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Keynote talk: Heat Kernel Learning Machines 
 
Dr. Marco Gori 
Dipartimento di Ingegneria dell'Informazione, Via Roma, 56, 53100 Siena – ITALY 
marco@dii.unisi.it, htp://www-dii.ing.unisi.it/~marco/ 
 
Abstract: 
A remarkable number of important problems in different domains (e.g. web mining, 
pattern recognition, biology ...) are naturally modeled by functions defined on graphical 
domains, rather than on traditional vector spaces. In this talk, I introduce a general 
framework for learning functions defined on graphical domains. Using the metaphor of 
heat propagation, I introduce the concept of heat kernel learning machines (HKLM), and 
show that they can approximate up to any degree of precision a class of functions, 
referred to as unfolding-equivalence functions (UEF) that turn out to be of interest in 
many real-world problems.  I sketch the general architecture of the HKLM and discuss a 
neural network based computation at node level. The corresponding weights can be 
discovered from supervised examples using algorithms inspired to connectionist learning. 
The basic idea is to adopt a special dynamic behavior that arises from forcing a 
contraction map in the HKLM. In the extreme case, the parameters are shared amongst 
the nodes of the graphs,  but one can group nodes so as to share the weights within the 
group.  Interestingly, I show that the adoption of different weights for different classes of 
nodes makes it possible to extend the methodology to the case in which the function takes 
values on the arcs. 
 
I give some very promising experimental results on a number of graph problems and for 
functions involved in link analysis, like PageRank. I also show that similar performance 
holds for extensions of PageRank in which the function also depends on the content of 
the page. I claim that the propagation of the relationships expressed by the arcs in the 
graphical domain reduces dramatically the sample complexity with respect to traditional 
learning machines, thus making HLKMs suitable to many large scale real-world 
problems (e.g. spam detection and complex page categorization).  
 
Biography: 
Marco Gori is professor of computer Science at the University of Siena.  His research 
interests are in the field of artificial intelligence, with emphasis on machine learning.  He 
is especially involved in the conception of new theories of learning in structured domains 
and in their applications to pattern recognition and mining the web. He has been the 
President of the Italian Association for Artif icial Intelligence and is currently acting as 
the chairman of the Italian Chapter of the IEEE Computational Intelligence Society. Dr. 
Gori is a fellow of the IEEE.  
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Keynote talk: Hybrid I ntelligent Systems and Cognitive Robotics 
 
Professor Stefan Wermter      
                         
Chair for Intelligent Systems 
School of Computing and Technology 
University of Sunderland 
St Peters Way 
Sunderland SR6 0DD 
United Kingdom 
 
email: stefan.wermter AT sunderland.ac.uk 
http://www.his.sunderland.ac.uk/~cs0stw/ 
http://www.his.sunderland.ac.uk/ 
 
  
Abstract:  
There has been substantial progress in both hybrid intelligent systems and cognitive 
robotics in recent years. While in the past robots were most successful in traditional 
industrial environments, new generations of hybrid intelligent robotic systems are being 
developed which focus on higher cognitive capabilities, including reasoning, learning and 
language communication. In this talk we will give an overview of learning neural robots 
from a perspective of integrative hybrid intelligent systems and illustrate some new 
developments including also examples under development in the Centre for Hybrid 
Intelligent Systems at the University of Sunderland (www.his.sunderland.ac.uk).  
 
Biography:  
Professor Stefan Wermter holds the Chair in Intelligent Systems at the University of 
Sunderland, UK and is the Director of the Centre for Hybrid Intelligent Systems. His 
research interests are in Intelligent Systems, Neural Networks, Cognitive Neuroscience, 
Hybrid Systems, Language Processing, and Learning Robots. He has an MSc from the 
University of Massachusetts, USA and a PhD and Higher Doctorate (Habilitation) from 
the University of Hamburg, Germany, all in Computer Science and was a Research 
Scientist at Berkeley, USA before joining the University of Sunderland. Professor 
Wermter has written or edited five books and published about 130 articles on this 
research area, including books like "Hybrid Connectionist Natural Language Processing", 
"Connectionist, Statistical, and Symbolic Approaches to Learning for Natural Language 
Processing", "Hybrid Neural Systems" and "Emergent Neural Computational 
Architectures based on Neuroscience".  
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EvidenceBasedReasoningin Classifier Hierar chies
RebeccaFay and Friedhelm Schwenker and Günther Palm1

Abstract. Hierarchicalneural networks naturally combine sub-
symbolicinformationprocessingwith symbolicinformationasthey
consist of several neural classifierswhich provide hierarchically
structuredknowledge.This knowledge implies a particularuncer-
tainty which is indicatedby themagnitudeof theclassifieroutputs.
Therearedifferent waysto combinethis expertknowledgeto a col-
lective output.Two differentmethods areevaluatedin this paper:a
methodsimilar to the decisiontreeapproachandan evidencethe-
oreticapproachutilising Dempster-Shafertheory. Theproposedap-
proacheshave beenevaluatedusingthreedifferentdatasetsandtwo
differenttypesof classifiers.It wasshown thattheevidencetheoretic
approachyieldsimprovedclassificationperformance.

1 INTRODUCTION

Hierarchicalrelationshipsamongobjectsoccurratheroften. In par-
ticular, hierarchicalgroupingof similar objectsseemsreasonable.
Thissimilarity canreferto differentcharacteristicssuchasfunction-
ality or appearanceof objects.

Hierarchicalneural networks consistof multiple classifiersar-
rangedin a hierarchicalmannerwheretheindividual classifierspro-
vide evidenceat different levels of abstraction,i.e. the individual
classifiersgive resultsfor not necessarilysingleclassesbut setsof
classes.The evidenceprovided by the single classifiersrepresents
measuresfor the likelihoodof a givensampleto belongto a certain
classor groupof classes.

Thusahierarchicalneuralnetwork canbeinterpretedasagroupof
hierarchicallyarrangedexpertswhichmakehierarchicallystructured
statements,i.e. expertsat higherlevelsof thehierarchy make rough
decisionsconcerningcomprehensivegroupsof classesandexpertsat
low levelsprovidedetailedinformationabout few singleclasses.

Therearediversewaysof obtainingacollectiveresultonthebasis
of the opinions of the variousexperts.Oneway is to attain the re-
sult in stagesby propagatingthedecisiondown thehierarchy, i.e. the
decisionis delegatedhierarchically. At eachlevel a selectedexpert
makesa decisionat his level of detailandbasedon this decisionhe
choosestheexpertat thenext level whohasto make amoredetailed
decision.Thusthe decisionis propagateddown the hierarchy until
thefinal expertat the lowestlevel conclusively decideswhat there-
sult is. Therebynot all expertsareconsultedbut only thoseexperts
on thepathwhich emerged.Anotherway is to incorporatetheopin-
ionsof all expertsandto combinethemto oneconclusiveresult.The
integrationof thedifferentexpertopinionsis a form of reasoning.

A suitable approach for combining hierarchically structured
knowledge incorporating uncertainty is the well-established
Dempster-Shafer evidence theory. It provides meansof dealing
with informationprovided at different levels of abstractionwithout

1 University of Ulm, Germany, email: {rebecca.fay, friedhelm.schwenker,
guenther.palm}@uni-ulm.de

enforcingto assigninformationat a moredetailedlevel thanis justi-
fied.Moreover, it offersa possibility to representlack of knowledge
and doubt. The first characteristicfacilitatesthe dealing with the
hierarchicalinformation provided by the classifierhierarchy. The
latterproperty accountsfor thenecessityof theindividual classifiers
to beableto statethata givensample belongsto anunknown class.
This is essentialas not all classifierswithin the hierarchy provide
informationabout all classes,but only dealwith a specificsubsetof
classesand thus are likely to have to give resultsfor classesthey
havenoknowledgeabout.

2 METHOD

In this papera method to combinethe resultsof multiple hierarchi-
cally arrangedclassifiersutilising evidencebased reasoningis pre-
sented.Thismethodis comparedwith asimpledecision-tree-likeap-
proachfor retrieving the classificationresults.Both approachesare
appliedto thesamehierarchy, i.e. thehierarchy generationandtrain-
ing is thesamefor bothmethods.

In the following the main componentsof the proposedapproach
are presented.Hierarchicalneuralnetworks are briefly introduced
andthetwo methodsfor evaluatingthehierarchy areexplained.

2.1 Dempster-ShaferEvidenceTheory

Dempster-Shaferevidencetheory[4, 5, 16] is amathematicaltheory
of evidenceandplausibility reasoning.It providesmeansof repre-
sentingandcombiningmeasuresof evidence.Major advantages of
this theoryarethepossibilityto differentiatebetweenignoranceand
uncertainty, theability to easilyrepresentevidenceatdifferentlevels
of abstractionandthepossibilityto combineevidencefrom different
sources.In thefollowing thebasicconceptsof theDempster-Shafer
evidencetheory relevant for the proposedapproacharebriefly ex-
plained.

Let Ω be a finite setof q mutually exclusive atomichypotheses
Ω = {θ1, ..., θq} called the frameof discernmentrepresentingthe
universeof discourseandlet 2Ω denotethepowersetof Ω.

A basicprobability assignmentor massfunctionm over a frame
of discernmentΩ is a function m : 2Ω 7→ [0, 1] that satisfiesthe
following two conditions:

m(∅) = 0
∑

A⊆Ω
m(A) = 1

(1)

The massm(A) specifiesthe belief in hypothesisA which does
not needto beatomic, but canbea setof atomichypothesis.In that
casem(A) reflectsignorancein sofar asit is not possibleto further
subdivide this belief in A amongthe subsetsof A. Thus the mass
m(A) specifiesthedegreeof belief that is assignedto exactly theset
A ⊆ Ω andnot to any subsetof A.
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Two basicprobabilityassignmentsm1 andm2 from two indepen-
dentsourcescanbecombinedvia Dempster’s combinationrule, the
socalledorthogonalsumm1,2 = m1 ⊕ m2 which is definedas:

m1,2(C) = K−1 ·
∑

A,B:A∩B=C

m1(A) · m2(B), ∀C 6= ∅ (2)

whereK is a measurefor the conflict betweenthe two sources.
TheconflictK is definedas:

K = 1−
∑

A,B:A∩B=∅

m1(A)·m2(B) =
∑

A,B:A∩B 6=∅

m1(A)·m2(B)

(3)
Theorthogonalsumm1 ⊕ m2 doesonly exists if K 6= 0 andthe

resultm1,2 is thenabasicprobabilityassignment.Otherwisethetwo
sourcesaresaidto betotally contradictory.

Within thetransferablebelief model[18], an interpretationof the
Dempster-Shafertheoryof evidence,positivemassescanbeassigned
to theemptyset∅ entailingunnormalisedbelief functions[17]:

m1,2(C) =
∑

A,B:A∩B=C

m1(A) · m2(B), ∀C ⊆ Ω (4)

A high valuefor themassof theemptyset∅ indicatesa high con-
flict betweenthesources.

2.2 ClassifierHierar chies

Hierarchicalneuralnetworks consistof multiple neuralclassifiers
which arearrangedhierarchicallyand realisea hierarchicaloutput
spacedecomposition.Theclassificationprocessis decomposedinto
severalstagesutilising coarseto fineclassification.

Thehierarchies[6] aregeneratedby unsupervisedk-meansclus-
tering with the objective of groupingsimilar classestogether, i.e.
classesthataresimilar with respectto thefeaturesused.

The basic idea of hierarchical neuralnetworks is the decompo-
sition of a complex classificationproblem into several less com-
plex problems. This yields hierarchicalclassgrouping. The hierar-
chy emergesfrom recursivepartitioning of theoriginal setof classes
C into several disjoint subsetsCi until subsetsconsistingof single
classesresult.Ci is the subsetof classesto be classifiedby nodei,
wherei is a recursively composedindex reflectingthepathfrom the
root nodeto node i. The subsetCi of nodei is decomposedinto
si disjoint subsetsCi,j , whereCi,j ⊂ Ci, Ci = ∪s−1

j=0Ci,j and
Ci,j ∩ Ci,k = ∅. The total setof classesC is assignedto the root
nodeC0 = C. Consequentlynodesat higherlevelsof thehierarchy
discriminatebetweenlargersubsetsof classeswhereasnodesat the
lowestlevel classifybetweensingleclasses.Fromthe applicationof
this divide-and-conquer strategy emerge several simple classifiers,
that canbe amendedmuchmoreeasily to the decomposedsimple
classificationtasksthanoneclassifiercouldbeadaptedto theorigi-
nal complex classificationtask.

An exampleof a classifierhierarchy is shown in figure 1. The
nodeswithin thehierarchy representindividualneuralnetworks.Dif-
ferenttypesof classifierscanbeused.Wechoseradialbasisfunction
networks and fuzzy k-nearestneighbourclassifiers.A threephase
learningalgorithm[15] waschosento train theradialbasisfunction
networks.

Hierarchicalneuralnetworksnaturallyprovidea link betweenbe-
tweensymbolicinformationandsub-symbolicinformationprocess-
ing. Featurevectorsrepresentingsub-symbolicinformationareused

Figure1. Classifierhierarchy for theclassificationof eightclasses(A, B,
C, D, E, F, G, H). Eachnodewithin thehierarchy representsaneural
network which is usedasaclassifier. Theendnodesrepresentclasses.

for theclassification,whereassymbolicknowledgeis madeavailable
concomitantlyvia theinformationabouttheaffiliation to certainsub-
setsof classes.Thus the hierarchy doesnot only provide the infor-
mationto which classa given samplemost likely belongsbut also
theinformationto whichsubsetsof classesthissamplebelongs.The
usageof neuralnetworks,fuzzyor probabilisticclassifiersallowsthe
representationof uncertainty of the membershipto theseclassesor
groupsof classessincetheoriginal outputof theneuronsis not dis-
cretebut continuous.

2.3 Retrieving the ClassificationResult in a
Decision-Tree-LikeManner

A simpleandfastwayto obtaintheclassificationresultis to evaluate
thehierarchy similar to theretrieval processin decisiontreeswhere
a pathfrom theroot nodeof thehierarchy to theleaf nodethatspec-
ifies theresultingclassis determined.Startingwith therootnodethe
classificationresultsof the individual classifiersareusedto decide
which classifierat thenext lower level will be lookedat next, i.e. to
whichsuccessornodethedecisionwill bedelegated.Classifieri that
discriminatesbetweensi disjoint subsetsCi,j decidesto which of
thesesubsetsCi,j∗ the presentedsamplemost likely belongs.As a
result the j∗th successornode is the next classifierlooked at. This
is successively repeateduntil a leaf nodeis reached.This evaluation
methodonly considersasubsetof theclassifierswithin thehierarchy.
Figure2 visualisesthisdecisionprocessandshowswhichclassifiers
areinvolved.

Figure2. Retrieval of theclassificationresultanalogousto decisiontrees.
A paththroughthehierarchy is determinedleadingto theresultingclass.
Thehighlightedpath(in darkgrey) shows thenodesactivatedduringthe

classificationof asamplethatis classifiedasclassF.

If for a given task only intermediateresultsare of interest,e.g.
whetherasamplebelongsto acertainsubsetof classes,it is notnec-
essaryto follow throughthecompletedecisionprocessuntil thefinal
classis obtained,but theprocesscanbeabortedatanearlierlevel.



5

This methodsfeaturesa simpleway of combining the resultsof
multipleclassifiers.It yieldsgoodclassificationresultsin rathershort
classificationtime,but amajordisadvantageis themissingability to
correctmisclassificationsthatoccurathigherlevelsof thehierarchy.
Henceit wouldbebeneficialnotonly to take asinglepathwithin the
hierarchy into accountbut toconsiderall classifiersof thehierarchy.

2.4 EvidenceBasedReasoningin Hierar chical
Neural Networks

A more complex way of combiningthe resultsinvolves all classi-
fiersof thehierarchy. Thesampleto beclassifiedis presentedto all
classifierswithin the hierarchy and the individual resultsare then
combinedto onecollective result.Thestrengthsof theindividual re-
sultsareincorporatedby thismethod.Thecombinationis performed
utilising Dempster-Shafertheoryof evidence.

Figure3 depictswhich classifiersareconsideredfor this decision
process.

Figure3. Retrieval of theclassificationresultutilising Dempster-Shafer
evidencetheory. All classifiersareconsideredwhencalculatingthe

classificationresult.

Theapplicationof theDempster-Shaferevidencetheoryrequires
in a first stepthe calculationof basicprobability assignmentsmj

from the outputsof the individual classifierswithin the hierarchy.
As not all neuralclassifiersproduceoutputvaluesthat fulfil the re-
quirementsfor basicprobabilityassignments(equation1) a transfor-
mationof theoutputsmight berequired.Theoutputvaluesof fuzzy
k-nearestneighbourclassifiersΞi(x) satisfytheconditionsfor basic
probability assignmentsas the classmembershipsfulfil the condi-
tionsΞi(x) ∈ [0, 1] and

∑l

i=1
Xii(x) = 1 whereasthe outputof

radial basisfunction networks zi(x) doesnot necessarilydo so.To
enforcethefulfilment of theconditionzi(x) ∈ [0, 1] arampfunction

Θ(zi(x)) =

{

0, x < 0
x, 0 ≤ x ≥ 1
1, x > 1

(5)

is isappliedto theclassifieroutputsettingall negativevaluesto zero
andall valuesgreaterthan1 to 1. This is justified insofar asonly a
negligible numberof outputvaluesviolatethiscondition.In order to
accountfor ignorancewhich is representedby low classifieroutputs
thedifferenceto oneis assignedto Ω. If thesumof theclassifierout-
putsis equalto or greaterthanonenothing is assignedto Ω. In this
casetheoutputis thennormalisedto sumup to one.Hencein either
casethecondition

∑l

i=1
mj(i) = 1 is satisfied.Thesetransforma-

tionsareappliedif necessaryto theoutputsof all classifiersandthen
the resultingbasicprobability assignmentsmj of all classifiersare
combinedusingtheorthogonalsumwithoutnormalisation(equation
4).

Accordingto thestructureof thehierarchy eachclassifierprovides
evidencefor thespecificsubsetsof Ω betweenwhich therespective
classifierdiscriminatesaswell asfor Ω. In caseof ignorancestrong
evidenceis assignedto Ω.

Additionally, a discountingtechniqueis usedpropagating classi-
fier responsestop down. Thusclassifierresponsesalongpathesthat
atahigherlevel containaclassifierwhichshowedlow responsesare
weakenedstronglywhereaspathesbelow classifierswith strongout-
putarehardlyweakened.Thediscountingis realisedby successively
multiplying the classifierresponseswith the classifieroutputof the
respective predecessornode.Henceno discountingis appliedto the
root node.The discountingaccountsfor the fact that within the hi-
erarchy therearea not negligible numberof classifierthat have to
provide resultsfor samplesbelongingto classesthey have not been
trainedwith. Hencelow classifierresponses,as would be desired,
cannotbeguaranteedin thatcases.Thediscountingthusweakensin-
sularstrongresponses,which arelikely to becausedby a classifier
thathasbeenpresenteda sampleof anunknown class.In contrastif
only oneclassifierwithin a specificpathshows a low responsebut
all otherclassifiersresponsesarehigh this leadsonly to a moderate
attenuation.Thediscountingis applieddirectly afterthetransforma-
tion of the classifieroutputsto basicprobability assignments.As a
multiplicationwith thediscountingfactorsdi ∈ [0, 1] decreasesthe
basicprobability assignmentsif di < 1, their sumis thensmaller
thanone

∑si−1

j=0
dimi(Ci,j) < 1. Thedifferenceto oneoriginating

from this is thenassignedto Ω: mi(Ω) = 1 −
∑si−1

j=0
dimi(Ci,j).

3 RESULTS

Theproposedapproachwasevaluatedby meansof 10runsof 10-fold
cross-validationexperimentsonthreedifferentdatasetsandwith two
kindsof classifiers.ThedatasetsusedweretheColumbiaObjectIm-
ageLibrary (COIL-20) [13] datasetconsistingof 20 objectsand72
grey valueimagesperobject,theLetterRecognitionImageData[8]
comprising26lettersand20000samplesin totalandthehandwritten
STATLOG digits dataset [9] containing10 digits and 1000 sam-
plesperdigit. From the imagesof theCOIL-20 datasetorientation
histograms[7, 3] wereextractedasfeaturesfor the objectrecogni-
tion.As classifiersradialbasisfunctionnetworksandfuzzyk-nearest
neighbourclassifierswereused.Theusageof thelatter is motivated
by thesimplicity andthelow trainingeffort of this approachaswell
asby the fact that no parametersexceptk needto be optimisedfor
this typeof classifier.

Theapproachwasnot only evaluatedon automaticallygenerated
hierarchiesbut also onhierarchiesthatweremanuallycreatedgroup-
ingclassesin aplausiblemannersuchthatmeaningfulgroupsemerge
andtheclasseswithin onegroupbearresemblanceto eachother. Fig-
ure4 depictsthetwo hierarchies for theCOIL-20 datasetgenerated
in thedescribedways.

In all experimentstheevidencetheoreticapproachyieldatleastthe
sameif notbetterclassificationresultscomparedto thedecision-tree-
like method.Theresultsfor theautomaticallygeneratedhierarchies
evenshow asignificantdifferenceonall threedatasets.

The resultsfor the automaticallyandmanuallygeneratedhierar-
chiesarevisualisedin figure 5 and6 respectively by meansof box
plotsanderrorbars.Thetables1 and2 list theclassificationratesfor
thedifferentexperimentsperformedon theautomaticallyandmanu-
ally generatedhierarchiesrespectively.
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Figure4. Hierarchiesfor theclassificationof theCOIL-20objects.The
upperhierarchy wasautomaticallygeneratedby unsupervisedk-means

clustering,thelowerhierarchy wasmanuallycreatedgroupingobjectsin a
plausiblewaysuchthatmeaningfulgroupsresult.

Data RBF 3-NN 5-NN
DS DT DS DT DS DT

Letters 86.74±
0.79%

85.45±
0.78%

90.80±
0.61%

89.22±
0.69%

82.92±
0.68%

81.30±
0.64%

Digits 94.21±
0.74%

93.18±
0.79%

94.51±
0.55%

94.20±
0.60%

90.26±
0.82%

89.85±
0.80%

COIL-
20

96.76±
1.58%

95.39±
2.03%

99.59±
0.47%

99.26±
0.67%

92.62±
1.62%

92.12±
1.77%

Table1. Classificationratesfor thedifferentdatasetson thetestdatafor
theDempster-Shafermethod(DS)andthedecisiontreemethod(DT) for the
radialbasisfunctionnetwork (RBF) andfuzzyk-nearestneighbourclassifier

(k-NN) onautomaticallygeneratedhierarchies.Theevidencetheoretic
approachoutperformsthedecisiontreeapproachin all experiments.

A pairwiset-testbasedon repeatedk-fold crossvalidationwith a
variancecorrection[2] to compensatethe highly violated indepen-
denceassumption,calledcorrectedrepeatedk-fold crossvalidation
test,wasconductedto assesstheresultsof thedifferentexperiments
statistically.

Theresultsof the t-testfor thedifferentexperimentsarelisted in
tables3 and4.

4 DISCUSSION

The evaluationof the classifier hierarchy by meansof Dempster-
Shaferevidencetheory yields improved or at least the sameclas-
sification results comparedto the simple decision-tree-like evalua-
tion method.Hierarchiesautomaticallygeneratedshow morestable
resultsthanmanuallygeneratedhierarchies,but themanuallyhierar-
chiesalsoshow goodresults.

Data RBF 3-NN 5-NN
DS DT DS DT DS DT

Letters 86.51±
1.00%

84.71±
0.93%

90.72±
0.62%

89.05±
0.72%

82.65±
0.84%

80.91±
0.61%

Digits 94.10±
0.85%

93.38±
0.90%

94.64±
0.46%

93.86±
0.63%

89.98±
0.91%

89.58±
0.97%

COIL-
20

96.07±
2.01%

95.46±
2.16%

99.05±
0.90%

98.96±
0.88%

92.19±
1.92%

92.21±
1.84%

Table2. Classificationratesfor thedifferentdatasetson thetestdatafor
theDempster-Shafermethod(DS)andthedecisiontreemethod(DT) for the
radialbasisfunctionnetwork (RBF) andfuzzyk-nearestneighbourclassifier
(k-NN) onmanuallygeneratedhierarchies.Theaverageclassificationrates
of theDempster-Shaferapproacharemostlyhigherthantheclassification

ratesof thedecision-treemethod.

Data RBF 3-NN 5-NN
t p t p t p

Letters 9.28 3.53e−
10

13.60 4.12e−
14

15.04 3.14e−
15

Digits 4.80 9.70e−
4

3.77 0.0044 3.27 0.0096

COIL-
20

4.70 8.34e−
6

1.61 0.1181 2.53 0.0174

Table3. Resultsof thecorrectedt-testfor thedifferentdatasetson thetest
datacomparingtheDempster-Shafer(DS)methodandthedecisiontree

method(DT) for theradialbasisfunctionnetwork (RBF) andfuzzy
k-nearestneighbourclassifier(k-NN) onautomaticallygenerated

hierarchies.Thetablegivesthep-valuesaswell asthet-value.Thet-tests
indicatesthattheevidencetheoreticapproachoutperformsthedecisiontree

approachsignificantly.

Data RBF 3-NN 5-NN
t p t p t p

Letters 9.93 3.78e−
6

14.69 1.35e−
7

11.79 8.97e−
7

Digits 2.09 0.1050 3.53 0.0242 2.03 0.1124
COIL-
20

1.25 0.2191 0.99 0.33 −0.10 0.92

Table4. Resultsof thecorrectedt-testfor thedifferentdatasetson thetest
datacomparingtheDempster-Shafer(DS)methodandthedecisiontree

method(DT) for theradialbasisfunctionnetwork (RBF) andfuzzy
k-nearestneighbourclassifier(k-NN) onmanuallygeneratedhierarchies.

Thetablegivesthep-valuesaswell asthet-value.Thet-testsindicatethatno
significantdifferencesbetweentheclassificationresultsof thetwo different

methodscanbeobservedfor all datasets.
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Figure5. Classificationratesfor thethreedatasets(letters,digits,
COIL-20)on thetestdatafor theevidencebased(DS)andthe

decision-tree-like (DT) approachon theautomaticallygeneratedhierarchies.
As classifierradialbasisfunctionnetworkswereused.Theboxplotsaswell
astheerrorbarsindicatethatDempster-Shafermethodsperformsbetterthan

thedecisiontreemethodonall threedatasets.

A major drawbackof the decision-tree-like evaluationmethodis
themissing possibility to lateron correctmisclassificationsthatoc-
curedat higherlevelsof thehierarchy. Sincetheevidencebasedap-
proachconsidersall classifierswithin the hierarchy, misclassifica-
tionsat higherlevelsof thehierarchy canbecompensatedfor if the
decisionsmadeby the classifiersat the lower levels arecorrect.If
the misclassificationtakesplaceat a leaf node,this wrong decision
cannotbe correctedany more.The Dempster-Shaferapproachcan
alsonot compensatefor misclassificationswherethemajority of the
classifierssupportsthewrongdecision.

As all classifierswithin the hierarchy needto be evaluatedwhen
usingtheevidencetheoreticapproachtheadvantageof theavailabil-
ity of intermediateclassificationoutputsandtheresultingsavingsof
computationtime, which thedecision-tree-like methodprovides,do
notapply. However, theDempster-Shaferapproachprovidesnotonly
theresultingclassbut alsoa measurefor thedegreeof membership
of thepresentedsampleto eachclass.

With regardsto computationtime the decisiontreemethodout-
performsthe evidencetheoreticapproachas not all classifiersare
consideredandnoadditional calculationsarerequired.Thusin time-
critical applicationsthedecision-tree-like methodshouldpreferably

Figure6. Classificationratesfor thethreedatasets(letters,digits,
COIL-20)on thetestdatafor theevidencebased(DS)andthe

decision-tree-like (DT) approachon themanuallygeneratedhierarchies.As
classifierradialbasisfunctionnetworkswereused.Theboxplotsaswell as
theerrorbarsindicatethatDempster-Shafermethodsyieldsthesameor even
betterclassificationratesthanthedecisiontreemethodonall threedatasets.

beusedasit ratherquickly yieldsgoodclassification results.
Sincethe individual classifierswithin thehierarchy canbeevalu-

atedindependentlyof eachother, all could be evaluatedin parallel.
Thusthedifferencein timeonmulti-processormachinesis solelyde-
terminedby thecombinationrule which is only slightly more com-
plex for theevidence-based approach.If all classifiersare evaluated
in parallelthetimeaspectbecomeslesssignificant.

5 RELATED WORK

Dempster-Shaferevidencetheoryhasbeenappliedto classifierfu-
sionin numerousapplicationsfor patternrecognition.

Dempster-Shafertheorywasusedfor multiple classifierfusion in
[11]. This approachusesprototype-basedclassifiersandcalculates
belief functionsfrom distancemeasuresof differentclassifierswhich
are then combinedutilising Dempster-Shaferevidencetheory. As
distancemeasuresthe inter-class-distancesandintra-class-distances
wereused.The approachwasevaluatedin the field of online script
recognition.

In [20] classificationrates,misclassification ratesand rejection
rateswereusedto derive basicprobabilityassignments.Dempster’s
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combinationrule is appliedto combinetheevidences.Thisapproach
considersan extra classrepresentingunknown classesor ignorance
andit assignsbelief to singletonhypotheses,their complementand
to the universalpropositionΩ. The classifiersusedonly have class
labelsasoutputanddo not produceinformation that canbe inter-
pretedasclassmembershipsor othermeasurements.The approach
wasappliedto theproblemof recognisinghandwrittennumeralsand
scoredwell comparedto otherapproaches.

A technique closelyrelatedto decisiontemplates[10] is usedto
calculatedegreesof belief in [14]. The distancesbetweenthe clas-
sifier outputs for the sampleto be classifiedand the meanclas-
sifier outputscalculatedon the training samples are transformed
into basicprobability assignments.The so calculatedevidencesare
thencombinedusingtheorthogonalsum.Severalexperimentsin the
field of digits andcharacterrecognitionhave beenconductedto test
this methodandit wasalsopart of the experimentalcomparisonof
the decision templatesapproachfor classifier fusion to otherwell-
establishedmethodsin [10] whereit comparedfavourablywell.

In [1] this approach hasbeenvaried by using referenceoutputs
adaptedto the training data so that the overall meansquareerror is
minimisedinsteadof simply usingthemeanclassifieroutputs.

Demspter-Shafer evidence theory is used to combine the nor-
malisedoutputsof multiple classifiersandto rejectsamplesin case
of highly conflictinginformationin [19].

If at all, theseapproachesonly exploit the possibility to allocate
evidenceto non-atomichypothesesby assigningmassesto atomic
hypothesesθi andto their not necessarilyatomiccomplementθi or
to theframeof discernmentΩ. Theapproachpresentedin this paper
utilisesthis possibility asthe classifierhierarchy naturallyprovides
classificationresultsfor setsof hypotheses.

In [12] expertknowledgeaboutthedomainof application,namely
thedetectionof anti-personnelmines,is usedto calculatebasicprob-
ability assignmentsnotonly for atomichypothesesbut alsofor com-
positehypotheses. Hencethis approachis ratherspecificand less
generalthantheproposedapproach.

6 CONCLUSIONS

The proposed method of evidence based reasoning utilising
Dempster-Shaferevidencetheory has provenfunctional for thecom-
bination of expert knowledgeextractedfrom classifierhierarchies
andshowsencouraging results.Whenappliedto hierarchiesthathave
beencreatedautomaticallythe evidencetheoreticmethodto evalu-
atethehierarchy yields significantlybetterclassificationresultsthan
thesimpledecision-tree-likeapproach.If applied to manuallygener-
atedhierarchiesthe classificationresultsarenot significantlybetter
but the Dempster-Shaferapproachyields betteraverageclassifica-
tion rates.The alreadygoodclassificationresultsthat areachieved
with a simple decision-tree-like evaluationmethodcan be further
improved usinga morecomplex and in caseof parallelevaluation
only slightly moretime-consumingevidencebasedevaluationstrat-
egy. Thehierarchicalclassgroupinginherentto theclassifierhierar-
chy is apparentlysuitablefor beingutilisedwithin theframework of
theDempster-Shaferevidencetheoryandthenaturalcombinationof
symbolicandsub-symbolicinformationseems promising.
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Using activation spreading for ontology merging

Mi los law L. Frey 1

Abstract. An ontology in informational sciences is an ex-
plicit representation of a knowledge for a specific thematic
domain. Almost each ontology has a taxonomical structure
as a backbone, as it usually also describes relations between
classes of objects. The paper at hand presents preliminary
investigations of an automatic, activation spreading based,
procedure that expands and also joins two taxonomies. Thus,
it contributes also to ontology merging. The method to merge
two taxonomies, which exploits a hybrid transfer architecture,
is described and illustrated by an example.

1 INTRODUCTION

Knowledge representation by an ontology is one of the most
informative ways to illustrate dependencies and relations
among objects. One of the relations, actually one of the most
important ones, is the subsumption relation, called ISA. The
structure which this relation describes is a taxonomy. It usu-
ally underlies the more sophisticated ontological complex.

In philosophy, the Ontology is the systematic account of the
Being as such. However, in computational sciences, it is not
possible to represent all objects and every relation between
them due to limited storage and computational capacities.
Thus, these ontologies represent knowledge in declarative for-
malism, and are limited to so-called thematic domains.

The small domain-oriented ontologies are usually not
enough to describe phenomena spanning over many knowl-
edge domains. One of the possibilities to overcome this disabil-
ity is to merge more ontologies within one construction. Al-
though there exist some successful tools and methods for on-
tology merging like PROMPT (11), ONION (10) or MOMIS
(1), none of them operates in a “network manner”. In con-
trast, the here proposed method of taxonomy merging is in
the connectionist tradition and uses connectionist methods.
These methods allow to exploit the most important feature
of connectionist systems, namely generalization. What’s more,
generalization even enhances the represented knowledge dur-
ing the merging process.

2 FROM ONTOLOGY TO NETWORK

An ontology usually contains many different types of relations
among stored items. The key relation, however, is the sub-
sumption relation, ISA. It constitutes a hierarchical build-up
of an ontology, and sets a taxonomical structure as its back-
bone. Indeed, most ontologies are based on such a hierarchy
of concepts, and as such, can be regarded also as a taxonomy.

1 FGAN - FKIE - ITF, Neuenahrer Straße 20, D-53343 Wachtberg,
Germany, e-mail: m.frey@fgan.de

Coming out from this assumption, in the following, I will
focus on the subsumption hierarchy and the ISA relationship,
which constitutes class–superclass structure. The procedure
described below bases on the inheritance property in the tax-
onomy.

In the following, the term “taxonomy” will not be used ex-

actly in a formal way, but in order to describe a network of
nodes, characterized by sets of features and organized into
hierarchical structure. This structure corresponds to the sub-
sumption relation.

According to the “definition” above, a taxonomy is a con-
nectionist network. It is a network of nodes connected with
weighted links. Within this network, a spreading activation
mechanism is implemented which serves as a mean to trans-
port information from one node to another. The network used
here is a spreading activation localist connectionist network
in the tradition of McClelland & Rumelhart (8) and Dell (2).
Each node has its own label and its own independent meaning.
Moreover, the network itself has the shape of the taxonomy
in question.

Typically, however, localist connectionism is used for mod-
eling behaviour, whereas for modeling learning, distributed
connectionism is preferred (cf. 5). The method presented here
modifies the structure of the net and thus makes the system
learnable.

From the data representation point of view, the network de-
scribed in this paper is anchored in the class of hybrid transfer

architectures (16). The network is created with use of symbolic
data, then the processing is performed within a connectionist
architecture, and – in the end – new symbolic rules, stored in
connection weights, can be extracted from the final network.

3 NETWORK’S SET-UP AND
OPERATION

The unique internal architecture of a node used to build the
network used here as well as the types and nature of con-
nections between them are presented in this section. The op-
erational idea of this network is slightly similar to the idea
of KBANN (15). However, unlike in KBANN, where two in-
dependent algorithms (rules-to-network translation and re-
finement) exist, the here presented method bases on a sin-
gle algorithm. This algorithm first constructs a network from
symbolic definitions of items and then builds a hierarchical
structure, complemented by knowledge discovered by gener-
alization from the data available in the symbolic definitions.
The analysis is, however, based on connectionist paradigm.
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3.1 Nodes

The working principle for a node used in the presented net-
work is inspired by the fact, that a biological neuron can per-
form virtually any operation on the input signal (6; 7; 9).
(It must be noted, however, that this biological inspiration
does not imply biological plausibility!) Due to a complex in-
ternal structure, a node processes the input signal differently
with respect to its source. The internal structure of a node is
sketched in the figure 1. In the following, the signal processing
within a node is outlined.

from
parent classes

from
child classes

WINNER
TAKE
ALL

activation
buffer

squashing
(threshold)
function

to
child classes

to
parent classes

Figure 1. Internal structure of a node.

3.1.1 Signals from parent nodes

Signals coming from parent nodes, that is nodes placed higher
in the hierarchy of concepts, are processed in a way similar
to calculating a distance in the multi-dimensional space. This
multi-dimensional space is defined by incoming connections:
their number sets the number of dimensions. Additionally,
the weights of those connections set up a point in this phase
space. The node calculates the Euclidean distance between
the point representing the incoming signal (defined by acti-
vations of its parent nodes) and the point set up by weight
values of connections coming into the node in question. The
final activation function calculates the activation coming from
parent nodes basing on current input signal but also takes into
account the node’s previous activation (this is represented by
the reciprocal dotted link from activation buffer in figure 1.)

Thus, a difference between the incoming signal and the sig-
nal to which a node is most sensitive to results. It is modified
by the node’s previous activation.

3.1.2 Signals from child nodes

Signals from child nodes, that is nodes placed lower in the
hierarchy of concepts, are calculated simply as a weighted
mean of child nodes’ activations. Connections strengths are
used as weights.

3.1.3 Final activation function.

The final value of activation is a result of a winner-take-all
process in which the activation parts coming from parent and
child nodes compete. By analogy to the incoming signals, fur-
ther activation flow is different for signals flowing to feature
nodes or class nodes. For connections going in the direction
of class nodes a squashing function is used to keep the final
value smaller than 1.0. On the other hand, for connections
going in the direction of feature nodes, a threshold function
applies.

3.2 Connections

Nodes are connected by symmetric, weighted links. They
come in two flavors: as excitatory or inhibitory ones. Exci-
tatory connections form the structure of the network (taxon-
omy). The task of inhibitory connections is twofold (cf. 13).
On the one hand, they prevent so called “overheating”, the
uncontrolled raise of activation values in the network’s nodes.
On the other hand, they enhance the contrast between nodes
that do not belong to the same hierarchy branch.

3.3 Learning

The presented network is a dynamic, constructivist (12) sys-
tem, designed to evolve along with new data coming from the
environment. Such a system must have the ability to learn.
In order to accomplish this challenge, it makes use of three
standard types of learning (14).

• Rote learning is used to simply store input data in the net-
work’s structure. This method is comparable to the long-
term memory.

• Connection weight changes: Changes of connection weights
are one of the aspects of the network’s dynamics, they shape
the working structure of the network: the taxonomy itself.

• Restructuring (by creating nodes and connections) is an-
other dynamical process in the development of a taxonomy.
The newly added nodes denote taxonomy classes.

3.4 Storing the data

In the first step the presented data is memorized only (stored).
This is done by rote learning. Because of the local character-
istics of the used data representation, the network must be
expanded to store new knowledge. Thus, for each dataset,
feature nodes are created when necessary. Additionally, class
nodes are created denoting the respective set of all co-
occurring features. Between class nodes and feature nodes ex-
citatory connections are created. Their weights correspond to
the values of respective features.

3.5 Creating hierarchy

Based on the data stored in already created feature and class
nodes, the hierarchy is created. The hierarchy developed in
this phase of learning reflects the relations among items only
as far as provided explicitly by the input data. One can as-
sume that in most cases the structure of the network gained
after this step is not the final hierarchy.

During the hierarchy build up, the network undergoes the
following procedure. For each pair of class nodes, both nodes
are subsequentially activated. The activation is spread to the
feature node layer, and the activation patterns are compared.
If one of the nodes generates an activation pattern comprised
in the other one’s pattern, it is assumed to be its superclass.
This principle bases on the simple assumption that a subclass
contains all features of its superclass and at least one more, a
distinctive one.

2
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3.5.1 Network pruning

The by now described steps of creating a taxonomy lead to
a network which usually contains superfluous excitatory con-
nections that do not represent direct class – superclass rela-
tions. Because the hierarchy creation algorithm discovers only
the inclusiveness relations of sets of features, it is the case that
all subcategories are linked to the main category even if there
are other levels of specifications between.

The superfluous connections are removed by an introspec-
tive process. This process analyzes the activation flow be-
tween two nodes and compares the activation values in all
node pairs. The comparison drives the decision made whether
two nodes remain in direct class – superclass relation or not.
Roughly speaking, nodes are assumed to lie on the adjacent
taxonomical levels when the activation in the subordinate
node comes only from the node representing a superclass. Sub-
sequently inhibitory connections are introduced to enhance
differences between exemplars presented to the system.

3.5.2 Discovery

The network constitutes so far the representation of raw facts
known from input data only. This representation is structured
as far as it is provided by this data. That means that relations
between classes are known only if they result directly from the
definitions.

However, usually more information can be drawn from the
underlying data. The discovery procedure is another intro-
spective process which aims at the improvement of the exist-
ing network. The process attempts to discover parts of the hi-
erarchy which were not provided explicitly by analyzing pairs
of class nodes. If the features for two or more classes overlap
(with respect to their presence and value) they form a de-
scription of another class which is assumed to be a superclass
for those currently being analyzed.

The very final step in the procedure of creating a taxonomy
is to clean the network by removing superfluous connections
which could have emerged during the discovery phase. The
resulting connectionist system reflects the taxonomical struc-
ture of the data as far as it could be discovered on the base
of the delivered data. Learning is done and the network can
be used for “production” purposes.

The so created network is able to generalize, to categorize
and to model categories learning. In addition, it displays the
cognitive properties like fuzzy categorization, asymmetric cat-
egory learning, and priming (see 4).

4 TAXONOMY MERGING AND
COMPLETION

According to the ontology merging definition (3), one can de-
fine a taxonomy merging as a procedure of blending two or
more taxonomies into a single one. In this paper, merging
of only two taxonomies will be regarded for simplicity. This
procedure can be, however, expanded for a case of unlimited
taxonomies number by consecutive adding new taxonomies to
the result of previous merging process.

There are two common ways of merging a taxonomy: union
and intersection. The approach presented here is a union
method, that means the resulting taxonomy is the union of

all entities in both taxonomies. There is a main problem with
merging taxonomies (and ontologies). Objects may be repre-
sented differently. In the following section it will be described
how this problem can be tackled at least partially within the
paradigm at hand.

Taxonomy merging can be regarded as taxonomy comple-
tion. In this case, there exists some “main” taxonomy, which
is being complemented by the information from the other one.
The most important assumption here is that the complement
taxonomies have no node, which stands higher in the hierar-
chy of concepts than a root node of the “main” taxonomy.
In other words, the root of “main” taxonomy must remain a
root node after merging procedure.

4.1 Knowledge representation

Each entity in a taxonomy is, in our case, represented by a
single node in a network. Each node in a hierarchy is char-
acterized by a set of features, which in turn, are represented
by nodes in the feature layer. The feature set originates from
symbolic input data, namely from symbolic “definitions”. An
artificial example for two definition sets is given in table 1. It
will be used to illustrate the merging mechanism.

item features
A root
B root f11
D root f12 f21
H root f12 f22 f32

item features
C root f12
G root f12 f22 f31
F root f12 f23

Table 1. The example sets of definitions

Relations between two entities as well as between entities
and features are defined by weighted links. There are two
types of links: excitatory and inhibitory ones. The excita-
tory connections form a taxonomical structure of the network
and connect class nodes to feature nodes, while the inhibitory
edges serve for enhancing the differences among both single
nodes and branches of the represented hierarchy.

4.2 Representation assumption

The problem of different representations of the same concepts
in different taxonomies is simplified as follows: While all con-
cepts are described by a label and a set of features, we assume
that:

• in case of nodes with the same label, the concepts repre-
sented by those nodes are identical, and

• in case of nodes with different labels, the similarity and
relation between two concepts in two different hierarchies
will be derived from the analysis of features which describe
those concepts. In particular, nodes with the same set of
features are regarded to represent the same concept even if
they have different labels.

3
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a) taxonomy t1

feature layer

root

A

B
f12
root

D H

f11 f12f21 f22f32

b) taxonomy t2

feature layer

f12

C

F G

root f22 f31f23

Figure 2. Taxonomies used in the merge example: figure a)
corresponds to t1 and b) to t2.

4.3 Method of merging

We start from the situation where there exist two taxonomies,
which are regarded to be parts of a bigger hierarchy. This
is expressed by either at least one common node within the
two taxonomies (a node with the same label) or by common
features in the nodes’ description. Additionally (as mentioned
above), it is known, which one of those taxonomies contains a
root node for the hierarchy which has to result from merging.

Merging runs in three main steps: a) searching for features
and completing the feature set, b) joining taxonomies, and c)
restructuring and pruning. For a descriptional purposes, let us
illustrate the merging two taxonomies by an artificial exam-
ple. The example shows the process of including a taxonomy
called t2 into a taxonomy t1 (figures 2a and 2b respectively).
(The structure of both taxonomies is derived from the data
presented in the table 1.) In the figures, the feature layer is
separated from the nodes which constitute the “working” part
of a network. Among the latter nodes, the rectangle ones rep-
resent nodes which had been defined explicitly in the input
data, and the ellipsoid ones those, which had been discovered

during creating a network.

4.3.1 Searching for features and completing feature set

The aim of this step is to find and complete the set of fea-
tures that describe nodes in both taxonomies. It may be the
case, that some features are present only in one taxonomy, al-
though they refer in fact to entities in both hierarchies. This
is motivated by the fact that the network, which here repre-
sents a taxonomy, represents a class of definitional networks,
that is networks which are based on definitions (here a defini-
tion is identified with a set of features connected to a node).
Since definitions are true by definition, the information in the
network is assumed to be necessarily true. Thus, if nodes rep-
resenting the same concepts in two taxonomies have different
sets of features, they must be unified.

Of course, the procedure of completing features must be
performed with caution: it is assumed that the feature of a
given node found in the other taxonomy are included only for
nodes from the taxonomy in question which are subnodes of
the currently processed one.

The procedure starts with finding two most similar nodes.
There are two main cases: taxonomies have nodes with the
same label or they have not. In the first case, the task is clear,
and a node with corresponding label is chosen. In the second
case, the method is as follows. The features corresponding
to a currently processed node in the taxonomy t2 are being
extracted, and corresponding features in the taxonomy t1 are
being activated. Consequently, the activation is being spread
over the whole network. Finally, the winner-take-all procedure
is performed, which chooses the most similar node.

In the following, the winning node is activated and the acti-
vation is spread into the features level. The activated features
are being connected to the currently processed node from t2

along with features which have already been present in t2.
The above procedure is repeated for each node from the

taxonomy t2. In all consecutive steps, nodes from the taxon-
omy t2 which already have connection to the feature nodes
in the taxonomy t1 are not taken into account.

4.3.2 Joining

After the previous procedure is repeated for all nodes from the
taxonomy t2, the networks are joined through the feature
level. An example is illustrated in figure 3a), where grayed
nodes denote nodes incorporated from the t2 taxonomy, and
the black node is a node which is already present in the t1

taxonomy, but which got its label from the t2 taxonomy.
On this stage, the “new” nodes are not yet integrated into

the taxonomy t1 itself. To regain the enhanced hierarchical
structure, the restructuring process is used.

4.3.3 Restructuring and pruning

The restructuring process serves as a mean to create the tax-
onomical structure out from the set of nodes connected to the
features layer.

During the restructuring process at first a “raw” taxonomy
is created, which contains many connections between not ad-
jacent layers (cf. figure 3b). Moreover, it is also possible, that
again new nodes are discovered, which were not present in

4
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a) b) c)
joining taxonomies by feature sharing restructuring pruning

feature layer
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Figure 3. Consecutive steps in the connectionist completion of a taxonomy. See sections 4.3.1 to 4.3.3 for description. (In figures b)
and c) the feature level is hidden for readability.)

either from merged taxonomies. Such a node can be seen in
figure 3b) and is emphasized with the gray filling.

Not all connections do reflect desired hierarchical depen-
dencies among nodes. The superfluous ones need to be re-
moved. The removal is performed by the introspective pro-
cess (see section 3.5.1) and leads to the clean taxonomical
structure (figure 3c).

5 SUMMARY

The paper at hand presents preliminary investigations on a
connectionist method for taxonomy merging. The method for
completing one taxonomy with information contained in an-
other was presented and illustrated with an example. The
method uses the activation spreading mechanism to first join
taxonomies by features sharing, and then to perform an in-
trospective process of restructuring in order to discover even
more hierarchical information brought with the new taxon-
omy.

The most important limitation of the presented method
is that it must be known which of two joined taxonomies
contains the root node for the taxonomy which results from
merging. However, even on this stage of development it can be
used for completing taxonomies with new information about
hierarchical dependencies in a given thematic domain.

The further development of the connectionist method for
taxonomy merging must include discovering the way to make
the method symmetrical, that is user should not need to know
which from starting taxonomies contains the root of resulting
one. This will allow connectionist systems to fully contribute
into taxonomy and ontology merging.
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On the capacityof unsupervisedrecursiveneural
networks for symbolprocessing

Barbara Hammer 1 and NicolasNeubauer2

Abstract. A varietyof unsupervisedneuralmodelsfor time series
processinghasrecentlybeenproposed,wherebya large numberof
modelscanbederivedfrom acommondynamicequationwhichalso
generalizesstandardsupervisedrecursive networks. The key point
concernsthechoiceof representationof thetemporalcontext. Inter-
estingly, differentchoicesof thecontext leadto differentmodelca-
pacitieswhichcanbecharacterizedin termsof classicalsymbolpro-
cessingsystems.In this contribution,we give asystematicoverview
aboutexisting resultsandweproveseveral new equivalences.

1 INTRODUCTION

Timeconstitutesanubiquiteouscharacteristicof naturalsignalssuch
as sensorstreamsor language.When processingsuchsignals,hu-
manspossessremarkablecapabilitieswith respecttoaccuracy, speed,
noisetolerance,adaptivity andgeneralizationability for new stim-
uli. Self-organizationplays a major role to achieve this capacity.
As demonstratedin numerousapplications [13, 16], self-organizing
principlesallow thedevelopmentof faithful topographicrepresenta-
tions leadingto clustersof givendata,basedon which anextraction
of relevantinformationandsupervisedor unsupervisedpostprocess-
ing is easilypossible.However, popularself-organizingsystemsare
restrictedto standardvectorialdata[16], andthecapacityof exten-
sionsof thebasicmodelsto timesignalsis oftenlimited [3, 15].

In the last years,several complex unsupervisedmodelsfor time-
seriesprocessinghave beenproposed[1]. In principle,onecandis-
tinguishthefollowing possibilitiesto dealwith timesignals:

1. fixedlengthtimewindowsasusede.g.in [18, 27];
2. specificsequencemetrics,e.g.operatorsor the edit distance[5,

16, 17,28]; thereby, adaptationmightbebatchor online;
3. statisticalmodelingincorporatingappropriategenerative models

for sequencessuchasproposedin [2, 32];
4. mappingof temporaldependenciesto spatialcorrelation,e.g.as

traveling wave signalsor potentiallytrainedtemporallyactivated
lateralinteractions[4, 23,35];

5. recurrentprocessingof the time signals and recurrentwinner
computationbasedon the currentsignalandprevious activation
[3, 6, 11, 12, 15, 29, 30, 33,34]

These models have been tested in different application areas.
Thereby, the successdepends heavily on the modelusedin the re-
spective application,andtheprincipledsuitability of theapproaches

1 Clausthal University of Technology, Germany, email: hammer@in.tu-
clausthal.de

2 Institute for Neural InformationProcessing,TechnicalUniversity Berlin,
email:neubauer@cs.tu-berlin.de

is notyetunderstood.Therefore,anexacttheoreticalcharacterization
of thecapabilityof thechoiceswouldbehighly desirable.

The Chomsky-hierarchy constitutesa well establishedspecifica-
tion of symbolictime-processingmodels.Interestingly, thereexists
anexactcharacterizationof classicalsupervisedrecursiveneuralnet-
worksin termsof theChomsky hierarchy whichrelatesconnectionist
modelsto classicalsymbol-processingmodels:unrestrictedsuper-
visedrecurrentneural networks cansimulatenon-uniform Boolean
circuits (but in exponentialtime) [24]. Weightsrestrictedto ratio-
nal numberslead to Turing machines(with polynomial simulation
delay)[25]. Theseresultshavebeenprovedfor thesemilinearactiva-
tion function.For thestandardsigmoidal,Turing universality(in ex-
ponentialtime) hasbeenshown in [14]. If thesimulationis affected
by noise,recurrentneuralnetworksareequivalentto finite automata
[19, 22], or even definite memorymachines,if the supportof the
noiseis unlimited (e.g.Gaussiannoise)[20]. The samerestriction
appliesto recursiveneuralnetworkswith smallweights[10].

Theaimof thiscontribution is to give asystematicoverview about
the capacityof differentunsupervisedrecursive neuralnetworks in
termsof classicalsymbolicmodels.Thereby, we restrictto thecase
wheretheprocessingof timedependentsignalsis realizedby means
of a recursive dynamicsand a specificchoiceof the internal rep-
resentationof temporalcontext. This settingincludesthe dynamics
of standardsupervisedrecursive networks and, in addition,a vari-
etyof popularunsupervisedmodelsincludingthetemporalKohonen
map,recursive SOM, mergeSOM,SOM for structureddata,and,in
aslightvariation,alsotherecurrentSOM,SARDNET, andfeedback
SOM [3, 6, 11, 12, 15, 29, 30, 33,34]. It turns out that,depending
onthecontext choice,differentcapacitiesariserangingfrom definite
memorymachinesup to pushdown automata.

2 UNSUPERVISED RECURSIVE MODELS

Here,weintroducethegeneraldynamicequationof unsupervisedre-
cursive models.Theprincipledideais to processa giventime series
stepby step,startingfrom an initialization of thenetwork, whereby
in eachsteptheoutputof thelastcomputationstepis alsotakeninto
account.Thereby, themodelsdiffer in theexactrepresentationof the
importantinformationachievedin thelastcomputationstep.There-
spective relevantpart is storedin a specifictemporalcontext which
differsaccordingto thechosenmodel.A generalmathematicalfor-
mulationof thedynamicshasbeenintroducedin [9] asfollows: As-
sumetime serieswith entriesst ∈ R

n areconsidered.An unsuper-
visedneuralnetwork is givenby N neuronswith weightswi ∈ R

n

andcontext vectorsci ∈ R
r for eachneuroni. In eachstep,a dis-

tanceof thecurrententry of thetimeseriesfrom eachneuronis com-
puted,wherebythecontext is taken into account.This yieldsa vec-
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tor of N activationsdi(t) of neuroni at time stept. To formally
definehow this activation is computed, we need to fix a function
d which computesthe distanceof time seriesentriesand weights
wi, a function dr which computesthedistanceof temporalcontexts
andcontext vectorsof theneuronsci, anda representationfunction
rep : R

N → R
r which extractsthe temporalcontext of a compu-

tation ¿fromthe activation of all neurons.Then,the activation of a
neuroni at timestept is definedas

d̃i(t) = α · d(wi, st) + β · dr(c
i, Ct)

where
Ct = rep

“

d̃1(t − 1), . . . , d̃N (t − 1)
”

extractstherelevant informationfrom theactivationof theprevious
time step.This formulationemphasizestheimportanceof anappro-
priateinternalrepresentationof complex signalsby meansof a con-
text ci. Givena sequences of lengtht, we denoteby di(s) = di(t)
theresultobtainedafterprocessingthewhole sequences.

Often,d anddr aregiven by the euclideannorm, the L1, or the
maximumnorm. This generalformulationcoversa variety of con-
creteneuralmodelsproposedin the literature.In particular, it in-
cludessupervisedrecursive networks, by taking dr asdot product,
andrep assigmoidalfunction,asshown in [8]. The following con-
cretecontext choicesconstitutea representativecoverage:

TEMPORALKOHONENMAP(TKM)

ThetemporalKohonenmap(TKM) [3] performsleaky integrationof
thedistancesof eachneuron.Thedynamicscanbeobtainedby set-
ting r = N , rep = id, dr asthestandarddot product,andc

i asthe
i’ th unit vector, which realizesa ‘focus’ of neuroni on its own acti-
vation.The recurrentSOM [15] is similar in spirit, but it integrates
vectorsinsteadof distancesandrequiresa vectorial quantity d̃i(t).
In bothcases,theinternalcontext focuseson theneuronitself andit
neglectsthe activation of all otherneurons.This realizationis very
fastandit doesnotrequireadditionalmemoryfor thecontext storage
but, aswewill see,it is quiterestricted.

RECURSIVESOM(RecSOM)

The recursive SOM (RecSOM) [34] chooses r = N .
rep(x1, . . . , xN ) = (exp(−x1), . . . , exp(−xN )) is one-one,i.e.all
informationis kept.The feedbackSOM is similar to RecSOM with
respectto thecontext, however, the context integratesanadditional
leaky loop ontoitself [11]. In bothcases,the full informationavail-
ablein eachstepis takenascontext, no compressionor information
extractiontakesplace.As aconsequence,themodelis quitedemand-
ing with respectto additionalmemory, which is proportionalto N2,
N beingthenumberof neurons.

SOMFORSTRUCTUREDDATA (SOMSD)

The SOM for structureddata (SOMSD) [6] is restrictedto regu-
lar lattice structures.Denoteby L(i) the locationof neuroni in a
d-dimensionallattice. Thenr = d and rep(x1, . . . , xn) = L(i0)
wherei0 is the index of thewinnerargmini{xi}. This context rep-
resentationis only applicableto priorly fixed,thoughnotnecessarily
euclideanlattices.SOMSDfor a (fixed) hyperboliclattice hasbeen
proposedin [30]. Comparedto RecSOM, thememoryrequirements
aremuchsmaller.

MERGESOM(MSOM)

MSOM is obtainedfor r = n, dr = d, andrep asthemergedcon-
tent of context and weight of the winner in the previous step,i.e.
rep(x1, . . . , xN ) = α · wi + β · ci wherei = argmini{xi | i =
1, . . . , N}. It encodesthe temporalcontext in the weight spaceby
taking an appropriateaverageof the contentof the winner repre-
sentedby its weight wi and its context vectorci. MSOM can be
combinedwith arbitrarylatticestructures.

All modelsaretrainedby Hebbianlearningof theweightsand(ex-
ceptfor TKM) thecontext, wherebya latticestructurecanbe taken
into account.This neednot bea prior lattice,but data-optimumlat-
tices suchas the neuralgas learningrule can be taken as well for
all choicesexceptSOMSD[18]. It hasbeenshown in [8] that these
learningrulescanbeinterpretedasapproximative truncatedstochas-
tic gradient descentof a cost function similar to the standardvec-
tor case.The trainingmode,however, is not relevant for this article
whereweareinterestedin theprincipledcapacityof themodels.

First mathematicalresultsconcerningthe capacityof the models
havealreadybeenshown in [7, 8].

3 SYMBOL PROCESSING CAPABILITIES

We will considerthreesymbolprocessingmodelsof increasingca-
pacity: definite memorymachines,finite automata, and pushdown
automata.

Definition 3.1 AssumeΣ = {σ1, . . . , σ|Σ|} is a finite alphabetof
input symbols.DenotebyΣ∗ thesetof finitesequencesoverΣ.

A definitememorymachine(DMM) acceptsa language in Σ∗ if
and only if there exists a finite memorylength l such that for all
sequencess ∈ Σ∗ holds:s is acceptedif andonly if s|l is accepted
wheres|l is thetruncationof s to thelast l symbolsof thesequence.

A finite stateautomaton(FSA)consistsof a triple

(Σ, S, δ)

wherebyS = {sta1, . . . , sta|S|} is a setof statesandδ : S×Σ → S
is the transition function.The automatonacceptsa sequences =

(σi1 , . . . , σit
) ∈ Σ∗ iff δit(s) = sta|S|, wherebyδit is definedas

the recursiveapplicationof the transitionfunction δ to elementsof
S, startingfromtheinitial statesta1:

δit(s) =

(

sta1 if t = 0,

δ(δit(σi1 , . . . , σit−1
), σit

) if t > 0 .

A pushdown automaton(PDA) is givenby the7-tuple

(S, Σ, Γ, δ, sta, a, F )

whereS is thesetof states,Σ is a finitealphabetof inputcharacters,
Γ is a finitealphabetof stack characters,

δ ⊂ (S × (Σ ∪ ǫ) × Γ) × (S × Γ∗)

is thetransitionrelationmappingstate, input andtop stack element
triples to successorstateandstack replacement pairs,sta ∈ S is the
start state, a ∈ Γ∗ is the initial stack content,and F ∈ P(S) is
thesetof acceptedfinal states.If δ is a function,theautomatonis a
deterministicpush-downautomaton(DPDA).

We are interestedin the capabilityof unsupervisedmodelsto sim-
ulatesymbolprocessingmodelsasdefinedabove. For this purpose,
wespecifythefollowing notation:
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Definition 3.2 Assumea language in Σ∗ is acceptedby a symbol
processingmodelA. Thena recursiveself-organizingmapwith input
sequencesover R

|Σ| simulatesA with constantdelayD if the fol-

lowing holds: there existsa mappingenc : Σ → (Rdimenc)D and
a specifiedsetof neuronswith indicesI such that for everysequence
s in Σ∗ holds:

s is acceptedbyA ⇐⇒ argminj{dj(enc(s))} ∈ I

wherebyenc(s) denotesthecomponent-wiseapplicationof enc to
s.

This definition capturesthe intuition that a recursive unsupervised
modelwhich simulatesa symbolprocessingdynamicdistinguishes
betweenacceptedandnotacceptedwordsby thedynamicsof aspeci-
fiedsetof neuron.Sincenetworkscannotdirectlydealwith symbols,
thesemustbe encodedin a real-vector space.In addition,a linear
delay in the computationtime is allowed,which correspondsto an
embeddingof thesymbolsinto avectorspaceof higherdimensional-
ity, wherebyD recursivestepsarenecessaryto processanembedded
symbol.

Thecontext modelsof TKM, SOMSD,MSOM, andRecSOM dif-
fer considerably, thelatterrequiringmorespaceandtime for context
representation.As we will see,this correspondsto differentmodel
capacities.It hasbeenshown in [29] that theTKM cannotrepresent
all finite automatain theabove sense.However, we have thefollow-
ing result:

Theorem3.3 TheTKM cansimulateall definitememorymachines.

enc is chosenas unary encoding, i.e. dimenc = |Σ|. Opti-
mum weights for TKM, given a time seriess, are w

opt(t) =
Pt−1

i=0 βi
s

t−i/
Pt−1

i=0 βi [33] for β = (1−α). Assumethelengthof
adefinitememorymachineis l. Wecanchooseα closeto 1 suchthat
only thelastl symbolsof aseriesdeterminethewinner. Furthermore,
sincethetime seriesof lengthl arepairwisedifferent,we canfind α
suchthat theoptimumweightsarepairwisedifferent.A correspond-
ing TKM simulatesthe given definite memorymachinebecauseit
uniquelyrecognizeseverysequenceof lengthl. 2

Thus,the TKM is on the level of definitememorymachines,i.e.
it dealswith only a finite time window. However, comparedto an
explicit time window, it useslessmemory. It hasbeenshown in [7,
29] thatSOMSDandMSOM arestrictly morepowerful thanTKM
becausethey cansimulateevery finite automatonwith fixed delay,
wherebythe L1-norm is chosenasd anddr. Obviously, sincethe
internal statesof SOMSD and MSOM constitutea finite set,both
mechanismscansimulateat mostfinite automata.Thus,we find the
following result:

Theorem3.4 Thedynamicsof SOMSDand MSOMare equivalent
to finiteautomata.

For RecSOM,the situationis difficult becauseof the quite com-
plex context computation.On the onehand, an infinite reservoir is
available because of real-valued context activations; on the other
hand,however, informationis very easilyblurredbecauseno focus
in form of a winnercomputationtakesplace.Thetechnicalsituation
canbecomparedto thedifficulties to investigatethecapacityof su-
pervisedsigmoidalrecurrentnetworks[14]. It hasbeenshown in [31]
that RecSOMwith small weightsimplementat mostdefinitemem-
ory machinesi.e. RecSOMfocuseson a finite time window in this
case,similar to supervisedrecursive networks with small weights.
The reversedirection (the capacityto simulateDMMs with small

weights)is not obvious. Assumewe drop the exponentialfunction
andtake theidentity ascontext representation(which is of thesame
quality with respect to its informationcontent),thenonecaneasily
seethatRecSOMwith smallweightscan simulatedefinitememory
machines:wecanchoosetherepresentationof elementsin Σ assmall
values,thecontext of theneuronsaccordingto the(unique)represen-
tationsof all sequencesof length l, and(1 − α) smallenoughsuch
thatentriesin previousstepsdo not changethewinner. Similarly, for
generalweightsandtheoriginalRecSOMcontext, thesituationis not
yet clear. Herewe derive resultsfor several simplified (thoughstill
reasonable)context modelsof RecSOM.Thereby, weonly sketchthe
(ratherlengthy) proofs,whichcanbefound in [21].

3.1 FSA with RecSOM

Theorem3.5 Assumethecontext modelof RecSOMhastheform

rep(x1, . . . , xN ) = (
exp(−x1)

P

i exp(−xi)
, . . . ,

exp(−xN )
P

i exp(−xi)
),

i.e. it is a normalizedversion of the original RecSOMcontext. As-
sumethat theL2

2 norm is chosenasd anddr. Then,themodelcan
simulateall finiteautomata.

Proof The generalidea is taken from the FSA simulationwith
SOMSD[7].There,two setsof neuronsareintroduced:Thefirst con-
tainingoneneuronfor eachstate/inputcombination,thesecondcon-
tainingoneneuronfor eachstate.Theencodingfunctionis thende-
signedsuchthat in a first processingstep,oneof the neuronsfrom
thefirst setwins, dependingon thepreviousstatestai (asindicated
by the activity of the neuronsfrom the secondset)andthe current
inputσj . In a secondstep,oneof theneuronsfrom thesecondsetis
chosen.Theweightsof theseneuronscaneasilybeadaptedsuchthat
theneuronrepresentingstatestak wins iff stak = δ(stai, σj).

In thecurrentcasehowever, wehave to dealwith continuouscon-
text representationswithout explicit winner computation.This re-
quiresadditionalintermediatecomputations.Thefollowing defitions
will helpusaddresstheseissuesmoreprecisely:

Definition 3.6 Let f : R
N × R

dimenc→ R
N be the functionde-

scribing the map’s behaviourat a singlestep,as definedabove by
theupdaterule for d̃i(t):

f(d̃(t − 1), st) = d̃(t)

For a simulationwith constantdelayD, theresultof presentingσ to
a mapin context d̃(t) is givenby trans : R

N × Σ → R
N :

trans(d̃(t), σ) = f(...f(f(d̃(t),enc(σ)1),enc(σ)2), . . .enc(σ)D)

Thisfunctiondescribestherepeatedapplicationof f to itself andto
theD componentsofenc(σ), andequalsd̃(t+D). Oneapplication
of trans correspondsto a singletransitioncycle.

Definition 3.7 Let enc be an encoding function as introduced
above, dimenc= 1 andε > |Σ|.enc is a layeringencodingfunction
iff

enc(σj) = (j, 1 · ε, . . . , (D − 1) · ε).

Note that only the first componentof the encodingdependson the
inputσj . For a simulationassociatedwith a layering encoding func-
tion, sensibleinput weightswi areeither{1, . . . , |Σ|}, thepossible
valuesof thefirst component,or ε, . . . , (D − 1)ε, i.e., valuesof the
following components.
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Definition 3.8 The j-th layer of a map associatedwith a layering
encodingfunctionenc is the setLj of neurons such that wi is a
possiblevalueof thej-th componentof enc for all i ∈ Lj .

Sinceε > |Σ|, eachneuronbelongsto only onelayer. Like this, a
temporalstructureis inducedon the neurons:Eachneuronis only
activatedduringoneparticularstepof eachtransitioncycle 3.

So the examplevaguelydescribedabove can now be seenas a
two-layeredconstruction.If wetriedto simplyadoptthisstrategy for
RecSOM,we would see that the differencesbetweenthe intended
winnerneuron’s andotherneurons’activationswould soonbecome
sosimilar thatcorrectcomputationis no longerpossible.

Definition 3.9 Assumẽd ∈ R
n. Wecall d̃k the l-maximumin d̃ iff

d̃k = max{d̃1, . . . , d̃n} and d̃k ≥ l

For short,d̃k = maxl(d̃), k = argmaxl(d̃)
If d̃ is understoodas the activationvectorof a RecSOMand the

kth componentrefers to theneuron representing a statesta, wecall
d̃ a l-representationof sta, or short,d̃ ∈ staterepl(sta) .

Finally, we canformalize the needto maintaina certainquality of
thestaterepresentation.Weneedto setupourneuronsto ensurethat

∃l ∀d̃i ∈ staterepl(stai), σj ∈ Σ, stak = δ(stai, σj) :

trans(d̃i, σj) ∈ staterepl(stak)

In orderto createasensibleoutputof trans, theneuronsin thelast
layer need a clearenoughrepresentationof the currentinput/state-
tuple.The neuronsrepresentingthesetuples,however, needa clear
enoughstaterepresentationfrom thelastlayerto begin with. It turns
out thattherequiredqualitycanbeachievedby introducinga ’boost-
ing’ layer after eachof the actualcomputationlayers.Theselayers
containaboostingcopy for eachneuronfrom thepreviouslayer, each
tunedto the context componentrepresentingits predecessorwith a
boostingfactora and to the onesof the competingneuronsof the
previous layer with −a. The combination of a quadraticdistance
function andnormalizationcausesthis to amplify arbitrarily small
differencesin activation– for a → inf, this becomesa binaryfunc-
tion. For sufficiently large boostingfactors,eachlayer satisfiesthe
entrancerequirementsof the following one– in particular, the out-
put of the last layer satisfiesthe requirements of the first layer, for
the next step,which meansthat the above constraintson trans are
satisfied. 2

Thus, the capacityof (a slightly modified) RecSOMincludesat
leastfinite automata.A further modificationallows to prove even
more:

3.2 Deterministic PDA with RecSOM

Theorem3.10 Assumethe context model of RecSOM is modi-
fied to a winner-takes-almost-allcontext in the following way:
rep(x1, . . . , xn) = wta(lin(−x1), . . . ,lin(−xN )) where wta
setsall but themaximumcomponentsto 0, themaximumcomponents
arecopiedidentically, andlin(x) is thesemilinearactivation func-
tion which is 1 for x = 0, which is 0 for x ≥ 1, andwhich is linear in
between.AssumetheL1-normis chosen.ThenRecSOMcansimulate
all deterministicpushdownautomata.

3 In fact,all neuronsareslightly activatedduringeachstepin RecSOM- one
of theomitteddetailsof this proof is to give alower boundfor ε suchthat
the activation alwaysremainssmall enoughfor neuronsfrom supposedly
inactive layers
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Rows indicatelayers(from bottomup). Boxes indicateneurons;rows insideboxes
indicateinput weightsandcontext weights.Note that only context weightsreferring
to neuronsfrom previous layer aredisplayed;all othercontext weightsare0, asthe
activationof theseneuronsis closeto 0 aswell.

a andb areboostingfactorswhoselower boundsgrow in O(N log(N)). Here,a>
57, b> 11100 for maintaininga .75-representationof the currentstatein the last
layerandof thecurrentstate/inputtuplein thesecondlayer.

Figure1. A simulationfor asampleFSA ’No Ones’(Σ = {0, 1})
δ(sta, σ) = sta0 if (sta, σ) = (sta0, 0), δ(sta, σ) = sta1 otherwise

We show thatRecSOMcansimulate all determinsticpushdown au-
tomatawith a stackalphabetof size2 (Γ = {γ0, γ1}) – automata
with largerstackautomatacanthenbeemulated.

3.2.1 Encodingthestack

Thesimulation,on themostgenerallevel, followsanapproachsimi-
lar to thepreviousone:Neuronsarearrangedin layersto beactivated
sequentially, from state× input representationsto representationsof
thenext state.However, thelinearnatureof therepresentationfunc-
tion hereallows usto storeandretrieve informationin its value- we
will usethis to encodethecurrentstack.Concretely, active neurons
atany timestepalwayshave arepresentationof 1− 1

4
ξ, whereξ is a

fractalencodingof thestack,asfollows.
Wefirst convert thestringof stacksymbolsinto astringof natural

numbers(by replacingγi by their indicesi), and thenconvert this
sequenceinto a realnumber, following [26]:

Definition 3.11 f4(ǫ) = 0 f4(α) = α|4 =
P|α|

i=1
2αi+1

4i

In the following, let ξ be the interpretationof a stacksequence in
underf4. It follows thatξ ∈ [0, 1[ and

empty(s) ⇐⇒ ξ = 0
top(ξ)=γ0 ⇐⇒ ξ ∈ [ 1

4
, 1

2
[, top(ξ)=γ1 ⇐⇒ ξ ∈ [ 3

4
, 1[

push(ξ,γ0) = 1
4
ξ + 1

4
, push(ξ,γ1) = 1

4
ξ + 3

4

pop(ξ,γ0) = 4(ξ − 1
4
), pop(ξ,γ1) = 4(ξ − 3

4
)

This impliesfor theactivation1 − 1
4
ξ of theneurons:

• if thestackis empty, thewinner’s activationis 1
• if thestackis notempty, thewinner’s activationis from ] 1

2
, 7

8
]

• afterapush(γ0) operation,thenew stateshouldhave arepresenta-
tion of 1− 1

4
push(ξ, γ0) = 1− 1

4
( 1
4
ξ + 1

4
) = 15

16
− 1

16
ξ ∈] 7

8
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16
]

• afterapush(γ1) operation,it shouldbe
1 − 1

4
push(ξ, γ1) = 1 − 1

4
( 1
4
ξ + 3

4
) = 13

16
− 1

16
ξ ∈] 3

4
, 13

16
]

• afterapop(γ0) operation,it shouldbe
1 − 1

4
pop(ξ, γ0) = 1 − 1

4
(4(ξ − 1

4
)) = 5

4
− ξ ∈] 3

4
, 1]

• afterapop(γ1) operation,it shouldbe
1 − 1

4
pop(ξ, γ1) = 1 − 1

4
(4(ξ − 3

4
)) = 7

4
− ξ ∈] 3

4
, 1]
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3.2.2 Global structure

Sofar, we have fixedthat the informationwhich neuronis activated
representsthecurrentstateand/oracertainpoint in thecomputation,
while how much this neuronis activatedencodesthe stack.For the
proof, we henceneedto ensurethat for any state× stack× input
combination,the neuronrepresentingthe correctsuccessorstateis
activatedwith a valuerepresentingthecorrect,potentiallymodified
stack.

For expressingthismoreformally, let usturn theclassicdefinition
of PDA into anequivalentmoreimperativeone:

δ : (S × (Σ ∪ ǫ) × Γ) → (S × U)

whereU designatesthepossiblestackupdates:

U = {do nothing, push(γ0), push(γ1), pop(γ0), pop(γ1)},

or U = {·, +0, +1,−0,−1}, for short.Notethatsuccessandfailure
aretypically definedimplicitly; here,wemakethemexplicit asstates
and addthecorrespondingtransitions– turningδ intoatotal function.

If wedefinestaterep(stai, ξ) asthecontext representationwhere
theneuronrepresentingstai is active,with anactivationrepresenting
ξ, wecannow expresstheconditionfor correctsimulationas

d̃i = staterep(stai, ξ) → trans(d̃i, σj) = staterep(stak, f(ξ, u)),

where(stak, u) = δ(stai, σj , ξ) andf(ξ, u) the functionapplying
stackupdateu to stackξ. This is ensuredin four differentphases,
i.e., functionalassembliesof layers:

Separate makes the top stack element, so far implicit in the
activation-encodedstack,explicit by exposing’input/state/topel-
ement’ neurons.That is, starting with the first layer of neurons
encodingS × Σ – just like in the previous construction–, this
phasecreatesalayerencodingS×Σ×Γ in its neurons- theinput
spaceof thetransitionfunction.

Merge groupstheseneuronsby theoutputvaluesof theinput triples
they represent,i.e., by the intendedsuccessorstateandthe stack
update.So,startingfrom S × Σ × Γ, thisphaseendswith a layer
encodingasubsetof S × U – theimageof δ.

Execute appliesthestackupdate.This meansit startswith theout-
put layerof Merge, representingtuplesfrom S × U , andit ends
with a layer representingthesetuples,too – the activation,how-
ever, changedasto reflectthestackupdate.

Finalize makes surethereis only one neuronfinally representing
eachpossiblesuccessorstate.If thereareseveral δ outputtuples
(sta, u) with differentu but samesta, the last phasehasseveral
neuronsrepresentingthe new statesta. Here,all neuronsrepre-
sentingsta aremergedin a way that in the outputlayer, thereis
only onedefiniterepresentationfor eachstatesta – sothis phase
startsfrom S × U andendsin S.

3.2.3 Operators

So far, it may have remainedrathervaguehow the introducedcon-
ceptsrelateto an actualmap.We are now descendingto the final
layerof abstractionbeforegettingto thelevel of actualneurons:Op-
erators.As opposedto layersandphases(groupsof layers),operators
groupneuronsnot only ’vertically’ (over time, or processingsteps),
but also ’horizontally’ (by function). They always consistof three
layerswith thethird (’output’) layerbeingthefirst (’input’) layerof
thenext operator.
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16

, 17
16

, 17
16

, 17
16

)
. . .
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16
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Notethatthecontext weightsof theinputneuronarenot relevantfor theoperatorand
henceleft out. ’. . . ’ indicatestwo additionalidenticalneuronsin thatlayer.

Figure2. A Pushγ0
operator

Top is an operatorappliedto eachneuronof the first layer; it has
threeoutputneuronsrepresentinganempty, γ0 or γ1 topelement.

Or is appliedto two neurons– it endsin oneneuronwhich is active
if any of thetwo inputneuronswereactive.This is usedduringthe
Mergephase,repeatedlyappliedto differentneuronsrepresenting
input triples equivalent underδ, and during the Finalize phase,
appliedto all neuronsrepresentingthesamesuccessorstate.

Copy simply copiesneurons’activities from layer to layer. If one
setof input triples,e.g.,is larger thananotheroneduringMerge,
fewer operationsarerequiredfor thesmallerset– in this case,a
numberof Copy operatorsareinserted.

Pushγ yieldsanoutputneuronwith activation 15
16

− 1
16

ξ| 13
16

− 1
16

ξ
for γ = γ0|γ1 if its inputneuronwasactivewith activation1− 1

4
ξ.

Popγ yieldsanoutputneuronwith activation 5
4
− ξ| 7

4
− ξ for γ =

γ0|γ1 if its input neuronwasactive with activation1 − 1
4
ξ. Push

andPopareappliedduringtheExecutephaseexclusively.

3.2.4 Actualcomputation

At this point, we have to describehow the functionality described
abovecanbeachieved,on thelevel of actualneurons.

The key questionis how to divide andmultiply the stack repre-
sentationby four asneededfor the pushandpop operations– it is
notclearhow thisshouldbeachievedusingthesemilinearactivation
function.

Up to now, talking about’ theactive neuron’,we have, for easeof
formulation,neglectedthe fact thatwta actuallyallows for several
activeneurons,if they have thesame,maximal activation.

Herelies thesolution:We cancopy theactivation from a neuron
i in one layer to anotherneurono in the next layer by tuning o’s
context weightconcerningi to 1 (assumingβ = 1). If we have two
identicalneuronsi1 andi2, the distanceis doubledif o is tunedto
both.Accordingly, if we divide thenumberof representingneurons
i, distanceis divided.In orderto beableto divide,wesetthestandard
numberof identicalrepresentingneuronsto 4, by settingβ = 1

4
. So

having four identical i createsan exact copy in o, while a single i
resultsin a division by four, andtwo layersof eighti neuronsresult
in multiplicationby four. Seefigure2 for adraftedPushoperator.

It thenhasto beshown that

1. for eachoperator, the desiredoutput valuesare always created,
and

2. of differentoperatorsin thesamelayer, it is alwaysthecorrectone
thatwins, i.e. theuniqueonehaving active inputneurons.
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TKM MSOM SOMSD RecSOM
DMM yes yes yes yes(smallweights)
FSA no yes yes yes(normalizedcontext)
PDA no no no yes(winner-takes-almost-all)

Figure3. Summaryof thecapacityof thedifferentcontext models.

Oncetheseconditionsaresatisfied– asthey are,lin contributing to
thefirst,wta to thesecondone–, theglobalstructurecanbeshown
to work asintendedandthesimulationturns out to becorrect. 2

Thus,the overall picture asshown in Fig. 3 arises.Thereby, the
pictureconcernsthe principledrepresentationalcapability. It is not
clearwhetherstandardlearningschemessuch asHebbianlearning
leadto thesecategories,givensampledata.Firststepsinto theinves-
tigationof theattractorof concretelearningalgorithmscanbefound
in [7].

4 CONCLUSION

Unsupervisedrecursive networks constitute a promising self-
organizing learningschemewhich canaccountfor the topographic
organizationof temporalsignalsin neuralmaps.Whereassupervised
recursive networks arequite well understood,a variety of different
plausibleunsupervisedrecursivemodelsexists.

In this contribution, a systematiclink of unsupervised recursive
neuralmodelsandclassicalsymbol-processingmechanismshasbeen
investigated.Interestingly, thedifferentcontext choicesleadto quite
different capacitiesrangingfrom definite memorymachinesup to
pushdown automata.Thelatterareof particularinterestwhenexplor-
ing languagelearningsincefinite statemechanismscombinedwith
embeddedconstructions(e.g. embeddedsentences)arecoveredthis
way.
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Position Paper: Towards a dynamic assessmentof formal
languagecomplexity

Andr éGr üning1

Abstract. We review two conceptsthathave beensuggestedto as-
sessthecomplexity of a formal languagefrom thepointof view of a
recurrentneuralnetwork. While well-definedconceptsof complex-
ity exist for symboliccomputations,it is not clearhow they relateto
thedynamiccomplexity of a recurrentnetwork thatrepresentsapar-
ticular formal languagein thefrom of a dynamicalrecogniser. Thus
intrinsicdynamicalconceptsof symboliccomplexity areneeded.

1 INTRODUCTION

Artificial neuralsystems,be it in the guiseof simplerecurrentnet-
works,synfirechainsor associative networks,have in commonthat
they all are essentiallydynamicalsystems.When we speakabout
neuro-symbolicinteraction,we thus meanthe interactionbetween
symbolicsystemsanddynamicsystems.Sincethe basicproperties
of symbolic anddynamicalsystemsarequite different– symbolic
systemsfor examplehave i. adiscretestatespace,ii. asinglepower-
ful finite control,andiii. restrictedmemoryresourcesastheprinci-
pal restrictedresources,while dynamicalsystemshave i. a bounded
continuousstate space,ii. many simpleelementary processors,and
iii. restrictednumericprecisionasthe principal restrictedresource,
it canbe difficult to seehow a systemof the onekind ought to be
interpretedin termsof theother.

For symbolicsystemsthereexistsaseriesof measuresof complex-
ity, e.g. i. theChomsky hierarchy [5] thatclassifiesformal languages
accordingto the type of rewrite rules;ii. computationalcomplexity
theory that takes into accountresourcelimits [10]; and iii. finally
Kolmogorov or algorithmic complexity that formalisesthe concept
of ashortestprogramme[15].

In many casesinput andoutputof dynamicalsystemsneedto be
interpretedsymbolicallyandit is not clearhow the symboliccom-
plexity of this input andoutputrelatesto thedynamiccomplexity of
thedynamicalsystemin between.For example,it hasbeennotedthat
the – in symboliccomputation– big stepbetweencontext-free and
context-sensitiveprocessesis only a tiny onefor adynamicalsystem
[14, 20].

It hasalsobeennotedthateven thoughrecurrentnetworks arein
principleTuring-equivalent[9, 19] by explicit construction,a trained
dynamicalrepresentationof a formal languagediffers from hand-
codedsymbol-inspiredimplementations[24], the latter seemingly
‘unnatural’for anetwork.

Thuswe areinterestedin thepossibilitiesof anintrinsic dynamic
approachtowardsthe complexity of formal languagesbasedon dy-
namicalrecognisers [18, 17]. A dynamicalrecogniser(DR) (in the

1 Cognitive NeuroscienceSector, InternationalSchoolof AdvancedStudies
(ISAS) / ScuolaInternazionaleSuperioredi Studi Avanzati(SISSA),Via
Beirut2–4,I-34014Trieste,Italy, email:gruening@sissa.it

abstractsense) consistsof the following (leaving out technicalde-
tails): i. an input alphabetA, ii. a boundedcontinuousstatespace
X, iii. a systemof iteratedfunctions,suchthat for eachi ∈ A there
is oneFi : X 7→ X, iv. an acceptregion S ⊂ X, andv. a start
statex0 ∈ X. A DR processesa languageL over the alphabetA
asfollows: It startsin the startstate x0, thena string over A is in-
put symbolby symbolapplyingthe correspondingmapsFi on the
currentstatex. Thestringis acceptedwhenx lies in S after thelast
input.

The concreteexampleof a DR we have in mind is of coursea
recurrentnetwork, for which eachinput symbol causesanupdateof
thecurrentstate,andwhoseacceptregion is definedby thosestates
thatwill leadto anoutputactivationabove acertainthreshold.

2 THE CONSTRUCTION BASED APPROACH

Moore[17] considersDRsthatstemfrom neuralnetworks for which
only certainfunction classesareallowed asthe neurons’activation
functions,i. e. linear, piece-wiselinear, (piece-wise)polynomialor
transcendentfunctionsetc. DR so constructedfrom different func-
tion classesacceptdifferentformal languagesandthusdefineaclas-
sificationof formal languages. Theseclassesdo not agreewith the
Chomsky hierarchy.

Moore balancesthe power of the statespace dynamicsand the
shapeof the acceptregion in that the functions defining themstem
from thesameclass.Elseonecouldhave fairly trivial dynamicsand
put the computationcompletelyin the map that definesthe accept
region.

3 THE WEIGHT BASED APPROACH

Tabor[20] introducesa conceptof similarity of formal languagesin
thefollowing way:givenanetwork thatprocessesaformal language,
it is essentiallydefinedby its weight matrix (given the functional
classesof theactivationfunctionsarefixed).Slight variationsof the
weightswill leadto differentDRsprocessingdifferentlanguages.A
measurefor the similarity of two languagescan then be basedon
the(Euclidian)distanceof thecorrespondingweightmatrices.Tabor
givesanexampleof a one-parameterfamily of dynamicalrecognis-
ersthat acceptsa context-free language for a rationalweight anda
non-context-free languagefor an irrational one.Thustherearenon-
context-free languagesin any neighbourhoodof a context-free lan-
guage.Accordingly, thisconceptof similarity cutsacrosstheChom-
sky hierarchy, too.
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4 DRAWBACKS

While Moore’s dynamicalrecogniserlanguageclassesare techni-
cally andmathematicallysound, they arebasedon externalproper-
tiesof thefunctionsthatadynamicalsystemis constructedof, noton
dynamicalinvariantsof adynamicalsystemitself,whichwouldyield
a more intrinsic conceptof the dynamicsandits possiblesymbolic
interpretation.

In Tabor’s approach,completely different weight matricesmay
give rise to DRswith thesamelanguage.Thusproximity of weight
matricesdefinesproximity of languages.But determiningwhether
two languagepossesssimilar representationsin DRsseemsto bedif-
ficult. It would beusefulto have astandardor canonicaldynamical
implementationof aformal languagein aDR or neuralnetwork.Fur-
thermoreTaboroverlooksthepossibility that slight weight changes
can lead to completelydifferentdynamics(bifurcations)at critical
pointsandthusalsoto completelydifferentlanguages.

5 NEW DIRECTIONS

We do not have completesolutionsto thechallengesput forwardby
the above approaches,but we want to lay out what is desirableand
thuswhatfutureroadsof researchcouldbe.We would like to basea
dynamicalclassificationof formal languageon intrinsic invariantsof
dynamicsystems.

Entropieshave beenusedto classify dynamical systems[7, 6].
However thesearemuchtoocoarse-grainednotionsof similarity and
do not agreewith anintuitive notion of similarity of dynamicalsys-
tems[11]. However recentlytherehave beendevelopmentsin dy-
namicalsystemstheory thatmakeuseof fixedpoints,periodicpoints,
attractorsetc. (in short: invariantsets)and the limiting trajectories
betweenthem in a systematicfashionin orderto categorisedynam-
ical systems[12, 13, 16]. This approachavoids the useof external
propertiesof dynamical systemsunlikeMoore’s,andit alsoabstracts
away from concreteimplementations:dynamicalsystemsaresimi-
lar whenthey havesimilarattractorstructures.To ourknowledgethe
theoryhassofar beendevelopedfor autonomous(non-input driven)
dynamicalsystems(thereis generallylittle systematicliteratureon
iteratedfunctionsystemsthatareexternally driven[1, 21,22]). What
it doestell us though,is thatwe shouldfocuson fixedandperiodic
pointsor morecomplicatedinvariantsetsasthe importantbuilding
blocksof adynamicalsystemthatareentangledwith asystem’scom-
putationalcapabilities.

In the caseof regular languages,it is grantedthat a closedloop
in thefinite stateautomaton(FSA)correspondsto aninvariantsetof
the correspondingcombinationsof iteratedDR maps[4]. Sincefor
non-regular languagesa processingsystemhasto keeptrack of an
infinite numberof states,therewill be aninfinite number of invariant
setsfor combinationsof theiteratedmapsFi thatdefinethesystem.
For a DR languageanbn it is e.g. necessarythateachcombination
F m

b ◦ F m
a bethe identity mapon all statesrepresenting a sequence

of a inputs.Furthermore all known trainedor evolved network im-
plementationsof anbn usethedistanceto a (pair of) fixedpointsto
encodethenumberof a inputs[2, 3, 25]. For a stack-like language
wwr wherew is anarbitrarystringandwr its mirror-reverse,a dy-
namicalsystemforms muchmorecomplicatedattractors(of fractal
shape)thatneverthelesshave to be invariantundercertaincombina-
tionsof theinputmapsFi [8].

Theseobservationsseempromisingstartingpoints for an intrin-
sic theoryof dynamicalcomplexity. We hopeto have convincedthe
readerthatit is worth to think alongtheselines.
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An Approach to Language Understanding and
Contextual Disambiguation in Human-Robot Interaction

Heiner Markert and Günther Palm 1

Abstract. An approach to language understanding should be able

to handle ambiguities to a certain degree at all levels of processing.

We present a system based on several interacting associative memo-

ries that is able to understand simple statements or instructions and

to represent and resolve ambiguities at different levels. For example,

ambiguous input on the phoneme level leading to an ambiguous word

representation might be resolved later using contextual information

from the whole sentence or even from the whole sensory-motor sit-

uation. The system is implemented on a robot that is able to react

to simple command sentences like “bot show plum”. This requires

the robot to relate auditory sensory information to internal represen-

tations of the corresponding words, to associate the given sequence

of words with the complete command sentence and to relate the sen-

tence representation to objects sensed by the camera and to motor

actions required to point to the object. The system uses basic neural

mechanisms in a plausible global network architecture that is for-

mulated essentially in terms of cortical modules and their intracorti-

cal and corticocortical interconnections. The modules represent and

translate between different aspects of the same entities, e.g. auditory,

syntactical and semantical aspects of words or visual, auditory and

grasping related aspects of objects to achieve the required functional-

ity. Presently, the system can handle a few types of simple sentences

and a small vocabulary, but grammar and vocabulary can be extended

easily.

1 INTRODUCTION

We created a neurobiologically plausible neural network architecture

for understanding simple language and performing corresponding ac-

tions on a robot. The network consists of a large number of intercon-

nected modules, each containing a network of spiking neurons. The

modules represent different aspects of objects, e.g. sensory, visual,

auditory, motor, syntactical or semantical aspects, while the connec-

tions between the modules translate between the different aspects.

The network architecture is motivated by the idea of distributed cell

assemblies and associative memories [6, 3, 14].

The network is able to understand and to react to simple command

sentences. In order to demonstrate the functionality, we embedded it

into a simple robot scenario (see figure 1): A robot stands in front

of a white table. It receives spoken commands like “bot show plum”

and has to react accordingly. This involves understanding of the sen-

tence and analysing it with respect to a given grammar, extracting the

meaning of the command, relating the visual input from the camera

to object words in the sentence and finally triggering the right motor

commands to perform the requested action (see e.g. [5] for details).

1 University of Ulm, Germany, email: {hmarkert,palm}@neuro.
informatik.uni-ulm.de

Figure 1. The robot standing in front of a white table. Different objects are
laying on the table. The robot has to grasp or point to objects specified in

simple command sentences.

In this paper, we focus on the language processing part of the sys-

tem. The current implementation does not yet feature a complete

speech recognition system. Instead, the network gets input in form

of written phonetic pair representations, which could be generated

by standard Hidden Markov Model based speech recognition soft-

ware. The model is able to extract words from an input stream of

phonetic pairs and to grammatically analyse the resulting stream of

words with respect to a given regular grammar. The language model

is able to represent ambiguities on the single word level and to re-

solve them even some time after the ambiguous input arrived in the

system: If it is not possible to interpret a word or a given sequence of

phonetic pairs in a unique way, several alternatives can be kept until

enough context information from a broader context arrives to resolve

the ambiguity. For example, the sentence “bot lift bwall” with an am-

biguity between “ball” and “wall” can be resolved to “bot lift ball”

because a wall is not liftable. Here, the ambiguous input could have

been caused by an unclear pronunciation of the word “ball” that con-

fused the speech recognition unit.

2 NETWORK ARCHITECTURE

Figure 2 gives an overview of the architecture of the network used for

language understanding. Each box in the figure corresponds to one

cortical module and contains an auto-associative memory (see sec-

tion 3). The modules are interconnected to each other with Hebbian

learned binary hetero-associative connections.
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Figure 2. The network architecture of the language model. Each box
corresponds to a module of the network consisting of a spiking

auto-associative network. The top of the figure shows the word recognition
part consisting of three cortical modules (S1-S3) and three control modules
that give additional status information. The bottom part shows the language

understanding system which analyses the stream of words from the word
recognition network with respect to a regular grammar. It consists of 10

cortical modules (A1-A4, A5X) and two control modules. There are
additional thalamic activation modules in the whole network where only one
of them, the field “Learning” in the language understanding part, is shown.

The network consists of two parts, the word recognition network

(top of figure 2) and the language understanding network (bottom of

figure 2). The word recognition part, consisting of modules S1-S3

and several status modules, translates a sequence of phonetic pairs

into corresponding words. Area S1 receives single phonetic pairs e.g.

from a speech recognition software. Area S2 again represents pho-

netic pairs, but in contrast to S1 it is able to activate a superposition

of approximately 10 pairs. S2 is used to remember all phonetic pairs

that the system heard in the near past. S2 projects into S3, which

stores all words known by the system. The word that matches best to

the given phonetic pairs is activated (or a superposition, if more than

one word matches closely). There are additional control modules that

inhibit S2 and S3 if silence is heard (a new word starts) and measure

the quality of the word representation.

The language part, consisting of modules A1-A4, A5X and several

status modules, then analyses the output sequence of words from the

word recognition part with respect to a regular grammar. The mod-

ules A1-A3 serve as auditory input areas and represent auditory, syn-

tactical and semantical aspects of the input word.

The modules A4 and A5X mainly serve grammatical functions,

where A4 works as a sequence memory and represents the gram-

mar the system is able to understand. Areas A5X store the words

with respect to their grammatical role, i.e. they classify into subject,

predicate, attributes and objects of the sentence. Here, A5S holds the

subject, A5P the predicate, A5O1a an attribute, A5O1 the first ob-

ject, A5O2a an attribute to the second object and A5O2 the second

object of the sentence.

There are additional control modules in the language model that

give miscellaneous status information on the model. For a more de-

tailed description of the model see e.g. [8, 11].

The system is able to understand regular grammars. The current

implementation allows only for very simple sentence types, namely

“subject predicate object” sentences (SPO) and “subject predicate

adjective” sentences (SPA) and different versions of them. The fol-

lowing sentences are all valid and can be correctly understood by the

system:

“bot show plum”, “bot show green apple”, “where is plum?”,“this

is plum”, “this is green”,“wall is red”,“bot put apple plum”,“bot put

red plum yellow lemon”.

3 NEURAL ASSOCIATIVE MEMORY

Each module in our network is modelled with a variant of the so

called spike counter model of associative memory (see [9, 7]) which

is based on Willshaw’s binary associative memory [21]. The spike

counter model extends Willshaw’s model by a more sophisticated re-

trieval algorithm that allows in particular for much better pattern sep-

aration if the memory is addressed with a superposition of patterns.

Further extensions allow for automatic activation of a superposition

of patterns if the input is not uniquely addressing one of the stored

patterns and the memory is configured to allow ambiguous repre-

sentations (see section 4 for details). The spike counter model uses

spiking neurons and allows to measure spike time coincidences. We

have chosen Willshaw’s model as a basic system because it is a bi-

ologically plausible while still simple implementation of the idea of

cell assemblies.

In this paper, we use a rather technical implementation of the

model which still allows for fine measurement of spike timing and

especially of the temporal order of the spikes. The neurons are of

a simple integrate-and-fire type with reset. We further simplify cal-

culations by introducing global time steps that roughly correspond to

one time step within the binary Willshaw model. The global steps are

subdivided by a finer relative time scale that allows for exact repre-

sentation of spike times. In one global time step, each module calcu-

lates one complete pattern retrieval with respect to the relative time

scale. After the global step ended, the output activity of all modules

is propagated through the hetero-associative connections between the

modules, before the next global time step starts.

In one retrieval step, each neuron counts to how many address-

ing neurons it is connected (amount of input it receives) and this

influences the speed of growth of the neuron’s membrane potential.

During the retrieval, if a neuron spikes, the spike is fed back through

auto-associative connections and the membrane potential of the auto-

associatively connected neurons start growing faster, supporting the

pattern that has already started to become active. In addition to that,

neurons that are not auto-associatively connected to the neurons that

have already spiked are inhibited, which is realised by additional

spike counter variables. For more details, see [10, 7]. Each neuron is

allowed to spike at most twice per global step and the retrieval ends

as soon as no more neuron is able to spike. The algorithm necessar-

ily terminates, because at some point, either all neurons have already

emitted two spikes or the remaining ones are inhibited so strongly

that they are not going to spike anymore (i.e. they receive no more

input in the current global step).

For demonstration purposes we use a special way of displaying

neural activity in the system (see figure 3). Instead of showing neu-

ral activation directly, we display names of the patterns that match

best. In our architecture, all patterns that are stored in the associative

memories have names. After each global time step, the result of the

pattern retrieval is determined as shown in figure 3: In a first step, a

histogram that measures the overlap of the current neural activation

with each stored pattern is calculated. Then, the names of all patterns

that have a large enough overlap are displayed in the box represent-

ing the cortical module. There is a maximum number of patterns dis-

played so that displaying superpositions of many patterns does not
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Figure 3. From neural activation to pattern name display: In the left part,
an example neural activation pattern of one cortical module is shown. In the
middle, the overlap histogram over all stored patterns is calculated. Note that
each pattern has a name in our architecture. From the histogram, the name(s)

of the best matching patterns are determined and used for displaying the
neural activation in the module (right).

require too much processing time and space on the display.

4 DISAMBIGUATION

The model is able to represent and resolve ambiguous inputs, e.g.

the sentence “bot lift bwall” with an ambiguity between “ball” and

“wall” can be correctly understood as “bot lift ball”, because a wall

is not a liftable object. The model is also capable of representing

ambiguities until contextual information arriving later can be used

to resolve it. For example, the sentence “bot show/lift green wall”

with an artificial ambiguity between “show” and “lift” is correctly

understood as “bot show green wall” as soon as “wall” comes in,

because a wall is not liftable. Before “wall” is heard, a superposi-

tion of “lift” and “show” is kept in the corresponding module in the

language model (A5P).

In the following we will explain shortly how representing and re-

solving ambiguities works. For more details on the neuron model see

also [10].

Each cortical module has a special parameter α, the so called sep-

aration strength. When this parameter gets lower, the module allows

for superposition of several patterns, the lower the parameter is, the

more patterns can become active at the same time. If α is in a medium

range, only patterns which overlap can be active concurrently, while

even lower separation strength allows for arbitrary superpositions

of patterns. High separation strength forces the module to activate

one pattern at most and leads to a hard decision if the input is not

unique (it is a random decision if more than one pattern are addressed

equally strong and α is really high).

Furthermore, each module can measure the quality of the address

pattern, where the quality becomes high when exactly one pattern

is addressed strongly, while it becomes lower if several patterns are

addressed equally strong. The exact mechanisms for determining the

quality measure is quite complex. Roughly speaking, the module per-

forms a control retrieval with high separation strength to find out

which pattern is addressed strongest and compares the results with an

additional retrieval with the actual value of the separation strength.

In this two retrievals, the neurons are allowed to spike up to two

times each, and the second retrieval is cancelled shortly after the first

neuron emitted its second spike. The idea is the following: When ex-

actly one pattern is addressed strongly, the whole pattern will spike

twice before any other neuron, that is only driven by noise, can emit

a second spike. If however a superposition of patterns is addressed,

the overlap spikes twice before the other neurons can do so because

it gets the strongest input activation. If two disjoint patterns are ad-

dressed almost equally strong and the maximum value of the separa-

tion strength is not too high, a few neurons from both patterns will

spike in the second retrieval, leading to a high activation, which in

turn decreases the quality measure.

With a feedback connection from the quality measure to the sep-

aration strength parameter, the modules become able to automati-

cally decide whether they have to activate a superposition of several

patterns or if they can switch to a higher separation strength: If the

address pattern does not match a stored pattern uniquely, quality be-

comes lower, separation strength is decreased and a superposition be-

comes active. If on the other hand the separation strength is already

low, but the address matches precisely one of the stored patterns, the

activity in the second retrieval will be decreased, leading to a higher

quality measure which in turn increases separation strength. This in

turn will lead to even lower activity in the next retrieval, until sep-

aration strength becomes high enough to decide for the addressed

pattern and suppress the noise.

5 RESULTS

We have implemented the language understanding system on a Ac-

tivMedia PeopleBot robot platform. While the robotics part of the

software (object detection, motor control) runs on the PeopleBot’s

onboard-PC, the neural network for language understanding runs on

a separate PC and communicates with the robot via wireless LAN.

The current network involves about 26000 neurons in total and has a

Figure 4. The word recognition system after half of the word “bot” is
processed. The already processed phonetic pairs are activated as a

superposition in module S2. S3 already has some suggestions for matching
words active.

vocabulary of about 50 words. On a standard laptop machine (Pen-

tium 4M, 1.5GHz), the network needs 5 seconds to process the sen-

tence “bot show apple”, missing real time constraints by a factor

of about 5. Note that the language understanding part meets real

time constraints and can grammatically analyse a sentence faster than

one is able to speak it. In the word recognition part, however, each

phonetic pair currently requires three global processing steps which

slows down the system. Note that the word recognition part is work

in progress and we believe that a more efficient implementation on

a faster PC would suffice to meet real time constraints for the whole

architecture.

In the following, we will show in detail how the system processes

the sentence “bot lift bwall”, where the ambiguity between “ball”

and “wall” is already present in the phonetic inputs, i.e. we assume
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Figure 5. Top: The word recognition system after the word “bot” is
completely processed. S3 has a unique assembly activated, the

“Complete”-field has recognised that a complete word is understood and the
word quality is good, meaning that it was possible to uniquely decide for a
word that matches well with the list of phonetic pairs in S2. Bottom: The
language understanding system at the same time. The “bot” pattern has

already been transfered to module A1, the first input module in the sentence
layer.

Figure 6. The system after the word “lift” has completely been processed.
In the language understanding system (bottom), A5S represents the subject
of the sentence and A5P the predicate. In the word recognition system (top),
S2 still shows the superposition of all phonetic pairs representing the word

“lift”, while S3 has uniquely decided for the word “lift”. S1 is about to
receive a pair of two silence markers (“sil sil”) which causes the S2 and S3

areas to be inhibited as a new word is going to begin.

Figure 7. The system after the ambiguous input “bwall” has been
processed. S2 shows a superposition of the phonetic pairs that lead to the

ambiguous activation in S3. In S2, the more recent input pairs are at the top,
so the first recognised phonetic pair for “bwall” was “sil b” and the second
was “w ao”. The two pairs are not matching, which causes the ambiguity.

The pattern “bwall” already arrived in module A1 of the language
understanding system. The memory has activated a superposition of the

“ball” and “wall” assembly.

that the speech recogniser mixed up the “b” and “w” phonemes in

the beginning of the word “ball”. In figure 4, the state of the word

recognition system is shown after the first two phonetic pairs of the

word “bot” are processed. S2 shows a superposition of the two pairs,

where the older one is display at the bottom because it spikes later.

In S3, possible candidates for matching words become active. With

only two pairs in S2, all words beginning with “b aa” are possible,

hence, “bot” and “ball” show up in S3 (due to our limited vocabulary,

there are no other matching words). Figure 5 shows the system after

the word “bot” has been processed completely. The word recogni-

tion part shows a unique decision for “bot” in module S3, while the

language understanding system receives the input word “bot” in its

first input area A1. The additional status fields have recognised that

a complete word is understood (which is currently caused by detect-

ing a ”xx sil” pair which means that a silence period is starting) and

that the quality of the recognised word is good, i.e. that the system

was able to uniquely decide for the word “bot”. The field “Word-

Size” only switches between short and long words, which helps to

avoid confusion between long words and shorter words contained in

them, e.g. between “bot” and “bottom”. Whenever enough phonetic

pairs (more than 5) are detected in module S2, a long word is as-

sumed and all short words are inhibited, if a small word is expected,

all long words are inhibited. Otherwise, a superposition of “bot” and

“bottom” would always become active if “bot” is entered.

A few global steps later, the word “lift” has been processed com-

pletely (see figure 6). In the language understanding modules A5X,

the subject (“bot”) and predicate (“lift”) of the sentence are acti-

vated, while in the word recognition part, the superposition of pho-

netic pairs leading to “lift” is still visible. Figure 7 shows the system

after the ambiguous input “bwall” has been processed. S2 shows all

phonetic pairs that are responsible for the ambiguous state. The pairs

the system processed first (the ones displayed at the bottom of S2)
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Figure 8. The language understanding system after the “bwall”-pattern is
activated in A5O1.

Figure 9. Disambiguation starts to work in module A5O1. There is a weak
bidirectional connection between A5P and A5O1 relating verbs with

matching objects. When this connection starts to resolve the ambiguity, in a
first step, the “wall” assembly is eliminated and “ball” becomes the most
likely pattern. The other patterns showing up are other objects that can be

lifted, they become active due to the disambiguation connection from A5P to
A5O1, but they spike much later than the “ball” assembly. They will be

inhibited in a later time step when disambiguation is finished.

are “sil b”, “b w” and “w ao”, showing that the phonetic input is al-

ready ambiguous. The system realises that a unique decision is not

possible and activates a superposition of “ball” and “wall” in S3. The

ambiguous representation is then forwarded to the language under-

standing module, which shows the ambiguous pattern in its A1 mod-

ule. Several processing steps later, the superposition of ball and wall

becomes active in module A5O1 (see figure 8). Here, disambiguation

starts to take place via a weak bidirectional hetero-associative con-

nection from A5P to A5O1. The connection relates the verbs stored

in A5P with objects in A5O1 that the corresponding actions can be

performed with. One time step later, the connection starts to work

and the “wall” assembly is already inactive in A5O1 (see figure 9).

There are many other patterns showing up in A5O1. They are acti-

vated by the disambiguation connection from A5P and are all objects

that are liftable. Due to the ambiguity that has already been present

in A5O1, the module is currently allowing the activation of super-

positions of patterns (low separation strength). The liftable objects

get input from area A5P, and although the input is very weak, in the

current state of A5O1 it is enough to get the patterns activated. A

closer look at the spike timings shows however, that the “ball” pat-

tern spikes much earlier than all the other assemblies, meaning that

“ball” is the most likely interpretation of the superposition. A few

time steps later, the module A5O1 managed to completely resolve

the ambiguity (see figure 10). The liftable objects are similar to each

other, while wall and ball are completely different patterns. If similar

patterns (with larger overlap) are active, the quality of the retrieval

is better than in the case of two completely disjoint active patterns.

Thus, the quality increases as soon as the wall assembly is not active

anymore, leading to a slow increase of the separation strength. This

in turn deactivates the very weakly activated additional pattern and

resolves the ambiguity to the correct “ball” assembly.

Figure 10. A few time steps after the state shown in figure 9, the
ambiguity in the language model is completely resolved due to the context

information from the whole sentence.

6 DISCUSSION

We have presented a neurobiologically plausible neural network ar-

chitecture for understanding language, which is implemented in a

robotics context. The model is able to detect and represent ambigui-

ties on different levels of processing and to resolve them as soon as

enough context information becomes available.

Our architecture aims at large-scale cortical modelling which uses

the interaction of several cortical areas to achieve the understanding

of language and the organisation of appropriate responses to these

sentences. There are related approaches to brain modelling (see e.g.

the work of Arbib and others (e.g. [1, 2]) or the NOMAD project (e.g

[12])), but our system can better be understood in the context of a

larger model [5] that covers many cortical areas and integrates many

different tasks (e.g. language understanding, visual object recogni-

tion, visual attention and action planning). Most of the other systems

deal only with one or two of these aspects at a time but implement

them with a biologically more realistic neural network or focus on

learning from a naive initial state. Other approaches deal more specif-

ically with the interpretation or parsing of sentences (e.g. [4, 19, 13]),

but often without considering the possibility of embodiment.

A language understanding system like the one presented in this

paper generally has at least two difficult problems to solve: The first

one is to find out the correct sequence of spoken words from an input

stream of phonemes (or other primitive entities a speech recognition

software handles), the second one is to analyse the resulting stream

of words with respect to a given grammar. In both levels it is neces-

sary to be able to represent and resolve ambiguities: the input from

speech recognition software is error prone and even if there are no

errors in the input, unique decisions on the single word level without

contextual information from the whole sentence might not be possi-

ble (e.g.if two words can be concatenated to one longer word it might

not be possible to distinguish whether two single words or one long

word was spoken). These ambiguities might only be resolved in the

context of the whole sentence or might require an even broader con-

text. Thus the ambiguous state must not only be kept over time in one

of the processing levels, it must also be forwarded to the next level

in some cases.

In earlier work (see e.g. [5, 8, 10]) we have already shown that

resolving ambiguities with the help of contextual information and

keeping ambiguous states over time is possible with our architecture.

This paper now demonstrates that forwarding ambiguous states be-

tween several levels of processing is possible with our model. Our

previous work was operating on whole-word input, while the new

network presented here now implements two stages of sequence de-

tection: On the first level, sequences of phonemes are translated into

corresponding words. On this stage of processing, the restrictions

with respect to “grammar” in the sequence are not very strong, so
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we decided to chose a robust architecture that does not rely on gram-

matical information and is very fault tolerant. On the second level, a

sequence of words is detected and interpreted as a sentence. On this

level, grammatical restrictions become important which is reflected

by the more complex architecture in the language understanding part,

which is motivated by the theory of deterministic finite automata and

their representation with neural networks (see e.g. [11]).

Obviously, the system should be extended to cover a larger vo-

cabulary and more types of sentences. This will be done in future

extensions of our network. Extending the model only requires stor-

ing more items in the various associative memories. The current sys-

tem could handle a larger syntax and vocabulary (at least a factor of

three or four times). Further increase would require more neurons.

According to the theory of associative memory (see [15, 16, 17, 18]),

the storage space needed for the program will increase linearly with

the size of the task, whereas the number of neurons and even more

the computation time will increase less than linearly.
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Abstract. A real-world problem is addressed in this work using 
a novel approach belonging to the area of neural-symbolic systems. 
Specifically, we apply evolutionary techniques for the development 
of neural logic networks of arbitrary length and topology. The 
evolutionary algorithm consists of grammar guided genetic 
programming using cellular encoding for the representation of 
neural logic networks into population individuals. The application 
area is related to the classification of active sonar signals. Our aim 
is to demonstrate the capability  of the system to produce 
competitive to feedforward neural networks results, yet potentially 
interpretable. Our experiments show that the overall system is 
capable to generate arbitrarily connected and competitive evolved 
solutions for the active sonar target identification, leading 
potentially to knowledge extraction.  

1 INTRODUCTION  

Sonar has been used for submarine and mine detection, depth 
detection, commercial fishing, diving safety and communication at 
sea. It is a system that uses transmitted and reflected underwater 
sound waves to detect and locate submerged objects or measure the 
distances underwater, qualities that fully  explicate its name (i.e. an 
acronym for SOund, NAvigation and Ranging). There are two 
major kinds of sonar, active and passive. Active sonar creates a 
pulse of sound, often called a "ping", and then listens for 
reflections of the pulse. The pulse may be at constant frequency or 
a chirp of changing frequency. If a chirp, the receiver correlates the 
frequency of the reflections to the known chirp. The resultant 
processing gain allows the receiver to derive the same information 
as if a much shorter pulse of the same total power were emitted. 
Various intelligent techniques have been developed during the past 
in order to exploit the sonar data [7,24,25], and computational 
intelligence (CI) is among them. Although CI has nowadays 
substituted traditional artificial intelligence in major applications, 
for a number of high-level decision tasks common expert systems 
remain still applicable. The reason can be found into the need for 
symbolic representation of the knowledge into these systems, 
which is a feature in which many CI systems fail  to succeed. In 
other words, it is considered that symbolic representation can be of 
significant value in these systems for humans, by making clear the 
inference process to users. Among CI methodologies, neural 
networks are powerful connectionist systems that still l ack the 
element of complete and accurate interpretation into human-
understandable form of knowledge and remain a black box for 

experts. To deal with this situation, a number of alternative 
approaches have been proposed. Neural logic networks [19] belong 
to this category, and by their definition can be interpreted into a 
number of logical or Prolog rules that consist an expert system. 
Virtually every logic rule can be represented into these networks 
and then transformed into Prolog commands. Although this model 
offers excellent results when used within the AI framework (i.e. 
building a system in a top-down process), the application of neural 
logic networks in CI’s data mining tasks – considered a bottom-up 
procedure- has undergone limited success. The reason lies in that 
proposed systems suffered at least one of the following limitations: 
(a) The extracted neural logic network cannot be interpreted into 
expert rules [19]-[18].  (b)The proposed methodology 
cannot express neural logic networks in their generic graph form 
[5]. (c) The user has to select topology and network connection 
model [19]-[18]. The application of neural logic networks into 
adaptive tasks seems promising: the extracted model will preserve 
its interpretability into a number of expert rules and there is not 
needed any knowledge-acquiring step. Moreover, a solution 
obtained this way, leads to potential knowledge extraction. 
Recently, a new system, namely the evolutionary neural logic 
networks (ENLN), has been proposed [20] that fulfils those 
requirements. The new approach uses grammar-guided genetic 
programming to produce neural logic networks. The evolved 
solutions can be arbitrarily large and connected networks, since an 
indirect encoding is adopted. Also, neural logic networks produced 
by this methodology can always be interpreted into human-
understandable expert rules, thus leading to potential knowledge 
extraction. Our aim in this paper is to demonstrate the effectiveness 
of the methodology of evolutionary neural networks into real-world 
problems. The paper is organized as follows. Next section 
describes the theoretical background, presenting the neural logic 
networks concept and the grammar guided genetic programming. 
Following this section, we deal with the design and the 
implementation of the ENLN system. Next, the results and a 
following discussion are presented. The paper ends with our 
conclusion and a description of future work.  

2 BACKGRO UND  

2.1 Active Sonar  

In Sea-Water environments, propagation to the target, reflection off  
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Figure 1. Example of a neural logic network and its output. 
 
 
the target, and propagation to the receiver spread active sonar 
transmit signal in time and frequency. Traditionally, detection and 
subsequent range estimation has been performed by thresholding a 
normalized matched filter output for each of several beams 
pointing in directions of interest. This is only justifiable as a 
generalized likelihood ratio test when the received echo is simply a 
time-shifted scaled version of the transmitted waveform plus white 
noise, obviously not a realistic scenario in the shallow-water active 
problem. The primary objective of the detector is to determine if 
there is a target echo present in the received time series. Subsidiary 
to detection is the estimation of the starting and stopping times of 
the echo to be used for subsequent signal processing such as more 
accurate range and bearing estimation, depth estimation, or 
classification. Traditionally, signal segmentation is performed by 
clustering matched filter threshold crossings. Without exact 
knowledge of the environment and a priori information on the 
target location and reflection properties, the starting time, duration, 
and shape of the received echo are unknown, thus hindering design 
of an optimal receiver. It is, however, desirable to exploit available 
environmental information to the extent that it can feasibly improve 
detection performance. Were the optimal detector implementable, it 
would coherently combine the standard matched filter output 
according to the multipath structure and the target reflection 
properties. Few literature papers exist in applications with active 
sonar. In [25], a procedure of mapping unknown obstacles using 
active sonar is presented. An active sonar imaging and 
classifi cation system is described in [2] were three neural network 
architectures were used as classifiers. In [6], the Probabilistic 
Multi-Hypothesis Tracking (PMHT) algorithm proposed by Streit 
and Luginbuhl in 1995 is adapted for use in active sonar 
applications. In [3], a remote, aerial, laser-based sonar method for 
detecting and locating underwater targets from the air is discussed.   
 
2.2 Neural  logic networks 

The neural logic network is a finite directed graph. It is usually 
consisted by a set of input nodes and an output node. In its 3-
valued form, the possible value for a node can be one of three 
ordered pair activation values (1,0) for “true”, (0,1) for “false” and 
(0,0) for “don't know”. Every synapse (edge) is assigned also an 
ordered pair weight (x,y) where x and y are real numbers. An 
example neural logic and its output value (a,b) of node P is shown 
in Fig. 1. Different sets of weights enable the representation of 
different logical operations. It is actually possible to map any rule 
of conventional knowledge into a neural logic network. Neural 
logic networks can be expanded into fuzzy neural logic networks, 
enabling this way the handling of real valued attributes [19]. The 
interpretation of the network into Prolog rules is straightforward. 
Even though powerful in their definition, neural logic networks are 
not widely applied. The main reason can be located in the fact that 
for the known training methodologies [19]-[18], the refinement of 
the edge weights reduces significantly the interpretabili ty of these 
networks  

 

to expert rules, thus depriving these networks from their valuable 
feature. Some steps for the preservation of the interpretability have 
been performed by [1], without however the ability to express 
arbitrarily large and connected neural logic networks. In this 
direction, the definition and use of the neulonet is demonstrated in 
[4], still however producing tree-like rule programs. 

2.3 Grammar Guided Genetic Programming 

The ability to construct functional trees of variable length is a 
major advantage of genetic programming over genetic algorithms. 
This property enables the search for very complex solutions that 
are usually in the form of a mathematical formula - an approach 
that is commonly known as symbolic regression. Later paradigms 
extended this concept to calculate any boolean or programming 
expression. Consequently, complex intell igent structures, such as 
fuzzy rule-based systems or decision trees have already been used 
as the desirable target solution in genetic programming approaches 
[1], [22], [23], [24].  The main qualification of this solving 
procedure is that the feature selection, and the system 
configuration, derive in the searching process and do not require 
any human involvement. Moreover, genetic programming, by 
inheriting the genetic algorithms' stochastic search properties, does 
not use local search -rather uses the hyper plane search-, and so 
avoids driving the solution to any local minimum. The potential 
gain of an automated feature selection and system configuration is 
obvious; no prior knowledge is required and, furthermore, not any 
human expertise is needed to construct an intelligent system. 
Nevertheless, the task of implementing complex intelligent 
structures into genetic programming functional sets in not rather 
straightforward. The function set that composes an intell igent 
system retains a specific hierarchy that must be traced in the GP 
tree permissible structures. This writing offers two advantages. 
First, the search process avoids candidate solutions that are 
meaningless or, at least, obscure. Second, the search space is 
reduced significantly among only valid solutions. Thus, a genotype 
- a point in the search space- corresponds always to a phenotype - a 
point in the solution space. This approach -known as legal search 
space handling method [28]- is applied in this work using context-
free grammars. As we will discuss in the next paragraph, the 
implementation of constraints using a grammar can be the most 
natural way to express a family of allowable architectures. While 
each intelligent system -such as a neural logic network- has a 
functional equivalent -by means of being composed by smaller, 
elementary functions-, what defines and distinguishes this system is 
its grammar.  
 
 
2.4 Context-free grammars  

The genetic programming procedure may be proved greedy in 
computational and time resources. Consequently, when the syntax 
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Figure 2. Context free grammar for the production of neural logic networks 
within the genetic programming framework. 

form of the desired solution is already known, it is useful to restrain 
the genetic programming from searching solutions with different 
syntax forms [8]-[14]. The most advantageous method to 
implement such restrictions among other approaches [15], is to 
apply syntax constraints to genetic programming trees, usually with 
the help of a context-free grammar declared in the Backus-Naur-
Form (BNF) [14]. The BNF-grammar consists of terminal nodes 
and non-terminal nodes and is represented by the set {N,T,P,S}  
where N is the set of non-terminals, T is the set of terminals, P is 
the set of production rules and S is a member of N corresponding to 
the starting symbol. The use of the terms terminal and non-terminal 
in a BNF-grammar, does not correspond to what is usually referred 
in genetic programming as terminal and function [14]. Rather, a 
function -a non-terminal node in terms of the GP tree architecture- 
is expressed as terminal in a BNF grammar.  

2.5 Cellular Encoding 

Although mapping decision trees or fuzzy rule-based systems to 
specific grammars can be relatively easy to implement, the 
execution of massively parallel processing intelligent systems -such 
as the neural logic networks- is not forthright. In order to explore 
variable sized solutions, we applied indirect encoding. The most 
common one is the cellular encoding [9], in which a genotype can 
be realized as a descriptive phenotype for the desired solution. 
More specifically, within such a function set, there are elementary 
functions that modify the system architecture together with 
functions that calculate tuning variables. Current implementations 
include encoding for feed forward and Kohonen neural networks 
[16], [21] and fuzzy Petri-nets [27], [21]. In his original work, 
Gruau also used a context-free grammar - a BNF grammar- to 
encode indirectly the neural networks. On the other hand, in [27] a 
logic grammar - a context-sensitive one- is adapted to encode fuzzy 
Petri-nets. In our work, we show that as long as the depth-first 
execution of the program nodes of a GP tree is ensured -which is 
the default-, a context-free grammar such as a BNF grammar is 
adequate for expressing neural networks. Gruau's original work has 
been facing some scepticism [11] on the ability to express 
arbitrarily connected networks. Later developments [8] seem to 
offer less restrictive grammar, though the cut function in those 
implementations still maintained bounded effect. A similar 
technology, called edge encoding, developed by [12] is also today 

 

Table I. Operations for Function CNR 

used with human competitive results in a wide area of applications.

 

3 DESIGN AND IMPLEMENTATION  

ata range and 
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The Sonar data set is consisted of sixty real-valued attributes 

.2 System Grammar and Operating Functions 

symbol 

on PROG creates the 

x e function S1 enters a node in serial to 

x  to 

Parameter Calculation 

<PROG> : = PROG <PLACE1><SYNAPSE> 
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2> 
      | P1 <PLACE1><PLACE1> 
      | IN 
IN  : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>   
      | P2 <PLACE2><SYNAPSE><PLACE2>
      | E 
E  : = �  
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE> 
      | CNR <CNRSEL><K> 
<NUM> : =  NUM 
<CUT> : = CUT 
<CNRSEL> : = CNRSEL 
<K>  : = K 
NUM  : = Integer in [1,256] 
CUT  : =  Integer in [0,1] 
CNRSEL : = Integer in [0,10] 
K  : =  Integer in [0,9]    
 

0 Conjunction 
1 Disjunction 
2 Priority 
3 At least k-true 
4  At least k-false 
5 Majority influence 
6 Majority influence of k 
7  2/3 Majority 
8 Unanimity 
9 If-Then operation, 

Kleene’s model 
10 Difference 

  

The data is normalized to the system’s acceptable d
the procedure creates the evolutionary neural logic network, which 
is then tested on unknown data. The resulted network is stored and 
the rules extracted can be used without the need of a computer. 

3.1 Data Pre-processing and Genetic Programmi
Setup 

between 0.0 and 1.0 used to define 208 mines and rocks. Attributes 
are obtained by bouncing sonar signals of a metal cylinder (or rock) 
at various angles and rises in frequency. The value of the attribute 
represents the amount of energy within a particular frequency band, 
integrated over a certain period of time. It is accepted that the 
genetic programming procedure may suffer size problems during 
initialisation [16]. Although the fine-tuning of our algorithm was 
not the main concern of this paper, we investigated various 
initialisation approaches. Without claiming optimality, the GP 
parameters are adapted by [20]. This setup, together with function 
selection probability optimisation, offered for the presented 
grammar stable and effective runs throughout experiments. 
Although the initialisation of the population is random, using this 
probability bias the algorithm is forced to generate individuals of 
acceptable size. This optimisation was decided after 
experimentation, since it is not possible to obtain a general 
principle regarding the most proper probability values for every 
case. As it can be observed in [20], the setup denotes our 
preference for significantly high mutation rates, especially  shrink 
mutation [17] that slows down the code bloat caused by crossover 
operations.  

 
 
3

The proposed system grammar is shown in Figure 2. Initial 
(root) of a genetic programming tree can be a node of type 
<PROG>. The function set is as follows: 

x Function PROG: The functi
embryonic network that is used later by the functions S1, 
S2, P1 and P2 to be expanded. An alternative name for 
this function, which is used throughout this paper, is the 
term “CNLN”. 
Function S1: Th
the node that is applied, and is applied to input nodes. 
Function P1:The function P1 enters a node in parallel
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(CNLN (P1 (P1 (P1 (S1 (S1 (In T10) (Rule 0 0) E) (Rule 0 0) (S2 E (Rule 0 0) E)) (P1 (S1 (In T4) (Rule 0 0) (P2 E (Rule 10 3) (S2 E (Rule 10 3) E))) (In T11))) 
(P1 (P1 (In T3) (S1 (In T48) (Rule 12 8) E)) (P1 (P1 (P1 (S1 (S1 (In T10) (Rule 0 0) E) (Rule 0 0) (S2 E (Rule 0 0) E)) (P1 (S1 (S1 (In T4) (Link 50 0 (Rule 0 0)) 

E) (Rule 10 3) E) (P1 (S1 (In T4) (Rule 12 8) (P2 E (Rule 10 3) (S2 E (Rule 0 0) E))) (In T11)))) (P1 (P1 (In T58) (S1 (In T24) (Rule 12 8) (P2 E (Link 133 0 
(Rule 0 0)) E))) (P1 (P1 (S1 (In T52) (Rule 0 0) E) (P1 (S1 (In T4) (Link 133 0 (Rule 10 3)) (P2 E (Rule 0 0) (S2 E (Rule 0 0) E))) (P1 (S1 (In T28) (Rule 0 0) 
P2 E (Rule 10 3) (S2 E (Rule 0 0) E))) (In T11)))) (P1 (P1 (In T58) (S1 (In T24) (Rule 12 8) (P2 E (Link 133 0 (Rule 0 0)) E))) (P1 (P1 (S1 (In T31) (Rule 10 3)

E) (In T49)) (In T42)))))) (In T4)))) (In T50)) (Rule 2 8)) 
(  

 

Figure 3.  Extracted solution and the corresponding neural logic network for the Active Sonar classification problem. 
 

the node that is applied, and is also applied to input 

x n S2: The function S2 enters a node in serial to 

x n P2: The function P2 enters a node in parallel to 

x ation of function IN is to assign a 

x  to mark the 

x ides the framework 

x tion performs the node 

shown in Table I. An alternative name for this function, 

x  integer in 

x UT: The function CUT returns an integer in 

x CNRSEL returns an 

x returns an integer in the 

Having d ing session we 

nodes. 
Functio
the node that is applied, and is used for hidden layer 
nodes. 
Functio
the node that is applied, and is also used for hidden layer 
nodes. This mechanism, consisting of two different sets 
of expanding functions (P1 and S1 vs. P2 and S2), is used 
to ensure that population individuals will include at least 
one input node. 
Function IN: The oper
variable to the input node that it is applied.  
Function E: The operation of function E is
end of the expansion of the network. 
Function LNK:  This function prov
for the application of cut function. It actually enables the 
non-full connectivity of the network, a feature that offers 
larger solution search space. 
Function CNR: This func
inference. Based on the first parameter, the 
corresponding calculation is performed. The second 
parameter assists the calculation for the at-least-k and 
majority-of-k operators. Possible computations are 

which is used throughout this paper, is the term “Rule”. 
In order to be able to process values other than true, false 
and don’t know, we applied the fuzzy propagation 
algorithm [19], which allows us to process any real 
valued variables (using proper normalization). 
Function NUM: The function NUM returns an
the interval [1,256] to be used by the calling LNK 
function. 
Function C
the interval [0,1] to be used by the calling LNK function. 
If the returned value is 1, then the link will be ignored in 
the calculations (considered "cut"). 
Function CNRSEL: The function 
integer in the interval [0,8] to be used by the call ing CNR 
function as its first parameter. 
Function K: The function K 
interval [1,256] to be used by the calling CNR function if 
the returned value of the CNRSEL is 3,4 or 6 
(corresponding to the calculation of the at least k-true, at 
least k-false and majority of k functions). 
iscussed the system design, in the follow

shall apply the methodology in the active sonar target identification 
domain. 
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4 RESULTS AND DISCUSSION  

shallow waters using 

4 CONCLUSION AND FURTHER RESEARCH  
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The remote detection of undersea mines in 
active sonar is a crucial capability required to maintain the security 
of important harbours ands coastline areas. It is often very diffi cult 
to distinguish active sonar returns from mines and return from 
clutter on the sea floor. There is currently no reliable signal 
classification scheme for automatically interpreting such sonar 
returns. Instead highly trained sonar operators must be relied upon 
to identify the presence of a mine. The present study was 
conducted to explore the use of neural networks as a means of 
automating mine-hunting operations. More specifically, the system 
develops a decision whether the signal corresponds to a cylinder 
(mine) or to a rock [7]. The database is consisted of two parts. The 
first part contains 111 records which are acquired by returning 
sonar signals from a metal cylinder in various positions. The 
second part is comprised by 97 records which correspond to sonar 
signals returned by rocks in similar situations.  Training and testing 
data records were randomly selected by these sets. Also, in order to 
avoid overfitting during the training phase, we used a validation 
set. According to the literature, the target is to develop a system 
with high accuracy and potential knowledge interpretation.  The 
evolved neural logic network and its graphical representation are 
depicted in Figure 3. This solution achieves a 86.27% (44/51) 
accuracy in unknown data. The accuracy in the training data was 
88.24% (90/102) and in the validation data set it was 80.39% 
(41/51). In the literature, the derived accuracy for the various 
systems applied in the same data set ranges from 73.1% to 89.2%. 
Other experiments in [3] using  neural logic networks by means of 
genetic programming offer for the same data set an equivalent 
classification score (86%) when neulonet association rules are 
applied, and a lower score (78.3%) when conjunctive association 
rules are used, a direct score comparison not being applicable 
however, since different training and test data sets have been used. 
The extracted neural logic network, due to the nature of the 
problem, maintains significant complexity, yet it achieves 
competitive to the literature results. It is worth to note also, that our 
solution can still  be interpreted into a number of logical or Prolog 
rules, although solution interpretation was not among our primary 
targets for the specific problem. 

The aim of this paper was to demonstrate the effectiveness of th
evolutionary neural logic networks paradigm into real-world 
problems, such as the active sonar target identification. In general, 
neural networks are powerful connectionist systems that have been 
introduced in areas where symbolic processing systems of 
traditional artificial intelligence used to be applied. As a tool of 
computational intelligence, the adaptation of the neural network to 
the problem domain using an inductive method, offers advantage 
over expert systems where the knowledge must be acquired first, 
before the system development. Ever since their first application, 
interpretation of the obtained knowledge was a research target for 
neural networks.  In the scope of this area, the neural logic 
networks have been proposed as a class of networks that by their 
definition preserve their interpretability  into symbolic knowledge.  

Until recently however, the application of an effective training /
production method within the CI framework has not been 
successful. A novel system that uses genetic programming with 
indirect encoding that has been proposed recently [20], overcomes 
these problems, producing automatically designed and tuned neural 
logic networks, which always preserve their interpretabili ty. In this 

work we applied the system into a real-world problem, the Active 
Sonar classification problem. The system has been proved capable 
of producing competitive to the literature results. The acquired 
solution although being in a complicated form, it still maintains its 
interpretabili ty. The complexity of the solution is rather 
straightforwardly related to the nature of the problem, i.e. physical 
measurements.  However, as obviously seen, the solution 
interpretation could not be among the primary targets of this 
research, rather than the high classification rate. Hence, according 
to the experts, the application to a sonar classification problem 
shows that under particular circumstances the system can be 
implemented to some degree into this real situation problem.  

Future work involves the application of the system in other s
data sets, as well as in other areas, and the incorporation of 
recursive structures into the neural logic network architecture. 
Moreover, the minimum description length principle will be 
developed to be included as an anti-overfitting measure into the 
active sonar target identification problem. Finally, we believe that 
parameter-tuning optimisation of the underlying genetic 
programming algorithm will offer better efficiency; hence this will 
be of primary importance among our future work. 
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Abstract. Neurules are a type of hybrid rules combining a 
symbolic and a connectionist representation. A neurule base 
consists of a number of autonomous adaline units (neurules), in 
contrast to existing neuro-symbolic knowledge bases. A neurule 
base is constructed from training examples. To overcome the 
inability of the adaline unit to classify non-separable training 
examples, the notion of ‘closeness’ between training examples 
has been used to split the initial training set into subsets that can 
be successfully trained. In this paper, we investigate previously 
unexplored aspects regarding the construction of neurules from 
training examples. First, we compare different splitting policies, 
i.e. policies using different criteria for splitting the training set. 
We also introduce two alternative approaches to splitting not 
solely relying on closeness and compare them with our initial 
approach, which is solely based on closeness. The comparison 
demonstrates the effectiveness of the notion of ‘closeness’ in 
splitting the initial non-separable training set. Finally, we 
evaluate the generalization capability  of neurules. 

1 INTRODUCTION 

Recently there has been extensive research activity at 
combining (or integrating) the symbolic and the connectionist 
approaches for problem solving in intelligent systems [3, 4, 5, 
12, 13, 14, 15, 19, 21]. Especially, there are a number of efforts 
at combining symbolic rules and neural networks for 
knowledge representation [6, 20]. What they do is a kind of 
mapping from symbolic rules to a neural network. Also, 
connectionist expert systems are a type of integrated systems 
that represent relationships between concepts, considered as 
nodes of a neural network [7, 8]. The strong point of those 
approaches is that knowledge elicitation from experts is 
reduced to a minimum. A weak point of them is that the 
resulted systems lack the naturalness and modularity of 
symbolic rules. This is mainly due to the fact that those 
approaches give pre-eminence to connectionism. So, 
explanations are often provided in the form of if-then rules by 
rule extraction methods [1, 2]. 

Neurules constitute a hybrid rule-based representation 
scheme achieving a uniform and tight integration of a symbolic 
component (production rules) and a connectionist one (the 
adaline unit) [8, 9]. In contrast to other integrated approaches, 

neurules give pre-eminence to the symbolic component. Each 
neurule is considered as an adaline unit. Thus, neurules give a 
more natural way of representing knowledge since the 
constructed knowledge base retains the modularity and (to 
some degree) the naturalness of symbolic rules. Also, the 
corresponding inference mechanism, which is a tightly 
integrated process, results in more efficient inference than those 
of symbolic rules, and explanations, in the form of if-then rules, 
can be provided [11]. Mechanisms for efficiently updating a 
neurule base, given changes to its source knowledge, have also 
been developed [17, 18]. 

One way of constructing neurules is from empirical data (i.e., 
training examples) [10]. A difficult point in this approach is the 
inherent inability of the adaline unit to classify non-separable 
training examples. To overcome this difficulty of the adaline 
unit, we introduced the notion of ‘closeness’, as far as the 
training examples are concerned. That is, when the LMS 
algorithm fails to produce weights that classify all the 
examples, due to non-separability , we split the initial training 
set of the involved neurule in two subsets, which contain 
‘close’ examples, and train a copy of the neurule for each 
subset. Failure of training any copy leads to further splitting as 
far as success is achieved. 

In this paper, we investigate previously unexplored aspects 
regarding the construction of neurules from training examples. 
First, we compare different splitting policies, i.e. policies using 
different criteria for splitting the training set. Second, we 
introduce alternative approaches to constructing neurules from 
training examples, not solely relying on closeness to perform 
splitting. We also compare these alternative approaches with 
our initial approach, which is solely based on closeness. 
Finally, we present experimental results evaluating the 
generalization capability of neurules and comparing it with the 
generalization capability of a back-propagation neural network 
and a single adaline unit.  

The structure of the paper is as follows. Section 2 presents 
neurules, the mechanism for their construction from training 
examples and different splitting policies (based on closeness). 
Section 3 introduces alternative approaches to splitting (not 
solely relying on closeness). Section 4 presents experimental 
results and finally Section 5 concludes the paper. 
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2 NEURULES 

2.1 Syntax and Semantics 

Neurules (: neural rules) are a kind of hybrid rules. Each 
neurule (Fig. 1a) is considered as an adaline unit (Fig.1b). The 
inputs Ci (i=1,...,n) of the unit are the conditions of the rule. 
Each condition Ci is assigned a number sfi, called a significance 
factor, corresponding to the weight of the corresponding input 
of the adaline unit. Moreover, each rule itself is assigned a 
number sf0, called the bias factor, corresponding to the bias of 
the unit.  

Each input takes a value from the following set of discrete 
values: [1 (true), -1 (false), 0 (unknown)]. The output D, which 
represents the conclusion of the rule, is calculated via the 
formulas: 

D = f(a) ,     ¦
n

i=
ii Csf + = sf     

1
0a (1) 

 
where a is the activation value and f(x) the activation function, 
which is a threshold function: 

                                                1       if a t 0 
       f(a) =  
                                               -1      otherwise 

Hence, the output can take one of two values, ‘-1’ and ‘1’, 
representing failure and success of the rule respectively. 

 

 

 

 
 
 
 
 

       (a)              (b) 
Figure 1. (a) Form of a neurule (b) corresponding adaline unit 

The general syntax of a neurule (in a BNF notation, where 
‘{}’ denotes zero, one or more occurrences and ‘<>’ denotes 
non-terminal symbols) is: 

<rule>::= (<bias-factor>) if  <conditions> then <conclusions> 
<conditions>::= <condition> {, <condition>} 
<conclusions>::= <conclusion> { , <conclusion>} 
<condition>::= <variable> <l-predicate> <value> 

          (<significance-factor>) 
<conclusion>::= <variable> <r-predicate> <value> . 

In the above definition, <variable> denotes a variable, that is 
a symbol representing a concept in the domain, e.g., ‘sex’, 
‘pain’ etc, in a medical domain. A variable in a condition can 
be either an input variable or an intermediate variable, whereas 
a variable in a conclusion can be either an intermediate or an 
output variable.  <l-predicate> denotes a symbolic or a numeric 

predicate. The symbolic predicates are {is, isnot}, whereas the 
numeric predicates are {<,  >, =}. <r-predicate> can only be a 
symbolic predicate. <value> denotes a value. It can be a symbol 
or a number. <bias-factor> and <significance-factor> are (real) 
numbers. The significance factor of a condition represents the 
significance (weight) of the condition in drawing the 
conclusion.  

2.2 Constructing Neurules from Training Examples 

Each neurule is individually trained via a training set, which 
contains training examples in the form [v1 v2 … vn d], where vi, 
i= 1, …,n are their component values, corresponding to the n 
inputs of the neurule, and d is the desired output (‘1’ for 
success, ‘-1’ for failure). We call success examples the 
examples with d=1 and failure examples the ones with d=-1. 
The learning algorithm employed is the standard least mean 
square (LMS) algorithm. 

However, there are cases where the LMS algorithm fails to 
specify the right significance factors for a number of neurules. 
That is, the adaline unit of a rule does not correctly classify 
some of the training examples. This means that the training 
examples correspond to a non-separable (boolean) function. To 
overcome this problem, the initial training set is split into two 
subsets in a way that each subset contains success examples, 
which are ‘close’ to each other in some degree. The closeness 
between two examples is defined as the number of common 
component values. For example, the closeness of [1 0 1 1 1] 
and [1 1 0 1 1] is ‘2’. Also, we define as least closeness pair 
(LCP), a pair of success examples with the least closeness in a 
training set. There may be more than one LCP in a training set. 

Initially , a LCP in the training set is found and two subsets 
are created each containing as its initial element one of the 
success examples of that pair, called its pivot. Each of the 
remaining success examples is distributed between the two 
subsets based on its closeness to the pivots. More specifically, 
each subset contains the success examples, which are closer to 
its pivot. Then, the failure examples of the initial set are added 
to both subsets, to avoid neurule misfiring. After that, two 
copies of the initial neurule, one for each subset, are trained 
employing the LMS learning algorithm. If the factors of a copy 
misclassify some of its examples, the corresponding subset is 
further split into two other subsets, based on one of its LCPs. 
This continues, until all examples are classified. This means 
that from an initial neurule more than one final neurule may be 
produced, called sibling neurules (for details see [10]). 

To illustrate how splitting is performed, we use as an 
example the training set presented in Table 1. As it is clear, 
the majority of the examples in the training set are failure 
examples, whereas success examples, which are shown in 
bold, are a minority. The training set has been extracted 
from empirical data concerning five input (domain) 
variables and an output variable (disease) that depends on 
the five domain variables. Given that each input variable can 
take more than one discrete value, each initial neurule has 
thirteen conditions (C1-C13). D corresponds to the 
conclusion. Actually Table 1, for simplicity reasons, shows 
only a subset of the failure examples. 

D 
(sf0) if  C1 (sf1), 

           C2   (sf2), 

               … 

            Cn (sfn) 

        then D 

(sf0) 

(sfn) (sf1) . . . (sf2) 

C1 C2 Cn
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Table 1. An example training set 

C
1 

C
2 

C
3 

C
4 

C
5 

C
6 

C
7 

C
8 

C
9 

C
10 

C
11 

C
12 

C
13 

D 

-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 

 
 
For presentation reasons, names (P1-P5) are assigned to 

the five success examples/patterns (of Table 1), as presented 
in Table 2. Also, let F be the set of failure examples in the 
training set. 

Table 2. Success examples 

symbol description 
P1 [-1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1] 
P2 [-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1] 
P3 [-1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1] 
P4 [-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1] 
P5 [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1] 

 

 
Figure 2. Splittings of the training set of Table 1 

 
Due to inseparability, the initial training set {P1, P2, P3, 

P4, P5} � F is split in two subsets: {P1, P3, P4} � F and 
{P2, P5} � F with as least closeness pair (P1, P5). Subset 
{P1, P3, P4} � F is subsequently split into subsets {P3}  � F 
and {P1, P4} � F. Subset {P3} � F produces a neurule (see 

Figure 3). Subset {P1, P4} � F produces another neurule. 
Similarly, from subset {P2, P5} � F two other neurules are 
produced (corresponding to its two leaves). The performed 
splittings are illustrated in Figure 2, as a tree. 

In creating the training subsets, some requirements were 
implicitly  satisfied. Each training subset contains: (a) all the 
failure examples of the initial training set to protect from 
misactivations and (b) at least one success example to 
guarantee the activation of the corresponding neurule. 
Furthermore, the two subsets created by splitting a (sub)set do 
not have common success examples to avoid having different 
neurules activated by the same success example(s). In the 
following sections, the approach to splitting based on closeness 
will be called CLOSENESS-SPLIT. 

A point of interest in training a neurule with a non-separable 
training set is how to choose a least closeness pair (LCP), in the 
process of producing the two subsets of the initial training set. 
Not all LCPs result in the same number of final neurules. So, 
we are looking for the LCP that finally produces the minimum 
number of sibling neurules. We tried three heuristic methods 
for that: the random choice, the best distribution and the mean 
closeness method. The random choice method (RC) chooses 
randomly one of the LCPs and is the simplest and least 
expensive of the three methods. The best distribution method 
(BD) suggests choosing the LCP that assures distribution of the 
two elements of all the other (or most of the other) LCPs in 
different sets. So, examples with least closeness will be 
included in different sets, which may assure separability. The 
mean closeness method (MC) initially computes the mean 
closeness of each of the two subsets to be created from each 
LCP. Then, it calculates the mean closeness of each LCP, 



38

which is the mean closeness of the two subsets, and chooses the 
LCP with the greatest mean closeness. It is obvious that MC is 
(computationally) the most expensive method. 
 

NR1 
(-13.5) if  venous-conc is slight (12.4), 
                blood-conc is moderate (11.6), 
                art-conc is moderate (8.8), 
                scan-conc is normal (8.4), 
                cap-conc is moderate (8.4), 
                blood-conc is slight (8.3), 
                venous-conc is moderate (8.2), 
                venous-conc is normal (8.0), 
                arterial-conc is slight (-5.7), 
                cap-conc is slight (4.5), 
                blood-conc is normal (4.4), 
                blood-conc is high (1.6), 
                venous-conc is high (1.2) 
            then disease is inflammation 

 
Figure 3. One of the produced neurules 

3  ALTERNATIVE APP ROACHES 

In this section, we present two alternative approaches to 
splitting a non-separable training set not solely relying on 
closeness. The two alternative approaches will be called 
ALTERN-SPLIT1 and ALTERN-SPLIT2 respectively. Both of 
these approaches satisfy the implicit requirements mentioned in 
the previous section. The idea behind both approaches is 
simple. More specifically, they focus on the examples which 
are misclassified by the weights calculated by LMS and try to 
split the training set into two subsets: one containing the 
correctly classified success examples (along with all failure 
examples) and one containing the misclassified success 
examples (along with all failure examples). This process can be 
followed only if some (not all) success examples (and possibly 
failure examples) are misclassified. If all success examples are 
misclassified or if only failure examples are misclassified, there 
is no alternative but to split based on closeness. Therefore, in 
this process one should distinguish the following cases: (a) all 
of the success examples are misclassified, (b) only failure 
examples are misclassified, (c) only some of the success 
examples and none of the failure ones are misclassified, (d) 
failure examples and some of the success examples are 
misclassified. In cases (a) and (b) splitting is based on 
closeness. The two approaches differ only in the way of 
handling case (d).  

More formally, approach ALTERN-SPLIT1 is as follows: 
1. If all success examples are misclassified by the calculated 

weights, split the training set based on closeness.  
2. Else, if only failure examples are misclassified, split the 

training set based on closeness. 
3. Else, if only some of the success examples (and none of the 

failure examples) are misclassified, split the training set in 
two subsets: one containing the correctly classified success 

examples (along with all failure examples) and one 
containing the misclassified success examples (along with all 
failure examples). 

4. Else, if failure examples and some of the success examples 
are misclassified, split the training set in two subsets: one 
containing the correctly classified success examples (along 
with all failure examples) and one containing the 
misclassified success examples (along with all failure 
examples). 
Approach ALTERN-SPLIT2 does the same as ALTERN-

SPLIT1 in steps 1, 2, 3 and handles step 4 based on closeness. 
It can be easily seen that ALTERN-SPLIT2 lies between 
CLOSENESS-SPLIT and ALTERN-SPLIT1.  

4  EXPERIMENTAL RESULTS 
In this section, we present various experimental results using 
datasets from the UCI Machine Learning Repository [15]. The 
experimental results involve the following aspects: (a) 
evaluation of the three different splitting policies based on 
closeness (i.e., RC, BD, MC), (b) comparison of the three 
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2 and (c) evaluation of the 
generalization capability of neurules and comparison with the 
generalization capabilities of the back propagation neural 
networks and the adaline unit.  

 
Table 3. Number of neurules produced by the RC, MC and BD policies 

Dataset 
Condi-
tions 

Conclu-
sions RC MC BD 

Monks1_train  
(124 patterns) 

17 2 17 17 13 

Monks2_train 
(169 patterns) 

17 2 46 47 38 

Monks3_train 
(122 patterns) 

17 2 14 11 12 

Tic-Tac-Toe 
(958 patterns) 

27 2 26 26 24 

Car 
(1728 patterns) 

21 4 151 163 153 

Nursery 
(12960 patterns) 

27 5 830 839 823 

 
Table 3 depicts experimental results for CLOSENESS-

SPLIT comparing RC, MC and BD. Comparison is based on 
the number of neurules produced from each splitting method, 
shown in columns ‘RC’, ‘MC’ and ‘BD’. Column ‘Conditions’ 
denotes the number of conditions for each sibling neurule and 
column ‘Conclusions’ the number of different (final) 
conclusions. For the ‘monks’ datasets we used the training sets 
provided in the UCI Repository. Based on the results of Table 
3, none of the three methods is clearly better than the others for 
all datasets. Further on, there is no great difference in the 
number of neurules produced by the three methods. BD 
performs better in most of the cases. RC, the simplest of the 
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three methods, performs quite well even in the large datasets 
compared to the other two more complex methods. On the other 
hand, MC, which is computationally the most expensive 
method, does not perform quite well compared to the other 
methods to justify its use. So, BD or RC can be considered as 
better alternatives as far as the number of produced neurules is 
concerned. The number of produced neurules is the basic 
criterion of the comparisons, because it plays a crucial role in 
inference efficiency and neurule-base size. 

Table 4 presents experimental results regarding ALTERN-
SPLIT1 and ALTERN-SPLIT2. RC, MC and BD play a role 
for subsets in which splitting based on closeness is used. 

Table 5 presents summary results comparing the three 
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2. Comparison is based on the 
minimum number of neurules produced from each method. In 
parentheses, the name of the splitting policy (i.e., RC, BD, MC) 
used, when producing the minimum number of neurules is 
shown. CLOSENESS-SPLIT is generally better than the other 
two methods. This demonstrates the effectiveness of the notion 
of ‘closeness’. This last conclusion is further intensified by the 
fact that ALTERN-SPLIT2 that lies between ALTERN-SPLIT1 
and CLOSENESS-SPLIT generally performs better than 
ALTERN-SPLIT1. The results also show that it may be worth 
to employ ALTERN-SPLIT1 and ALTERN-SPLIT2. A further 
result is that BD generally performs better than RC and MC. 

 
Table 4. Number of neurules produced by ALTERN-SPLIT1 and 

ALTERN-SPLIT2 
ALTERN-SPLIT1 ALTERN-SPLIT2 

Dataset 
RC MC BD RC MC BD 

Monks1_train  22 24 24 19 16 13 

Monks2_train 34 32 33 43 49 39 

Monks3_train 15 15 15 14 11 13 

Tic-Tac-Toe 44 41 40 43 41 38 

Car 189 171 169 152 161 154 

Nursery 1330 1382 1378 837 842 821 

 
Table 5. Number of neurules produced by CLOSENESS-SPLIT, 

ALTERN-SPLIT1 and ALTERN-SPLIT2 

Dataset 
CLOSENESS-

SPLIT 
ALTERN-

SPLIT1 
ALTERN-

SPLIT2 
Monks1_train  13 (BD) 22 (RC) 13 (BD) 
Monks2_train 38 (BD) 32 (MC) 39 (BD) 

Monks3_train 11 (MC) 15 (RC, MC, BD) 11 (MC) 

Tic-Tac-Toe 24 (BD) 40 (BD) 38 (BD) 

Car 151 (RC) 169 (BD) 152 (RC) 

Nursery 823 (BD) 1330 (RC) 821 (BD) 
 
Tables 6 and 7 present results regarding the classification 

accuracy (generalization) of neurules on unseen test examples.  
Table 6 compares the classification accuracy of neurules 
produced from the three splitting policies based on closeness. 
Table 7 compares the classification accuracy of neurules (i.e., 
the best result of Table 6) with the ones of the adaline unit and 
back-propagation neural networks. The results for each dataset 
(except for the three monks datasets) were produced by using 
75% of the examples as training set and 25% of the examples as 

testing set in four different runs. Needless to say that the 
training examples in the test sets were not included in the 
training sets. Different and disjoint test sets were used in each 
run, so that the union of the four test sets formed the whole 
dataset. The classification accuracy was computed as the mean 
value of the accuracies obtained from the four runs. For 
‘monks1’ and ‘monks2’ datasets this procedure for creating 
training and test sets was applied to the corresponding test sets 
of 432 training examples available in the UCI repository. For 
the ‘monks3’ dataset, the training and test set available in the 
UCI repository were used since the training set is reported to 
contain noise. It should be mentioned that we were not able to 
construct a back-propagation neural network for the ‘Nursery’  
dataset with competitive generalization capability . 

For the training of back-propagation neural networks, the 
standard back-propagation algorithm was employed using a 
momentum in adjusting the weights and one layer of hidden 
nodes. The values of these three back-propagation parameters 
along with the average error threshold were tuned separately for 
the training sets of each dataset after a number of experiments 
(based on error-and-trial). Training stopped when either the 
number of training epochs reached an upper threshold or the 
average squared error became less than or equal to the average 
error threshold. Furthermore, no cross-validation was used 
when training the adaline unit, the neurules or the back-
propagation neural network (perhaps with cross-validation the 
results of Table 7 for all approaches would have been slightly 
better). Also, if the activations of multiple output nodes 
exceeded 0.5 (when a test example was given as input), then the 
example took the category of the most active output node (i.e., 
the one with the greatest activation) [20].  
 

Table 6. Generalization of neurules produced from RC, MC, BD policies 

Dataset RC MC BD 

Monks1 100% 100% 100% 

Monks2 96.30% 96.99% 97.92% 

Monks3 92.36% 93.52% 96.06% 

Tic-Tac-Toe 98.85% 97.50% 98.12% 

Car 94.44% 94.56% 94.50% 

Nursery 99.63% 99.53% 99.52% 

 
 Table 7. Generalization of adaline unit, neurules and back-propagation 

neural network  
Dataset Adaline Unit Neurules BPNN 

Monks1 67.82% 100% 100% 
Monks2 43.75% 97.92% 100% 

Monks3 92.13% 96.06% 97.22% 

Tic-Tac-Toe 61.90% 98.85% 98.23% 

Car 78.93% 94.56% 95.72% 

Nursery 82.26% 99.63%  

 
The results in Tables 6 and 7 show that neurules generalize 

quite well. Table 6 shows that none of the three splitting 
policies performs better than the others in all datasets. 
Comparing the results of Table 5 and Table 6, it can be said that 
it is not unlikely that a splitting policy may generalize better 
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than the other policies although it produced a greater number of 
neurules. Table 7 shows that neurules outperform the adaline 
unit and are worse than back-propagation neural networks. 
These results are very promising. It was expected that the 
generalization capability of neurules would be somewhere 
between the adaline unit and the back-propagation neural 
network. This is due to the nature of the three approaches: the 
adaline unit is a single unit for performing classification, a 
neurule base consists of a number of autonomous adaline units 
(neurules) and a back-propagation neural network is a multi-
layer network containing hidden nodes useful for the 
computation of non-separable functions. 

A parameter not shown in Table 7 involves the total effort in 
constructing the corresponding knowledge base. The 
construction of a neurule base is easier than the construction of 
a back-propagation neural network. When constructing 
neurules, one should only try out the different splitting 
approaches. So, construction of neurules is straightforward. On 
the other hand, in the case of a back-propagation neural 
network, one should simultaneously adjust three different 
parameters (based on error-and-trial): the number of hidden 
nodes (assuming one hidden layer), the learning rate and the 
momentum. The number of hidden nodes is an integer, whereas 
the learning rate and the momentum are real numbers lying 
between 0.0 and 1.0. Simultaneously adjusting those three 
parameters can be a non-trivial and time-consuming task. 
However, the adjustment of those parameters plays an 
important role in the classification accuracy of the neural 
network regarding the training and test sets.   

It should be also mentioned that when we developed a 
method for producing neurules from training examples [10], we 
did not have generalization as our primary intention. Our effort 
was to develop an alternative method to the one producing 
neurules through conversion from existing symbolic rule bases 
[9]. In this way, the knowledge acquisition process is facilitated 
since neurules can be constructed from two alternative sources, 
existing symbolic rule bases and training examples. However, 
according to the results of this paper, regarding generalization 
capability of neurules, neurules could be a choice in 
applications with available training examples and in which 
naturalness, modularity of the knowledge base and provision of 
interactive inference and explanation mechanisms are desirable 
factors besides generalization. Obviously in applications in 
which generalization is the only concern, one should choose 
back-propagation neural networks.  

5  CONCLUSIONS 

In this paper, we investigate previously unexplored aspects 
regarding the construction of neurules from training examples. 
Results validate our initial choice, demonstrating the 
effectiveness of solely using the notion of ‘closeness’ to handle 
non-separable training sets. Alternative splitting approaches 
performed worse. Furthermore, experimental results show that 
neurules generalize quite well even compared to back-
propagation neural networks. Our future research will involve 
investigation of possible improvements to the construction and 
generalization capability of neurules.  
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Towards the integration of abduction and induction
in ar tificial neural networks

Oliver Ray1 and Artur d’Avila Garcez2

Abstract. This paper presents a method for realising abduction
in artificial neural networks (ANNs) by generalising existing neuro-
symbolic approaches from normal logic programs to abductive logic
programs (ALPs) in order to provide amore expressive formalism
for representing andreasoning about partial knowledge and integrity
constraints. The aim is to develop a massively-parallel technique for
abduction that can also be integrated with standard connectionist
learning approaches to offer more control over which assumptions
can and cannot be made in learning. Existing methods for abduction
in neural networks are not well suited to this task as they only apply
to arestricted a classof abduction problemsor they do not adequately
address the problem of computing multiple solutions. By contrast,
this paper proposes an approach for translating ALPs into ANNs
whereby no restrictions are imposed on the underlying programs
and, if required, the network can be made to systematically compute
all abductive explanations or provide aguarantee when none exist.
Moreover, since the topology of the network mirrors the structure
of the program, it can be acquired and revised by standard neuro-
symbolic training techniques and can also be exploited to impose a
preferenceon theorder in which thesolutionsare found.

1 Introduction

Neurosymbolic integration [9, 6] aims to combine the advantages of
artificial neural networks (ANNs) and logic programs by providing
practical methods of learning that use declarative representations of
knowledge. This is done by translating logic programs into neural
networks: either to yield an initial network which can be trained on
further data with techniques such as back-propagation as in [20]; or
to compute the consequences of the program under the stable model
semantics by means of massively parallel deduction as in [8]. But,
normal logic programs are not especially suited for representing and
reasoning about partial knowledge that is inherent in learning; and
this limitation motivates thestudy of more expressive formalismsfor
dealing with uncertainty.

Abductive logic programs(ALPs) [10] are an extension of normal
logic programsthat aremoresuitable for handling incompleteknowl-
edge. In particular, they allow the truth or falsity of some ground
literals, known as abducibles, to be left unspecified subject to given
integrity constraints. Unlike normal logic programming, abductive
proof procedures are freeto assume any consistent set of abducibles
when solving a goal. Thus, abduction does not merely determine
whether a given goal follows from a program, but computes a set
of assumptions which, when added to the program, ensure that the
goal succeeds. Each set of abducibles is called an abductive expla-

1 Imperial CollegeLondon, UK, email: or@doc.ic.ac.uk
2 City University London, UK, email: aag@soi.city.ac.uk

nation and represents an extension of the program that is referred to
asageneralised stable model [11]. By extending theprogram in this
way, abduction can extrapolatepotentially useful assumptions from
partially completetheories.

The incompleteness of knowledge inherent in learning suggests
inductive techniques may benefit from a facility for abduction. This
claim is supported by logic-based machine learning systems which
haverecently shown that abduction andinduction can be combined to
achieve superior reasoning capabilities, as shown in [15, 12, 4]. The
benefitsoffered by neural networksover logical approaches in terms
of noise-tolerance and massive-parallelism provide an even greater
incentive to investigate the integration of abduction and induction at
the subsymbolic level. But, existing methods for abduction in neural
networks are not well suited to this task as they only apply to a very
restricted a classof abduction problemswhose expressivity is limited
to definite acyclic programs [7, 18, 2, 22] or they do not adequately
addressthe problem of computing multiple solutions [13, 21, 14, 1].
In this work we seek to demonstrate the importance of abductive
reasoning in the neurosymbolic context and to set the scene for the
subsymbolic integration of abduction and induction.

This paper presents a novel methodology for abduction in neural
networks by generalising existing neurosymbolic approaches from
normal logic programs to abductive logic programs. This provides
a formalism for expressing uncertainty and querying programs with
more than one stable model. An algorithm is given for translating
ALPs into ANNs such that thefixpointsof thenetwork represent the
generalised stable models of the program. The translation is intro-
duced in threesteps. First, a function θ is defined that maps logic
programsinto ANNsby adapting existing neurosymbolic encodings.
Second, a function φ is defined that maps acyclic ALPs into ANNs
by extending the program with some additional clauses for abduc-
tion. Third, a function ψ is defined that maps arbitrary ALPs into
ANNs using a preprocessing transformation which allows positive
and negative cycles to beuniformly handled throughabduction.

Thepaper is structured as follows. Section 2recalls somenotation
and terminology relating to neural networks and logic programs and
it introduces the task of ALP. As this paper doesnot directly address
theproblemsof learning or extracting of programs from networks, it
is sufficient to only consider networks of binary threshold neurons.
Section 3 defines the functionsθ andφ andshows how thenetworks
they produce can compute the generalised stable models of acyclic
abductive logic programs. Section 4 then shows how the approach
is extended to abductive logic programs with positive and negative
cycles. Thepaper concludeswith asummary and directionsfor future
work. All of the examples have been implemented and tested using
theBrainBox neural network simulator [5] andthe configuration files
may bedownloaded from [16].
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2 Background

(Threshold) Neural Networks: A neural network, or just network
hereafter, is a graph (N,E) whose nodesN are called neurons and
whose edgesE ⊆ N ×N are called connections. Each neuronn ∈
N is labeled with a real number t(n) called its threshold and each
connection (n,m) ∈ E is labeled with areal numberw(n,m) called
its weight. The state of a network is a function s that assigns to each
neuron the value 0 or 1. A neuron is said to be active if its stateis 1
and it is said to be inactive if its stateis 0. For each states there is
a unique successor states′ such that a neuronn is active in s′ if f its
threshold is exceeded by the sum of the weights on the connections
coming inton from nodeswhich are active in s. A network is said to
be relaxed if f all of its neuronsare inactive. A fixpoint of thenetwork
is any statethat is identical to its own successor state. If afixpoint t is
reachable from an initial states by repeatedly computing successor
states, then t is referred to as thefixpoint of s.

Normal Logic Programs: A rule is an expression of the form
H ← B1, . . . , Bn,¬C1, . . . ,¬Cm, where theH,Bi andCj are all
atoms. The atom to the left of the arrow is called head of the rule,
while the literals to the right comprise the body. The head atom H
andthepositivebodyatomsBi aresaid to occur positively in therule,
while thenegated bodyatomsCj aresaid to occur negatively. A rule
with no negative body literals is called a definite clause and written
H ← B1, . . . , Bn. A rule with no bodyliterals at all is called a fact
andwrittenH. A normal logic program, or just programhereafter, is
aset of rules. If P is aprogram, thenBP (theHerbrand baseof P ) is
the set of all atoms built from the predicate and function symbols in
P ; and GP (the groundexpansion of P ) is the program comprising
all ground instances of the clauses in P . In additon, A+

p and A−

P

denote, respectively, the sets of groundatoms that occur positively
and negatively in GP ; andDP (the dependency graph of P ) is the
directed graphwith signed edgeswhosenodesarethe atomsinA+

p ∪
A−

P andwhere there is apositive (resp. negative) edgefrom a to b if f
there is a clause in GP with a in the head and b occurring positively
(resp. negatively) in the body. A cycle in DP is positive if it has no
negative edges and is negative otherwise. A program P is said to
be acyclic if f DP contains no (positive or negative) cycles. A stable
model of P is a Herbrand interpretation I ⊆ BP that coincides with
the least Herbrand model of the definite program P I obtained by
removing fromGP each rule containing anegativeliteral not satisfied
in I, and by deleting all of thenegativeliterals in theremaining rules.

Abductive Logic Programs: An abductive logic program [10] is
a triple (T, IC,A) whereT is a program (the theory), IC is a set of
rules (integrity constraints) with the head atom ⊥ (denoting logical
falsity), andA is aset of groundatoms(abducibles). Given asetG of
groundatoms(thegoals), thetask of ALPis to computeaset ∆ ⊆ A
of abducibles such that G and IC are satisfied in some stable model
of T ∪∆. In theterminology of [11], thegoal G is said to besatisfied
in a generalised stable model of T , and∆ is said to be an abductive
explanation of G with respect to T , IC andA.

To select between alternative explanations, additional preference
criteria are often utilised. The most widely-used criterion is that
of minimality [10], which intuitively means the none of the atoms
in the abductive explanation are redundant (i.e. there is no strict
sub-explanation). Formally, an explanation ∆ of G with respect to
(T, IC,A) is minimal if f there is no ∆′ ⊂ ∆ such that ∆′ is an
explanation of G, For conveniencethe four inputs (T,G, IC,A) are

collectively called an abductive context. An abductive context is said
to bedefinite, acyclic, etc, if f the theory T is definite, acyclic, etc.

Definit ion 2.1 (Abductive Context). An abductive context is a four-
tuple (T,G, IC,A) where T is set of rules, G andA are sets of
ground atoms, andIC is a set of integrity constraints.

Example 2.1. Consider the abductive context below describing an
old car. The theory states that the car wont start if its battery is flat
or its fuel tank is empty; that the battery is flat on wet days; that the
car will overheat if its fan is broken; and that the lights of the car
are on. The integrity constraint states that the lights cannot be on at
the same time the battery is flat. The goal to that must be proved is
wont start. The abducibles which may be assumed are wet day,
fan broke, fuel empty.

T =

8

>

>

>

>

<

>

>

>

>

:

wont start← battery flat
wont start← fuel empty
battery flat← wet day
overheat← fan broke
lights on

9

>

>

>

>

=

>

>

>

>

;

G =
˘

wont start
¯

IC =
˘

⊥ ← battery flat, lights on
¯

A =
˘

fan broke, fuel empty, wet day
¯

There are two abuctive explanations of this context: ∆1 =
{fuel empty} and∆2 = {fan broke, fuel empty}. The former
is minimal but the latter not (as it is a superset of the former). These
are the only correct explanations since all other sets of abducibles
fail to satisfy either thegoal or the integrity constraints.

3 Neural Network Abuction: Simple Case

This section presents a first methodology for realising abduction in
neural networksby defining atranslation which mapsdefinite acyclic
abductive logic programs into networks whose fixpoints correspond
to the generalised stable models of the program. The initial restric-
tion to acyclic programs is merely to simplif y thepresentation of the
key ideas and is immediately lif ted in the next section throughsome
simple syntactic preprocessing of the inputs.

The proposed methodology builds upon existing neurosymbolic
techniquesfor transforming logic programsinto neural networksand
is easily adapted to suit any choice of encoding. In this paper, for
ease of exposition, we introduce atranslation based on multi- layer
threshold networks, which combines the approaches in [20, 8] and
is easily generalised to the recurrent sigmoidal networks using the
techniques in [6] to allow backpropagation learning.

As formalised in Definition 3.1 below, the neural network θ(P )
corresponding to a normal program P is obtained from the ground
expansion GP of P by adding the following nodes and edges for
each rule r of the formH ← B1, . . . , Bn,¬C1, . . . ,¬Cm in GP :

• anodewith threshold n− 1/2 to represent the rule r

• anodewith threshold 1/2 for each atomH,Bi,Cj in the rule
(which has not already been added throughan earlier rule)

• an edgewith weight 1 from r to thehead atomH

• an edgewith weight 1 from each unnegated bodyatomBi to r

• an edgewith weight −1 from each negated bodyatomCj to r
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Definit ion 3.1 (θ). If P is a program, then θ(P ) is the network
(N,E) such that

N =
[

r∈GP



r,H,B1, . . . , Bn, C1, . . . , Cm

| r = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm

ff

E =
[

r∈GP



(r,H), (B1, r), . . . , (Bn, r), (C1, r), . . . , (Cm, r)
| r = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm

ff

andfor all r = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ GP

t(r) = n− 1/2
t(H) = 1/2
t(Bi) = 1/2
t(Cj) = 1/2

w(r,H) = 1
w(Bi, r) = 1
w(Cj , r) = −1

Example 3.1. If P is the program T in Example 2.1 above, then
θ(P ) is the network below. For convenience, nodes representing
atoms are lightly shaded and are annotated with the name of the
atom, while nodes corresponding to the rules in the program are
darkly shaded.
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The above translation produces a neural network encoding of a
given program. In common with other approaches, it can be shown
that if theprogram is acyclic, then thefixpoint of therelaxed network
exists and corresponds to the unique stable model of the program.
But, in order to perform abduction, this procedure must be supple-
mented with some way of representing goals, integrity constraints
and some means of activating and evaluating different combinations
of abducibles. As formalised in Definition 3.2 below, the required
abductive machinery can be obtained by transforming an abductive
context (T,G, IC,A) into a logic program with one set of clauses
(T ′ ∪ G′ ∪ IC′ ∪ A′) representing the context and another set of
clauses(C∪K∪L) representing some additional logic to ensurethe
fixpoints of the network correspondto the generalised stable models
of the theory.

Definit ion 3.2 (φ). Let (T,G, IC,A) be an abductive context. Let
N be the number of abducibles in A. Let P be the length of the
longest directed path in DT with no repeated nodes. Let M be the
smallest integer greater than or equal to 1

2
(P + 2N + 3). Let goal,

ic, soln, next, done, sync, nogood, hold, ai, bi, ci, di andkj be
propositions not appearing in (T,G, IC,A) for all 0 ≤ i ≤ N
and for all 0 ≤ j ≤ M . Then φ(T,G, IC,A) is the network
θ(T ′ ∪G′ ∪ IC′ ∪A′ ∪ C ∪K ∪ L) where

T ′ = T

G′ = {goal← B1, . . . , Bn | {B1, . . . Bn} = G}

IC′ = {ic← L1, . . . , Lm | ⊥ ← L1, . . . , Lm ∈ IC}

A′ = {Ai ← ai |Ai ∈ A}

C=

N
[

i=1

8

>

>

>

>

<

>

>

>

>

:

ai ← ai,¬ci
ai ← di

bi ← ai

ci ← bi−1,¬ai−1, ai

di ← bi−1,¬ai−1,¬ai

9

>

>

>

>

=

>

>

>

>

;

∪

8

<

:

b0 ← next
done← bN ,¬aN

done← done

9

=

;

K =

M
[

i=1

˘

ki ← ki−1

¯

∪



k0 ← ¬hold,¬kM

sync← k0,¬k1

ff

L =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

nogood← ic
nogood← ¬goal
soln← sync,¬nogood
soln← soln,¬nogood
hold← soln
hold← done
next← sync, nogood

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

The four theories T ′,G′,IC′ and A′ are a representation of the
abductive context in which goal is true when the goal is satisfied, ic
is true when an integrity constraint is violated, and each abducible
Ai is truewhen the corresponding atom ai is true. Moreformally, T ′

is the theory T , G′ comprises a single clause with goal in the head
and the atoms of G in the body, IC′ is obtained by inserting ic into
the head of each constraint in IC, andA′ contains one clause of the
formAi ← ai for each abducibleAi ∈ A = {A1, . . . , An}.

The last threetheoriesC, K andL denote some control logic for
activating different combinations of abducibles until an explanation
is found or all possibilities are exhausted. When a solution is found,
thenetwork will enter astable statein which soln is activated andthe
ai indicatewhich abduciblesare in the explanation. If next is briefly
activated (for two consecutive time points), the network will leave
this stable stateand look for the next solution. Once all possibilities
have been tried, the network will enter a stable statein which done
is activated.

The theory C represents a binary counter whose outputs
aNaN−1 . . . a1 each drive one abducible. The network encoding of
C is shown below. The counter advances each time the node next
is briefly activated and it activates the node done when the counter
overflows. Each bit of the counter usesfour nodes, ai, bi, ci anddi, to
implement adivideby two register that toggles thestateof ai when-
ever thestateof ai−1 changes from on to off – with thenodesci and
di signalling ai to turn off and on, respectively.
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The theory K represents a clock whose output sync is used to
advancethe counter if the current stateis not asolution. Thenetwork
encoding of K is shown below. The nodeski form a loop where the
stateof each one follows that of its predecessor; except for the first,
which opposes the last. The period of the clock is proportional to
the number of nodesM + 1, which is chosen to give the rest of the
network sufficient time to stabilise between successive signals. The
clock is disabled whenhold is active. Theoutput sync is activewhen
k0 is on but k1 is not – which is true for 2 consecutive time points
out of every 4(M+1).
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The theory L represents some simple control logic that usessync
to advancethe counter or to suspend the clock according to whether
the current abducibles are avalid explanation. The stateof nogood
indicates when the goal is not satisfied or one of the integrity con-
straints isviolated. When sync becomes active, either next or soln
will be activated depending onthestateof nogood. Thefirst casewill
advance the network into the next statewhile the second will force
thenetwork to stabilise.

Example 3.2. If (T,G, IC,A) is the context in Example 2.1
above, then φ(T,G, IC,A) is the network shown in Figure
1(a). The theories T ′, G′, IC′, A′ are shown below. There are
N = 3 abducibles in A and the longest simple path in GT is
(wet day, fuel empty, fan broke) with length P = 3. The least
upper bound of 1

2
(P + 2N + 3) isM = 6.

T ′ = T

G′ = {goal← wont start}

IC′ = {ic← battery flat, lights on}

A′ =

8

<

:

fan broke← a1

fuel empty ← a2

wet day ← a3

9

=

;

For any acyclic abductive context (T,G, IC,A) it can be shown
that the fixpoint of the relaxed network φ(T,G, IC,A) exists and
is computed in a finite time. If soln is active in the fixpoint, then
that staterepresents a generalised stable model of T that satisfiesG
and IC, where the hypothesis ∆ consists of the active abducibles.
All other solutions can be computed by briefly activating the neuron
next to force the network to search for the next stable state, which
also existsand is computed in finite time. If done is active, then no
further solutions exist.

In Example 3.2 above, it can be verified3 that the initially relaxed
network rejects the initial hypothesis H = {fan broke} (which
doesnot satisfy thegoal) andconverges instead to thesolution ∆1 =
{flat battery}. If asignal is then applied tonext, thenetwork will
converge to the next solution ∆2 = {flat battery, fan broke}. If
another signal is applied to next, the network will reject all other
hypotheses and converge to the final done state, indicating that no
other solutions exist for this context.

4 Neural Network Abduction: General Case

This section shows how the methodology introduced above can be
extended to abductive logic programswith cyclesusing asimple pre-
processing transformation. But, before doing so, it is instructive to
illustratewhy programs with cycles arepotentially problematic.

3 The reader can use the software available from [5] with the data at [16] to
runthenetwork in Fig 1(a) by holding down ctrl-F1 to advancethenetwork
one time point and double clicking neuron 98to apply a signal to next.
Notethat thedatafile contains someredundant neuronswhich merely serve
to ensure that the connections between neurons follow the same easy-to-
read layout as shown in thefigures above.

First consider positive cycles by supposing that the rule
fan broke ← over heat is added to T in Example 2.1 and the
constraint ⊥ ← over heat is added to IC. The problem is that
the cycle between fan broke and over heat introduces a memory
into thenetwork that causesapermanent violation of integrity. Once
over heat is activated byfan broke, they both remain high, andso
does ic. Hence, the correct solution ∆1 would be rejected due to the
memory of theviolation caused by the initial hypothesisH.

One solution to this problem is to relax the sub-networks T ′, G′

IC′ andA′ after each set of abducibles is tried. This can easily be
achieved byadding aspecial abducible true to thebody of each rule
that is always connected to the least significant bit a1 of the counter
to ensure that its stateis continuously alternating with respect to the
other abducibles. In this way, any self -sustaining loops are system-
atically deactivated before the next set of abducibles is presented to
thenetwork.

Next consider negative cycles by supposing that the rules
door open← ¬door closed anddoor closed← ¬door open are
added to T in Example 2.1 and the atom door open is added toG.
The problem is that the cycle between door open and door closed
introduces an instability into the network that prevents any fixpoint
being reached from the initially relaxed state. Instead of converging
to a stable state in which door open is active and door closed is
inactive, these atoms continually force each other to changestate.

Following [3], one answer to this problem involves re-writing
negative literals as positive abducibles and implementing negation
throughabduction. This is achieved by introducing a new abducible
predicate p∗i to denote the negation ¬pi of each predicate pi in the
context andadding integrity constraints to ensurethat for any ground
terms t1, . . . , tn exactly one of p(t1, . . . , tn) and p∗(t1, . . . , tn) is
true. As shown in [11], there is a 1-1 correspondence between the
generalised stable models of theoriginal and transformed contexts.

Thesesolutionsare implemented together in Definition 4.1 below,
which transforms an arbitrary context (T,G, IC,A) into a definite
context (T ′′, G′′, IC′′, A′′) before using φ to generate the network.
Sincethe latter context is definite, there are no potential instabilities
in the network caused by negative cycles; and assuming that φ maps
true to a1, there will be no residual memory in the network caused
by positive cycles. Thus, it can be shown that the stable states of
φ(T ′′, G′′, IC′′, A′′) reachable from the relaxed stateby applying
signals to next are thegeneralised stable models of (T,G, IC,A).

Definit ion 4.1 (ψ). Let (T,G, IC,A) be an abductive context not
containing the proposition true. Let R = {p1, . . . , pk} be the set of
predicatespi appearing in (T,G, IC,A) andlet S = {p∗1, . . . , p

∗
k}

be a set of predicates p∗i not appearing in (T,G, IC,A). For
each atom C of the form pi(t1, . . . , tn), let C∗ denote the atom
p∗i (t1, . . . , tn). Recall that A−

T∪IC denotes the set of atoms that
appear negated in the ground expansion of the program T ∪ IC.
Thenψ(T,G, IC,A) is thenetwork φ(T ′′, G′′, IC′′, A′′) such that

T ′′ =



H ← true,B1, . . . , Bn, C
∗
1 , . . . , C

∗
m

|H ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ T

ff

G′′ = G ∪ {true}

IC′′ =



⊥ ← B1, . . . , Bn, C
∗
1 , . . . , C

∗
m

| ⊥ ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ IC

ff

∪
˘

⊥ ← C,C∗ |C ∈ A−

T∪IC

¯

∪
˘

⊥ ← ¬C,¬C∗ |C ∈ A−

T∪IC

¯

A′′ = A ∪ {true} ∪ {C∗ |C ∈ A−

T∪IC}
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Figure1(a) Example 3.2 Figure1(b) Example 4.2

Example 4.1. Consider the context obtained by extending Example
2.1 as described above: with one clause fan broke ← over heat
stating that the fan will break if the car overheats; with two clauses
door open ← ¬door closed and door closed ← ¬door open
stating that the car door is open if it is not closed andvive versa;
with onegoal door open; andwith one constraint⊥ ← over heat.
The theoriesT ′′, G′′, IC′′ andA′′ obtained by applying Definition
4.1 to this extended context areshown below.

T ′′ =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

wont start← true, battery flat
wont start← true, fuel empty
battery flat← true, wet day
overheat← true, fan broke
fan broke← true, over heat
door open← true, door closed∗

door closed← true, door open∗

lights on← true

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

G′′ =
˘

wont start, door open, true
¯

IC′′ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⊥ ← battery flat, lights on
⊥ ← over heat
⊥ ← door open, door open∗

⊥ ← door closed, door closed∗

⊥ ← ¬door open,¬door open∗

⊥ ← ¬door closed,¬door closed∗

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

A′′ =



fan broke, fuel empty, wet day,
door closed∗, door open∗, true

ff

For lack of space, the network ψ(T,G, IC,A) is not shown.
However, the reader can easily verify that the relaxed network con-
verges to a fixpoint in which exactly threeabducibles are activated:
fuel empty, door closed∗ and true. This implies that G and IC
aresatisfied in a stable model of theprogramobtained by adding the
hypothesis ∆ = {fuel empty} to the extended theory. Moreover,
if a signal is applied to next, the network will converge to the done
state, indicating that no other solutionsexist for this context.

The approach described above comprises a soundand complete
method for solving ALPs in ANNs. It is interesting to distinguish
two special cases of this problem which are of practical importance:
first, given a context in which IC andA areboth empty, ALPreduces
to theproblem of deciding whetherG followsfromT ; second, given
a context in which G, IC andA are all empty, ALP reduces to the
problem of computing the stable models of T . It is instructive to
consider a classic example of this latter problem.

Example 4.2. Consider the following abductive context:

„

p← ¬q
q ← ¬p

ff

, ∅ , ∅ , ∅

«

As remarked previously, solving this context amountsto computing
thestable models of the following program:

P =



p← ¬q
q ← ¬p

ff

As observed in [8] , this program is not easily handled by many
other approachesasit hastwo stable models: {q} and{p}. Applying
ψ to this context results in the transformed context below and the
sub-network shown in Figure1(b) above. 4

0

B

B

@



p← q∗, true
q ← p∗, true

ff

,
˘

true
¯

,

8

>

>

<

>

>

:

← p, p∗
← q, q∗
← ¬p,¬p∗
← ¬q,¬q∗

9

>

>

=

>

>

;

,

8

<

:

p∗
q∗
true

9

=

;

1

C

C

A

The reader can verify that the relaxed network converges into a
stable state where q, p∗ and true alone are active – corresponding
to thestable model {q}. Applying asignal tonext forcesthenetwork
to converge to the next stable state where p, q∗ and true alone are
active – corresponding to the stable model {p}. Applying another
signal to next results in the network converging to the final done
state– indicating that theseare theonly two models.

4 Note that the network representation of C, K and L is not shown because
it is identical to that given in Figure1(a).
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5 Conclusion and Future Work

This paper presented amethodfor abductivereasoning in neural net-
works. In particular, it proposed an algorithm for translating abduc-
tive logic programs into neural networks so that abductive inference
can benefit from the massive neural parallelism. The methodology
extends the original program with some additional logic to ensure
that the fixpoints of the network correspondto the (generalised sta-
ble) models of the (abductive logic) program. It also uses a well-
known relationship between negation and abduction in order to cor-
rectly handle programswith positive and negative cycles. In contrast
to earlier work, no restrictions are placed on the programs and, if
required, the network can be made to enumerate all explanations.
Moreover, because our methodology is a generalisation of existing
neurosymbolic techniques, we believe it can be more easily com-
bined with standard learning approaches. In this way, weseeour ap-
proach as a first step towards the principled subsymbolic integration
of abduction and induction – which could eventually have implica-
tions in cognitivemodelling andscientific discovery.

The approach presented in this paper can be improved in several
ways. For example, it is possible to implement the counter using only
half theneuronsand half thepropagation delay per bit. Also, instead
of making true an abducible, it is sufficient to definetrue← ¬next
in order to relax theprogram sub-network before each new set of ab-
duciblesis presented. In the caseof Example 4.1, theseoptimisations
alone reduce the number of time points needed to search the entire
hypothesis spacefrom 2560to 896. In addition it is possible to dis-
pense with the clock and issue asynchronisation pulse by detecting
when theprogram sub-network reaches its fixpoint. This will further
improve efficiency as the clock method always assumes the worst
casepropagation delay.

Even with these modifications, we are still far from realising our
goals. One problem with our current approach is that, although par-
allelism is exploited when checking each individual hypothesis, the
number of hypotheses checked is exponential in the number of ab-
ducibles. Two complementary strategies should be explored in order
to address this problem. The first is to use some form of pruning
during the search as in symbolic ALP systems such as [17]; and the
secondis to usesomeform of simplifi cation when preprocessing the
program asin Answer Set Programming (ASP) systems such as[19].
An important extension of thework involvesexploiting thestructure
of thenetwork to impose apreferenceontheorder in which solutions
are found. For example, the counter can be modified to output num-
bers in the order 0001, 0010, 0100, 1000, 0011, ... with the fewest
number of bits high so that explanations will be discovered in order
of minimality. In addition, the abducibles topologically far from the
goal can be connected to the least significant bits of the counter, so
that explanations will also bediscovered in order of basicality [10].

A key direction for future work is that of integrating abductive
reasoning with inductive learning in order to realise thebenefitssug-
gested byrecent symbolic machinelearning systems[15]. By provid-
ing a richer formalism for representing and reasoning about partial
knowledge and integrity constraints, abduction could help to exer-
cise afiner degreeof control over which assumptionscan andcannot
be made in learning. In this context, it may be more appropriate to
use avariation of the methodology presented in this paper, whereby
thenetwork’s topology is projected onto asingle layer recurrent net-
work (computing the immediateconsequenceoperator of the under-
lying program) and the threshold units are replaced by sigmoid neu-
rons. This should enable an experimental validation of the approach
as well as amoredetailed comparisonwith symbolic systems.

Althoughmany problems remain to be solved, we have presented
some new techniques that may eventually lead to a fruitful synthesis
with other approaches. Someinteresting featuresof our methodology
include combining the neural hardware description with the object
logic program and using abduction to handle negation and cycles in
the object program. It remains to be seen how these can be usefully
integrated into aneural network learning framework.
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