constructive Approach

Sebastian Bader1∗, Pascal Hitzler2†, Andreas Witzel3
1International Center for Computational Logic, Technische Universität Dresden, Germany

2AIFB, Universität Karlsruhe, Germany
3Department of Computer Science, Technische Universität Dresden, Germany

Abstract
Significant advances have recently been made con-
cerning the integration of symbolic knowledge rep-
resentation with artificial neural networks (also
called connectionist systems). However, while the
integration with propositional paradigms has re-
sulted in applicable systems, the case of first-order
knowledge representation has so far hardly pro-
ceeded beyond theoretical studies which prove the
existence of connectionist systems for approximat-
ing first-order logic programs up to any chosen pre-
cision. Advances were hindered severely by the
lack of concrete algorithms for obtaining the ap-
proximating networks which were known to ex-
ist: the corresponding proofs are not construc-
tive in that they do not yield concrete methods for
building the systems. In this paper, we will make
the required advance and show how to obtain the
structure and the parameters for different kinds of
connectionist systems approximating covered logic
programs.

1 Introduction
Logic programs have been studied thoroughly in computer
science and artificial intelligence and are well understood.
They are human-readable, they basically consist of logic
formulae, and there are well-founded mathematical theories
defining exactly the meaning of a logic program. Logic pro-
grams thus constitute one of the most prominent paradigms
for knowledge representation and reasoning. But there is also
a major drawback: Logic programming is unsuitable for cer-
tain learning tasks, in particular in the full first-order case.

On the other hand, for connectionist systems — also called
artificial neural networks — there are established and rather
simple training or learning algorithms. But it is hard to
manually construct a connectionist system with a desired be-
haviour, and even harder to find a declarative interpretation of

∗Sebastian Bader is supported by the GK334 of the German Re-
search Foundation (DFG).

†Pascal Hitzler is supported by the German Federal Ministry of
Education and Research (BMBF) under the SmartWeb project, and
by the European Union under the KnowledgeWeb Network of Ex-
cellence.

what a given connectionist system does. Connectionist sys-
tems perform very well in certain settings, but in general we
do not understand why or how.

Thus, logic programs and connectionist systems have con-
trasting advantages and disadvantages. It would be desirable
to integrate both approaches in order to combine their respec-
tive advantages while avoiding the disadvantages. We could
then train a connectionist system to fulfil a certain task, and
afterwards translate it into a logic program in order to under-
stand it or to prove that it meets a given specification. Or we
might write a logic program and turn it into a connectionist
system which could then be optimised using a training algo-
rithm.

Main challenges for the integration of symbolic and con-
nectionist knowledge thus centre around the questions (1)
how to extract logical knowledge from trained connectionist
systems, and (2) how to encode symbolic knowledge within
such systems. We find it natural to start with (2), as extrac-
tion methods should easily follow from successful methods
for encoding.

For propositional logic programs, encodings into connec-
tionist systems like [11] led immediately to applicable algo-
rithms. Corresponding learning paradigms have been devel-
oped [7; 6] and applied to real settings.

For the first-order logic case, however, the situation is
much more difficult, as laid out in [4]. Concrete translations,
as in [3; 2], yield nonstandard network architectures. For
standard architectures, previous work has only established
non-constructive proofs showing the existence of connection-
ist systems which approximate given logic program with arbi-
trary precision [12; 9]. Thus the implementation of first-order
integrated systems was impossible up to this point.

In this paper, we will give concrete methods to compute the
structure and the parameters of connectionist systems approx-
imating certain logic programs using established standard ar-
chitectures.

First, in Section 2, we will give a short introduction to
logic programs and connectionist systems. We also review
the standard technique for bridging the symbolic world of
logic programs with the real-numbers-based world of connec-
tionist systems, namely the embedding of the single-step op-
erator, which carries the meaning of a logic program, into the
real numbers as established for this purpose in [12]. In Sec-
tion 3, we will then approximate the resulting real function by

a piecewise constant function in a controlled manner, which is
an important simplifying step for establishing our results. We
will then construct connectionist systems for computing or
approximating this function, using sigmoidal activation func-
tions in Section 4 and radial basis function (RBF) architecture
in Section 5. Section 6 will conclude the paper with a short
discussion of some open problems and possibilities for future
work.

2 Preliminaries
In this section, we shortly review the basic notions needed
from logic programming and connectionist systems. Main
references for background reading are [13] and [14], respec-
tively. We also review the embedding of TP into the real
numbers as used in [12; 9], and on which our approach is
based.

2.1 Logic Programs
A logic program over some first-order language L is a set of
(implicitly universally quantified) clauses of the form A ←
L1 ∧ · · · ∧ Ln, where n ∈ N may differ for each clause, A
is an atom in L with variables from a set V, and the Li are
literals in L, that is, atoms or negated atoms. A is called the
head of the clause, the Li are called body literals, and their
conjunction L1 ∧ · · · ∧ Ln is called the body of the clause.
As an abbreviation, we will sometimes replace L1 ∧ · · · ∧Ln

by body and write A ← body . If n = 0, A is called a fact.
A clause is ground if it does not contain any variables. Local
variables are those variables occurring in some body but not
in the corresponding head. A logic program is covered if none
of the clauses contain local variables.

Example 2.1. The following is a covered logic program
which will serve as our running example. The intended mean-
ing of the clauses is given to the right.

e(0). % 0 is even

e(s(X))← ¬e(X) % the successor s(X)

% of a non-even X is even

The Herbrand universe UP is the set of all ground terms
of L, the Herbrand base BP is the set of all ground atoms. A
ground instance of a literal or a clause is obtained by replac-
ing all variables by terms from UP . For a logic program P ,
G(P) is the set of all ground instances of clauses from P .

A level mapping is a function ‖ · ‖ : BP → N \ {0}. In
this paper, we require level mappings to be injective, in which
case they can be thought of as enumerations of BP . The level
of an atom A is denoted by ‖A‖. The level of a literal is that
of the corresponding atom.

A logic program P is acyclic with respect to a level map-
ping ‖ · ‖ if for all clauses A ← L1 ∧ · · · ∧ Ln ∈ G(P)
we have that ‖A‖ > ‖Li‖ for 1 ≤ i ≤ n. A logic
program is called acyclic if there exists such a level map-
ping. All acyclic programs are also covered under our stand-
ing condition that level mappings are injective, and provided
that function symbols are present, i.e. BP is infinite. In-
deed the case when BP is finite is of limited interest to us
as it reduces to a propositional setting as studied in [11;
7].

Example 2.2. For the program from Example 2.1, we have:
UP = {0, s(0), s2(0), . . . }

BP = {e(0), e(s(0)), e(s2(0)), . . . }

G(P) = e(0).

e(s(0))← ¬e(0).

e(s2(0))← ¬e(s(0)).

...
With ‖e(sn(0))‖ := n + 1, we find that P is acyclic.

A (Herbrand) interpretation is a subset I of BP . Those
atoms A with A ∈ I are said to be true, or to hold, under I
(in symbols: I |= A), those with A 6∈ I are said to be false,
or to not hold, under I (in symbols: I 6|= A). IP = 2BP is
the set of all interpretations.

An interpretation I is a (Herbrand) model of a logic pro-
gram P (in symbols: I |= P) if I is a model for each clause
A← body ∈ G(P) in the usual sense. That is, if of all body
literals I contains exactly those which are not negated (i.e.
I |= body), then I must also contain the head.
Example 2.3. Consider these three Herbrand interpretations
for P from Example 2.1:

I1 = {e(0), e(s(0))}

I2 = {e(0), e(s3(0)), e(s4(0)), e(s5(0)), . . . }

I3 = {e(0), e(s2(0)), e(s4(0)), e(s6(0)), . . . }

I4 = BP

I1 6|= P since e(s3(0))← ¬e(s2(0)) ∈ G(P) and e(s2(0)) 6∈
I1, but e(s3(0)) 6∈ I1. I2 is neither a model (for a similar
reason). Both I3 and I4 are models for P .

The single-step operator TP : IP → IP maps an interpre-
tation I to the set of exactly those atoms A for which there
is a clause A ← body ∈ G(P) with I |= body. The
operator TP captures the semantics of P as the Herbrand
models of the latter are exactly the pre-fixed points of the
former, i.e. those interpretations I with TP (I) ⊆ I . For
logic programming purposes it is usually preferable to con-
sider fixed points of TP , instead of pre-fixed points, as the
intended meaning of programs. These fixed points are called
supported models of the program [1]. The well-known stable
models [8], for example, are always supported. In example
2.1, I3 = {e(0), e(s2(0)), e(s4(0)), . . . } is supported (and
stable), while I4 = BP is a model but not supported.
Example 2.4. For P from Example 2.1 and I1, I2 from Ex-
ample 2.3, we get the following by successive application (i.e.
iteration) of TP :

I1
TP7→ I2

TP7→ {e(0), e(s2(0)), e(s3(0))}
TP7→ . . .

TP7→ {e(0), e(s2(0)), . . . , e(s2n(0)), e(s2n+1(0))}
TP7→ . . .

For a certain class of programs, the process of iterating TP

can be shown to converge1 to the unique supported Herbrand
1Convergence in this case is convergence with respect to the Can-

tor topology on IP , or equivalently, with respect to a natural under-
lying metric. For further details, see [10], where also a general class
of programs, called Φ-accessible programs, is described, for which
iterating TP always converges in this sense.

...

Figure 1: A simple 3-layered feed-forward connectionist sys-
tem, with different activation functions depicted in the hidden
layer.

model of the program, which in this case is the model de-
scribing the semantics of the program [10]. This class is de-
scribed by the fact that TP is a contraction with respect to
a certain metric. A more intuitive description remains to be
found, but at least all acyclic programs2 are contained in this
class. That is, given some acyclic program P , we can find its
unique supported Herbrand model by iterating TP and com-
puting a limit. In example 2.4 for instance, the iterates con-
verge in this sense to I3 = {e(0), e(s2(0)), e(s4(0)), . . . },
which is the unique supported model of the program.

2.2 Connectionist Systems

A connectionist system — or artificial neural network — is a
complex network of simple computational units, also called
nodes or neurons, which accumulate real numbers from their
inputs and send a real number to their output. Each unit’s
output is connected to other units’ inputs with a certain real-
numbered weight. We will deal with feed-forward networks,
i.e. networks without cycles, as shown in Figure 1. Each unit
has an input function which merges its inputs into one in-
put using the weights, and an activation function which then
computes the output. If a unit has inputs x1, . . . , xn with
weights w1, . . . , wn, then the weighted sum input function
is
∑n

i=1 xiwi. A locally receptive distance input function
is
√∑n

i=1(xi − wi)2. In the case of one single input, this
is equivalent to |x1 − w1|. Those units without incoming
connections are called input neurons, those without outgoing
ones are called output neurons.

2.3 Embedding TP in R

As connectionist systems propagate real numbers, and single-
step operators map interpretations, i.e. subsets of BP , we
need to bridge the gap between the real-valued and the sym-
bolic setting. We follow the idea laid out first in [12], and
further developed in [9], for embedding IP into R. For this
purpose, we define R : IP → R as R(I) :=

∑

A∈I b−‖A‖

for some base b ≥ 3. Note that R is injective. We will ab-
breviate R({A}) by R(A) for singleton interpretations. As
depicted in Figure 2, we obtain fP as an embedding of TP in
R : fP : Df → Df with Df := {R(I)|I ∈ IP }, is defined as
fP (x) := R(TP (R−1(x))). Figure 3 shows the graph of the

2In this case the level mapping does not need to be injective.

I ∈ IP
TP

// I ′ ∈ IP

R

��
x ∈ Df

fP //

R−1

OO

x′ ∈ Df

Figure 2: Relations between TP and fP

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
R(I)

fP (R(I))

Figure 3: The graph of the embedded TP -operator from Ex-
ample 2.1, using base 3 for the embedding. In general, the
points will not be on a straight line.

embedded TP -operator associated to the program discussed
in Examples 2.1 to 2.4.

3 Constructing Piecewise Constant Functions
In the following, we assume P to be a covered program with
bijective level mapping ‖ · ‖ which is, along with its inverse
‖ · ‖−1, effectively computable. As already mentioned, we
also assume that BP is infinite. However, our approach will
also work for the finite case with minor modifications. Fur-
thermore, R and fP denote embeddings with base b as de-
fined above.

3.1 Approximating one Application of TP

Within this section we will show how to construct a ground
subprogram approximating a given program. I.e., we will
construct a subset Pl of the ground program G(P), such that
the associated consequence operator TPl

approximates TP up
to a given accuracy ε. This idea was first proposed in [15].

Definition 3.1. For all l ∈ N, the set of atoms of level less
than or equal to l is defined as Al := {A ∈ BP |‖A‖ ≤ l}.
Furthermore, we define the instance of P up to level l as Pl :={
A← body ∈ G(P)

∣
∣A ∈ Al

}
.

Since the level mappings are required to be enumerations,
we know that Al is finite. Furthermore, it is also effectively
computable, due to the required computability of ‖ · ‖−1. It
is clear from the definition that Pl is ground and finite, and
again, can be computed effectively.

Definition 3.2. For all l ∈ N, the greatest relevant input level
with respect to l is

l̂ := max
{
‖L‖

∣
∣L is a body literal of some clause in Pl

}
.

Obviously, we can compute l̂ easily, since Pl is ground and
finite. The following lemma establishes a connection between
the consequence operators of some ground subprogram Pk

and the original program P .

Lemma 3.3. For all l, k ∈ N, k ≥ l, and I, J ∈ IP , we have
that TPk

(I) and TP (J) agree on Al if I and J agree on A
l̂
,

i.e.

I ∩A
l̂
= J ∩A

l̂
implies TPk

(I) ∩Al = TP (J) ∩Al.

Proof. This follows simply from the fact that I and J agree
on A

l̂
, and that TPk

contains all those clauses relating atoms
from A

l̂
and Al. Taking this into account we find that TP and

TPk
agree on Al.

Definition 3.4. The greatest relevant output level with re-
spect to some arbitrary ε > 0 is

oε := min






n ∈ N

∣
∣
∣

∑

‖A‖>n

R(A) < ε







= min

{

n ∈ N

∣
∣
∣n > −

ln(b− 1)ε

ln b

}

The following theorem connects the embedded conse-
quence operator of some subprogram with a desired error
bound, which will be used for later approximations using neu-
ral networks.

Theorem 3.5. For all ε > 0, we have that
∣
∣fP (x)− fPoε

(x)
∣
∣ < ε for all x ∈ Df .

Proof. Let x ∈ Df be given. From Lemma 3.3, we know that
TPoε

(R−1(x)) = R−1(fPoε
(x)) agrees with TP (R−1(x)) =

R−1(fP (x)) on all atoms of level ≤ oε. Thus, fPoε
(x) and

fP (x) agree on the first oε digits. So the maximum deviation
occurs if all later digits are 0 in one case and 1 in the other.
In that case, the difference is

∑

‖A‖>n R(A), which is < ε by
definition of oε.

3.2 Iterating the Approximation

Now we know that one application of fPoε
approximates fP

up to ε. But what will happen if we try to approximate several
iterations of fP ? In general, ôε might be greater than oε, that
is, the required input precision might be greater than the re-
sulting output precision. In that case, we lose precision with
each iteration. So in order to achieve a given output precision
after a certain number of steps, we increase our overall preci-
sion such that we can afford losing some of it. Since the pre-
cision might decrease with each step, we can only guarantee a
certain precision for a given maximum number of iterations.

Theorem 3.6. For all l, n ∈ N, we can effectively compute
l(n) such that for all I ∈ IP , m ≤ n, and k ≥ l(n):

Tm
Pk

(I) agrees with T m
P (I) on Al.

Proof. By induction on n. Let l ∈ N be given.

base n = 0: Obviously, T 0
Pk

(I) = I = T 0
P (I). We set

l(0) := l.

step n n + 1: By induction hypothesis, we can find l(n)

such that for all I ∈ IP , m ≤ n, and k ≥ l(n), Tm
Pk

(I)

x = 0. 0010101101010010
︸ ︷︷ ︸

l̂ digits are equal

000000 . . .b

x′ = 0.
︷ ︸︸ ︷

0010101101010010 111111 . . .b

Figure 4: Example for the endpoints of a range [x, x′] on
which fPl

is constant

agrees with T m
P (I) on A

l̂
. With l(n+1) := max{l, l(n)},

we then have for all I ∈ IP , m ≤ n, and k ≥ l(n+1):

Tm
Pk

(I) agrees with T m
P (I) on A

l̂
(k ≥ l(n))

⇒ Tm+1
Pk

(I) agrees with T m+1
P (I) on Al (3.3)

T 0
Pk

(I) = I = T 0
P (I) completes the Induction Step.

It follows that for all ε > 0, we can effectively compute
o
(n)
ε such that

∣
∣fn

P (x)− fn
P

o
(n)
ε

(x)
∣
∣ < ε for all x ∈ Df .

This result may not seem completely satisfying. If we want
to iterate our approximation, we have to know in advance how
many steps we will need at most. Of course, we could choose
a very large maximum number of iterations, but then the in-
stance of P up to the corresponding level might become very
large. But in the general case, we might not be interested
in so many iterations anyway, since TP does not necessarily
converge.

For acyclic programs, however, TP is guaranteed to con-
verge, and additionally we can prove that we do not lose pre-
cision in the application of TPl

. Due to the acyclicity of P we
have l̂ < l, and hence, with respect to Al, we obtain the same
result after n iterations of TPl

as we would obtain after n it-
erations of TP . Thus we can approximate the fixed point of
TP by iterating TPl

. To put it formally, we have that T n
Pl

(I)
agrees with T n

P (I) on Al for acyclic P and all n ∈ N. Thus,
in this case we find that |fn

P (x)−fn
Poε

(x)| < ε for all x ∈ Df

and all n ∈ N.

3.3 Simplifying the Domain
Now we have gathered all information and methods necessary
to approximate fP and iterations of fP . It remains to simplify
the domain of the approximation so that we can regard the
approximation as a piecewise constant function. We do this
by extending Df to some larger set Dl .

The idea is as follows. Since only input atoms of level ≤ l̂
play a role in Pl, we have that all x ∈ Df which differ only
after the l̂-th digit are mapped to the same value by fPl

. So
we have ranges [x, x′] ⊆ R of fixed length with x and x′ as in
Figure 4 such that all elements of [x, x′] ∩Df are mapped to

the same value. Obviously, there are 2l̂ such ranges, each of
length

∑

‖A‖>l̂
R(A). So we can extend fPl

to a function f̂Pl

which has a domain consisting of 2l̂ disjoint and connected
ranges and is constant on each of these ranges. Additionally,
the minimum distance between two ranges is greater than or
equal to the length of the ranges.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

f̂Pl
(x)

Figure 5: Example for the graph of f̂Pl
with l̂ = 2; fP is

shown in grey.

The resulting graph of f̂Pl
will then look similar to the one

shown in Figure 5. We formalise these results in the follow-
ing.

Definition 3.7. An ordered enumeration of all left borders
dl,i can be computed as

dl,i :=

l̂∑

j=1

({

b−j if
⌊

i

l̂−j+1

⌋

mod 2 = 1

0 otherwise

)

.

Each of the intervals has length

λl :=
∑

‖A‖>l̂

R(A) =
1

(b− 1) · bl̂
.

Finally, we define

Dl :=
2l̂−1⋃

i=0

Dl,i with Dl,i := [dl,i, dl,i + λl] .

Thus, Dl consists of 2l̂ pieces of equal length.

Lemma 3.8. For all l ∈ N, we have Dl ⊇ Df .

Proof. Let l ∈ N and x ∈ Df . Then there is a dl,i which
agrees with x on its l̂ digits. But Dl,i contains all numbers
which agree with dl,i on its l̂ digits, thus x ∈ Dl,i ⊆ Dl .

Lemma 3.9. For all l ∈ N, the connected parts of Dl do not
overlap and the space between one part and the next is at least
as wide as the parts themselves.

Proof. The minimum distance between two parts occurs
when the left endpoints differ only in the last, i.e. l̂-th, digit.
In that case, the distance between these endpoints is b−l̂,
which is ≥ 2 · λl since b ≥ 3.

Lemma 3.10. For all l ∈ N and 0 ≤ i < 2l̂, fPl
is constant

on Dl,i ∩Df .

Proof. All atoms in bodies of clauses in Pl are of level ≤ l̂.
Thus, TPl

regards only those atoms of level ≤ l̂, i.e. TPl
is

constant for all interpretations which agree on these atoms.
This means that fPl

is constant for all x that agree on the first
l̂ digits, which holds for all x ∈ Dl,i ∩Df .

Definition 3.11. The extension of fPl
to Dl , f̂Pl

: Dl → Df ,
is defined as f̂Pl

(x) := fPl
(dl,i) for x ∈ Dl,i. From the

results above, it follows that f̂Pl
is well-defined.

Now we have simplified the domain of the approximated
embedded single-step operator such that we can regard it as a
function consisting of a finite number of equally long constant
pieces with gaps at least as wide as their length.

In the following, we will construct connectionist systems
which either compute this function exactly or approximate it
up to a given, arbitrarily small error. In the latter case we are
facing the problem that the two errors might add up to an error
which is larger than the desired maximum error. But this is
easily taken care of by dividing the desired maximum overall
error into one error ε′ for fPo

ε′
and another error ε′′ for the

constructed connectionist system.

4 Constructing Sigmoidal Feed-Forward
Networks

We will continue our exhibition by considering some arbi-
trary piecewise constant function g which we want to approx-
imate by connectionist systems. Since f̂Pl

is piecewise con-
stant, we can treat this function as desired, and others by the
same method. So in the following, let g : D → R be given
by

D :=

n−1⋃

i=0

[ai, ci], ci = ai + b, ci < ai+1,

g(x) := yi for x ∈ [ai, ci].

When we construct our connectionist systems, we are only
interested in the values they yield for inputs in D. We do
not care about the values for inputs outside of D since such
inputs are guaranteed not to be possible embeddings of inter-
pretations, i.e. in our setting they do not carry any symbolic
meaning which can be carried back to IP .

We will proceed in two steps. First, we will approximate g
by using connectionist systems with step activation functions.
Afterwards, we will relax our approach for the treatment of
sigmoidal activation functions.

4.1 Step Activation Functions
We will now construct a multi-layer feed-forward network
with weighted sum input function, where each of the units
in the hidden layer computes the following step function:

sl,h,m(x) :=

{
l if x ≤ m

l + h otherwise.

As an abbreviation, we will use si(x) := sli,hi,mi
(x) for

0 ≤ i < n − 1. We want the output to agree with g on its
domain, that is, we want

∑n−2
i=0 si(x) = g(x) for all x ∈ D.

An intuitive construction is depicted in Figure 6. For n
pieces, we use n − 1 steps. We put one step in the middle
between each two neighbouring pieces, then obviously the
height of that step must be the height difference between these
two pieces.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

∑
si(x)

Figure 6: Sum of the step functions.

It remains to specify values for the left arms of the step
functions. All left arms should add up to the height of the
first piece. So we can choose that height divided by n− 1 for
each left arm. Now we have specified all si completely:

Definition 4.1. For 0 ≤ i < n− 1,

li :=
y0

n− 1
; hi := −yi + yi+1; mi :=

1

2
(ci + ai+1)

Theorem 4.2.
∑n−2

i=0 si(x) = g(x) for all x ∈ D.

Proof. Let x ∈ [aj , cj]. Then

n−2∑

i=0

si(x) =

j−1
∑

i=0

(li + hi) +
n−2∑

i=j

li =
n−2∑

i=0

li +

j−1
∑

i=0

hi

= y0 +

j−1
∑

i=0

(−yi + yi+1) = yj = g(x).

4.2 Sigmoidal Activation Functions
Instead of step activation functions, standard network archi-
tectures use sigmoidal activation functions, which can be con-
sidered to be approximations of step functions. The reason for
this is that standard training algorithms like backpropagation
require differentiable activation functions.

In order to accommodate this, we will now approximate
each step function si by a sigmoidal function σi:

σi(x) := σli,hi,mi,zi
(x) := li +

hi

1 + e−zi(x−mi)
.

Note that li, hi,mi are the same as for the step functions. The
error of the i-th sigmoidal is

δi(x) := |σi(x)− si(x)|.

An analysis of this function leads to the following re-
sults (illustrated in Figure 7): For all x 6= mi we have
limzi→∞ σi(x) = si(x); since both functions are symmet-
ric, we find for all zi,∆x,

δi(mi −∆x) = δi(mi + ∆x);

and furthermore, for all zi, x, x′ with |x′ −mi| > |x−mi|,

δi(x
′) < δi(x).

1

-2

0.5

0
-4

-0.5

-1

420

1

0.5

0
-4

-0.5

-1

-2 420

1

-2

0.5

0
-4

-0.5

-1

420

Figure 7: With increasing z, σl,h,m,z gets arbitrarily close to
sl,h,m everywhere but at m. The difference between σl,h,m,z

and sl,h,m is symmetric to m and decreases with increasing
distance from m. Shown here are σ−1,2,0,1, σ−1,2,0,5, s−1,2,0.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

∑
σi(x)

Figure 8: The sigmoidal approximation.

Theorem 4.3. For all ε > 0 we can find zi (0 ≤ i < n − 1)

such that
∣
∣
∣
∑n−2

i=0 σi(x)− g(x)
∣
∣
∣ < ε.

Proof. In the worst case, the respective errors of the σi add up
in the sum. Thus we allow a maximum error of ε′ := ε

n−1 for
each σi. With all previous results, it only remains to choose
the zi big enough to guarantee that at those x ∈ D which are
closest to mi (i.e. ci and ai+1, which are equally close), σi

approximates si up to ε′, that is
[
δi(ci) =

]
δi(ai+1) < ε′.

Resolving this we get the following condition for the zi:

zi >

{

−∞ if |hi| ≤ ε′

− ln ε′−ln(|hi|−ε′)
ai+1−mi

otherwise

for 0 ≤ i < n− 1. This completes the proof.

Figure 8 shows the resulting sigmoidal approximation,
along with the original piecewise constant function from Fig-
ure 6.

Taking g to be f̂Pl
and ε > 0, the parameters li, hi, mi

as in Definition 4.1 and zi as in the proof of Theorem 4.3
determine an appropriate approximating sigmoidal network.

5 Constructing RBF Networks
Within the following section we will show how to construct
Radial Basis Function Networks (RBF Networks). For a
more detailed introduction for this type of network we refer
to [14]. As in the previous section, we take a stepwise ap-
proach and will first discuss triangular activation functions.

3210-1-2

1

-3

0.8

0.6

0.4

0.2

0
3210-1-2

1

-3

0.8

0.6

0.4

0.2

0

Figure 9: A constant piece can be obtained as the sum of two
triangles or two raised cosine functions.

We will then extend the results to so-called raised cosine ra-
dial basis functions. We will also briefly discuss how an ex-
isting network can be refined incrementally to lower the error
bound. The notation is the same as in the previous section.
We will again assume that g is a piecewise constant func-
tion, this time with the additional requirement that the gaps
between the pieces are ≥ the length of the pieces (which we
proved to hold for f̂Pl

), i.e. ci + b ≤ ai+1 for 0 ≤ i < n.

5.1 Triangular Activation Functions
We will now construct an RBF network with distance input
function, where each of the units in the hidden layer computes
a triangular function tw,h,m:

tw,h,m(x) :=

{

h ·
(

1− |x−m|
w

)

if |x−m| < w

0 otherwise

Since the triangular functions are locally receptive, that is,
they are 6= 0 only on the open range (m − w,m + w), we
can handle each constant piece separately and represent it as
a sum of two triangles, as illustrated in Figure 9.

For a given interval [ai, ci] (with ci = ai + b), we define

ti(x) := tb,yi,ai
(x), t′i(x) := tb,yi,ci

(x).

Thus, for each constant piece we get two triangles summing
up to that constant piece, i.e. for 0 ≤ i < n and x ∈ [ai, ci]
we have ti(x) + t′i(x) = yi, as illustrated in Figure 9.

The requirement we made for the gap between two con-
stant pieces guarantees that the triangles do not interfere with
those of other pieces.

Theorem 5.1.
∑n−1

i=0 (ti(x) + t′i(x)) = g(x) for all x ∈ D.

Proof. This equality follows directly from the fact that the
two triangles add up to a constant piece of the required height,
and furthermore, that they do not interfere with other constant
pieces as mentioned above.

5.2 Raised-Cosine Activation Functions
As in the previous section, standard radial basis function net-
work architectures use differentiable activation functions. For
our purposes, we will replace the triangular functions ti and
t′i by raised-cosine functions τi and τ ′

i , respectively, of the
following form:

τw,h,m(x) :=

{
h
2 ·
(

1 + cos
(

π(x−m)
w

))

if |x−m| < w

0 otherwise.

Again, we will use the following abbreviations:

τi(x) := τb,yi,ai
(x) τ ′

i(x) := τb,yi,ci
(x)

As illustrated in Figure 9, raised cosines add up equally
nice as the triangular ones, i.e. for 0 ≤ i < n and x ∈ [ai, ci]
we have τi(x) + τ ′

i(x) = yi. Similar to Theorem 5.1, one
easily obtains the following result.

Theorem 5.2.
∑n−1

i=0 (τi(x) + τ ′
i(x)) = g(x) for all x ∈ D.

As in the case of sigmoidal activation functions, we obtain
the required network parameters by considering f̂Pl

instead
of g.

5.3 Refining Networks
Our radial basis function network architecture lends itself to
an incremental handling of the desired error bound. Assume
we have already constructed a network approximating fP up
to a certain ε. We now want to increase the precision by
choosing ε′ with ε > ε′ > 0, or by increasing the great-
est relevant output level. Obviously we have oε′ ≥ oε for
ε > ε′ > 0.

For this subsection, we have to go back to the original func-
tions and domains from Section 3. Defining

∆Pl1,l2 :=
{
A← body ∈ G(P)

∣
∣l1 < ‖A‖ ≤ l2

}
,

one can easily obtain the following result.

Lemma 5.3. If l2 ≥ l1, then l̂2 ≥ l̂1, Dl2 ⊆ Dl1 , Pl2 =
Pl1 ∪∆Pl1,l2 , and Pl1 ∩∆Pl1,l2 = ∅.

Thus, the constant pieces we had before may become di-
vided into smaller pieces (if the greatest relevant input level
increases) and may also be raised (if any of the new clauses
applies to interpretations represented in the range of that par-
ticular piece).

Looking at the body atoms in ∆Pl1,l2 , we can identify the
pieces which are raised, and then add units to the existing
network which take care just of those pieces. Due to the
local receptiveness of RBF units and the properties of Dl

stated above, the new units will not disturb the results for
other pieces. Especially in cases where |∆Pl1,l2 | � |Pl1 |,
this method may be more efficient than creating a whole new
network from scratch.

We could also right away construct the network for Pl

by starting with one for P1 and refining it iteratively using
∆P1,2,∆P2,3, . . . ,∆Pl−1,l, or maybe using difference pro-
grams defined in another way, e.g. by their greatest relevant
input level. This may lead to more homogeneous construc-
tions than the method used in the previous subsections.

6 Conclusions and Future Work
In this paper, we have shown how to construct connection-
ist systems which approximate covered first-order logic pro-
grams up to arbitrarily small errors, using some of the ideas
proposed in [15]. We have thus, for a large class of logic
programs, provided constructive versions of previous non-
constructive existence proofs and extended previous con-
structive results for propositional logic programs to the first-
order case.

An obvious alternative to our approach lies in computing
the (propositional) ground instances of clauses of P up to a
certain level and then using existing propositional construc-
tions as in [11]. This approach was taken e.g. in [16], re-
sulting in networks with increasingly large input and output
layers. We avoided this for three reasons. Firstly, we want to
obtain differentiable, standard architecture connectionist sys-
tems suitable for established learning algorithms. Secondly,
we want to stay as close as possible to the first-order seman-
tics in order to facilitate refinement and with the hope that this
will make it possible to extract a logic program from a con-
nectionist system. Thirdly, we consider it more natural to in-
crease the number of nodes in the hidden layer for achieving
higher accuracy, rather than to enlarge the input and output
layers.

In order to implement our construction on a real computer,
we are facing the problem that the hardware floating point
precision is very limited, so we can only represent a small
number of atoms in a machine floating point number. If we
do not want to resort to programming languages emulating ar-
bitrary precision, we could try to distribute the representation
of interpretations on several units, i.e. to create a connection-
ist system with multi-dimensional input and output. For real
applications, it would also be useful to further examine the
possibilities for incremental refinement as in Section 5.3.

Another problem is that the derivative of the raised-cosine
function is exactly 0 outside a certain range around the peak,
which is not useful for training algorithms like backpropaga-
tion. Gaussian activation functions would be more suitable,
but appear to be much more difficult to handle.

We are currently implementing the transformation algo-
rithms, and will report on corresponding experiments on a
different occasion. One of our long-term goals follows the
path laid out in [7; 5] for the propositional case: to use logic
programs as declarative descriptions for initialising connec-
tionist systems, which can then be trained more quickly than
randomly initialised ones, and then to understand the opti-
mised networks by reading them back into logic programs.

References
[1] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker.

Towards a theory of declarative knowledge. In Jack
Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kauf-
mann, Los Altos, CA, 1988.

[2] Sebastian Bader, Artur S. d’Avila Garcez, and Pascal
Hitzler. Computing first-order logic programs by fibring
artificial neural networks. In Proceedings of the 18th
International FLAIRS Conference, Clearwater Beach,
Florida, May 2005, 2005. To appear.

[3] Sebastian Bader and Pascal Hitzler. Logic programs, it-
erated function systems, and recurrent radial basis func-
tion networks. Journal of Applied Logic, 2(3):273–300,
2004.

[4] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler.
The integration of connectionism and knowledge repre-
sentation and reasoning as a challenge for artificial in-
telligence. In L. Li and K.K. Yen, editors, Proceedings

of the Third International Conference on Information,
Tokyo, Japan, pages 22–33. International Information
Institute, 2004. ISBN 4-901329-02-2.

[5] Artur S. d’Avila Garcez, Krysia Broda, and Dov M.
Gabbay. Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelli-
gence, 125:155–207, 2001.

[6] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M.
Gabbay. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Comput-
ing. Springer, Berlin, 2002.

[7] Artur S. d’Avila Garcez and Gerson Zaverucha. The
connectionist inductive lerarning and logic program-
ming system. Applied Intelligence, Special Issue on
Neural networks and Structured Knowledge, 11(1):59–
77, 1999.

[8] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming. Proceedings of the 5th International Con-
ference and Symposium on Logic Programming, pages
1070–1080. MIT Press, 1988.

[9] Pascal Hitzler, Steffen Hölldobler, and Anthony K.
Seda. Logic programs and connectionist networks.
Journal of Applied Logic, 2(3):245–272, 2004.

[10] Pascal Hitzler and Anthony K. Seda. Generalized met-
rics and uniquely determined logic programs. Theoreti-
cal Computer Science, 305(1–3):187–219, 2003.

[11] Steffen Hölldobler and Yvonne Kalinke. Towards a
massively parallel computational model for logic pro-
gramming. In Proceedings ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages
68–77. ECCAI, 1994.

[12] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter
Störr. Approximating the semantics of logic programs
by recurrent neural networks. Applied Intelligence,
11:45–58, 1999.

[13] John W. Lloyd. Foundations of Logic Programming.
Springer, Berlin, 1988.

[14] R. Rojas. Neural Networks — A Systematic Introduc-
tion. Springer, 1996.

[15] Anthony K. Seda. On the integration of connectionist
and logic-based systems. In M. Schellekens T. Hurley,
M. Mac an Airchinnigh and A. K. Seda, editors, Pro-
ceedings of MFCSIT2004, Trinity College Dublin, July
2004, Electronic Notes in Theoretical Computer Sci-
ence, Elsevier, pages 1–24, 2005.

[16] Anthony K. Seda and Máire Lane. On approximation
in the integration of connectionist and logic-based sys-
tems. In L. Li and K.K. Yen, editors, Proceedings of the
Third International Conference on Information, Tokyo,
Japan, pages 297–300. International Information Insti-
tute, 2004. ISBN 4-901329-02-2.

Abstract
This paper illustrates a way for applying formal
methods techniques to specifying and verifying
neural networks, with applications in the area of
neural network based controllers. Formal methods
have some of the characteristics of symbolic mod-
els. We describe a communicating automata
[Bowman and Gomez, 2005] model of neural net-
works, where the standard Backpropagation (BP)
algorithm [Rumelhart et al., 1986] is applied. Then
we undertake a verification of this model using the
model checker Uppaal [Behrmann et al., 2004], in
order to predict the performance of the learning
process. We discuss broad issues of integrating
symbolic techniques with complex neural systems.
We also argue that symbolic verifications may give
theoretically well-founded ways to evaluate and
justify neural learning systems.

1 Introduction
This work is an initial step towards integrating symbolic and
neural computation. Our motivations are justified from a
cognitive point of view on the one hand, and an engineering
application point of view on the other hand.

1.1 Cognitive Viewpoint
[Barnard and Bowman, 2004] suggested that one of the mo-
tivations of integrating symbolic and sub-symbolic compu-
tation is to specify and justify behavior of complex cogni-
tive architectures in an abstract and suitable form. Firstly,
numerous theories assume that mental modules, or their
neural substrates, are processing information at the same
time. Hence, any realistic architecture of the mind must be
concurrent at some level. Secondly, the control of concur-
rent processing can be distributed. So, cognition should be
viewed as the behavior that emerges from interaction
amongst independently evolving modules. Most traditional
AI approaches fail to acknowledge the requirements of con-
current and distributed control. This is because they tend to
be prescriptive and are built around centralized memory and
control algorithms. Finally, [Fodor and Pylyshyn, 1988]
argued that hierarchical decomposition is needed in order to
reflect the characteristics of the mind.
 Although connectionist networks are commonly regarded
as concurrent and distributed, they are typically limited to

only one level of concurrently evolving modules. The primi-
tive elements of neural networks are neurons but not neural
networks. To some degree, it is hard to construct and under-
stand large architectures without hierarchical structuring. In
certain respects, modeling based on neural networks is low-
level in character, i.e. it is hard to relate to primitive con-
structs and data structures found in high-level notations pre-
ferred by the symbolic modeling community.
 For these reasons, [Barnard and Bowman, 2004] provided
an illustration of modeling a high-level cognitive architec-
ture using formal methods. Their model contains a set of
top-level modules that are connected by communication
channels. Modules interact by exchanging data items along
channels. Control is distributed and each module evolves
independently. They also suggested encoding low-level neu-
ral networks using the same method, and formally relating
models at different levels of abstraction. In this paper, key
constructs within neural networks are encoded at two levels
of description, which have characteristics of symbolic sys-
tems. The low-level descriptions use neural networks en-
coded in communicating automata. We argue that this for-
malism sits between classical forms of symbolic systems
arising from programming languages such as Lisp and
Prolog, and connectionist networks. We will explain these
models in section 2. The high-level descriptions contain a
set of properties, which are expressed in logical formulae.
They are abstract descriptions of global properties, which do
not prescribe internal details of how those properties are
realised. We will explain these models in section 3. Com-
puter scientists have developed a number of theories and
tools to automatically justify the relationship between dif-
ferent levels of description within a formal framework. Our
models prescribe low-level internal structure, which we hy-
pothesis can be used to explore complex interactions within
neural networks and to justify whether high-level properties
can emerge from low-level constructs.

1.2 Application Viewpoint
Symbolic systems are good for manipulating, explaining
and reasoning about complex data structures, but neural
networks are good at dealing with complex highly non-
linear systems, especially in handling catastrophic changes
or gradual degradations. It is argued by [Schumann et al.,
2003] that neural networks can be applied to extending tra-
ditional controllers, which are ineffective in some systems,
including aircrafts, spacecrafts, robotics and flexible manu-

Symbolic Encoding of Neural Networks using Communicating Automata with
Applications to Verification of Neural Network Based Controllers

Li Su, Howard Bowman and Brad Wyble
Centre for Cognitive Neuroscience and Cognitive Systems, University of Kent,

Canterbury, Kent, CT2 7NF, UK
{ls68,hb5,bw5}@kent.ac.uk

facturing systems. Neural network based controllers have
demonstrated a superior ability to control adaptive systems.
However, the correctness of adaptive systems must be guar-
anteed in safety/mission critical domains. This is because it
is not possible to adapt toward controllable behaviours when
the system has changed beyond a critical point. This is also
because the system has to dynamically react to changes
within short periods of time. So, this requires that the learn-
ing processes converge before a pre-specified deadline.
 Unfortunately, the slow speed of learning is one of the
greatest limitations of current learning algorithms. For ex-
ample, the standard BP algorithm often requires the training
patterns to be presented hundreds or thousands of times in
order to solve a relatively simple task. Furthermore, con-
nectionist networks rarely provide any indication of the ac-
curacy and reliability of their predictions. As long ago as
1988, [Fodor and Pylyshyn, 1988] pointed out that the neu-
ral networks approach remained almost entirely experimen-
tal. Although a great deal of mathematical work has been
done, it is still not sufficient from the analytical point of
view to justify that certain configurations of neural networks
and their mechanisms are reliable.
 In some applications, the control architecture uses pre-
trained networks, which are numerical approximations of a
function. The correctness of such systems can be verified
[Rodrigues et al., 2001], but their verification does not con-
sider the adaptability of the system. Other control architec-
tures use on-line training of neural networks. This approach
is attractive because it is able to handle dynamic adaptation,
but it requires a high level of stability and correctness of the
learning process. There are existing approaches to evaluate
the performance of neural networks, such as [Schumann et
al., 2003], who proposed a layered approach to verify and
validate neural network based controllers. The limitation of
their work is that they only focus on monitoring the on-line
adaptation but cannot guarantee stability and correctness at
system design stages.
 This paper describes a case study, which applies formal
methods techniques to evaluating the learning speed using
automatic analysis (model checking). Formal methods are
strongly based on logic. They have rich tool support and
have shown their power in software engineering and various
areas where correctness and effectiveness of computer sys-
tems need to be guaranteed. So they can, for example, be
used in designing distributed systems [Bowman and Der-
rick, 2001]. In these areas, there are similar problems and
requirements in respect of modeling complex interactions
among components with distributed control.

2 Communicating Automata Specification
In this section, we introduce a communicating automata
specification of neural networks, which may be used to
specify components of neural network based controllers.
The interested reader is referred to [Bowman and Gomez,
2005] for comprehensive definition of communicating
automata. A similar framework was presented by [Smith,
1992] in a general mathematical setting. But his work did
not consider automatic simulation or verification.

2.1 Neural Network Description
Communicating automata are Finite State Machines with
associated communication channels and mathematical equa-
tions. Each neuron is encoded as an automaton, denoted as
the smallest square boxes in Figure 1 (a). Automata evolve
concurrently and the state of each neuron only depends on
the local data structure, which may change as a result of
interaction and communication between automata. Activa-
tion exchange between neurons is modeled through commu-
nication channels. In Figure 1 (a), each arrow denotes a
communication channel, such as the channel between neu-
ron I1 and H1:

1?1!1! IaHIport

 Working from left to right, port denotes the communica-
tion name (which in this case, is shared by all interactions),
I1 denotes the pre-synaptic neuron identity, defining the
sender, and H1 denotes the post-synaptic neuron identity,
defining the receiver. The last element 1Ia denotes the acti-
vation passed though the channel.
 The system in Figure 1 (a) is described as a hierarchy of
components, at the top-level it has three modules: Environ-
ment, NeuralNet and Tester. Each of which can be com-
posed from a set of modules. For example, NeuralNet itself
is composed of InputLayer, HiddenLayer and OutputLayer,
each of which is also a module composed of a set of neu-
rons. Neurons are fully connected between adjacent layers
and BP learning is applied. The Environment automaton
provides inputs to and receives outputs from NeuralNet. The
Tester will be used in the verification in section 4.
 The BP algorithm is a supervised learning rule widely
used in many applications, so study of this algorithm has
practical value. We have chosen the XOR problem as our

Figure 1: (a) Neural Network that Learns XOR. (b) Example of
a Neuron Automaton (c) The Test Automaton, Tester.

 (a)

(c) (b)

I1

I2

H1

H2

O1 Input
Layer

Hidden
Layer

Output
Layer

NeuralNet

Environment

1
?1!1!

I
aHIport

2
?2!2!

I
aHIport

1
?1!1!

H
aOHport

1
?2!1!

I
aHIport

2
?1!2!

I
aHIport

2
?1!2!

H
aOHport

Tester

Start

Deadline

Fail

deadlinet ≤
deadlinet =

success¬

Input Middle

Output

0:
?!!

=t
akiport i

)(:
,: ,

ησ
η

=
=∑
Ω=

k

iki

a
wa

t

):(,,

!!!

ikikik

k

awwi
ajkport

εδ+=⋅∀

Ω≤t

learning task due to its historical position. Although it re-
quires a small number of nodes and connections, it is char-
acteristic of difficult linearly inseparable learning tasks.
This simple problem is often used to test the ability of learn-
ing algorithms and it has been much discussed. In terms of
our larger ambition, analyses of neural network based con-
trollers, this XOR verification serves as a preliminary as-
sessment of our approach, which will be extended to realis-
tic applications in future work.

2.2 Neuron Automaton
We define the neuron automaton based on a set of functions,
which describe the network updating dynamics. An example
of a neuron automaton is shown in Figure 1 (b), where cir-
cles denote locations of the automaton, circles with a
smaller circle inside denote initial locations, and arrows
with dotted lines denote transitions between two locations. k
denotes the identity of this neuron, i and j denote the pre-
synaptic and post-synaptic neuron identities respectively.
Note that neuron identities are assumed to be unique.
 Briefly, the neuron automaton begins at the Input loca-
tion. When all pre-synaptic activations have been received
from input channels, it moves to the next location, Middle.
Then it evaluates the net input η and the activation ka . σ
is a sigmoid function. At the Output location, it sends its
activation via output channels, and weights are updated. ε
is the learning rate and kδ denotes the extent to which neu-
ron k is in error. It is evaluated externally, an explanation of
which is beyond the scope of this paper. For simplicity of
presentation, we show a neuron automaton with just one
input and one output, but a more general form can be de-
fined.
 The timing constraints in this application are the follow-
ing. Ω≤t is an invariant of the Middle location, and t is a
local clock. Invariants are timing conditions, and automata
can only stay in locations while the condition holds. Ω=t
is a guard, which is a condition allowing the transition to be
taken. To summarize the time course of the neuron, it stays
at the Input and Output locations while communication is
completing, but it stays at the Middle location for exactly
Ω units of time, which we assume represents the time re-
quired to update net input and activation. In this case, Ω is
5 units of time. This assumption is made only for analytical
reasons and is not based on neuron physiology.

3 Requirements Language
The high level behaviour of neural networks is described
using a requirements language allowing logical formulae to
be expressed. The network of automata evolves through a
series of states, which form several paths. The system can
evolve through different paths. The requirements language
consists of state formulae, which describe individual states
and path formulae, which quantify over paths of the model.
Assuming ϕ is a state formula, ∀ , ∃ , ◊ and � are opera-
tors of path formulae. The property ϕ�∀ requires that all
states satisfy ϕ , ϕ∃◊ requires that at least one reachable
state satisfies ϕ , ϕ�∃ requires that at least along one path

all states satisfy ϕ and ϕ∀◊ requires that along all paths at
least one state eventually satisfies ϕ .
 In this paper we are interested in learning. There is a set
of properties, which we want the learning system to satisfy.
These properties fall into three categories: Reachability,
Safety and Liveness [Behrmann et al., 2004].

• Reachability Properties
These ask whether there eventually exists a state in
which something will happen. For example, the formula
success is true when all the output neurons get their ac-
tivations on the correct side of 0.5. Thus, success∃◊
checks if the learning process could eventually allow
the network to output the correct answer. These proper-
ties validate the basic behaviour of the model, but do
not guarantee the correctness of adaptive systems.

• Safety Properties
These ask whether something “bad” will ever happen.
For example, the property deadlock evaluates to true at
a state without successors. Thus, deadlock¬∀� justi-
fies that the system is free from such situations. Safety
properties can always be expressed as reachability
properties, such as deadlock¬∃◊ . Assuming approper-
ate formulation of properties, neural networks, cogni-
tive models or any dynamic systems will never reach
“bad” states if they satisfy safety properties.

• Liveness Properties
These ask whether the system eventually does some-
thing useful. So, we could check liveness properties
such as success∀◊ , which justifies that the system can
meet our requirements along all paths. By verifying
these properties over learning algorithms, we can justify
if they will eventually converge at desired situations. In
order to understand learning algorithms or adaptive sys-
tems in general, we are also interested in whether the
models can perform something infinitely often.

 Properties can be expressed by nesting different types of
operators, such as success�∀◊∀ . This property describes a
complex behaviour that we require the learning process to
possess. This behaviour is that the adaptive system starts
with no knowledge of the task. At this time, success does
not hold. During training with examples, it may sometimes
show correct answers, i.e. success holds, but it may also
show incorrect answers. When this happens, the system has
found some solutions to the task but these solutions are not
stable during further training. However, starting from some
states during the training, it is able to show correct answers
invariantly. Thereby, the above property is satisfied.

4 Verification
We implemented and verified our model in Uppaal, which is
a well-known real-time model checker [Behrmann et al.,
2004]. So, our models are converted into Uppaal timed
automata notation, which is a real-time extension of com-
municating automata. We assume that the deadline is 5000
units of time, the learning rate is 0.05 and all the weights are

randomly distributed around 0.2. Note that the deadline and
Ω are both arbitrary numbers but they can be specified in
real applications. We check the system for deadlock free-
dom using the following Temporal Logic formula:

deadlock¬∀�

 The result is that the system has no deadlocks for the
XOR training set. We also verify the stability of the network
using the following Temporal Logic formula, which con-
tains timing constraints:

successdeadline �∀∀◊≤

 Satisfaction of this formula means the system always
reaches a successful state before the deadline, and success
holds invariantly from that state. However, Uppaal does not
support this formula. Hence, we introduce a test automaton
in Figure 1 (c). It begins at the Start location and moves to
the next location, Deadline, when clock t equals the parame-
ter deadline. When the test automaton is in this location, the
patterns are still presented to the neural network. If learning
is successful when deadline becomes true and remains sta-
ble during further training, the next location, Fail, is un-
reachable. With this test automaton, we are able to verify
the previous property using the following Temporal Logic
formula:

FailTester.¬∀�

 The result of the verification is that the system satisfies
the above property and is guaranteed to learn XOR accord-
ing to the required timing constraints. It also guarantees the
learning process is eventually stabilised.

5 Discussion and Future Work
In traditional neural network simulations, semantically in-
terpretable elements are patterns of activation. The states of
neural networks are expressed in numerical form, such as a
landscape, in a multi-dimensional space. However, the
states of the neural networks in our models are represented
as the locations in the product automaton, which is auto-
matically generated by the model checker. The locations
have the characteristics of symbol systems. Model checking
is based on symbolic manipulation of the product automa-
ton, which maps to the landscape in the multi-dimensional
space.
 In this paper, we have specified a neural network that
learns the XOR problem using communicating automata.
We then verified the model over a set of properties ex-
pressed in Temporal Logic. We believe that this approach
can provide insight to the field of neural network based con-
trollers. Our models and properties can be regard as sym-
bolic descriptions of the system behaviour at different levels
of abstraction. Verifications may give theoretically well-
founded ways to evaluate and justify the learning capacity
and determine whether cognitive properties can emerge
from neural-level architectures.

 We argue that most of the properties, which we have veri-
fied, are hard to justify by simulation. This is because simu-
lations can only test that something occurs but are unable to
test that something can never occur. Simulations are also not
able to test if something is (in)valid forever. Therefore,
simulations are limited in their capacity to justify safety and
liveness properties without explicit mathematical analysis.
Our verification approach on the other hand, explicitly and
formally describes the system and properties, so safety and
liveness properties can be verified.
 The next step of research is to explore different configu-
rations of neural networks, e.g. winner-take-all networks,
recurrent networks and more biologically plausible imple-
mentations of networks. We are also interested in investigat-
ing the potential of this approach in integrating symbolic
and sub-symbolic computations, enforcing hierarchical
compositional structure over neural networks, and building
or justifying brain-level models.

References

[Barnard and Bowman, 2004] P. J. Barnard and H. Bow-
man. Rendering Information Processing Models of Cog-
nition and Affect Computationally Explicit: Distributed
Executive Control and the Deployment of Attention,
Cognitive Science Quarterly, 3(3):297-328, 2004.

[Bowman and Derrick, 2001] H. Bowman and J. Derrick
(editors). Formal Methods for Distributed Processing: a
Survey of Object-oriented Approaches, Cambridge Uni-
versity Press, 2001.

[Bowman and Gomez, 2005] H. Bowman and R. Gomez.
Concurrency Theory - Calculi and Automata for Model-
ling Untimed and Timed Concurrent Systems. Springer-
Verlag, To Appear, 2005.

[Behrmann et al., 2004] G. Behrmann, A. David and K. G.
Larsen. A Tutorial on Uppaal. SFM-RT’04, LNCS 3185,
Springer-Verlag, 2004.

[Fodor and Pylyshyn,1988] J. A. Fodor and Z. W. Pylyshyn.
Connectionism and Cognitive Architecture: A Critical
Analysis, Cognition: International Journal of Cognitive
Science, Vol. 28, 3-71, 1988.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton, and
R. J. Williams, Learning Internal Representations by Er-
ror Propagation. Paralled Distributed Processing. Ex-
plorations in the Microstructure of Cognition. Vol.1:
Foundations, 318-362. MIT Press, 1986.

[Rodrigues et al., 2001] P. Rodrigues, J. F. Costa and H. T.
Siegelmann. Verifying Properties of Neural Networks.
Artifical and Natural Neural Networks, LNCS 2084,
Springer-Verlag, 158-165, 2001.

[Schumann et al., 2003] J. Schumann, P. Gupta and S. Nel-
son. On Verification & Validation of Neural Network
Based Controllers, EANN’03, 2003.

[Smith, 1992] L. S. Smith. A Framework for Neural Net
Specification, IEEE Transactions on Software Engineer-
ing, 18(7): 601 - 612, 1992.

Rethinking Rule Extraction from Recurrent Neural Networks

Henrik Jacobsson and Tom Ziemke
University of Skövde, School of Humanities and Informatics

P.O. Box 408, SE-541 28 Skövde, Sweden
{henrik.jacobsson,tom.ziemke}@his.se

Abstract

We will in this paper identify some of the central
problems of current techniques for rule extraction
from recurrent neural networks (RNN-RE). Then
we will raise the expectations of future RNN-RE
techniques considerably and through this, hope-
fully guide the research towards a common goal.
Some preliminary results based on work in line
with these goals, will also be presented.

1 Introduction
The problem of extracting rules, or finite state machines from
recurrent neural networks (RNN-RE) has occupied several re-
searchers on and off during the last 15 years. The achieve-
ments of this research has recently been compiled into a re-
view on the subject[Jacobsson, 2005]. Unlike the field of
neural networks in general, the field of RNN-RE has not ac-
tually developed much since it was first conceived. The first
algorithm published[Gileset al., 1992] is also still the most
cited and seems to be the most commonly used algorithm al-
though it is quite simple in its nature. More recent meth-
ods seem not to have been built on the findings of earlier ap-
proaches and there are no common benchmarks for how to
compare these algorithms, nor are there any attempts to com-
pare them in the first place. We would hold that this is due to
the lack of a common goal in this field.

In this paper, we will first present some thoughts on why
we at all can expect to be able to extract rules from an RNN
in the first place, and why these properties should force us to
rethink how connectionists should conduct and present their
research. Some common constituents of existing RNN-RE
techniques will be discussed briefly together with a anlysisof
what is lacking in these algorithms. Some preliminary results
that have been obtained by an attempt to solve these problems
will also be presented briefly. Then we will try to extrapolate
from the seeds of existing solutions, a set of goals that may
guide research efforts to grow beyond the original intention
of just extracting rules from networks.

2 The golden properties of RNNs
If we compare the study of RNNs with the study of physical
dynamic systems, there are some quite obvious differences

that, comparably, make RNNs perfect subjects for systematic
analysis. Let us call these the “golden properties” of RNNs
(properties that certainly are shared by a broad range of other
systems too). Since RNNs are computer simulated systems,
they allow us to (among other things):

• reproduce results with arbitrarily high accuracy,

• create more networks of the same kind without much ad-
ditional effort after the framework for the creation of the
first network is implemented, giving us an easy access to
the population of all possible networks,

• duplicate networks (and distribute them among research
colleagues),

• study the effect of damage to the network under con-
trolled conditions,

• do nonperturbative studies of internal properties to an
arbitrary degree of detail.

In other words, RNNs are almost perfect experimental sub-
jects. Very few scientific communities have the luxury of
studying entities with properties so inviting for conducting
research on them.

These would be golden properties of a phenomenon for any
scientist. And this puts us connectionists, who are scientifi-
cally investigating these networks on a ledge: If we are study-
ing a phenomenon with these inviting properties, do we not
also have an obligation to utilise these properties as best we
can? We would say that we do. Connectionists should not
be content with the limited precision associated with the lim-
ited resources associated with research on physical systems.
Let us exemplify this: If an astronomer wants to verify a the-
ory on, for example, the frequency of earth-like planets in the
universe, he or she must rely on secondary or tertiary data
from various sources. Gathering new data is expensive and
tedious, and astronomers treat their rare data with great care
because of this. Often astronomical theories have large varia-
tion because of the lack of high-quality and non-contradicting
data, e.g. that the estimated age of the universe is between
10 and 20 billion years. A neural network researcher, on the
other hand, should not be satisfied with secondary data, since
the networks themselves can be duplicated from the original
source. In case of quantitative theories, he or she should also
not be satisfied to verify these theories on only a few instances

of networks since there is no limit to the number of networks
that can be generated.

The biggest problem is of course that the RNN researcher
then “drowns” in all the data from the networks. How can one
get an overview over networks when they are all individual
entities with potentially quite complex behaviours?

And this is where rule extraction comes in (it comes into
play under other circumstances as well, but let us stick to the
analysis problem for now). Through rule extraction, the re-
searcher can let some parts of the analysis of the individual
networks be automated. If successful, the extracted determin-
istic rules can be enumerated, enlisted and further analysed in
ways virtually impossible to do on the networks directly. And
it is the golden properties that are precisely what allows usto
do rule extraction from artificial neural networks at all. To
do it on physical dynamic systems, e.g. a biological neuron
or a star system, is by far much more difficult since it does
not have these properties. But, for RNNs, we can build algo-
rithms that utilises these properties and automate parts ofthe
analysis process for the connectionist.

We are not there yet, however. Existing RNN-RE algo-
rithms are still not reliable or efficient enough to be put into
use in this manner. Let us have a quick look at why this is so.

3 Previous approaches and their deficiencies
What is an RNN-RE algorithm composed of? In[Jacobsson,
2005], four common ingredients were identified:

1. quantisation of the continuous state space of the RNN,
resulting in a discrete set of states,

2. state and output generation (and observation) by feeding
the RNN input patterns,

3. rule construction based on the observed state transitions,

4. rule set minimisation.

These four constituents are often quite distinguishable in
the algorithms. For example, in[Giles et al., 1992] (1) a
simple grid partitioning of the state space quantised it, (2)
states were generated by a breadth first search, (3) the rules
were constructed by transforming the transitions in the quan-
tised space into a deterministic finite automata and (4) the
rules were minimised using a standard minimisation algo-
rithm. Another example is[Tiňo and Vojtek, 1998] where
(1) a self organising map was used to quantise, (2) states were
generated by observing the network in interaction with its do-
main and (3) stochastic rules were induced from these obser-
vations (no minimisation in this case).

In the corpus we can find up to eight different quantisation
algorithms. There are no studies that compare any of these
quantisers in the domain of RNN-RE. This means, in effect,
that we still do not know which of the existing quantisers
should be preferred. But the lack of experimental compar-
isons is actually not the main problem of these approaches.

The main problem is that none of the eight tested quan-
tisation functions have been tailor-made to comply with the
specific demands of quantising the state space of a dynamic
system, where the state is recursively enfolded onto itself
in interaction with a domain. The eight quantisers all build
(roughly) on the assumption that spatial neighbours should

be merged and spatial strangers separated. But, two states
that are very similar, spatially in the state space, may be very
different from each other, functionally[Sharkey and Jackson,
1995].

4 Some preliminary results
When studying the earlier approaches we came to the conclu-
sion that their main problem is the lack of integration of the
four ingredients, quantisation, state generation and rulecon-
struction and minimisation. Specifically the quantiser should
take into account the dynamics of the RNN through closer in-
tegration with the other constituents, so that the state space is
quantised based on its functional context as set of a states of
a dynamic system in interaction with a domain.

This insight was the ground for the development of a novel
algorithm namedCrySSMEx (Crystallizing Substochastic
Sequential Machine Extractor) which builds on a novel quan-
tisation algorithm (a Crystalline Vector Quantiser, CVQ)
which can merge and split state quanta based on their dynam-
ical properties in the RNN. The main outline of the algorithm
is described in Figure 1. By the introduction ofCrySSMEx,
a novel form of state machine, a substochastic sequential ma-
chine (SSM) is also introduced. SSMs can, unlike earlier
rules, take into account that some information may be miss-
ing in the data collected from the RNN in interaction with its
domain. CrySSMEx is parameter free and gradually elimi-
nates indeterminism in the generated SSMs. Unfortunately,
the constituents of the algorithm are quite complex (espe-
cially the test of equivalence of states in the SSM and the
selection of data for performing splits) and there is no room
for these details here1.
CrySSMEx has been successfully applied on various net-

works in different domains.[Casey, 1996] showed that it is
in principle always possible to extract finite state machines
from RNNs that can recognise regular languages and this is
verified in that usingCrySSMEx on RNNs adapted to regu-
lar language domains requires very few iterations in the al-
gorithm, and poses no real challenge. It is also quite easy
to extract from successful networks predicting sequences of
augmented strings, in random order, from the truncated con-
text free language0n

1
n with n ≤ 10 in about five to ten

iterations.CrySSMEx has also been tested on networks with
small random weights, a type of network shown to in theory
be approximable by definite memory machines[Hammer and
Tiňo, 2003]. Figure 2 shows a typical “what excites node
X”-machine, i.e. with output symbols depending on the delta
value of a specific node’s activation, extracted from an RNN
with one input node,103 state nodes and one output node, ac-
tivation function1/(1 + exp(−net)) with weights uniformly
distributed in[−0.1, 0.1] (Ω based on104 random input sym-
bols). It is also possible to extract nondeterministic stochastic
machines, to a precision limited by invested computational
resources, from chaotic dynamic systems, e.g. random RNNs

1An open source distribution and an article onCrySSMEx are in
preparation at the time of submission of this paper. The reason we
bring upCrySSMEx here is not to present the algorithm as such, but
to present it as a promising first step towards the Empirical Machine
suggested in the last section of this paper.

CrySSMEx(Ω, Λi, Λo)
Input : Time series data from the RNN,Ω, an input

quantisation function,Λi, and an output
quantisation function,Λo.

Output : A deterministic machineM .
begin

Let M be the stochastic machine resulting from an
unquantised state space (i.e. only one state);
repeat

Select data for splitting indeterministic states;
Split quanta according to split data;
CreateM with the new state quantiser,Λi and
Λo as basis for quantisation;
if M has equivalent statesthen

Merge equivalent states;
end

until M is deterministic;
return M ;

end
Figure 1: A simplified description of the main loop of
CrySSMEx. The machineM is created from the observed
data contained inΩ by quantisation of input, output and
state space, of which the latter is optimised in the algorithm.

with larger weights,0n
1

n-RNNs tested on strings longer than
the RNN can predict correctly, or other non-RNN dynamic
systems.

5 Suggested goals and ambitions
What should the ambition of our development if future RNN-
RE algorithms be? It may sound as a question with one
obvious answer: “to generate rules that mimic and explain
instantiations of RNNs”. But that answer builds on the as-
sumption that it may not succeed, because if we thought that
RNN-RE will actually succeed, to a satisfactory degree, the
answer would be something like “to generalise RNN-RE al-
gorithms so these algorithms will be applicable to as many
problems as possible”. We firmly believe thatCrySSMEx
may be one possible step towards a fully functional RNN-RE
technique that may satisfy the first modest ambition. Why
then, ifCrySSMEx or any other technique could be shown to
work satisfactory as an RNN-RE, would we be satisfied with
only extracting rules from RNNs, when there are a multitude
of phenomena with similar functional structures as RNNs?

There may however be no yellow brick road towards such
a goal. Apart from the problem discussed earlier, there are
some implicit requirements RNN-RE algorithms have on the
underlying RNN.[Craven and Shavlik, 1999] suggested that
a rule extraction algorithm should not even be built on the
assumption that it is analysing a network at all. But exactly
how generic can these algorithms become? We probably need
some of the golden properties of the RNNs as research objects
and there are also some implicit requirements on the underly-
ing system too since current RNN-RE techniques (including
CrySSMEx) are preferably used on RNNs that:

• operate in discrete time, i.e. continuous-time RNN will
not work,

1:−1:+1:− 1:+ 1:+1:+

0:−

1:0

0:0

1:+

0:+0:−0:+0:−0:−

0:−

0:−

0:−

1:+

1:+

1:+1:−

Figure 2: An extracted Mealy machine with two input sym-
bols 0 and1 and three output symbols+, - and0 represent-
ing that the value of the output node increases, decreases or
remains the same (due to limited machine precision), respec-
tively.

• have a clearly defined input, state and output, i.e. less or
randomly structured RNNs may be problematic,

• have discrete input and output,

• have a fully observable state, otherwise unobserved state
nodes or noise in the observation process would disturb
the extraction process since the state space would not be
reliably quantised,

• have state nodes that can be set explicitly (for search-
based techniques),

• are deterministic, otherwise the same problem as if the
state is not fully observable would occur,

• have certain dynamical characteristics, e.g. networks
with chaotic behaviour are especially difficult to do rule
extraction on,

• are fixed during RE, i.e. no training can be allowed dur-
ing the RE process.

Apart from the above requirements, computational complex-
ity issues put limits on the number of state nodes and input
patterns etc. These requirements are brought up here since
the goals of future algorithms are naturally linked to the limi-
tations of current algorithms in that one of the goal must be to
eliminate them. If we intend to apply RNN-RE algorithms on
a wider range of phenomena than just RNNs, the consequence
is that our goals must be centred around creating algorithms
that are as generic as possible.

Exactly what class of phenomena descendants of RNN-
RE-algorithms can be used on remains an open issue, but at
least we should be able to make a “wish-list” of what the al-
gorithms should be able to do (we will still speak of RNNs,
but feel free to substitute RNN by “dynamic system”, or, if
you are optimistic, “physical system”):

• User freedom: The user should have the freedom to se-
lect, as parameters in one and the same algorithm, to
prioritise between the following four, possibly opposite
goals[Jacobsson, 2005]:

– Comprehensibility, i.e. readability and rule set size.
– Fidelity, i.e. the degree to which the rules actually

mimic the underlying RNN.

– Accuracy, i.e. how well the rules generalise cor-
rectly on the domain of the RNN (this of course
presupposes the existence of a domain in which
“correctness” can be defined).

– Efficiency, i.e. how fast the rules are generated.

• Consistency over parameters: The results should not
vary with parameters that are not of the kind described
above. Preferably there are no other parameters than
those that are of relevance for user preferences.

• Any-time extraction[Craven and Shavlik, 1999]: The
RNN-RE algorithm should provide be able to provide a
quick and dirty model which is then refined to a degree
(towards one of the three first goals above) proportional
to the computational power invested.

• Distance measure: The RNN-RE should provide means
for testing similarity of RNNs. The similarity of two
RNNs may not be connected to their weights or topology
in any obvious way. A distance measurement also sub-
sumes an equivalence tester, i.e. ifd(RNN1, RNN2) =
0 thenRNN1 is equivalent withRNN2.

• Automatic subsystem identification: If a single RNN
can be more efficiently described as several loosely con-
nected subsystems, the RNN-RE should be able to dis-
cover this. This may be the case if the RNN uses sepa-
rate subparts of itself to solve different subproblems in
the domain.

• Queryable rules: Many times the comprehensibility of
the rules overshadows all other ambitions with RNN-RE
algorithms. But one can argue that a large, incompre-
hensible rule set, from which meaningful answers can be
derived through queries, can be very useful. For exam-
ple, if the network operates in a domain, it could be in-
teresting to “ask the rules” to describe the circumstances
under which the RNN makes mistakes. The answer to
such queries should, for example, be helpful in design-
ing the training conditions for the RNN.

• Automated empirical process: The RNN-RE should
be able to discover when rules are not supported with
enough data and then interact with the RNN such that
the lacking data is acquired from the RNN. If this re-
quirement is satisfied we propose to call the RNN-RE
anEmpirical Machine(not to be confused with the ex-
tracted machines themselves).

• Automated theory building: The RNN-RE should be
able to create “theories” of one or more RNNs and strive
for as universal and precise, and thereby falsifiable, theo-
ries[Popper, 1959], as possible. At this level we propose
the RNN-RE should be called aPopperian Machine2.

The above list is not sorted, but clearly the three last points
build on each other. For the Empirical Machine to work, it
has to be able to itself query the rules about how to interact
with the RNN to collect missing data. The Popperian Ma-
chine may require a whole set of cooperating empirical ma-
chines generating, confirming and falsifying theories (which

2Not to be confused with Dennett’s Popperian Minds[Dennett,
1996].

are statements that must in turn be translated into queries)
through “experiments” on the underlying systems.

The Empirical and Popperian machines are the ultimate
goals we suggest for the field of RNN-RE. If we can achieve
them it would mean a great deal for the research on RNNs in
general, since many portions of the research can then be au-
tomated. If we at the same time can be able to apply descen-
dants of RNN-RE algorithms on real physical systems, that
would be a significant step towards an “artificial scientist”.
The reason we see the Empirical and Popperian Machines as
natural goals for future RNN-RE algorithms is that current
techniques already contain fragments of these aspects; RNN-
RE techniques, efficient or not, build detailed models (or the-
ories) grounded in data, using a semi-empirical observational
process. The preliminary promising results ofCrySSMEx, in
which the empirical process has been made explicit through
a model-based selection of observed data, suggests that this
may be a reasonable way towards success.

References
[Casey, 1996] M. Casey. The dynamics of discrete-time

computation, with application to recurrent neural networks
and finite state machine extraction.Neural Computation,
8(6):1135–1178, 1996.

[Craven and Shavlik, 1999] M. W. Craven and J. W. Shavlik.
Rule extraction: Where do we go from here? Technical
Report Machine Learning Research Group Working Pa-
per 99-1, Department of Computer Sciences, University
of Wisconsin, 1999.

[Dennett, 1996] D.C. Dennett.Kinds of Mind. Basic Books,
New York, 1996.

[Gileset al., 1992] C. L. Giles, C. B. Miller, D. Chen, H. H.
Chen, and G. Z. Sun. Learning and extracting finite state
automata with second-order recurrent neural networks.
Neural Computation, 4(3):393–405, 1992.

[Hammer and Tiňo, 2003] B. Hammer and P. Tiňo. Recur-
rent neural networks with small weights implement defi-
nite memory machines.Neural Computation, 15(8):1897–
1929, 2003.

[Jacobsson, 2005] H. Jacobsson. Rule extraction from recur-
rent neural networks: A taxonomy and review.Neural
Computation, 17(6):1223–1263, 2005.

[Popper, 1959] Karl R. Popper.The Logic of Scientific Dis-
covery. Hutchinson Education, London, 1959.

[Sharkey and Jackson, 1995] N. E. Sharkey and S. A. Jack-
son. An internal report for connectionists. In R. Sun and
L. A. Bookman, editors,Computational Architectures in-
tegrating Neural and Symbolic Processes, pages 223–244.
Kluwer, Boston, 1995.

[Tiňo and Vojtek, 1998] P. Tiňo and V. Vojtek. Extract-
ing stochastic machines from recurrent neural networks
trained on complex symbolic sequences.Neural Network
World, 8(5):517–530, 1998.

Extracting Reduced Logic Programs from Artificial Neural Networks

Jens Lehmann1, Sebastian Bader2∗, Pascal Hitzler3†

1Department of Computer Science, Technische Universität Dresden, Germany
2International Center for Computational Logic, Technische Universität Dresden, Germany

3AIFB, Universität Karlsruhe, Germany

Abstract
Artificial neural networks can be trained to per-
form excellently in many application areas. While
they can learn from raw data to solve sophisti-
cated recognition and analysis problems, the ac-
quired knowledge remains hidden within the net-
work architecture and is not readily accessible for
analysis or further use: Trained networks are black
boxes. Recent research efforts therefore investigate
the possibility to extract symbolic knowledge from
trained networks, in order to analyze, validate, and
reuse the structural insights gained implicitly dur-
ing the training process. In this paper, we will study
how knowledge in form of propositional logic pro-
grams can be obtained in such a way that the pro-
grams are as simple as possible — where simple
is being understood in some clearly defined and
meaningful way.

1 Introduction and Motivation
The success of the neural networks machine learning tech-
nology for academic and industrial use is undeniable. There
are countless real uses spanning over many application ar-
eas such as image analysis, speech and pattern recognition,
investment analysis, engine monitoring, fault diagnosis, etc.
During a training process from raw data, artificial neural net-
works acquire expert knowledge about the problem domain,
and the ability to generalize this knowledge to similar but pre-
viously unencountered situations in a way which often sur-
passes the abilities of human experts.

The knowledge obtained during the training process, how-
ever, is hidden within the acquired network architecture and
connection weights, and not directly accessible for analysis,
reuse, or improvement, thus limiting the range of applicabil-
ity of the neural networks technology. For these purposes, the
knowledge would be required to be available in structured
symbolic form, most preferably expressed using some logical
framework.

∗Sebastian Bader is supported by the GK334 of the German Re-
search Foundation (DFG).

†Pascal Hitzler is supported by the German Federal Ministry of
Education and Research under the SmartWeb project, and by the
European Commission under contract IST-2003-506826 SEKT.

Suitable methods for the extraction of knowledge from
neural networks are therefore being sought within many on-
going research projects worldwide, see [1; 2; 8; 14; 18;
19] to mention a few recent publications. One of the promi-
nent approaches seeks to extract knowledge in the form of
logic programs, i.e. by describing the input-output behaviour
of a network in terms of material implication or rules. More
precisely, activation ranges of input and output nodes are
identified with truth values for propositional variables, lead-
ing directly to the description of the input-output behaviour
of the network in terms of a set of logic program rules.

This naive approach is fundamental to the rule extraction
task. However, the set of rules thus obtained is usually highly
redundant and turns out to be as hard to understand as the
trained network itself. One of the main issues in propositional
rule extraction is therefore to alter the naive approach in order
to obtain a simpler set of rules, i.e. one which appears to be
more meaningful and intelligible.

Within the context of our own broader research efforts de-
scribed e.g. in [3; 4; 5; 6; 11; 12], we seek to understand rule
extraction within a learning cycle of (1) initializing an un-
trained network with background knowledge, (2) training of
the network taking background knowledge into account, (3)
extraction of knowledge from the trained network, see Fig-
ure 1, as described for example in [10]. While our broader
research efforts mainly concern first-order neural-symbolic
integration, we consider the propositional case to be funda-
mental for our studies.

We were surprised, however, that the following basic ques-
tion apparently had not been answered yet within the avail-

Figure 1: Neural-symbolic learning cycle

able literature: Using the data obtained from the naive rule
extraction approach described above — when is it possible to
obtain a unique irredundant representation of the extracted
data? While we believe that applicable extraction methods
will have to deviate from the exact approach implicitly as-
sumed in the question, we consider an answer important for
providing a fundamental understanding of the issue. This pa-
per is meant to settle the question to a satisfactory extent.

More precisely, we will show that a unique irredundant rep-
resentation can be obtained if the use of negation within the
knowledge base is forbidden, i.e. when considering definite
logic programs — and we will also clarify formally what we
mean by redundancy in this case. In the presence of negation,
i.e. for normal logic programs, unique representations cannot
be obtained in general, but we will investigate methods and
present algorithms for removing redundancies.

The structure of the paper is as follows. After some pre-
liminaries reviewed in Sections 2 and 3, we will present our
main result on the extraction of a unique irredundant definite
logic program in Section 4. How to remove redundancies in
normal logic programs is discussed in Section 5, while a cor-
responding algorithm is presented in Section 6.

2 Logic Programs
We first introduce some standard notation for logic programs,
roughly following [16]. A predicate in propositional logic is
also called an atom. A literal is an atom or a negated atom.
A (Horn) clause in propositional logic is of the form q ←
l1, . . . , ln with n ≥ 0, where q is an atom and all li with
1 ≤ i ≤ n are literals, and q is called the head and l1, . . . , ln
the body of the clause. Clause bodies are understood to be
conjunctions. If all li are atoms a clause is called definite. The
number of literals in the body of a clause is called the length
of the clause. A (normal propositional) logic program is a
finite set of clauses, a definite (propositional) logic program
is a finite set of definite clauses.

An interpretation maps predicates to true or false. We
will usually identify an interpretation with the set of predi-
cates which it maps to true. An interpretation is extended to
literals, clauses and programs in the usual way. A model of a
clause C is an interpretation I which maps C to true (in sym-
bols: I |= C). A model of a program P is an interpretation
which maps every clause in P to true.

Given a logic program P , we denote the (finite) set of all
atoms occurring in it by BP , and the set of all interpretations
of P by IP ; note that IP is the powerset of the (finite) set BP
of all atoms occurring in P .

As a neural network can be understood as a function be-
tween its input and output layer, we require a similar per-
spective on logic programs. This is provided by the standard
notion of a semantic operator, which is used to describe the
meaning of a program in terms of operator properties [16].
We will elaborate on the relation to neural networks in Sec-
tion 3. The immediate consequence operator TP associated
with a given logic program P is defined as follows:

Definition 2.1. TP is a mapping from interpretations to inter-
pretations defined in the following way for an interpretation

I and a program P:

TP(I) := {q | q ← B ∈ P and I |= B}.
If the underlying program is definite we will call TP defi-

nite. An important property of definite TP -operators is mono-
tonicity, i.e. I ⊆ J implies TP(I) ⊆ TP(J). The operators
TP for a program P and TQ for a program Q are equal if
they are pointwise equal, i.e. if we have TP(I) = TQ(I) for
all interpretations I . In this case, we call the programs P and
Q equivalent.

As mentioned in the introduction, we are interested in ex-
tracting small programs from networks. We will use the ob-
vious measure of size of a program P , which is defined as the
sum of the number of all (not necessarily distinct) literals in
all clauses in P . A program P is called (strictly) smaller than
a program Q, if its size is (strictly) less than the size of Q.

As already noted, the immediate consequence operator will
serve as a link between programs and networks, i.e. we will be
interested in logic programs up to equivalence. Consequently,
a program will be called minimal, if there is no strictly smaller
equivalent program.

The notion of minimality just introduced is difficult to op-
erationalize. We thus introduce the notion of reduced pro-
gram; the relationship between reduction and minimality will
become clear later on in Corollary 4.4. Reduction is described
in terms of subsumption, which conveys the idea of redun-
dancy of a certain clause C2 in presence of another clause
C1. If in a given program P , we have that C1 subsumes C2,
we find that the TP -operator of the program does not change
after removing C2.
Definition 2.2. A clause C1 : h ← p1, . . . , pa,¬q1, . . . ,¬qb

is said to subsume C2 : h ← r1, . . . , rc,¬s1, . . . ,¬sd, iff
we have {p1, . . . , pa} ⊆ {r1, . . . , rc} and {q1, . . . , qb} ⊆
{s1, . . . , sd}.

A program P is called reduced if the following properties
hold:

1. There are no clauses C1 and C2 with C1 6= C2 in P ,
such that C1 subsumes C2.

2. A predicate symbol does not appear more than once in
any clause body.

3. No clause body contains a predicate and its negation.
Condition 3 is actually redundant, as it is covered by con-

dition 2. Nevertheless, we have chosen to state it seperately
as this form of presentation appears to be more intuitive. Hu-
mans usually write reduced logic programs.

Using Definition 2.2, we can define a naive algorithm for
reducing logic programs: Simply check every condition sep-
arately on every clause, and remove the subsumed, respec-
tively irrelevant, symbols or clauses. Performing steps of this
algorithm is called reducing a program. The following result
is obvious.
Proposition 2.3. If Q is a reduced version of the proposi-
tional logic program P , then TP = TQ.

3 Neural-Symbolic Integration
An artificial neural network, also called connectionist sys-
tem, consists of (a finite set of) nodes or units and weighted

directed connections between them. The weights are under-
stood to be real numbers. The network updates itself in dis-
crete time steps. At every point in time, each unit carries a
real-numbered activation. The activation is computed based
on the current input of the unit from the incoming weighted
connections from the previous time step, as follows. Let
v1, . . . , vn be the activation of the predecessor units for a unit
k at time step t, and let w1, . . . , wn be the weights of the con-
nections between those units and unit k, then the input of unit
k is computed as ik =

∑
i wi·vi. The activation of the unit at

time step t + 1 is obtained by applying a simple function to
its input, e.g. a threshold or a sigmoidal function. We refer to
[7] for background on artificial neural networks.

For our purposes, we consider so-called 3-layer feed for-
ward networks with threshold activation functions, as de-
picted in Figure 2. The nodes in the leftmost layer are called
the input nodes and the nodes in the rightmost layer are called
the output nodes of the network. A network can be under-
stood as computing the function determined by propagating
some input activation to the output layer.

In order to connect the input-output behaviour of a neu-
ral network with the immediate consequence operator of
a logic program, we interpret the input and output nodes
to be propositional variables. Activations above a certain
threshold are interpreted as true, others as false. In [12;
13], an algorithm was presented for constructing a neural net-
work for a given TP -operator, thus providing the initializa-
tion step depicted in Figure 1. Without going into the details,
we will give the basic principles here. For each atom in the
program there is one unit in the input and output layer of
the network, and for each clause there is a unit in the hid-
den layer. The connections between the layers are set up such
that the input-output behaviour of the network matches the
TP -operator. The basic idea is depicted in Figure 3, and an
example-run of the network is shown in Figure 4. The al-
gorithm was generalized to sigmoidal activation functions in
[10], thus enabling the use of powerful learning algorithms
based on backpropagation [7].

In this paper, however, we are concerned with the ex-
traction of logic programs from neural networks. The naive,
sometimes called global or pedagogical approach is to acti-
vate the input layer of the given network with all possible in-
terpretations, and to read off the corresponding interpretations
in the output layer. We thus obtain a mapping f : IP → IP
as target function for the knowledge extraction by interpret-

Figure 2: A simple 3-layer feed forward neural network with
threshold activation function.

P = {p← ¬p,¬q;
p← p, q;
q ← p,¬q;
q ← p, q }

Figure 3: The 3-layer network constructed to implement
the TP -operator of the given program P . Connections with
weight 1 are depicted solid, those with weight−1 are dashed.
The numbers denote the thresholds of the units.

Figure 4: A run of the network depicted in Figure 3 for the
interpretation I = {p, q}. A unit is depicted in black, if its
activation is 1. At time t = 0 the corresponding units in the
input layer are activated to 1. This activation is propagated to
the hidden layer and results in two active units there. Finally,
it reaches the output layer, i.e. TP(I) = {p, q}.

ing it as an immediate consequence operator. The task which
remains is to find a logic program P such that TP = f , and
furthermore, to do this in a way such that P is as simple as
possible, i.e. minimal respectively reduced.

We start with naive extraction by “Full Exploration”, de-
tailed in Algorithms 1 and 2, for definite respectively normal
logic program extraction. We will see later that the extraction
of definite programs is easier and theoretically more satisfac-
tory. However, negation is perceived as a highly desirable fea-
ture because in general it allows to express knowledge more
naturally. The target function itself does not limit the choice,
so which approach will be chosen for a problem at hand will
depend on the application domain. We give an example for
full exploration in the normal case.
Example 1. Let IP = {p, q} and the mapping f be obtained
by full exploration of the network shown in Figure 3. Using
Algorithm 2, we obtain program P again, and TP = f holds.

f = { ∅ 7→ {p} P = {p← ¬p,¬q;
{p} 7→ {q} p← p, q;
{q} 7→ ∅ q ← p,¬q;
{p, q} 7→ {p, q}} q ← p, q }

Using Algorithm 2, the following result is easily obtained.
Proposition 3.1. For every mapping f : IP → IP , we can
construct a propositional logic program P with TP = f .

Note that programs obtained using Algorithms 1 or 2 are
in general neither reduced nor minimal. In order to obtain
simpler programs, there are basically two possibilities. On
the one hand we can extract a large program using e.g. Al-
gorithms 1 or 2 and refine it. This general idea was first de-
scribed in [13], but not spelled out using an algorithm. On

Algorithm 1 Full Exploration — Definite
Let f be a mapping from IP to IP . Initialize P = ∅. For
every interpretation I = {r1, . . . , ra} ∈ IP and each element
h ∈ f(I) add a clause h ← r1, . . . , ra to P . Return P as
result.

Algorithm 2 Full Exploration — Normal
Let f be a mapping from IP to IP . Initialize P = ∅. For
every interpretation I = {r1, . . . , ra} ∈ IP , we have BP \
I = {s1, . . . , sb}. For each element h ∈ f(I) add a clause
h← r1, . . . , ra,¬s1, . . . ,¬sb to P . Return P as result.

the other hand, we can build a program from scratch. Both
possibilities will be pursued in the sequel.

4 Extracting Reduced Definite Programs
First, we will discuss the simpler case of definite logic pro-
grams. We will derive an algorithm which returns only mini-
mal programs, and we will also show that the notion of min-
imal program coincides with that of reduced program, thus
serving both intuitions at the same time. Algorithm 3 satisfies
our requirements, as we will see shortly.

Proposition 4.1. Let TP be a definite consequence operator
and Q be the result of Algorithm 3, obtained for f = TP .
Then TP = TQ.

Proof. We have to show TP(I) = TQ(I) for an arbitrary in-
terpretation I = {p1, . . . , pn}.

For TP(I) ⊆ TQ(I) we have to show that q ∈ TQ(I) holds
if q ∈ TP(I). Assume we have a predicate q in TP(I). We
know that the algorithm will treat I and q (because for every
interpretation I every element in TP(I) is investigated). Then
we have to distinguish two cases.

1. There already exists a clause q ← q1, . . . , qm with
{q1, . . . , qm} ⊆ I in Q. Then by definition q ∈ TQ(I).

2. If there is no such clause q ← p1, . . . , pn yet, it is added
to Q, hence we have q ∈ TQ(I).

Conversely, we show TQ(I) ⊆ TP(I). As in the other direc-
tion, we now have a predicate q in TQ(I) and have to show
that it is also in TP(I). If q ∈ TQ(I) we have by definition
of TQ a clause q ← q1, . . . , qm with {q1, . . . , qm} ⊆ I . This
means that the extraction algorithm must have treated the case
q ∈ TP(J) with J = {q1, . . . , qm}. Since TP is monotonic
(it is the operator of a definite program) and J ⊆ I we have
TP(J) ⊆ TP(I), hence q is also an element of TP(I).

Proposition 4.2. The output of Algorithm 3 is a reduced def-
inite propositional logic program.

Proof. Obviously the output of the algorithm is a definite pro-
gram Q, because it generates only definite clauses. We have
to show that the resulting program is reduced. For a proof by
contradiction we assume that Q is not reduced. According to
Definition 2.2 there are two possible reasons for this:

Case 1: A predicate symbol appears more than once in the
body of a clause. This is impossible, because the algorithm

Algorithm 3 Extracting a Reduced Definite Program
Let f : IP → IP be a given mapping, as obtained e.g. from a
neural network, and consider IP to be totally ordered in some
way such that I is before K in the ordering if |I| < |K|. Let
Q be an initially empty program.
For all interpretations I ∈ IP , in sequence of the assumed
ordering, do the following:
• Let I = {p1, . . . , pn}. For every q ∈ f(I), check

whether a clause q ← q1, . . . , qm with {q1, . . . , qm} ⊆
I is already in Q. If not, then add the clause q ←
p1, . . . , pn to Q.

Return Q as the result.

does not generate such clauses (sets do not contain elements
twice).

Case 2: There are two different clauses C1 and C2 in Q,
such that C1 subsumes C2. Let C1 be h← p1, . . . , pa and C2

be h ← q1, . . . , qb with {p1, . . . , pa} ⊆ {q1, . . . , qb}. As ab-
breviations we use I = {p1, . . . , pa} and J = {q1, . . . , qb}.
Because of case 1 we know |I| = a and |J | = b (all elements
in the body of a clause are different). Thus we have |I| < |J |,
because C1 and C2 are not equal. This means the algorithm
has treated I (and h ∈ f(I)) before J (and h ∈ f(J)). C1

was generated by treating I and h, because C1 exists and can
only be generated through I and h (otherwise the body re-
spectively head of the clause would be different). Later the
case J and h was treated. The algorithm checks for clauses
h← r1, . . . , rm with {r1, . . . , rm} ⊆ J . C1 is such a clause,
because I ⊆ J , so C2 is not added to Q. Because (by the
same argument as above) C2 can only be generated through
J and h, C2 cannot be a clause inQ, which is a contradiction
and completes the proof.

Propositions 4.1 and 4.2 have shown that the output of the
extraction algorithm is in fact a reduced definite program,
which has the desired operator. We proceed to show that the
obtained reduced program is unique. The following, together
with Corollary 4.4, is the main theoretical result in this paper.

Theorem 4.3. For any operator TP of a definite proposi-
tional logic program P there is exactly one reduced definite
propositional logic program Q with TP = TQ.

Proof. Assume we have an operator TP of a definite program
P . With Algorithm 3 applied to f = TP and Propositions 4.1
and 4.2 it follows that there is a reduced definite program Q
with TP = TQ. We have to show that there cannot be more
than one program with this property.

To prove this we assume (by contradiction) that we have
two different reduced definite programs P1 and P2 with
TP = TP1 = TP2 . Two programs being different means
that there is at least one clause existing in one of the pro-
grams which does not exist in the other program, say a
clause C1 in P1 which is not in P2. C1 is some definite
clause of the form h ← p1, . . . , pm. By definition of TP
we have h ∈ TP1({p1, . . . , pm}). Because TP1 and TP2 are
equal we also have h ∈ TP2({p1, . . . , pm}). This means
that there is a clause C2 of the form h ← q1, . . . , qn with

{q1, . . . , qn} ⊆ {p1, . . . , pn} in P2. Applying the defini-
tion of TP again this means that h ∈ TP2({q1, . . . , qn}) and
h ∈ TP1({q1, . . . , qn}). Thus we know that there must be a
clause C3 of the form h ← r1, . . . , ro with {r1, . . . , ro} ⊆
{q1, . . . , qn} in P1.

C3 subsumes C1, because it has the same head and
{r1, . . . , ro} ⊆ {q1, . . . , qn} ⊆ {p1, . . . , pm}. We know
that by our assumption C1 is not equal to C2, because C1

is not equal to any clause in P2. Additionally, we know that
|{p1, . . . , qm}| = m and |{q1, . . . , qn}| = n, because P1 and
P2 are reduced, i.e. no predicate appears more than once in
any clause body. So we have {q1, . . . , qn} ⊂ {p1, . . . , pm}.
Because C3 has at most as many elements in its body as C2,
we know that C1 is not equal to C3. That means that P1 con-
tains two different clauses C1 and C3, where C3 subsumes
C1. This is a contradiction to P1 being reduced.

This shows that each algorithm extracting reduced defi-
nite programs from a neural network must return the same
result as Algorithm 3. We can now also obtain that the notion
of reduced program coincides with that of minimal program,
which shows that Algorithm 3 also extracts the least program
in terms of size.
Corollary 4.4. If P is a reduced definite propositional logic
program, then it is least in terms of size.

Proof. Let Q be a program with TQ = TP . If Q is reduced,
then it must be equal toP by Theorem 4.3, so assume it is not,
i.eQ can be reduced. The resulting programQred is definite,
by Definition 2.2 obviously smaller than before the reduction,
and has operator TP = TQ. From Theorem 4.3 we know that
there is only one reduced definite program with operator TP ,
so we have P = Qred. Because Qred is smaller than Q, P is
also smaller than Q.

5 Reducing Normal Logic Programs
As discussed in Section 3, it is possible to extract a normal
logic program P from a neural network, such that the be-
haviour of the associated TP -operator and the input-output-
mapping of the network are identical. But the program ob-
tained from the naive Algorithm 2 in general yields an un-
wieldy program. In this section, we will show how to refine
this logic program.

The first question to be asked is: Will we be able to obtain
a result as strong as Theorem 4.3? The following example
indicates a negative answer.
Example 2. Let P1 and P2 be defined as follows:

P1 = {p← q; P2 = {p←}
p← ¬q}

Obviously, in program P1, p does not depend on q. Hence,
the two programs are equivalent but P2 is smaller than P1.
We note, however, that P2 cannot be obtained from P1 by
reduction in the sense of Definition 2.2.

Example 2 shows that the notion of reduction in terms of
Definition 2.2 is insufficient for normal logic programs. Size
obviously is a meaningful notion. A naive algorithm for ob-
taining minimal normal programs is easily constructed: As

BP is finite, so is the set of all possible normal programs over
BP (assuming we avoid multiple occurrences of atoms in the
same clause body). We can now search this set and extract
from it all programs whose immediate consequence opera-
tor coincides with the target function, and subsequently we
can extract all minimal programs by doing a complete search.
This algorithm is obviously too naive to be practical. But it
raises the question: Is there always a unique minimal (i.e.
least) program for any given target function? The answer is
negative, as the following example shows.
Example 3. The following programs are equivalent.

P1 = {p← ¬p,¬r; P2 = {p← ¬p,¬r;
p← p, r; p← p, r;
p← ¬p, q } p← q, r }

A full search easily reveals that the given two programs are
minimal. We skip the details, which can be found in [15].

Example 3 shows that an analogy to Corollary 4.4 does not
hold for normal programs. This means that we can at best
hope to extract minimal normal programs from neural net-
works, but in general not a least program. The complexity of
this task is as yet unknown, as is an optimal extraction algo-
rithm, but we will later be able to discuss a refinement of the
naive algorithm given earlier.

For the moment, we will shortly discuss possibilities for
refining the set obtained by Algorithm 2. We start with two
examples.
Example 4. Let P1 be defined as introduced in Example 1:

P1 = {p← ¬p,¬q; P2 = {p← ¬p,¬q;
p← p, q; p← p, q;
q ← p,¬q; q ← p }
q ← p, q }

A closer look at the clauses 3 and 4 of P1 yields that q does
not depend on q, hence we could replace both by q ← p. The
resulting program is shown as P2.

Another case is given by the setting in Example 2, where
a similar situation occurs. By generalizing from these exam-
ples, we arrive at the following notion.
Definition 5.1. An α-reduced program P is a program with
the following properties.

1. P is reduced.
2. There are no clauses C1 and C2 with C1 6= C2 in P ,

where C1 is of the form p← q, r1, . . . , ra,¬s1, . . . ,¬sb

and C2 is of the form p← ¬q, t1, . . . , tc,¬u1, . . . ,¬ud,
where {r1, . . . , ra} ⊆ {t1, . . . , tc} and {s1, . . . , sb} ⊆
{u1, . . . , ud}.

3. There are no clauses C1 and C2 with
C1 6= C2 in P , where C1 is of the form
p ← ¬q, r1, . . . , ra,¬s1, . . . ,¬sb and C2 is of the form
p ← q, t1, . . . , tc,¬u1, . . . ,¬ud, where {r1, . . . , ra} ⊆
{t1, . . . , tc} and {s1, . . . , sb} ⊆ {u1, . . . , ud}.

Both Example 2 and 4 show logic programs and their α-
reduced versions. The following result and corresponding Al-
gorithm 4 can be obtained, for details we refer to [15].

Algorithm 4 Constructing an α-reduced program
For an arbitrary propositional logic program P perform the
following reduction steps as long as possible:

1. If there are two clauses C1 and C2 such that point 2 of
Definition 5.1 is fulfilled, then remove ¬q in the body of
C2.

2. If there are two clauses C1 and C2 such that point 3 of
Definition 5.1 is fulfilled, then remove q in the body of
C2.

3. If there are clauses C1 and C2 with C1 6= C2 in P and
C1 subsumes C2, then remove C2.

4. If a literal appears twice in the body of a clause, then
remove one occurrence.

5. If a predicate and its negation appear in the body of a
clause, then remove this clause.

Proposition 5.2. Let P be a logic program. If Q is the re-
sult of Algorithm 4 on input P , then Q is an α-reduced logic
program and TP = TQ.

Unfortunately, α-reduced programs are not necessarily
minimal, as the next example shows.

Example 5. The following two programs are equivalent. P2

is as in Example 3.

P2 = {p← ¬p,¬r; P3 = {p← ¬p,¬r;
p← p, r; p← p, r;
p← q, r } p← q, r;

p← ¬p, q }

Even though both programs are α-reduced, P3 is larger than
P2. Note also that P3 can be transformed to P2 by remov-
ing a redundant clause. However, this cannot be done by α-
reduction.

In a similar manner, we can refine α-reduction by introduc-
ing further refinement conditions. Refinement conditions can
for example be obtained by recurring to insights from inverse
resolution operators as used in Inductive Logic Programming
[17]. Such a line of action was spelled out in [15]. The result-
ing algorithms did yield further refined programs at the cost
of lower efficiency, but no satisfactory algorithms for obtain-
ing minimal programs.

6 A Greedy Extraction Algorithm
We present another extraction algorithm for normal pro-
grams, which is closer in spirit to Algorithm 3 in that it in-
crementally builds a program. For this purpose we introduce
the notion of allowed clause bodies, where the idea is that we
do not want to allow clauses which clearly lead to an incorrect
TP operator, and we do not want to allow clauses, for which
a shorter allowed clause exists.

The following example illustrates the intuition.

Example 6. We will use the operator of the programs given

in Example 3:

TP = { ∅ 7→ {p} {p, q} 7→ ∅
{p} 7→ ∅ {p, r} 7→ {p}
{q} 7→ {p} {q, r} 7→ {p}
{r} 7→ ∅ {p, q, r} 7→ {p}}

The 3 atoms p, q, r are being used, so there would be 27
different possible clauses bodies, as shown in Table 1. The
clause p ← p, for example, is not correct, since we have
p 6∈ TP({p}). Hence the body p is not allowed.

We will give a formal definition of allowed clauses, before
continuing with the example. Please note that in the following
definition B is not necessarily a clause in P .

Definition 6.1. Let TP be an immediate conse-
quence operator, and h be a predicate. We call
B = p1, . . . , pa,¬q1, . . . ,¬qb allowed with respect to
h and TP if the following two properties hold:

• For every interpretation I ⊆ BP with I |= B we have
h ∈ TP(I).

• There is no allowed body B′ = r1, . . . , rc,¬t1, . . . ,¬td
for h and TP with B′ 6= B such that {r1, . . . , rc} ⊆
{p1, . . . , pa} and {t1, . . . , td} ⊆ {q1, . . . , qb}.

As given in Definition 6.1, there are two reason for a clause
body B not to be allowed. First, the resulting clause could
be wrong, as discussed in Example 6. Secondly, there could
be a smaller allowed body B′, such that h ← B′ subsumes
h← B.

Example 6 (continued). Table 1 shows all possible clause
bodies for BP = {p, q, r} on the left side. The right side
shows either “OK”, if the body is allowed, or gives the reason
why it is not allowed.

We use the notion of allowed clause bodies to present a
greedy algorithm that constructs a logic program for a given
target function. The algorithm will incrementally add clauses
to an initially empty program. The clause to add is cho-
sen from the set of allowed clauses with respect to some
score-function, which is a heuristics for the importance of a
clause. This function computes the number of interpretations
for which the program does not yet behave correctly, but for
which it would after adding the clause.

Definition 6.2. Let BP be a set of predicates. The score of a
clause C : h← B with respect to a program P is defined as

score(C,P) :=
∣∣{I | I ⊆ BP and h 6∈ TP(I) and I |= B}

∣∣.
To keep things simple, we will consider one predicate at

a time only, since after treating every predicate symbol, we
can put the resulting sub-programs together. Let q ∈ BP be
an atom, then we call T q

P the restricted consequence operator
for q and set T q

P(I) = {q} if q ∈ TP(I), and T q
P(I) = ∅

otherwise. Algorithm 5 gives the details of the resulting pro-
cedure and is illustrated in Example 7.

clause body evaluation
empty False, p 6∈ TP({p}).
p False, because p 6∈ TP({p}).
q False, because p 6∈ TP({p, q}).
r False, because p 6∈ TP({r}).
¬p False, because p 6∈ TP({r}).
¬q False, because p 6∈ TP({p}).
¬r False, because p 6∈ TP({p}).
p, q False, because p 6∈ TP({p, q}).
p, r OK.
q, r OK.
p,¬q False, because p 6∈ TP({p}).
p,¬r False, because p 6∈ TP({p}).
q,¬p OK.
q,¬r False, because p 6∈ TP({p, q}).
r,¬p False, because p 6∈ TP({r}).
r,¬q False, because p 6∈ TP({r}).
¬p,¬q False, because p 6∈ TP{r}).
¬p,¬r OK.
¬q,¬r False, because p 6∈ TP({p}).
p, q, r Not considered, because p, r is smaller.
p, q,¬r False, because p 6∈ TP({p, q}).
p,¬q, r Not considered, because p, r is smaller.
¬p, q, r Not considered, because q, r is smaller.
p,¬q,¬r False, because p 6∈ TP({p}).
¬p, q,¬r Not considered, because ¬p, q is smaller.
¬p,¬q, r False, because p 6∈ TP({r}).
¬p,¬q,¬r Not considered, because ¬p,¬r is smaller.

Table 1: Allowed clause bodies for TP from Example 6.

Example 7. Let TP be given as follows:

TP = { ∅ 7→ {p} {q, r} 7→ ∅
{p} 7→ ∅ {q, s} 7→ {p}
{q} 7→ {p} {r, s} 7→ ∅
{r} 7→ ∅ {p, q, r} 7→ {p}
{r} 7→ ∅ {p, q, s} 7→ ∅
{p, q} 7→ {p} {p, r, s} 7→ {p}
{p, r} 7→ {p} {q, r, s} 7→ {p}
{p, s} 7→ {p} {p, q, r, s} 7→ {p}}

Obviously, we can concentrate on the predicate p, since there
are no other predicates occurring as a consequence. The re-
sulting set of allowed clause bodies is

S = {p, r;¬p,¬r,¬s; q,¬p,¬r; q,¬r,¬s;
p, q,¬s; p, s,¬q; q, s,¬p; q, r, s}

Tables 2 and 3 show two example runs of the algorithm. In
each step the score for the allowed clauses which are not yet
in the program, is indicated. (The score of the clause which is
added to the constructed programQ is given in boldface.) As
an example the score for p, q,¬s in the first step of the first
run is 2, because p ∈ TP(p, q) and p ∈ TP(p, q, r). It goes
down to 1 in the second step, because we have Q = {p, r}
and therefore p ∈ TQ(p, q, r) at this point. Intuitively this
means that we would only gain one additional interpretation
by adding p← p, q,¬s.

Algorithm 5 Greedy Extraction Algorithm
Let TP and BP = {q1, . . . , qm} be the input of the algorithm.
Initialize Q = ∅.
For each predicate qi ∈ BP :

1. construct the set Si of allowed clause bodies for qi

2. initialize: Qi = ∅
3. repeat until TQi = T qi

P :
(a) Determine a clause C of the form h ← B with

B ∈ Si with the highest score with respect to Qi.
(b) If several clauses have the highest score, then

choose one with the smallest number of literals.
(c) Qi = Qi ∪ {C}

4. Q = Q∪Qi

Return Q as the result.

clause body 1. 2. 3. 4. 5. 6.
p, r 4
¬p,¬r,¬s 2 2 1
q,¬p,¬r 2 2
q,¬r,¬s 2 2 1 1
p, q,¬s 2 1 1 1 0 0
p, s,¬q 2 1 1 1 1
q, s,¬p 2 2 1 1 1 1
q, r, s 2 1 1 1 1 1

P1 = {p← p, r;
p← q,¬p,¬r;
p← ¬p,¬r,¬s;
p← q,¬r,¬s;
p← p, s,¬q;
p← q, s,¬p }

Table 2: Example run 1 and the resulting program.

Example 7 is constructed in such a way that there are two
different possible runs of the algorithm, which return pro-
grams of different size for the same operator. The first run
produces a program with six clauses and 17 literals. The sec-
ond run produces a program with five clauses and 14 literals.
This shows that the algorithm does not always return a mini-
mal program, which was expected as the algorithm is greedy,
i.e. it chooses the clause with respect to some heuristics and
without forecasting the effects of this decision. We also see
that the algorithm is not deterministic, because there may be
several clauses with the highest score and the lowest number
of literals (e.g. in step 3 of run 1). As for performance, the
use of allowed clause bodies in this case made it possible to
reduce checking from 27 to 4 clauses.

Let us finally mention how to modify Algorithm 5 in order

clause body 1. 2. 3. 4. 5.
p, r 4
¬p,¬r,¬s 2 2
q,¬p,¬r 2 2 1 0 0
q,¬r,¬s 2 2 1 1
p, q,¬s 2 1 1 1 0
p, s,¬q 2 1 1 1 1
q, s,¬p 2 2 2
q, r, s 2 1 1 0 0

P2 = {p← p, r;
p← ¬p,¬r,¬s;
p← q, s,¬p;
p← q,¬r,¬s;
p← p, s,¬q }

Table 3: Example run 2 and the resulting program.

Algorithm 6 Intelligent Program Search
Let TP and BP = {q1, . . . , qm} be the input of the algorithm.
Initialize: Q = ∅.
For each predicate qi ∈ BP :

1. construct the set Si of allowed clause bodies for qi

2. initialize: ni = 0
3. Search all programs with size equal to ni until a program
Qi with T qi

P = TQi is found. if no such program is found
then increment ni and repeat step 3.

4. Q = Q∪Qi

to obtain minimal programs. We do this by performing a full
program search instead of using a heuristics, i.e. the score
function, to add clauses to subprograms. See Algorithm 6.

7 Conclusions
We presented algorithms to extract definite and normal propo-
sitional logic programs from neural networks. For the case of
definite programs, we have shown that our algorithm is op-
timal in the sense that it yields the minimal program with
the desired operator; and it was formally shown that such a
minimal program always exists. For normal logic programs
we presented algorithms for obtaining minimal programs, and
more efficient algorithms which do produce small but not nec-
essarily minimal programs.

The main contribution of this paper is the automatic refine-
ment of logic programs, obtained by global extraction meth-
ods as in [9; 13]. We have thus addressed and answered fun-
damental (and obvious) open questions. We consider the re-
sults as a base for investigating the extraction of first-order
logic programs, and thus for the development of the neural-
symbolic learning cycle as laid out in Figure 1, which has
high potential for impact in application areas.

References
[1] R. Alexandre, J. Diederich, and A. Tickle. A survey and

critique of techniques for extracting rules from trained
artificial neural networks. Knowledge Based Systems,
pages 373–389, 1995.

[2] R. Andrews and S. Geva. Rule extraction from lo-
cal cluster neural nets. Neurocomputing, 47(1–4):1–20,
2002.

[3] S. Bader and P. Hitzler. Logic programs, iterated func-
tion systems, and recurrent radial basis function net-
works. Journal of Applied Logic, 2(3):273–300, 2004.

[4] S. Bader, P. Hitzler, and A. S. d’Avila Garcez. Comput-
ing first-order logic programs by fibring artificial neu-
ral network. In Proceedings of the 18th International
FLAIRS Conference, Clearwater Beach, Florida, May
2005, 2005. To appear.

[5] S. Bader, P. Hitzler, and S. Hölldobler. The integration
of connectionism and first-order knowledge represen-
tation and reasoning as a challenge for artificial intel-
ligence. In L. Li and K.K. Yen, editors, Proceedings

of the Third International Conference on Information,
pages 22–33, Tokyo, Japan, November/December 2004.
International Information Institute.

[6] S. Bader, P. Hitzler, and A. Witzel. Integrating first-
order logic programs and connectionist systems — a
constructive approach. In Proceedings of the IJCAI-05
Workshop on Neural-Symbolic Learning and Reason-
ing, NeSy’05, Edinburgh, UK, 2005. To appear.

[7] Ch. M. Bishop. Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[8] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay.
Symbolic knowledge extraction from trained neural
networks: A sound approach. Artificial Intelligence,
126(1–2):155–207, 2001.

[9] A. S. d’Avila Garcez, K. B. Broda, and D. M. Gab-
bay. Neural-Symbolic Learning Systems — Foundations
and Applications. Perspectives in Neural Computing.
Springer, Berlin, 2002.

[10] A. S. d’Avila Garcez and G. Zaverucha. The connec-
tionist inductive learning and logic programming sys-
tem. Applied Intelligence, Special Issue on Neural net-
works and Structured Knowledge, 11(1):59–77, 1999.

[11] P. Hitzler, S. Bader, and A. Garcez. Ontology learning
as a use-case for neural-symbolic intergration. In Pro-
ceedings of the IJCAI-05 Workshop on Neural-Symbolic
Learning and Reasoning, NeSy’05, Edinburgh, UK,
2005. To appear.

[12] P. Hitzler, S. Hölldobler, and A. K. Seda. Logic pro-
grams and connectionist networks. Journal of Applied
Logic, 2(3):245–272, 2004.

[13] S. Hölldobler and Y. Kalinke. Towards a new massively
parallel computational model for logic programming.
In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pages 68–77.
ECCAI, 1994.

[14] F. J. Kurfess. Neural networks and structured knowl-
edge: Rule extraction and applications. Applied Intelli-
gence, 12(1–2):7–13, 2000.

[15] J. Lehmann. Extracting logic programs from artifi-
cial neural networks. Belegarbeit, Fakultät Informatik,
Technische Universität Dresden, February 2005.

[16] J. W. Lloyd. Foundations of Logic Programming.
Springer, Berlin, 1988.

[17] S.H. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-
gramming, 19,20:629–679, 1994.

[18] J.-F. Remm and F. Alexandre. Knowledge extraction us-
ing artificial neural networks: application to radar target
identification. Signal Processing, 82(1):117–120, 2002.

[19] A. B. Tickle, F. Maire, G. Bologna, R. Andrews, and
J. Diederich. Lessons from past, current issues, and
future research directions in extracting the knowledge
embedded in artificial neural networks. Hybrid Neural
Systems, pages 226–239, 1998.

