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Introduction

The importance of the efforts to bridge the gap between the connectionist and symbolic paradigms of Artificial
Intelligence has been widely recognised. The merging of theory (background knowledge) and data learning (learning
from examples) in neural networks has been indicated to provide a learning system that is more effective than purely
symbolic or purely connectionist systems, especially when data are noisy.

The above results, which are due also to the massively parallel architecture of neural networks, contributed to the
growing interest in developing Neural-Symbolic Learning Systems, i.e. hybrid systems based on neural networks that
are capable of learning from examples and background knowledge, and of performing reasoning tasks in a massively
parallel fashion. Typically, translation algorithms from a symbolic to a connectionist representation and vice-versa
are employed to provide either (i) a neural implementation of a logic, (ii) a logical characterization of a neural
system, or (iii) a hybrid system that brings together features from connectionism and symbolic Artificial Intelligence.

However, while symbolic knowledge representation is highly recursive and well understood from a declarative point
of view, neural networks encode knowledge implicitly in their weights as a result of learning and generalisation from
raw data. The challenge for neural-symbolic systems, therefore, is to combine neural networks’ robust learning
mechanisms with symbolic knowledge representation, reasoning, and explanation capability in ways that retain the
strengths of each paradigm.

This workshop brings together researchers in the fields of neural-symbolic integration, neural computation, logic and
artificial intelligence, and computational neuroscience, as well as experts in robotics and semantic web applications
of neural-symbolic systems. The workshop aims to focus on principled ways of integrating neural computation and
symbolic artificial intelligence w.r.t. knowledge representation, reasoning, learning, and knowledge extraction.
Towards this goal, the papers in the workshop address all facets of neural-symbolic integration, including:

The representation of symbolic knowledge by connectionist systems;
Integrated neural-symbolic learning approaches;

Extraction of symbolic knowledge from trained neural networks;
Integrated neural-symbolic reasoning;

Biological inspiration for neural-symbolic integration;

Applications in robotics and semantic web.

The provision of integrated systems for robust learning and expressive reasoning has been identified recently by
Leslie Valiant as a key challenge for computer science for the next 50 years (Journal of the ACM, Vol. 50, 2003).
Neural-Symbolic integration can rise to this challenge. The area has now reached maturity, as indicated by books
recently published in the subject, journals dedicated scientific areas on logic and neural networks, research projects,
and a book series dedicated to the integration of symbolic and sub-symbolic computation. There have been isolated
workshops in the area in the past, and it is now time for a regular workshop series to serve as a focal point for the
community. We hope Neural-Symbolic Learning and Reasoning will serve this purpose. We hope it will also become
a source for further collaboration between researchers working in the area.

We would like to take this opportunity to thank the members of the programme committee who helped in reviewing
and selecting the papers submitted to the workshop, our invited speakers, Prof. Marco Gori and Prof. Stefan Wermter,
the authors of the papers submitted to the workshop, and the ECAI-06 workshop chair, Prof. Toby Walsh, for his
assistance in the organisation of the workshop.

Riva del Garda, August 2006
Artur d’Avila Garcez , Pascal Hitzler, Guglielmo Tamburrini



Keynote talk: Heat Kernel Learning Machines

Dr. Marco Gori
Dipartimento di Ingegneria dditiformazione, Via Rora, 56, 53100 Siena — ITALY
marco@dii.unisi.it, htp://www-dii.ing.unisi.it/~@rco/

Abstract:

A remarkable nunber of inportant problems in different domains (e.g. web ming,
pattern recognition, biology ..gre naturally radeled by @inctions defined on graphical
domeins, rather than on traditional vectepaces. In this th] | introduce a general
framework for learning functions defined g@maphical dorains. Using the mtaphor of
heat popagation, | introduce tle cacept ofheat kernel learning achines (HKLM), and
show that they can approxate up to anydegree of precision a class of functions,
referred to as unfolding-equivalee functions(UEF) that turn out tdoe of interest in
many real-world problem. | sketch the ger&@ architedure of the HKLM and dscuss a
neural netwrk based coputation at node level. Theorresponding weights can be
discovered fronsupervised exaphes using algathms inspired to annectionist learning.
The basic idea is to adopt a special dymatmehavior that arises frorforcing a
contraction map in the HKLM. In he extrene case, the paraters are shared amgst
the nodes of the graphs, but onea ggoup nodes so as to share the weights within the
group. Interestingly, | show that the adoptiordidferent weights for different classes of
nodes rakes it possible to extend theethodologyto the case in which the function takes
values on th arcs.

| give sone very pronsing experinental results on a number of graph probkemnd for
functions involved in link analysis, like Pdgank. | also show thatimilar performance
holds for extensions of PageRank in whibk function also depends on the content of
the page. | clainthat the propagation of thelationships expressed by the arcs in the
graphical dorain reduces draatically the sarple conplexity with respet to traditianal
learning nachines, thus sking HLKMs sutable to many large sda red-world
problens (e.g. spandetection andomplex page categorization).

Biography:

Marco Gori is professor of cgmter Sciencet the University of Siem His research
interests ae in thefield of artificial inteligence, with emphasis on rachine learning. He
is especially involved in theonception of new theories of learning in structured @om
and in their applications to pattern ogaition and rming the web. He has been the
Presiden of the Itdian Association dér Artificial Intelligene and is cuently actirg as
the chairnan of the ItaliarChapter of the IEEE Goputatianal Intelligence Society. Dr.
Gori is a fellow of the IEEE.



Keynote tak: Hybrid | ntelligent Systems and Cognitive Robotics
Professor Stefan &mter

Chair for Intelligent Sytens

School of Computing and Technology
University of Sunderland

St Peters \&y

Sunderland SR6 0DD

United Kingdom

email: stefan.werrter AT sunderlad.ac.uk
http://www.his.sunderland.ac.uk/~csOstw/
http://www.his.sunderland.ac.uk/

Abstract:

There has been substiahprogress in bt hybrid intelligent systers and cognitive
robotics in recent years. While in the paias were nost successful in tratibnal
industrial ewironments, new generations loybrid intelligent robotic systemare being
developed \ich focus on higher caifive capalbities, including reasomg, learrnng and
language comunicatian. In this talk we willgive an overiew of learning neural taots
from a perspecti® ofintegrative hyhd intelligent systens and illusrate sorne new
developnents including also exgotes undedevelopnent in the Centre for Hybrid
Intelligent §stens at tle Universityof Sunderlandwww.his.sunderland.ac.yk

Biography:

Professor Stefn Wernter holds the Chair itdligent Systens at the Univeiity of
Sunderland, UK and is the Director of then@e for Hybrid Intelligent Systesa His
reseach interests are inntelligert Systens, Neural NetworksCognitive Neurosciere,
Hybrid Systers, Languge Processing, aricearning Robots. He has an MSc freime
University of Massachusetts, USA and &Rind Higher Doctorate (Habilitation) from
the Univergty of Hamburg, Gernany, allin Computer Science and was a Research
Scientist at Berkeley, 8A before joinng the University of Sunderlandcdfessor
Wemter has written or edited five booksad published abodB0 articles on this
research area, including books like "Hyb@dnnectionist Msdtural Language Processing",
"Connectionist, Statistical, and Spolic Approaches to Learning for Natural Language
Processing”, "Hybrid Neat Systems" and "Eengert Neural Corputational
Architectures based on Neuroscience”.



EvidenceBasedReasoningin Classfier Hierar chies

RebeccaFay and Friedhelm Schwenler and Giinther Palm!

Abstract. Hierarchical neural networks naturally comhine sub-
symbolicinformationprocessingwith symbolicinformationasthey

consistof several neural classifierswhich provide hierarchically
structuredknowledge. This knowledge implies a particular uncer

tainty which is indicatedby the magnitudeof the classifieroutputs.
Therearedifferert waysto combinethis expertknowledgeto a col-

lective output. Two differentmethod are evaluatedin this paper:a

methodsimilar to the decisiontree approachand an evidencethe-

oretic approachutilising DempsterShafertheory The proposedap-

proachedave beenevaluatedusingthreedifferentdatasetsandtwo

differenttypesof classifierslt wasshown thatthe evidencetheoretic
approaclyieldsimprovedclassificatiorpefformance.

1 INTRODUCTION

Hierarchicalrelationshipsamongobjectsoccurratheroften. In par
ticular, hierarchicalgrouping of similar objectsseemsreasonable.
This similarity canreferto differentcharacteristicsuchasfunction-
ality or appearancef objects.

Hierarchical neural networks consistof multiple classifiersar-
rangedn ahierarchicaimannemvheretheindividual classifiergro-
vide evidenceat different levels of abstraction,.e. the individual
classifiersgive resultsfor not necessarilysingle classesut setsof
classesThe evidenceprovided by the single classifiersrepresents
measuresor thelikelihoodof a given sampleto belongto a certain
classor groupof classes.

Thusahierarchicaheuralnetwork canbeinterpretedasagroupof
hierarchicallyarrangedxpertswhich make hierarchicallystructured
statements, e. expertsat higherlevels of the hierarcty make rough
decisiongoncerningcomprehensi groupsof classesndexpertsat
low levels provide detailedinformationabaut few singleclasses.

Therearediversewaysof obtaininga collective resultonthebasis
of the opiniors of the variousexperts.Oneway is to attainthe re-
sultin stagedy propagtingthedecisiondown thehierarcly, i.e. the
decisionis ddegatedhierarchically At eachlevel a selectedexpert
makesa decisionat his level of detailandbasedon this decisionhe
choosesheexpertatthe next level who hasto make amoredetailed
decision.Thusthe decisionis propagteddown the hierarcly until
thefinal expertat the lowestlevel conclwsively decideswvhatthere-
sultis. Therebynot all expertsare consultedout only thoseexperts
on the pathwhich emeged.Anotherway is to incorporatethe opin-
ionsof all expertsandto combinethemto oneconclusve result.The
integrationof the differentexpertopinionsis aform of reasoning.

A suitable approachfor combining hierarchically structured
knowledge incorporating uncertainty is the well-established
DempsteiShafer evidence theory It provides meansof dealing
with information provided at differentlevels of abstractionwithout

L University of Ulm, Germary, emait {rebeccady, friedhelm.schwens,
guenthepalm} @uni-ulm.de

enforcingto assigninformationat a moredetailedlevel thanis justi-

fied. Moreover, it offersa possibilityto representack of knowledge
and doubt. The first characteristidfacilitatesthe dealing with the

hierarchicalinformation provided by the classifierhierarcly. The

latter propety accountgor the necessityof theindividual classifiers
to be ableto statethata given sanple belorgsto anunknawn class.
This is essentialas not all classifierswithin the hierarcly provide

informationabou all classesbut only dealwith a specificsubsebf

classesand thus are likely to have to give resultsfor classeshey

have no knowledgeabout.

2 METHOD

In this papera method to combinethe resultsof multiple hierarchi-
cally arrangecclassifiersutilising evidencebasd reasonings pre-
sentedThis methodis comparedvith asimpledecisiontree-like ap-
proachfor retrieving the classificationresults.Both approachesre
appliedto thesamehierarcly, i.e. thehierarcly generatiorandtrain-
ing is thesamefor both methods.

In the following the main componentf the proposedapproach
are presentedHierarchicalneural networks are briefly introduced
andthetwo methoddor evaluatingthe hierachy areexplained.

2.1 DempsterShafer EvidenceTheory

DempstetShaferevidencetheory[4, 5, 16] is amathematicatheory
of evidenceand plausibility reasoninglt provides meansof repre-
sentingand combiningmeasure®f evidence.Major advantags of
this theoryarethe possibility to differentiatebetweerignoranceand
uncertaintytheability to easilyrepresengevidenceat differentlevels
of abstractiorandthe possibilityto combineevidencefrom different
sourcesln thefollowing the basicconceptf the DempsteiShafer
evidencetheory relevant for the proposedapproachare briefly ex-
plained.

Let Q be a finite setof ¢ mutually exclusive atomic hypotheses
Q = {64, ...,0,4} calledthe frameof discernmentepresentinghe
universeof discourseandlet 2 denotethe power setof Q.

A basicprobability assignmenbr massfunctionm over a frame
of discernment2 is a functionm : 29 + [0, 1] that satisfiesthe
following two conditions:

m(0) =0
> acom(4) =1 @)

The massm(A) specifiesthe belief in hypothesisA which does
not needto be atomic, but canbe a setof atomichypothesisin that
casem/(A) reflectsignorancen sofar asit is not possibleto further
subdvide this beliefin A amongthe subsetof A. Thusthe mass
m(A) specifiegshedegreeof belieftha is assignedo exactly theset
A C Q andnotto ary subsebf A.



Two basicprobabilityassignments:; andm, from two indepen-
dentsoucescanbe combinedvia Dempsters combinationrule, the
socalledorthogonalsumm; o = m1 & m2 whichis definedas:

>

A,B:ANB=C

mio(C) =K ' mi(A)-ma(B), YC#0 (2)

where K is a measurdor the conflict betweenthe two sources.
Theconflict K is definedas:

>

A,B:ANB=0

K=1-

>

A,B:ANB#0

ml(A)mg(B)

3
Theorthogonalsumm; & mo doesonly existsif K # 0 andthe
resultm; » is thenabasicprobabilityassignmeniOtherwisethetwo
sourcesaresaidto betotally contradictory
Within the transferablébelief model[18], aninterpretationof the
DempsteiShafertheoryof evidence positve massesanbeassigned
to theemptyset() entailingunnormalisedelief functions[17]:

>

A,B:ANB=C

ma,2(C) = mi(A)-ma(B), YOCQ (4)

A high valuefor the massof theemptyset() indicatesa high con-
flict betweerthesources.

2.2 Classifier Hierar chies

Hierarchicalneural networks consistof multiple neural classifiers
which are arrangedhierarchicallyand realisea hierarchicaloutput
spacedecompositionThe classificatiorprocesss decomposethto
severalstageautilising coarseto fine classification.

The hierarchied6] aregeneratedy unsupervised-meansclus-
tering with the objective of groupingsimilar classestogether i.e.
classeghataresimilar with respecto thefeatureused

The basicidea of hierarchcal neuralnetworks is the decompo-
sition of a comple classificationproblem into several less com-
plex problems This yields hierarchicalclassgrouping. The hierar
chy emepgesfrom recursve partitioning of the original setof classes
C into several disjoint subsets”; until subsetsconsistingof single
classesesult.C; is the subsebf classego be classifiedby nodes,
wherei is arecursvely composedndex reflectingthe pathfrom the
root nodeto node i. The subsetC; of node: is decomposednto
s; disjoint subsetsC; ;, whereC;; C Cj, C; = Uj;éCi,j and
C;; N Cir = 0. Thetotal setof classes” is assignedo the root
nodeCy, = C. Consequentlyodesat higherlevels of the hierarcly
discriminatebetweenarger subsetf classesvhereamodesat the
lowestlevel classifybetweersingleclassesFromthe applicationof
this divide-and-coguer stratgly emege several simple classifiers,
that can be amendedmuch more easily to the decomposedgimple
classificatiortasksthanoneclassifiercould be adaptedo the origi-
nal comple classificatiortask.

An example of a classifierhierarcly is shown in figure 1. The
nodeswithin thehierarcly represenindividual neuralnetworks.Dif-
ferenttypesof classifiercanbeused We choseradialbasisfunction
networks and fuzzy k-nearesteighbourclassifiers.A three phase
learningalgorithm[15] waschoseno train the radial basisfunction
networks.

Hierarchicalneuralnetworks naturallyprovide alink betweerbe-
tweensymbolicinformationandsub-symbolicinformationprocess-
ing. Featurevectorsrepresentingub-symbolidnformationareused

Figurel. Classifierhierarcly for theclassificatiorof eightclassegA, B,
C, D, E, F, G, H). Eachnodewithin the hierarcly representa neural
network whichis usedasa classifier Theendnodesrepresentlasses.

for theclassificationwhereasymbolicknowledgeis madeavailable
concomitantlyvia theinformationabouttheaffiliation to certainsub-
setsof classesThus the hierarcly doesnot only provide the infor-
mationto which classa given samplemostlikely belongsbut also
theinformationto which subset®f classeshis samplebelongsThe
usageof neuralnetworks,fuzzy or probabilisticclassifiersallows the
representatiomf uncetainty of the membershigo theseclassesor
groupsof classesincethe original outputof the neuronss not dis-
cretebut continuous.

2.3 Retrieving the ClassificationResultin a
Decision-Tree-Like Manner

A simpleandfastway to obtainthe classificatiorresultis to evaluate
the hierarcly similar to theretrieval processn decisiontreeswhere
apathfrom theroot nodeof the hierarcly to theleaf nodethatspec-
ifiestheresultingclassis determinedStartingwith theroot nodethe
classificationresultsof the individual classifiersare usedto decide
which classifierat the next lower level will belookedat next, i.e.to
which successonodethedecisionwill bedelegated.Classifier: that
discriminatesbetweens; disjoint subsets; ; decidesto which of
thesesubsety”; ;- the presentecsamplemostlikely belorgs. As a
resultthe j*th successonodeis the next classifierlooked at. This
is successiely repeatedintil aleaf nodeis reachedThis evaluation
methodonly considersasubsebf theclassifierswithin thehierarcty.
Figure2 visualiseghis decisionprocessandshavs which classifiers
areinvolved.

Figure2. Retrieval of theclassificatiorresultanalogoudo decisiontrees.
A paththroughthehierarcly is determinedeadingto theresultingclass.
Thehighlightedpath(in darkgrey) shavs the nodesactivatedduringthe

classificatiorof asamplethatis classifiedasclassF.

If for a given taskonly intermediateresultsare of interest,e.g.
whethera samplebelongsto a certainsubsebdf classesit is notnec-
essanyto follow throughthe completedecisionprocessuntil thefinal
classis obtained put the processanbeabortedat anearlierlevel.



This methodsfeaturesa simpleway of combinirg the resultsof
multiple classifierslt yieldsgoodclassificatiorresultsin rathershort
classificatiortime, but amajordisadwantagds the missingability to
correctmisclassificationshatoccurat higherlevelsof the hierarcly.
Henceit would be beneficialnot only to take asinglepathwithin the
hierarcly into accountbut to considerall classifiersof the hierarcly.

2.4 EvidenceBasedReasoningin Hierar chical
Neural Networks

A more complex way of combiningthe resultsinvolvesall classi-
fiers of the hierarcly. The sampleto be classifiedis presentedo all
classifierswithin the hierarcly and the individual resultsare then
combinedo onecollective result. The strengthf theindividual re-
sultsareincorporatedy this method.Thecombinationis performed
utilising DempsterShafertheoryof evidence

Figure3 depictswhich classifiersareconsideredor this decision
process.

Figure 3. Retrieval of theclassificatiorresultutilising DempsteiShafer
evidencetheory All classifiersareconsideredvhencalculatingthe
classificatiorresult.

The applicationof the DempstetShaferevidencetheoryrequires
in a first stepthe calculationof basic probability assignmentsn ;
from the outputsof the individual classifierswithin the hierarcly.
As not all neuralclassifiersproduceoutputvaluesthatfulfil there-
quirementdor basicprobabilityassignmentéequationl) atransfor
mationof the outputsmight be required.The outputvaluesof fuzzy
k-nearesheighbourclassifierss; () satisfythe conditionsfor basic
probability assignmentss the classmemtershipsfulfil the condi-
tionsZ;(x) € [0,1] andZi:1 Xii(x) = 1 whereaghe outputof
radial basisfunction networks z; (z) doesnot necessarilydo so. To
enforcethefulfilment of theconditionz; () € [0, 1] arampfunction

0, <0
O(zi(z)) =9 =z, 0<z>1 (5)
1, z=z>1

is is appliedto theclassifieroutputsettingall negative valuesto zero
andall valuesgreaterthan1 to 1. This s justified insofar asonly a

negligible numberof outputvaluesviolate this condition.In orderto

accountfor ignorancewhich is representedy low classifieroutputs
thedifferenceto oneis assignedo . If thesumof theclassifierout-

putsis equalto or greaterthanonenothing is assignedo 2. In this

casethe outputis thennormalisedo sumup to one.Hencein either
casethe conditionZi:1 m; (i) = 1 is satisfied.Thesetransforma-
tionsareappliedif necessaryo the outputsof all classifiersaandthen
the resultingbasicprobability assignmentsn; of all classifiersare
combinedusingthe orthogonakumwithout normalisationequation
4).

Accordingto thestructureof thehierarcly eachclassifierprovides
evidencefor the specificsubsetof 2 betweenwhich the respectie
classifierdiscriminatesaswell asfor 2. In caseof ignorancestrong
evidenceis assignedo Q.

Additionally, a discountingtechniqueis usedpropagting classi-
fier resposestop down. Thusclassifierresponseslongpathesthat
atahigherlevel containaclassifiewhich shavedlow responseare
wealenedstronglywhereagpatheselow classifierswith strongout-
putarehardlywealened.Thediscountings realisedby successiely
multiplying the classifierresponsesvith the classifieroutputof the
respectie predecessanode.Henceno discountingis appliedto the
root node.The discountingaccountsfor the fact that within the hi-
erarcly thereare a not neggligible numberof classifierthat have to
provide resultsfor sampleshelongingto classeshey have not been
trainedwith. Hencelow classifierresponsesas would be desired,
cannotbeguaranteeth thatcasesThediscountinghuswealensin-
sularstrongresponsesyhich arelikely to be causedby a classifier
thathasbeenpresente sampleof anunknavn class.In contrastif
only one classifierwithin a specificpathshavs a low responseut
all otherclassifiersesponsesre high this leadsonly to a moderate
attenuationThediscountings applieddirectly afterthetransforma-
tion of the classifieroutputsto basicprobability assignmentsAs a
multiplicationwith the discountingfactorsd; € [0, 1] decreasethe
basicprobability assignmentsf d; < 1, their sumis thensmaller
thanonergO1 dimi(C; ;) < 1. Thedifferenceto oneoriginating

from thisis thenassignedo Q: m; () =1 — Z;'i_l dim;i(C;. ;).

=0

3 RESULTS

Theproposedpproactwasevaluatedby meanof 10runsof 10-fold
cross-alidationexpetimentsonthreedifferentdatasetsandwith two
kindsof classifiersThedatasetsusedwerethe ColumbiaObjectim-
ageLibrary (COIL-20) [13] datasetconsistingof 20 objectsand 72
grey valueimagesperobject,the Letter RecognitionimageData[8]
comprising26 lettersand20000samplesn totalandthehandwritten
STATLOG digits dataset[9] containing10 digits and 1000 sam-
plesperdigit. From theimagesof the COIL-20 datasetorientation
histogramd7, 3] were extractedasfeaturesfor the objectrecogni-
tion. As classifiergadialbasisfunctionnetworksandfuzzy k-nearest
neighbourclassifiersvereused.The usageof the latteris motivated
by the simplicity andthelow training effort of this approachaswell
asby thefactthat no parametergxceptk needto be optimisedfor
thistype of classifier

The approachwasnot only evaluatedon automaticallygenerated
hierarchiesdut also onhierarchieghatwere manuallycreatedyroup-
ing classedn aplausiblemannessuchthatmeaningfulgroupsemege
andtheclassesvithin onegroupbearesemimnceto eachother Fig-
ure4 depictsthe two hierarchie for the COIL-20 datasetgenerated
in thedescribedvays.

In all experimentgheevidencetheoreticapproaclyield atleastthe
samdf notbetterclassificatiorresultscomparedo thedecision-tree-
like method.Theresultsfor the automaticallygeneratedhierarchies
evenshow asignificantdifferenceon all threedatasets.

The resultsfor the automaticallyand manuallygeneratedierar
chiesarevisualisedin figure 5 and 6 respectiely by meansof box
plotsanderrorbars.Thetablesl and2 list the classificatiorratesfor
the differentexperimentperformedon the automatically andmanu-
ally generatedhierarchiegespectiely.
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Figure4. Hierarchiedor theclassificatiorof the COIL-20 objects.The
upperhierarcly wasautomaticallygeneratedby unsupervised-means
clustering thelower hierarcly wasmanuallycreatedgroupingobjectsin a
plausibleway suchthatmeaningfulgroupsresult.

Data || RBF 3NN 5-NN
DS [ DT DS [ DT DS [ DT
Letters || 86.51%| 84.71%| 90.72%| 89.05%| 82.65+ | 80.91%
1.00% | 0.93% | 0.62% | 0.72% | 0.84% | 0.61%
Digits || 94.10+| 93.38+| 94.64+| 93.86+| 89.98+ | 89.58+
0.85% | 0.90% | 0.46% | 0.63% | 0.91% | 0.97%
COIL- || 96.07+| 95.46+| 99.05+| 98.96+ | 92.19+| 92.21+
20 2.01% | 2.16% | 0.90% | 0.88% | 1.92% | 1.84%

Table2. Classificatiorratesfor the differentdatasetson the testdatafor
the DempsteiShafermethod(DS) andthe decisiontreemethod(DT) for the
radialbasisfunctionnetwork (RBF) andfuzzy k-nearesheighbourclassifier

(k-NN) on manuallygeneratedhierarchiesThe averageclassificatiorrates

of the DempsterShaferapproactaremostly higherthanthe classification

ratesof thedecision-treamethod.

Data RBF 3-NN 5-NN
t [p t [p t [p
Letters 9.28 3.53e— | 13.60 4.12e—| 15.04 3.14e—
10 14 15
Digits 4.80 9.70e— | 3.77 0.0044 | 3.27 0.0096
4
COIL- 4.70 8.34e—| 1.61 0.1181 | 2.53 0.0174
20 6

Data RBF 3-NN 5-NN
DS [ DT DS [ DT DS [ DT
Letters || 86.74+| 85.45+| 90.80+| 89.22+| 82.92+| 81.30+
0.79% | 0.78% | 0.61% | 0.69% | 0.68% | 0.64%
Digits 94.21+| 93.18+| 94.51+| 94.20%| 90.26+| 89.85+
0.74% | 0.79% | 0.55% | 0.60% | 0.82% | 0.80%
COIL- 96.76+ | 95.39+| 99.59+| 99.26+| 92.62+| 92.12+
20 1.58% | 2.03% | 0.47% | 0.67% | 1.62% | 1.77%

Table3. Resultsof thecorrected-testfor thedifferentdatasetson thetest
datacomparingthe DempsterShafer(DS) methodandthe decisiontree
method(DT) for theradialbasisfunctionnetwork (RBF) andfuzzy
k-nearesheighbourclassifier(k-NN) on automaticallygenerated
hierarchiesThetablegivesthe p-valuesaswell asthet-value.Thet-tests
indicatesthatthe evidencetheoreticapproactoutperformghedecisiontree

Tablel. Classificatiorratesfor the differentdatasetson thetestdatafor
the DempstetShafermethod(DS) andthe decisiontreemethod(DT) for the
radialbasisfunctionnetwork (RBF) andfuzzy k-nearesheighbourclassifier

(k-NN) on automaticallygeneratedhierarchiesThe evidencetheoretic
approacloutperformghe decisiontreeapproachn all experiments.

A pairwiset-testbasedon repeated:-fold crossvalidationwith a
variancecorrection[2] to compensaté¢he highly violatedindepen-
denceassumptioncalled correctedrepeatedc-fold crossvalidation
test,wasconductedo assessheresultsof the differentexperiments
statistically

Theresultsof thet-testfor the differentexperimentsarelisted in
tables3 and4.

4 DISCUSSION

The evaluation of the classifie hierarcly by meansof Dempster
Shaferevidencetheory yields improved or at leastthe sameclas-
sification reaults comparedo the simple decision-tree-lik evalua-
tion method.Hierarchiesautomaticallygeneratecshav morestable
resultsthanmanuallygeneratedhierarchiesput the manuallyhierar
chiesalsoshav goodresults.

approactsignificantly

Data RBF 3-NN 5-NN

t [p t [ p t [p
Letters || 9.93 3.78e—| 14.69 | 1.35e—]| 11.79 | 8.97e—

6 7 7

Digits 2.09 0.1050 | 3.53 0.0242 | 2.03 0.1124
COIL- 1.25 0.2191 | 0.99 0.33 —0.10 | 0.92
20

Table4. Resultsof thecorrected-testfor the differentdatasetson thetest
datacomparingthe DempsterShafer(DS) methodandthe decisiontree
method(DT) for theradialbasisfunctionnetwork (RBF) andfuzzy
k-nearesheighbourclassifier(k-NN) on manuallygeneratedhierarchies.
Thetablegivesthe p-valuesaswell asthet-value.Thet-testsindicatethatno
significantdifferencesetweerthe classificatiorresultsof thetwo different
methodscanbe obseredfor all datasets.
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Figure5. Classificatiorratesfor thethreedatasets(letters,digits,
COIL-20) onthetestdatafor the evidencebased DS) andthe
decision-tree-lik (DT) approactontheautomaticallygeneratedierarchies.
As classifierradial basisfunction networkswereused.The box plotsaswell
astheerrorbarsindicatethat DempsterShafermethodsgperformsbetterthan
thedecisiontreemethodon all threedatasets.

A major drawbackof the decision-tree-lik evaluationmethodis
the missirg possibility to later on correctmisclassificationshat oc-
curedat higherlevels of the hierarcly. Since the evidencebasedap-
proachconsidersall classifierswithin the hierarcty, misclassifica-
tionsat higherlevels of the hierarcly canbe compensateébr if the
decisionsmadeby the classifiersat the lower levels are correct. If
the misclassificatiortakes placeat a leaf node,this wrong decision
cannotbe correctedary more. The DempsterShaferapproachcan
alsonot compensatéor misclassificationsvherethe majority of the
classifierssupportghewrongdecision.

As all classifierswithin the hierarcly needto be evaluatedwhen
usingthe evidencetheoreticapproactthe advantageof the availabil-
ity of intermediateclassificatioroutputsandtheresultingsavings of
computatiortime, which the decision-tree-lik methodprovides,do
notapply. However, theDempsterShaferapproactprovidesnotonly
the resultingclassbut alsoa measurdor the degreeof membership
of the presentedampleto eachclass.

With regardsto computationtime the decisiontree methodout-
performsthe evidencetheoreticapproachas not all classifiersare
considered&ndno addtional calculationsarerequired. Thusin time-
critical applicationghe decision-tree-lik methodshouldpreferably
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Figure6. Classificatiorratesfor thethreedatasets(letters,digits,
COIL-20) onthetestdatafor the evidencebased DS) andthe
decision-tree-lik (DT) approaclonthe manuallygeneratedhierarchiesAs
classifierradialbasisfunctionnetworkswereused.The box plotsaswell as
the errorbarsindicatethat DempsterShafermethodsyieldsthe sameor even
betterclassificatiorratesthanthe decisiontreemethodon all threedatasets.

beusedasit ratherquickly yieldsgoodclassificatio results.

Sincetheindividual classifierswithin the hierarcly canbe evalu-
atedindependentlyof eachother all could be evaluatedin parallel.
Thusthedifferencan time on multi-processomachiness solelyde-
terminedby the combinationrule which is only slightly more com-
plex for the evidence-basg approachlf all classifiersare evaluated
in parallelthetime aspecbecomedesssignificant.

5 RELATED WORK

DempsteiShaferevidencetheory hasbeenappliedto classifierfu-
sionin numerouspplicationdor patternrecoqition.

DempsteiShafertheorywasusedfor multiple classifierfusionin
[11]. This approachusesprototype-basedlassifiersand calculates
belieffunctionsfrom distancemeasuresf differentclassifiersvhich
are then combinedutilising DempsteiShaferevidencetheory As
distancemeasureshe inter-class-distanceandintra-class-distances
wereused.The approachwasevaluatedin the field of online script
recognition.

In [20] classificationrates, misclassifiction ratesand rejection
rateswereusedto derive basicprobability assignmentdDempsters



combinatiorrule is appliedto combinetheevidencesThis approach
considersan extra classrepresentinginknavn classesr ignorance
andit assigndelief to singletonhypothesestheir complementnd
to the universalproposition{Q2. The classifiersusedonly have class
labelsas outputand do not produceinformationthat can be inter
pretedas classmembership®r othermeasurementd he approach
wasappliedto the problemof recognisinghandwrittemumeralsand
scoredwell comparedo otherapproaches.

A techniqge closelyrelatedto decisiontemplateq10] is usedto
calculatedegreesof belief in [14]. The distancedetweenthe clas-
sifier outputsfor the sampleto be classifiedand the meanclas-
sifier outputs calculatedon the training sanples are transformed
into basicprobability assignmentsThe so calculatedevidencesare
thencombinedusingthe orthogonakum.Severalexperimentsn the
field of digits andcharacterecognitionhave beenconductedo test
this methodandit wasalsopart of the experimentalcomparisorof
the decisio templatesappoachfor classifer fusion to otherwell-
establishednethoddn [10] whereit compaedfavourablywell.

In [1] this appro@h hasbeenvaried by using referenceoutputs
adaptedo the training deta so thatthe overall meansquareerroris
minimisedinsteadof simply usingthe meanclassifieroutputs.

DemspteiShafer evidence theory is usedto combinethe nor-
malisedoutputsof multiple classifiersandto rejectsamplesn case
of highly conflictinginformationin [19].

If atall, theseapproachesnly exploit the possibility to allocate
evidenceto non-atomichypothesedy assigningmassego atomic
hypothese®; andto their not necessarilyatomiccomplemen®; or
to theframeof discernmenf). Theapproactpresentedh this paper
utilisesthis possibility asthe classifierhierarcly naturally provides
classificatiorresultsfor setsof hypotheses.

In [12] expertknowledgeaboutthedomainof application hamely
thedetectiomof anti-personneinines,is usedto calculatebasicprob-
ability assignmentaot only for atomichypothese$ut alsofor com-
posite hypothesesHencethis approachis ratherspecificand less
generakhantheproposedapproach.

6 CONCLUSIONS

The proposed method of evidence based reasoning utilising
DempsteiShaferevidencetheory has preenfunctional for thecom-
bination of expert knowledge extractedfrom classifierhierarchies
andshavsencouragg results Whenappliedto hierarchieshathave
beencreatedautomaticallythe evidencetheoreticmethodto evalu-
atethe hierarcly yields significantlybetterclassificatiorresultsthan
thesimpledecision-tree-lik approachlf apdied to manuallygener
atedhierarchieghe classificationresultsare not significantly better
but the DempsterShaferapproachyields betteraverageclassifica-
tion rates.The alreadygood classificationresultsthat are achieved
with a simple decision-tree-lik evaluation methodcan be further
improved usinga more complex andin caseof parallel evaluation
only slightly moretime-consumingvidencebasedevaluationstrat-
egy. The hierarchicalklassgroupinginherentto the classifierhierar
chy is apparentlysuitablefor beingutilised within the framework of
the DempsteiShaferevidencetheoryandthe naturalcombinationof
symbolicandsub-symbolidnformationseens promising.
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Using activation spreading for ontology merging

Milostaw L. Frey !

Abstract. An ontology in informational sciences is an ex-
plicit representation of a knowledge for a specific thematic
domain. Almost each ontology has a taxonomical structure
as a backbone, as it usually also describes relations between
classes of objects. The paper at hand presents preliminary
investigations of an automatic, activation spreading based,
procedure that expands and also joins two taxonomies. Thus,
it contributes also to ontology merging. The method to merge
two taxonomies, which exploits a hybrid transfer architecture,
is described and illustrated by an example.

1 INTRODUCTION

Knowledge representation by an ontology is one of the most
informative ways to illustrate dependencies and relations
among objects. One of the relations, actually one of the most
important ones, is the subsumption relation, called ISA. The
structure which this relation describes is a taxonomy. It usu-
ally underlies the more sophisticated ontological complex.

In philosophy, the Ontology is the systematic account of the
Being as such. However, in computational sciences, it is not
possible to represent all objects and every relation between
them due to limited storage and computational capacities.
Thus, these ontologies represent knowledge in declarative for-
malism, and are limited to so-called thematic domains.

The small domain-oriented ontologies are usually not
enough to describe phenomena spanning over many knowl-
edge domains. One of the possibilities to overcome this disabil-
ity is to merge more ontologies within one construction. Al-
though there exist some successful tools and methods for on-
tology merging like PROMPT (11), ONION (10) or MOMIS
(1), none of them operates in a “network manner”. In con-
trast, the here proposed method of taxonomy merging is in
the connectionist tradition and uses connectionist methods.
These methods allow to exploit the most important feature
of connectionist systems, namely generalization. What’s more,
generalization even enhances the represented knowledge dur-
ing the merging process.

2 FROM ONTOLOGY TO NETWORK

An ontology usually contains many different types of relations
among stored items. The key relation, however, is the sub-
sumption relation, ISA. It constitutes a hierarchical build-up
of an ontology, and sets a taxonomical structure as its back-
bone. Indeed, most ontologies are based on such a hierarchy
of concepts, and as such, can be regarded also as a taxonomy.

1L FGAN - FKIE - ITF, Neuenahrer Strafie 20, D-53343 Wachtberg,
Germany, e-mail: m.frey@fgan.de

Coming out from this assumption, in the following, I will
focus on the subsumption hierarchy and the ISA relationship,
which constitutes class—superclass structure. The procedure
described below bases on the inheritance property in the tax-
onomy.

In the following, the term “taxonomy” will not be used ez-
actly in a formal way, but in order to describe a network of
nodes, characterized by sets of features and organized into
hierarchical structure. This structure corresponds to the sub-
sumption relation.

According to the “definition” above, a taxonomy is a con-
nectionist network. It is a network of nodes connected with
weighted links. Within this network, a spreading activation
mechanism is implemented which serves as a mean to trans-
port information from one node to another. The network used
here is a spreading activation localist connectionist network
in the tradition of McClelland & Rumelhart (8) and Dell (2).
Each node has its own label and its own independent meaning.
Moreover, the network itself has the shape of the taxonomy
in question.

Typically, however, localist connectionism is used for mod-
eling behaviour, whereas for modeling learning, distributed
connectionism is preferred (cf. 5). The method presented here
modifies the structure of the net and thus makes the system
learnable.

From the data representation point of view, the network de-
scribed in this paper is anchored in the class of hybrid transfer
architectures (16). The network is created with use of symbolic
data, then the processing is performed within a connectionist
architecture, and — in the end — new symbolic rules, stored in
connection weights, can be extracted from the final network.

3 NETWORK'’S SET-UP AND
OPERATION

The unique internal architecture of a node used to build the
network used here as well as the types and nature of con-
nections between them are presented in this section. The op-
erational idea of this network is slightly similar to the idea
of KBANN (15). However, unlike in KBANN, where two in-
dependent algorithms (rules-to-network translation and re-
finement) exist, the here presented method bases on a sin-
gle algorithm. This algorithm first constructs a network from
symbolic definitions of items and then builds a hierarchical
structure, complemented by knowledge discovered by gener-
alization from the data available in the symbolic definitions.
The analysis is, however, based on connectionist paradigm.



3.1 Nodes

The working principle for a node used in the presented net-
work is inspired by the fact, that a biological neuron can per-
form virtually any operation on the input signal (6; 7; 9).
(It must be noted, however, that this biological inspiration
does not imply biological plausibility!) Due to a complex in-
ternal structure, a node processes the input signal differently
with respect to its source. The internal structure of a node is
sketched in the figure 1. In the following, the signal processing
within a node is outlined.

squashing
(threshold)
function

activation

Figure 1. Internal structure of a node.

3.1.1 Signals from parent nodes

Signals coming from parent nodes, that is nodes placed higher
in the hierarchy of concepts, are processed in a way similar
to calculating a distance in the multi-dimensional space. This
multi-dimensional space is defined by incoming connections:
their number sets the number of dimensions. Additionally,
the weights of those connections set up a point in this phase
space. The node calculates the Euclidean distance between
the point representing the incoming signal (defined by acti-
vations of its parent nodes) and the point set up by weight
values of connections coming into the node in question. The
final activation function calculates the activation coming from
parent nodes basing on current input signal but also takes into
account the node’s previous activation (this is represented by
the reciprocal dotted link from activation buffer in figure 1.)

Thus, a difference between the incoming signal and the sig-
nal to which a node is most sensitive to results. It is modified
by the node’s previous activation.

8.1.2  Signals from child nodes

Signals from child nodes, that is nodes placed lower in the
hierarchy of concepts, are calculated simply as a weighted
mean of child nodes’ activations. Connections strengths are
used as weights.

8.1.3 Final activation function.

The final value of activation is a result of a winner-take-all
process in which the activation parts coming from parent and
child nodes compete. By analogy to the incoming signals, fur-
ther activation flow is different for signals flowing to feature
nodes or class nodes. For connections going in the direction
of class nodes a squashing function is used to keep the final
value smaller than 1.0. On the other hand, for connections
going in the direction of feature nodes, a threshold function
applies.
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3.2 Connections

Nodes are connected by symmetric, weighted links. They
come in two flavors: as excitatory or inhibitory ones. Exci-
tatory connections form the structure of the network (taxon-
omy). The task of inhibitory connections is twofold (cf. 13).
On the one hand, they prevent so called “overheating”, the
uncontrolled raise of activation values in the network’s nodes.
On the other hand, they enhance the contrast between nodes
that do not belong to the same hierarchy branch.

3.3 Learning

The presented network is a dynamic, constructivist (12) sys-
tem, designed to evolve along with new data coming from the
environment. Such a system must have the ability to learn.
In order to accomplish this challenge, it makes use of three
standard types of learning (14).

Rote learning is used to simply store input data in the net-
work’s structure. This method is comparable to the long-
term memory.

Connection weight changes: Changes of connection weights
are one of the aspects of the network’s dynamics, they shape
the working structure of the network: the taxonomy itself.
Restructuring (by creating nodes and connections) is an-
other dynamical process in the development of a taxonomy.
The newly added nodes denote taxonomy classes.

3.4 Storing the data

In the first step the presented data is memorized only (stored).
This is done by rote learning. Because of the local character-
istics of the used data representation, the network must be
expanded to store new knowledge. Thus, for each dataset,
feature nodes are created when necessary. Additionally, class
nodes are created denoting the respective set of all co-
occurring features. Between class nodes and feature nodes ex-
citatory connections are created. Their weights correspond to
the values of respective features.

3.5 Creating hierarchy

Based on the data stored in already created feature and class
nodes, the hierarchy is created. The hierarchy developed in
this phase of learning reflects the relations among items only
as far as provided explicitly by the input data. One can as-
sume that in most cases the structure of the network gained
after this step is not the final hierarchy.

During the hierarchy build up, the network undergoes the
following procedure. For each pair of class nodes, both nodes
are subsequentially activated. The activation is spread to the
feature node layer, and the activation patterns are compared.
If one of the nodes generates an activation pattern comprised
in the other one’s pattern, it is assumed to be its superclass.
This principle bases on the simple assumption that a subclass
contains all features of its superclass and at least one more, a
distinctive one.



3.5.1 Network pruning

The by now described steps of creating a taxonomy lead to
a network which usually contains superfluous excitatory con-
nections that do not represent direct class — superclass rela-
tions. Because the hierarchy creation algorithm discovers only
the inclusiveness relations of sets of features, it is the case that
all subcategories are linked to the main category even if there
are other levels of specifications between.

The superfluous connections are removed by an introspec-
tive process. This process analyzes the activation flow be-
tween two nodes and compares the activation values in all
node pairs. The comparison drives the decision made whether
two nodes remain in direct class — superclass relation or not.
Roughly speaking, nodes are assumed to lie on the adjacent
taxonomical levels when the activation in the subordinate
node comes only from the node representing a superclass. Sub-
sequently inhibitory connections are introduced to enhance
differences between exemplars presented to the system.

3.5.2  Discovery

The network constitutes so far the representation of raw facts
known from input data only. This representation is structured
as far as it is provided by this data. That means that relations
between classes are known only if they result directly from the
definitions.

However, usually more information can be drawn from the
underlying data. The discovery procedure is another intro-
spective process which aims at the improvement of the exist-
ing network. The process attempts to discover parts of the hi-
erarchy which were not provided explicitly by analyzing pairs
of class nodes. If the features for two or more classes overlap
(with respect to their presence and value) they form a de-
scription of another class which is assumed to be a superclass
for those currently being analyzed.

The very final step in the procedure of creating a taxonomy
is to clean the network by removing superfluous connections
which could have emerged during the discovery phase. The
resulting connectionist system reflects the taxonomical struc-
ture of the data as far as it could be discovered on the base
of the delivered data. Learning is done and the network can
be used for “production” purposes.

The so created network is able to generalize, to categorize
and to model categories learning. In addition, it displays the
cognitive properties like fuzzy categorization, asymmetric cat-
egory learning, and priming (see 4).

4 TAXONOMY MERGING AND
COMPLETION

According to the ontology merging definition (3), one can de-
fine a taxonomy merging as a procedure of blending two or
more taxonomies into a single one. In this paper, merging
of only two taxonomies will be regarded for simplicity. This
procedure can be, however, expanded for a case of unlimited
taxonomies number by consecutive adding new taxonomies to
the result of previous merging process.

There are two common ways of merging a taxonomy: union
and intersection. The approach presented here is a union
method, that means the resulting taxonomy is the union of
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all entities in both taxonomies. There is a main problem with
merging taxonomies (and ontologies). Objects may be repre-
sented differently. In the following section it will be described
how this problem can be tackled at least partially within the
paradigm at hand.

Taxonomy merging can be regarded as taxonomy comple-
tion. In this case, there exists some “main” taxonomy, which
is being complemented by the information from the other one.
The most important assumption here is that the complement
taxonomies have no node, which stands higher in the hierar-
chy of concepts than a root node of the “main” taxonomy.
In other words, the root of “main” taxonomy must remain a
root node after merging procedure.

4.1 Knowledge representation

Each entity in a taxonomy is, in our case, represented by a
single node in a network. Each node in a hierarchy is char-
acterized by a set of features, which in turn, are represented
by nodes in the feature layer. The feature set originates from
symbolic input data, namely from symbolic “definitions”. An
artificial example for two definition sets is given in table 1. It
will be used to illustrate the merging mechanism.

item | features

item | features

A root

C root f12
B root f11

G root f12 22 31
D root 12 f21 F ¢ 12 23
H | root 12 22 £32 oo

Table 1. The example sets of definitions

Relations between two entities as well as between entities
and features are defined by weighted links. There are two
types of links: excitatory and inhibitory ones. The excita-
tory connections form a taxonomical structure of the network
and connect class nodes to feature nodes, while the inhibitory
edges serve for enhancing the differences among both single
nodes and branches of the represented hierarchy.

4.2 Representation assumption

The problem of different representations of the same concepts
in different taxonomies is simplified as follows: While all con-
cepts are described by a label and a set of features, we assume
that:

e in case of nodes with the same label, the concepts repre-
sented by those nodes are identical, and

in case of nodes with different labels, the similarity and
relation between two concepts in two different hierarchies
will be derived from the analysis of features which describe
those concepts. In particular, nodes with the same set of
features are regarded to represent the same concept even if
they have different labels.
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Figure 2. Taxonomies used in the merge example: figure a)

corresponds to T1 and b) to T2.

4.3 Method of merging

We start from the situation where there exist two taxonomies,
which are regarded to be parts of a bigger hierarchy. This
is expressed by either at least one common node within the
two taxonomies (a node with the same label) or by common
features in the nodes’ description. Additionally (as mentioned
above), it is known, which one of those taxonomies contains a
root node for the hierarchy which has to result from merging.

Merging runs in three main steps: a) searching for features
and completing the feature set, b) joining taxonomies, and c)
restructuring and pruning. For a descriptional purposes, let us
illustrate the merging two taxonomies by an artificial exam-
ple. The example shows the process of including a taxonomy
called T2 into a taxonomy T1 (figures 2a and 2b respectively).
(The structure of both taxonomies is derived from the data
presented in the table 1.) In the figures, the feature layer is
separated from the nodes which constitute the “working” part
of a network. Among the latter nodes, the rectangle ones rep-
resent nodes which had been defined explicitly in the input
data, and the ellipsoid ones those, which had been discovered
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during creating a network.

4.8.1 Searching for features and completing feature set

The aim of this step is to find and complete the set of fea-
tures that describe nodes in both taxonomies. It may be the
case, that some features are present only in one taxonomy, al-
though they refer in fact to entities in both hierarchies. This
is motivated by the fact that the network, which here repre-
sents a taxonomy, represents a class of definitional networks,
that is networks which are based on definitions (here a defini-
tion is identified with a set of features connected to a node).
Since definitions are true by definition, the information in the
network is assumed to be necessarily true. Thus, if nodes rep-
resenting the same concepts in two taxonomies have different
sets of features, they must be unified.

Of course, the procedure of completing features must be
performed with caution: it is assumed that the feature of a
given node found in the other taxonomy are included only for
nodes from the taxonomy in question which are subnodes of
the currently processed one.

The procedure starts with finding two most similar nodes.
There are two main cases: taxonomies have nodes with the
same label or they have not. In the first case, the task is clear,
and a node with corresponding label is chosen. In the second
case, the method is as follows. The features corresponding
to a currently processed node in the taxonomy T2 are being
extracted, and corresponding features in the taxonomy T1 are
being activated. Consequently, the activation is being spread
over the whole network. Finally, the winner-take-all procedure
is performed, which chooses the most similar node.

In the following, the winning node is activated and the acti-
vation is spread into the features level. The activated features
are being connected to the currently processed node from T2
along with features which have already been present in T2.

The above procedure is repeated for each node from the
taxonomy T2. In all consecutive steps, nodes from the taxon-
omy T2 which already have connection to the feature nodes
in the taxonomy T1 are not taken into account.

4.3.2  Joining

After the previous procedure is repeated for all nodes from the
taxonomy T2, the networks are joined through the feature
level. An example is illustrated in figure 3a), where grayed
nodes denote nodes incorporated from the T2 taxonomy, and
the black node is a node which is already present in the T1
taxonomy, but which got its label from the T2 taxonomy.

On this stage, the “new” nodes are not yet integrated into
the taxonomy T1 itself. To regain the enhanced hierarchical
structure, the restructuring process is used.

4.3.8  Restructuring and pruning

The restructuring process serves as a mean to create the tax-
onomical structure out from the set of nodes connected to the
features layer.

During the restructuring process at first a “raw” taxonomy
is created, which contains many connections between not ad-
jacent layers (cf. figure 3b). Moreover, it is also possible, that
again new nodes are discovered, which were not present in
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Consecutive steps in the connectionist completion of a taxonomy. See sections 4.3.1 to 4.3.3 for description. (In figures b)

and c) the feature level is hidden for readability.)

either from merged taxonomies. Such a node can be seen in
figure 3b) and is emphasized with the gray filling.

Not all connections do reflect desired hierarchical depen-
dencies among nodes. The superfluous ones need to be re-
moved. The removal is performed by the introspective pro-
cess (see section 3.5.1) and leads to the clean taxonomical
structure (figure 3c).

5 SUMMARY

The paper at hand presents preliminary investigations on a
connectionist method for taxonomy merging. The method for
completing one taxonomy with information contained in an-
other was presented and illustrated with an example. The
method uses the activation spreading mechanism to first join
taxonomies by features sharing, and then to perform an in-
trospective process of restructuring in order to discover even
more hierarchical information brought with the new taxon-
omy.

The most important limitation of the presented method
is that it must be known which of two joined taxonomies
contains the root node for the taxonomy which results from
merging. However, even on this stage of development it can be
used for completing taxonomies with new information about
hierarchical dependencies in a given thematic domain.

The further development of the connectionist method for
taxonomy merging must include discovering the way to make
the method symmetrical, that is user should not need to know
which from starting taxonomies contains the root of resulting
one. This will allow connectionist systems to fully contribute
into taxonomy and ontology merging.
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On the capacity of unsupelrvisedreaursive neural
networks for symbol processing

Barbara Hammer ! and NicolasNeubauer?

Abstract. A variety of unsuperviseaheuralmodelsfor time series
processincghasrecentlybeenproposedwherebya large numberof

modelscanbederivedfrom acommondynamicequationwhich also
generalizestandardsupervisedrecursve networks. The key point
concernghe choiceof repregntationof thetemporalcontext. Inter-

estingly differentchoicesof the contet leadto differentmodelca-
pacitieswhich canbe characterizeih termsof classicakymbolpro-

cessingsystemsin this contribution, we give asystematioverviev

aboutexisting resultsandwe prove several new equivalences.

1 INTRODUCTION

Time constitutesanubiquiteouscharacteristiof naturalsignalssuch
as sensorstreamsor language When processingsuchsignals,hu-
manspossessemarkableapabilitieswvith respecto accuray, speed,
noisetolerance adaptvity and generalizatiorability for new stim-
uli. Self-oganizationplays a major role to achieve this capacity
As demonstrateih numerousapplications[13, 16], self-oiganizing
principlesallow the developmentof faithful topographiaepresenta-
tionsleadingto clustersof givendata,basedon which anextraction
of relevantinformationandsupervisedr unsupervisegostprocess-
ing is easilypossible.However, popularself-oganizingsystemsare
restrictedto standardvectorialdata[16], andthe capacityof exten-
sionsof thebasicmodelsto time signalsis oftenlimited [3, 15].

In the lastyears,several complex unsuperviseanodelsfor time-
seriesprocessinghave beenproposed1]. In principle, onecandis-
tinguishthefollowing possibilitiesto dealwith time signals:

1. fixedlengthtime windows asusede.g.in [18, 27];

2. specificsequencametrics,e.g. operatorsor the edit distance[5,
16, 17,28]; thereby adaptatiormight be batchor online;

3. statisticalmodelingincorporatingappropriategeneratve models
for sequencesuchasproposedn [2, 32];

4. mappingof temporaldependenciet spatialcorrelation,e.g. as
traveling wave signalsor potentiallytrainedtemporallyactivated
lateralinteractiond4, 23, 35];

5. recurrentprocessingof the time signals and recurrentwinner
computationbasedon the currentsignal and previous activation
[3,6,11, 12, 15, 29, 30, 334]

These models have been tested in different application areas.
Thereby the successlepenls heaily on the modelusedin the re-
spectve application,andthe principledsuitability of the approaches

1 Clausthal University of Technology Germary, email: hammer@in.tu-
clausthal.de

2 Institute for Neural Information ProcessingTechnicalUniversity Berlin,
email:neubauer@cs.tu-berlin.de

is notyetunderstoodTherefore anexacttheoreticatharacterization
of the capabilityof the choiceswvould be highly desirable.

The Chomsk-hierarcly constitutesa well establishedspecifica-
tion of symbolictime-processingnodels.Interestingly thereexists
anexactcharacterizatioof classicakupervisedecursve neuralnet-
worksin termsof theChomsly hieraichy whichrelatesconnectionist
modelsto classicalsymbol-processingnodels:unrestrictedsuper
visedrecurrentneural networks can simulatenon-uniform Boolean
circuits (but in exponentialtime) [24]. Weightsrestrictedto ratio-
nal numbersleadto Turing machineg(with polynomial simulation
delay)[25]. Theseresultshave beenprovedfor thesemilineamactiva-
tion function. For the standardsigmoidal, Turing universality (in ex-
ponentialtime) hasbeenshown in [14]. If the simulationis affected
by noise recurrenteuralnetworks areequialentto finite automata
[19, 22], or even definite memory machinesjf the supportof the
noiseis unlimited (e.g. Gaussiamoise)[20]. The samerestriction
appliesto recursve neuralnetworkswith smallweights[10].

Theaim of this contritutionis to give asystematioverviewv about
the capacityof differentunsupervisedecursve neuralnetworksin
termsof classicalsymbolicmodels.Thereby we restrictto the case
wherethe processingf time dependensignalsis realizedby means
of a recursve dynamicsand a specificchoice of the internal rep-
resentatiorof temporalcontet. This settingincludesthe dynamics
of standardsupervisedecursve networks and,in addition,a vari-
ety of popularunsupervisednodelsincludingthetemporalkohonen
map,recursive SOM, meige SOM, SOM for structureddata,and,in
aslightvariation,alsotherecurrentSOM, SARDNET, andfeedback
SOM[3, 6, 11, 12, 15, 29, 30, 334]. It turns out that, depending
onthecontet choice differentcapacitiesriserangingfrom definite
memorymachinesup to pushdevn autonata.

2 UNSUPERVISED RECURSIVE MODELS

Here,weintroducethegeneradynamicequatiorof unsupervisede-
cursive models.The principledideais to processa giventime series
stepby step,startingfrom aninitialization of the network, whereby
in eachstepthe outputof thelastcomputatiorstepis alsotakeninto
accountTherebythemodelsdiffer in the exactrepresentationf the
importantinformationachiezedin thelastcomputatiorstep.There-
spectve relevant partis storedin a specifictemporalcontext which
differs accordingto the chosenmodel.A generalmathematicafor-
mulationof the dynamicshasbeenintroducedn [9] asfollows: As-
sumetime serieswith entriess’ € R™ areconsideredAn unsuper
visedneuralnetwork is givenby N neuronswith weightsw® € R™
andcontet vectorse® € R” for eachneuron:. In eachstep,a dis-
tanceof thecurrentertry of thetime seriedrom eachneuronis com-
puted,wherebythe contet is taken into account.This yieldsa vec-
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tor of N activationsd;(t) of neuron: at time step¢. To formally
define how this activation is computed, we ned to fix a function
d which computesthe distanceof time seriesentriesand weights
w', afundion d,. which computeshe distanceof temporalcontexts
andcontext vectorsof the neuronsc, anda representatiofunction
rep : RY — R" which extractsthe temporalcontet of a compu-
tation ¢, fromthe activation of all neurons.Then,the activation of a
neuron; attime stept is definedas

di(t) = a-d(w',s") + B - dr (', C")

where B B
C" = rep (dl(t 1), dn(t — 1))

extractsthe relevantinformationfrom the activation of the previous
time step.This formulationemphasizethe importanceof anappro-
priateinternalrepresentationf complex signalsby meansof a con-
text c*. Givenasequence of lengtht, we denoteby d;(s) = d;(t)

theresultobtainedafterprocessinghewhoe sequence.

Often, d andd, aregiven by the euclideannorm, the L1, or the
maximumnorm. This generalformulation covers a variety of con-
crete neuralmodelsproposedin the literature.In particular it in-
cludessupervisedecursve networks, by taking d,. asdot product,
andrep assigmoidalfunction,asshavn in [8]. The following con-
cretecontet choicesconstitutea representate coverage:

TEMPORALKOHONENMAP (TKM)

ThetemporaKohanenmap(TKM) [3] performdeaky integrationof

the distance®f eachneuron.The dynamicscanbe obtainedby set-
tingr = N, rep = id, d,- asthe standardiot product,andc’ asthe

7'th unit vector which realizesa ‘focus’ of neuron: on its own acti-

vation. The recurrentSOM [15] is similar in spirit, but it integrates
vectorsinsteadof distancesandrequiresa vedorial quantityd](t).

In both casestheinternalcontext focuseson the neuronitself andit

neglectsthe activation of all otherneurons.This realizationis very

fastandit doesnotrequireadditionalmemoryfor the context storage
but, aswe will seei|t is quiterestricted.

RECURSIVESOM(RecSOM)
The recursvte SOM (RecSOM) [34] chooses » = N.
rep(z1,...,2n) = (exp(—21),...,exp(—zn)) isone-onej.e.all

informationis kept. The feedbackSOM is similar to RecSQ/ with
respecto the contet, however, the context integratesan additional
leaky loop ontoitself [11]. In both casesthefull informationavail-
ablein eachstepis takenascontet, no compressioror information
extractiontakesplace.As aconsequencehemodelis quitedemand-
ing with respecto additionalmemory which is proportionalto N2,
N beingthe numberof neurons.

SOMFORSTRICTUREDDATA (SOMSD)

The SOM for structureddata (SOMSD) [6] is restrictedto regu-
lar lattice structuresDenoteby L(:) the location of neuroni in a
d-dimensionallattice. Thenr = d andrep(z1,...,z,) = L(io)
wherei, is theindex of thewinnerargmin,{x; }. This contet rep-
resentations only applicableto priorly fixed,thoughnot necessarily
euclideanlattices.SOMSDfor a (fixed) hyperboliclattice hasbeen
proposedn [30]. Comparedo RecSOM the memoryrequirements
aremuchsmaller

MERGESOM(MSOM)

MSOM is obtainedfor r = n, d,, = d, andrep asthe meigedcon-
tent of context and weight of the winner in the previous step,i.e.
rep(w1,...,2n) = - w' + 3 - c* wherei = argmin,{x; | i =
1,..., N}. It encodeghe temporalcontext in the weight spaceby
taking an appropriateaverageof the contentof the winner repre-
sentedby its weight w' andits context vectorc'. MSOM can be
combinedwith arbitrarylattice structures.

All modelsaretrainedby Hebbianearningof theweightsand(ex-
ceptfor TKM) the context, wherebya lattice structurecanbe taken
into account.This neednot be a prior lattice, but data-optimumat-
tices suchasthe neuralgas learningrule can be taken as well for
all chdcesexceptSOMSD[18]. It hasbeenshavn in [8] thatthese
learningrulescanbeinterpretecasapproximatve truncatedstochas-
tic gradien descentof a costfunction similar to the standardvec-
tor case.Thetraining mode,however, is not relevantfor this article
wherewe areinterestedn the principledcapacityof the models.

First mathematicatesultsconcerningthe capacityof the models
have alreadybeenshavnin [7, 8].

3 SYMBOL PROCESSING CAPABILITIES

We will considerthreesymbolprocessingnodelsof increasingca-
pacity: definite memory machinesfinite automata, and pushdevn
automata.

Definition 3.1 AssumeX = {o1,...,0)x|} is a finite alphabetof
inputsymbolsDenoteby >* the setof finite sequencesver X.

A definitememorymachineg(DMM) acceptsa language in X~ if
and only if there eistsa finite memorylength! sud that for all
sequences € X" holds: s is acceptedf andonly if s|l is accepted
whete s|l is thetruncationof s to thelast! symbolf the sequence

A finite stateautomator(FSA) consistof a triple

(%, 8,9)

wheebysS = {stai,...,stag } isasetofstatesandd : Sx¥ — S
is the transition function. The automatonacceptsa sequences =
(Giys .- 04,) € 57 iff ' U (s) = stas|, wheebys' t is definedas
the recussive application of the transitionfunction ¢ to elementof
S, startingfromtheinitial statestas:

5it(8)_{

A pushdevn automator(PDA) is givenby the 7-tuple

sta_1
58" Yo, ...

if ¢t =0,

Oy 1), 04,) (ft>0.

(S,%,T,0,sta, a, F)

wheee S is thesetof states Y. is a finite alphabetof input characters,
I is a finite alphabetof stadk characters,

JC(Sx(ZUexT)x(SxTY

is the transitionrelation mappingstate input andtop stak element
triplesto successostateandstad replacemenpairs, sta € S isthe

start state a € I'" is theinitial stak contentand FF € £(S) is

the setof acceptedinal states|f ¢ is a function,the automatornis a

deterministigpush-dowrautomaton(DPDA).

We areinterestedn the capability of unsupervisednodelsto sim-
ulate symbolprocessingnodelsas definedabove. For this purpose,
we specifythefollowing notation:
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Definition 3.2 Assumea language in X* is acceptedby a symbol
processingnodelA. Thenarecussiveself-oiganizingmapwith input
sequencesver R'¥! simulates4 with constantdelay D if the fol-

lowing holds: there existsa mappingenc : ¥ — (Rdimengp and
a specifiedsetof neuonswith indices! suc thatfor everysequence
sin X* holds:

sisacceptedy A <= argmin,{d;(enc(s))} € I

wheebyenc (s) denoteshe component-wisapplicationof enc to
S.

This definition capturesthe intuition that a recursve unsupervised
modelwhich simulatesa symbol processinglynamicdistinguishes
betweeraccepte@ndnotacceptedvordsby thedynamicsof aspeci-
fied setof neuron . Sincenetworkscannotdirectly dealwith symbols,
thesemustbe encodedn a real-vector space.ln addition, a linear
delayin the computationtime is allowed, which correspondgo an
embeddingf thesymbolsinto avectorspaceof higherdimensional-
ity, wherebyD recursve stepsarenecessaryo procesanembedded
symbol.

Thecontext modelsof TKM, SOMSD,MSOM, andRecSQM dif-
fer considerablythelatterrequiringmorespaceandtime for context
representationAs we will see,this correspondso differentmodel
capacitieslt hasbeenshawvn in [29] thatthe TKM cannotrepresent
all finite autamatain the abore senseHowever, we have the follow-
ing result:

Theorem 3.3 TheTKM cansimulateall definitememorymachines.

enc is chosenas unary encoding,i.e. dimenc = |X|. Opti-
mum weights for TKM, given a time seriess, are w°Pt®
S Bt/ SO B [33] for B = (1 — a). Assumethelengthof
adefinitememorymachines . We canchoosex closeto 1 suchthat
only thelast! symbolsof aseriesdeterminghewinner. Furthermore,
sincethetime seriesof lengthi arepairwisedifferent,we canfind «
suchthatthe optimumweightsarepairwisedifferent.A correspond-
ing TKM simulatesthe given definite memorymachinebecauset
uniquelyrecognizegvery sequencef lengthl. ad

Thus,the TKM is on the level of definite memorymachinesj.e.
it dealswith only a finite time window. However, comparedo an
explicit time window, it useslessmemory It hasbeenshown in [7,
29] that SOMSDandMSOM aresstrictly more powerful than TKM
becausdhey cansimulateevery finite automatorwith fixed delay
wherebythe L;-normis chosenasd andd,.. Obviously, sincethe
internal statesof SOMSD and MSOM constitutea finite set, both
mechanismgansimulateat mostfinite automataThus,we find the
following result:

Theorem 3.4 Thedynamicsof SOMSDand MSOMare ejuivalent
to finite automata.

For RecSOM the situationis difficult becausef the quite com-
plex context computation.On the one hand, an infinite reserwir is
available becase of real-valued contet activations; on the other
hand,however, informationis very easily blurred becausao focus
in form of awinnercomputatiortakesplace.Thetechnicalsituation
canbe comparedo thedifficulties to investicatethe capacityof su-
pervisedsigmoidalrecurrennetworks[14]. It hasbeernshavnin [31]
that RecSOMwith small weightsimplementat mostdefinitemem-
ory machined.e. RecSOMfocuseson a finite time window in this
case,similar to supervisedecursve networks with small weights.
The reversedirection (the capacityto simulateDMMs with small

weights)is not obvious. Assumewe drop the exponentialfunction
andtake theidentity ascontet representatiofwhich is of the same
quality with respectto its informationcontent),thenonecaneasily
seethat RecSOMwith smallweightscan simulatedefinite memory
machineswe canchooseherepresentationf elementsn X assmall
valuesthecontet of theneuronsaccordingo the (unique)represen-
tationsof all sequacesof length [, and (1 — «)) smallenaighsuch
thatentriesin previousstepsdo rot changehewinner. Similarly, for
generalveightsandtheoriginal RecSOMcontext, thesituationis not
yet clear Here we derive resultsfor several simplified (thoughstill
reasonablegontext modelsof RecSOM.Therebywe only sketchthe
(ratherlengthy) proofs,which canbefoundin [21].

3.1 FSAwith RecSOM

Theorem 3.5 Assumehe context modelof RecSOMastheform

exp(—x1) exp(—zn) )
>oiexp(—xi)’ 30, exp(—ai)
i.e. it is a normalizedversion of the original RecSOMcontet. As-

sumethat the L2 normis chosenas d and d,.. Then,the modelcan
simulateall finite automata.

rep(z1,...,zn) = (

Proof The generalideais taken from the FSA simulationwith
SOMSD[7].There two setsof neurongareintroduced Thefirst con-
tainingoneneuronfor eachstate/inputombinationthe seconccon-
tainingoneneuronfor eachstate. The encodingfunctionis thende-
signedsuchthatin afirst processingstep,one of the neuronsfrom
thefirst setwins, dependingon the previous statesta; (asindicated
by the actvity of the neuronsfrom the secondset) andthe current
inputo;. In asecondstep,oneof the neuronsrom the secondsetis
chosenTheweightsof theseneuronscaneasilybeadapteduchthat
theneuronrepresentingtatesta, winsiff star, = d(sta;, o).

In the currentcasehowever, we have to dealwith continuouscon-
text representationsvithout explicit winner computation.This re-
quiresadditionalintermediatecomputationsThefollowing defitions
will helpusaddressheseissueamoreprecisely:

Definition 3.6 Let f : RN x RIMENC_ gN hethefunctionde-
scribing the map’s behaviourat a single step,as definedabove by
theupdaterule for d;(¢):

Fld(t—1),8") =d()

For a simulationwith constantdelay D, theresultof presenting- to
amapin contet d(t) is givenby trans : RV x ¥ — RY:

trans(d(t),o) = f(...f(f(d(t),enc(o)1),enc(o)2),...enc(o)p)

Thisfunctiondescribegherepeatedapplicationof f to itselfandto
the D componentsfenc(c), andequalsd(t + D). Oneapplication
of trans corresponddo a singletransitioncycle.

Definition 3.7 Let enc be an encoding function as introduced
above dimenc= 1 ande > |%|. enc isalayeringencodingunction
iff

enc(o;) = (4,1-¢,...,(D—1)-¢).

Note that only the first componenbf the encodingdependson the
input o ;. For asimulationassociateavith alayering encodimg func-
tion, sensibld@nput weightsw* areeither{1,...,|3|}, the possible
valuesof thefirst componentpre, ..., (D — 1), i.e.,valuesof the
following components.
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Definition 3.8 Thej-th layer of a map associatedwith a layering
encodingfunctionenc is the set L; of neuonssud that w' is a
possiblevalueof thej-th componenofenc forall i € L;.

Sincee > |X|, eachneuronbelongsto only onelayer Like this, a
temporalstructureis inducedon the neurons:Eachneuronis only
activatedduringoneparticularstepof eachtransitioncycle 2.

So the example vaguely describedabore cannow be seenasa
two-layeredconstructionlf wetried to simply adoptthis stratey for
RecSOM,we would see that the differencesbetweenthe intended
winner neurons andotherneurons’activationswould soonbecome
sosimilar thatcorrectcomputatioris no longerpossible.

Definition 3.9 Assumel € R™. We call dj, thel-maximumin d iff

dy = max{dl, .. ,Jn} and dj, > 1
For Sbort,czk = max;(d), k = argmax,(d)

If d is undestoodas the activationvectorof a RecSOMand the
kth componentefers to the neuron represeting a statesta, we call
d al-representationf sta, or short,d € staterep,(sta) .

Finally, we canformalize the needto maintaina certainquality of
the staterepresentation/Ve needto setup our neurongo ensurethat

31 Vd; € staterep,(sta;), o; € &, stay = d(sta;, o) :

trans(d;, o) € staterep, (stay)

In orderto createa sensibleoutputof trans, theneuronsn thelast
layer neal a clearenoughrepresentatiomf the currentinput/state-
tuple. The neuronsrepregntingthesetuples,however, needa clear
enoughstaterepresentatiofrom thelastlayerto begin with. It turns
outthattherequiredquality canbeachiezedby introducinga’boost-
ing’ layer after eachof the actualcomputationlayers.Theselayers
containaboostingcopy for eachneuronfrom thepreviouslayer, each
tunedto the context componentepresentingts predecessowith a
boostingfactora andto the onesof the competingneuronsof the
previous layer with —a. The combindion of a quadraticdistance
function and normalizationcauseghis to amplify arbitrarily small
differencesn activation—for a — inf, this becomes binary func-
tion. For sufiiciently large boostingfactors,eachlayer satisfiesthe
entrancerequirement®f the following one— in particular the out-
put of the last layer satisfiesthe requiremets of the first layer, for
the next step,which meansthat the above constraintson trans are
satisfied. O

Thus, the capacityof (a slightly modified RecSOMincludesat
leastfinite automata A further modificationallows to prove even
more:

3.2 Deterministic PDA with RecSOM

Theorem 3.10 Assumethe context model of RecSM™ is modi-
fied to a winnertakes-almost-allcontet in the following way:
rep(z1,...,zn) = Wa(lin(—z1),...,lin(—zy)) wheew a
setsall butthemaximuncomponentso 0, themaximuncomponents
are copiedidentically andl i n(z) is thesemilinearactivation func-
tionwhichis 1 for z = 0, whichis 0 for z > 1, andwhichislinearin
betweenAsaimethe L;-normis chosenThenRecSOMansimulate
all deterministigppushdowrautomata.

3 In fact,all neuronsareslightly activatedduringeachstepin RecSOM- one
of the omitteddetailsof this proofis to give alower boundfor £ suchthat
the activation always remainssmall enoughfor neuronsfrom supposedly
inactve layers

3 3e
(b,-b) (-b,b)
2e 2e
1,-1,-1,-1) (-1,1,1,2)
g 13 13 g
(a,-a,-a,-a) (-a,a,-a,-a) (-a,-a,a,-a) (-a,-a,-a,a)
0 1 0 1
(2,0) (1,0) 0,1) (0,1)

Rows indicatelayers (from bottom up). Boxes indicate neurons;rows inside boxes
indicateinput weightsand context weights.Note that only context weightsreferring
to neuronsfrom previous layer aredisplayed;all othercontet weightsare0, asthe
activationof theseneuronss closeto 0 aswell.

aandb areboostingfactorswhoselower boundsgrow in O(N log(N)). Here,a>
57, b> 11100 for maintaininga .75-representationf the currentstatein the last
layerandof the currentstate/inputuplein thesecondayer.

Figurel. A simulationfor asampleFSA’'No Ones’(X = {0,1})
d(sta, o) = stag if (sta, o) = (stag,0), d(sta, o) = sta; otherwise

We shawv that RecSOMcansimulae all determinstiqgpushdevn au-
tomatawith a stackalphabetof size2 (I' = {~o,v1}) — automata
with largerstackautomatacanthenbe emulated

3.2.1 Encodingthe stadk

Thesimulation,onthe mostgeneralevel, follows anapproactsimi-

lar to the previousone:Neuronsarearrangedn layersto beactivated
sequentiallyfrom statex inputrepresentation representationsf

the next state.However, thelinear natureof the representatiofunc-

tion hereallows usto storeandretrieve informationin its value- we

will usethis to encodethe current stack.Concretely active neurons
atary time stepalwayshave arepresentatioof 1 — i{, where¢ isa

fractalencodingof the stack,asfollows.

Wefirst convertthestringof stacksymbolsinto a stringof natural
numbers(by replacing~y; by their indicess), andthencorvert this
sequencénto arealnumber following [26]:

Definition 3.11 fu(€) =0 fa(e) = afs = Sl 2eutl

=1 41

In the following, let £ be the interpretationof a stacksequene in
under f4. It followsthaté € [0, 1] and

empty(s) <= £=0

top(&)=y0 <= € € [, 5[, top(&)=n <= £ € [3,1]
push¢,vo) = 1€+ 3, pushEm) =3¢+ 2
PopP(Ev0) =4(¢ — 3), popEm) =4(£ — %)

Thisimpliesfor theactivation1 — ig of theneurons:

o if thestackis empty thewinner's activationis 1
o if thestackis notempty thewinner’s act'wationisfrom]%, g]
e afterapushfyo) operationthenew stateshouldhave arepreseta-
tionof 1 — push(¢,v0) =1-3(3¢+5) =12 - Leell, 2
e afterapushfy;) operationjt shouldbe
1= dpush(é, 1) = 1— §(He+2) = 3 — e €l 1)
e afterapop(yo) operationjt shouldbe
1—3pop(§,70) =1 - ;46— 3) = —€€)i, 1]
e afterapop(y:) operationjt shouldbe
1—gpop(&,m) =1-3(4(E-3) =7 -€¢€i 1]

=
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3.2.2 Globalstructue

Sofar, we have fixed thatthe informationwhich neuronis activated
representthe currentstateand/ora certainpointin thecomputation,
while how mud this neuronis activatedencodeghe stack.For the
proof, we henceneedto ensurethat for ary statex stack x input
combination the neuronrepresentinghe correctsuccessostateis
activatedwith a valuerepresentinghe correct,potentiallymodified
stack.

For expressinghis moreformally, let usturnthe classicdefinition
of PDA into anequivalentmoreimperatve one:

0:(Sx(EUe)xT)— (SxU)
whereU designateshe possiblestackupdates:

U = {do nothing, push(vo), push(y1), pop(v0), pop(71)},

orU = {-,+o,+1, —0, —1}, for short.Notethatsuccessndfailure
aretypically definedimplicitly; here we make themexplicit asstates
and addhe correspondingransitions-turningd into atota function.

If we definestaterep(stas, £) asthecontet representatiowhere
theneurornrepresentingsta; is active, with anactivationrepresenting
&, we cannow expressthe conditionfor correctsimulationas

d; = staterep(sta;, &) — trans(cii, 0;) = staterep(stag, f(&,u)),

where(stag, u) = d(stas, 0;5,£) and f(&,u) thefunctionapplying
stackupdateu to stacké. This is ensuredn four differentphases,
i.e., functionalassembliesf layers:

Separate makes the top stack element, so far implicit in the
activation-encodedtack,explicit by exposing’input/state/topel-
ement’ neurons.That s, startirg with the first layer of neurons
encodingS x ¥ —justlike in the previous construction—, this
phasecreateslayerencodingS x 3 x I in its neurons theinput
spaceof thetransitionfunction.

Merge groupstheseneuronsy theoutputvaluesof theinputtriples
they representj.e., by the intendedsuccessostateandthe stack
update So, startingfrom S x X x T, this phaseendswith alayer
encodingasubsebf S x U —theimageof 4.

Execute appliesthe stackupdate This meanst startswith the out-
put layer of Merge, representinduplesfrom S x U, andit ends
with alayer representinghesetuples,too — the activation, how-
ever, changedsto reflectthe stackupdate.

Finalize makes surethereis only one neuronfinally representing
eachpossiblesuccessostate.If thereareseveral & outputtuples
(sta, w) with differentu but samesta, the last phasehasseveral
neuronsrepresentinghe new statesta. Here, all neuronsrepre-
sentingsta aremeigedin away thatin the outputlayer, thereis
only onedefiniterepresentatioffor eachstatesta — sothis phase
startsfrom S x U andendsin S.

3.2.3 Opeiators

Sofar, it may have remainedrathervaguehow the introducedcon-

ceptsrelateto an actualmap. We are now descendingo the final

layerof abstractiorbeforegettingto thelevel of actualneuronsOp-

eratorsAs opposedo layersandphaseggroupsof layers),operators
groupneuronsnot only 'vertically’ (over time, or processingteps),
but also’horizontally’ (by function). They always consistof three
layerswith thethird ('output’) layerbeingthefirst (input’) layerof

the next operator

(t+2)e
7 I7 17 17)
16216’ 16° 16

(t+2)e
Ir I7 17 17y
16> 16> 16> 16

(t+1)e (t+1)e
(1 1

te

0

Notethatthe context weightsof theinput neuronarenot relevantfor the operatorand
hencdeftout.”. ..’ indicatestwo additionalidenticalneuronsn thatlayet

Figure2. A Push,, operator

Top is an operatorappliedto eachneuronof the first layer; it has
threeoutputneurongepresentinginempty -y, or v, top element.

Or is appliedto two neurons- it endsin oneneuronwhichis active
if ary of thetwo inputneuronswvere active. Thisis usedduringthe
Merge phase repeatediappliedto differentneuronsepresenting
input triples equivalentunder ¢, and during the Finalize phase,
appliedto all neurongepresentinghe same successostate.

Copy simply copiesneurons’actiities from layer to layer. If one
setof inputtriples, e.g.,is largerthananotherone during Merge,
fewer operationsarerequiredfor the smallerset— in this casea
numberof Copy operatorsareinserted

Push, yieldsanoutputneuronwith activation 12 — -L¢[12 — L¢
for v = 0|71 If itsinputneurornwasactive with activation1 — ig.

Pop., yieldsanoutputneuronwith acti\/ationg — 5|£ —¢fory =
~o|v1 if its input neuronwasactive with activation1 — %5. Push
andPopareappliedduringthe Executephaseexclusively.

3.2.4 Actualcomputation

At this point, we have to describehow the functionality described
above canbeachieved,onthelevel of actualneurons.

The key questionis how to divide and multiply the stack repre-
sentationby four as neededor the pushand pop operations- it is
notclearhow this shouldbe achieved usingthe semilinearactivation
function.

Up to now, talking about'the active neuron’,we have, for easeof
formulation, neglectedthe factthatwt a actuallyallows for severd
active neuronsjf they have the samemaximal actvation.

Herelies the solution: We cancopy the activation from a neuron
i in onelayer to anotherneurono in the next layer by tuning o’'s
context weightconcerning to 1 (assuming3 = 1). If we have two
identicalneurons:; andis, the distanceis doubledif o is tunedto
both. Accordingly, if we divide the numberof representingheurons
1, distancas divided.In orderto beableto divide,we setthestandard
numberof identicalrepresentingieurongo 4, by settings = i So
having four identicali createsan exact copy in o, while a single:
resultsin adivision by four, andtwo layersof eighti neurongesult
in multiplicationby four. Seefigure 2 for a draftedPushoperator

It thenhasto be shown that

1. for eachoperatoy the desiredoutput valuesare always created,
and

2. of differentoperatorsn thesamdayer; it is alwaysthecorrectone
thatwins, i.e. the uniqueonehaving active input neurons.
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[11]

[12]

\ TKM MSOM SOMSD RecSOM
DMM | yes yes yes yesmallweights)
FSA no yes yes yegnormalizedcontext)
PDA no no no yes(winnertakes-almost-all)

Figure3. Summaryof the capacityof thedifferentcontext models.

Oncetheseconditionsaresatisfied- asthey are,l i n contrikutingto
thefirst, wt a to thesecondne—, the globalstructurecanbe shavn
to work asintendedandthe simulationturns outto becorrect. O

Thus,the overall picture asshavn in Fig. 3 arises.Thereby the
picture concernghe principled representationatapability It is not
clearwhetherstandardearningschemesuch as Hebbianlearning
leadto thesecatgories,givensampledata.First stepsinto theinves-
tigationof the attractorof concretdearningalgorithmscanbefound
in [7].

4 CONCLUSION

Unsupervisedrecusive networks constitute a promising self-

organizinglearningschemewhich canaccountfor the topographic
organizationof temporalsignalsin neuralmaps. Whereasupervised
recursve networks are quite well understooda variety of different
plausibleunsupervisedecursve modelsexists.

In this contribution, a systematidink of unsuperised recursve
neuralmodelsandclassicasymbol-processinmechanismbasbeen
investigated.Interestingly the differentcontext choicedeadto quite
different capacitiesranging from definite memory machinesup to
pushdavn automataThelatterareof particularinterestwwhenexplor-
ing languagdearningsincefinite statemechaismscombinedwith
embeddedaonstructionge.g embeddedentencesire coveredthis
way.
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Position Paper: Towards a dynamic asessmentof formal
languagecomplexity

Andr & Griining!

Abstract. We review two conceptshathave beensuggestedo as-
sesghecompleity of aformallanguagdrom the point of view of a
recurrentneuralnetwork. While well-definedconceptsf comple-
ity exist for symboliccomputationsijt is not clearhow they relateto
thedynamiccomplexity of arecurreninetwork thatrepresents par
ticular formal languagen the from of a dynamicalrecogniserThus
intrinsic dynamicalconceptof symbolicconplexity areneeded.

1 INTRODUCTION

Artificial neuralsystemspeit in the guiseof simplerecurrentnet-

works, synfirechainsor associatie networks, have in commonthat
they all are essentiallydynamicalsystemsWhen we speakabout
neuro-symbolidnteraction,we thus meanthe interactionbetween
symbolic systemsand dynamicsystems Sincethe basicproperties
of symbolic and dynamicalsystemsare quite different— symbolic
systemdor examplehavei. adiscretestatespaceiji. asinglepowver

ful finite control, andiii. restrictedmemoryresourcegsthe princi-

pal restrictedresourceswhile dynamicalsystemshave i. abounded
continuousstae spaceji. mary simple elemenary processorsand
iii. restrictednumericprecisionasthe principal restrictedresource,
it canbe difficult to seehow a systemof the onekind oughtto be

interpretedn termsof the other

For symbolicsystemghereexistsaseriesof measuresf comple-
ity, e.g.i. theChomsly hierarcly [5] thatclassifieformallanguages
accordingto the type of rewrite rules;ii. computationatomplexity
theory that takes into accountresourcelimits [10]; andiii. finally
Kolmogorw or algorithmic compleity that formalisesthe concept
of ashortesprogrammg15].

In mary casesnput andoutputof dynamicalsystemseedto be
interpretedsymbolicallyandit is not clearhow the symboliccom-
plexity of thisinputandoutputrelatesto the dynamiccompleity of
thedynamicalsystemin betweenFor example,it hasbeennotedthat
the — in symbolicconputation— big stepbetweencontet-free and
contet-sensitve processess only atiny onefor adynamicalsystem
[14, 20].

It hasalsobeennotedthat eventhoughrecurrentnetworks arein
principle Turing-equvalent[9, 19] by explicit constructionatrained
dynamicalrepresentatiorof a formal languagediffers from hand-
codedsymbol-inspiredimplementationd24], the latter seemingly
‘unnatural’for anetwork.

Thuswe areinterestedn the possibilitiesof anintrinsic dynamic
approachiowardsthe conplexity of formal languagedasedon dy-
namicalrecgnises [18, 17]. A dynamicalrecogniseDR) (in the

1 Cognitive Neurosciencéector InternationalSchoolof AdvancedStudies
(ISAS) / ScuolalnternazionaleSuperioredi Studi Avanzati(SISSA), Via
Beirut2—4,1-34014Trieste,ltaly, email: gruening@sissa.it

abstractsensg consistsof the following (leaving out technicalde-
tails): i. aninput alphabetA, ii. a boundedcontinuousstatespace
X, iii. asystemof iteratedfunctions,suchthatfor eachi € A there
isoneF; : X — X, iv. anacceptregion S C X, andv. a start
statexy € X. A DR processes languageL over the alphabetA

asfollows: It startsin the startstae o, thena string over A is in-

put symbol by symbolapplyingthe correspondingnapsF; on the
currentstatez. Thestringis acceptedvhenz liesin S afterthelast
input.

The concreteexample of a DR we have in mind is of coursea
recurrenmnetwork, for which eachinput symiol causesan updateof
the currentstate,andwhoseacceptregion is definedby thosestates
thatwill leadto anoutputactivationabove acertainthreshold.

2 THE CONSTRUCTION BASED APPROACH

Moore[17] considerdDRsthatstemfrom neuralnetworks for which
only certainfunction classesare allowed asthe neurons’activation
functions,i. e. linear, piece-wiselinear, (piece-wise)polynomialor
transcendentunctionsetc. DR so constructedrom differentfunc-
tion classescceptifferentformal languagesndthusdefinea clas-
sification of formal languags. Theseclasseglo not agreewith the
Chomsly hierarcly.

Moore balanceshe power of the statespae dynamicsand the
shapeof the acceptregion in that the functions defining themstem
from the sameclass.Elseonecould have fairly trivial dynamicsand
put the computationcompletelyin the map that definesthe accept
region.

3 THE WEIGHT BASED APPROACH

Tabor[20] introducesa conceptof similarity of formal languagesn
thefollowing way: givenanetwork thatprocesseaformallanguage,
it is essentiallydefinedby its weight matrix (given the functional
classe®f the activationfunctionsarefixed). Slight variationsof the
weightswill leadto differentDRs processinglifferentlanguagesA
measurdor the similarity of two languagesan then be basedon
the (Euclidian) distanceof thecorrespondingveightmatrices Tabor
givesan exampleof a one-parametefiamily of dynamicalrecognis-
ersthatacceptsa contet-free languae for a rationalweightanda
non-contat-free languagefor anirrational one. Thustherearenon-
contet-free languagesn any neighbourhoodf a contet-free lan-
guageAccordingly, this concepbf similarity cutsacrosgshe Chom-
sky hierarcly, too.
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4 DRAWBACKS

While Moore’s dynamicalrecognisedanguageclassesare techni-
cally andmathematicallysownd, they arebasedon external proper
tiesof thefunctionsthata dynamicalsystenis constructeaf, noton
dynamicainvariarts of adynamicalsystemitself, whichwouldyield
a more intrinsic conceptof the dynamicsandits possiblesymbolic
interpretation.

In Tabors approachcompldely different weight matricesmay
give rise to DRswith the samelanguageThus proximity of weight
matricesdefinesproximity of languags. But determiningwhether
two languagegpossessimilarrepresentationis DRsseemso bedif-
ficult. It would be usefulto have astandardr canonicaldynamical
implementatiorof aformallanguagein aDR or neuralnetwork. Fur-
thermoreTaboroverlooksthe possibility that slight weight changes
canleadto completelydifferentdynamics(bifurcations)at critical
pointsandthusalsoto completelydifferentlanguages.

5 NEW DIRECTIONS

We do not have completesolutionsto the challengegput forward by
the above approacheshut we wantto lay out whatis desirableand
thuswhatfutureroadsof researcltouldbe.We would lik e to basea
dynamicalclassificatiorof formallanguageon intrinsic invariantsof
dynamicsystems.

Entropieshave beenusedto classify dynamial systemg[7, 6].
Howeverthesearemuchtoo coarse-grainedotionsof similarity and
do not agreewith anintuitive notion of similarity of dynamicalsys-
tems[11]. However recentlythere have beendevelopmentsin dy-
namicalsystemsheory thatmake useof fixedpoints,periodicpoints,
attractorsetc. (in short: invariant sets)andthe limiting trajectories
betweerthem in a systematidashionin orderto cateyorisedynam-
ical systemgq12, 13, 16]. This approachavoids the useof external
propertief dynamical systemsinlike Moore’s, andit alsoabstracts
away from concreteimplementationsdynamicalsystemsare simi-
lar whenthey have similar attractorstructuresTo our knowledgethe
theoryhassofar beendevelopedfor autonomougnon-input driven)
dynamicalsystemgthereis generallylittle systematicliteratureon
iteratedfunctionsystemshatareexterndly driven[1, 21,22]). What
it doestell usthough,is thatwe shouldfocuson fixed andperiodic
pointsor more complicatednvariantsetsasthe importantbuilding
blocksof adynamicakystenthatareentangledvith asystemscom-
putationalcapabilities.

In the caseof regular languagesit is grantedthat a closedloop
in thefinite stateautomator{FSA) correspond$o aninvariantsetof
the correspondingcombinationsof iteratedDR maps[4]. Sincefor
non-rgular languages processingsystemhasto keeptrack of an
infinite numberof statestherewill be aninfinite numbe of invariant
setsfor combination®f theiteratedmapsF; thatdefinethe system.
For a DR languagea™b™ it is e.g. necessaryhat eachcombination
Fy" o F,* betheidentity mapon all statesrepresentig a sequace
of a inputs. Furthermoe all known trainedor evolved network im-
plementation®f a"b™ usethe distanceto a (pair of) fixed pointsto
encodethe numberof a inputs[2, 3, 25]. For a stack-like language
ww” wherew is anarbitrarystringandw” its mirror-reverse,a dy-
namicalsystemforms muchmore complicatedattractorg(of fractal
shape}hatneverthelesiave to be invariantundercertaincombina-
tionsof theinput mapsF; [8].

Theseobsenationsseempromisingstartingpointsfor an intrin-
sic theoryof dynamicalcompleity. We hopeto have convincedthe
readetrthatit is worth to think alongthesdines.
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An Approach to Language Understanding and
Contextual Disambiguation in Human-Robot Interaction

Heiner Markert and Giinther Palm !

Abstract. An approach to language understanding should be able
to handle ambiguities to a certain degree at all levels of processing.
We present a system based on several interacting associative memo-
ries that is able to understand simple statements or instructions and
to represent and resolve ambiguities at different levels. For example,
ambiguous input on the phoneme level leading to an ambiguous word
representation might be resolved later using contextual information
from the whole sentence or even from the whole sensory-motor sit-
uation. The system is implemented on a robot that is able to react
to simple command sentences like “bot show plum”. This requires
the robot to relate auditory sensory information to internal represen-
tations of the corresponding words, to associate the given sequence
of words with the complete command sentence and to relate the sen-
tence representation to objects sensed by the camera and to motor
actions required to point to the object. The system uses basic neural
mechanisms in a plausible global network architecture that is for-
mulated essentially in terms of cortical modules and their intracorti-
cal and corticocortical interconnections. The modules represent and
translate between different aspects of the same entities, e.g. auditory,
syntactical and semantical aspects of words or visual, auditory and
grasping related aspects of objects to achieve the required functional-
ity. Presently, the system can handle a few types of simple sentences
and a small vocabulary, but grammar and vocabulary can be extended
easily.

1 INTRODUCTION

We created a neurobiologically plausible neural network architecture
for understanding simple language and performing corresponding ac-
tions on a robot. The network consists of a large number of intercon-
nected modules, each containing a network of spiking neurons. The
modules represent different aspects of objects, e.g. sensory, visual,
auditory, motor, syntactical or semantical aspects, while the connec-
tions between the modules translate between the different aspects.
The network architecture is motivated by the idea of distributed cell
assemblies and associative memories [6, 3, 14].

The network is able to understand and to react to simple command
sentences. In order to demonstrate the functionality, we embedded it
into a simple robot scenario (see figure 1): A robot stands in front
of a white table. It receives spoken commands like “bot show plum”
and has to react accordingly. This involves understanding of the sen-
tence and analysing it with respect to a given grammar, extracting the
meaning of the command, relating the visual input from the camera
to object words in the sentence and finally triggering the right motor
commands to perform the requested action (see e.g. [5] for details).
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Figure 1. The robot standing in front of a white table. Different objects are
laying on the table. The robot has to grasp or point to objects specified in
simple command sentences.

In this paper, we focus on the language processing part of the sys-
tem. The current implementation does not yet feature a complete
speech recognition system. Instead, the network gets input in form
of written phonetic pair representations, which could be generated
by standard Hidden Markov Model based speech recognition soft-
ware. The model is able to extract words from an input stream of
phonetic pairs and to grammatically analyse the resulting stream of
words with respect to a given regular grammar. The language model
is able to represent ambiguities on the single word level and to re-
solve them even some time after the ambiguous input arrived in the
system: If it is not possible to interpret a word or a given sequence of
phonetic pairs in a unique way, several alternatives can be kept until
enough context information from a broader context arrives to resolve
the ambiguity. For example, the sentence “bot lift bwall” with an am-
biguity between “ball” and “wall” can be resolved to “bot lift ball”
because a wall is not liftable. Here, the ambiguous input could have
been caused by an unclear pronunciation of the word “ball” that con-
fused the speech recognition unit.

2 NETWORK ARCHITECTURE

Figure 2 gives an overview of the architecture of the network used for
language understanding. Each box in the figure corresponds to one
cortical module and contains an auto-associative memory (see sec-
tion 3). The modules are interconnected to each other with Hebbian
learned binary hetero-associative connections.
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Figure 2. The network architecture of the language model. Each box
corresponds to a module of the network consisting of a spiking
auto-associative network. The top of the figure shows the word recognition
part consisting of three cortical modules (S1-S3) and three control modules
that give additional status information. The bottom part shows the language
understanding system which analyses the stream of words from the word
recognition network with respect to a regular grammar. It consists of 10
cortical modules (A1-A4, A5X) and two control modules. There are
additional thalamic activation modules in the whole network where only one
of them, the field “Learning” in the language understanding part, is shown.

The network consists of two parts, the word recognition network
(top of figure 2) and the language understanding network (bottom of
figure 2). The word recognition part, consisting of modules S1-S3
and several status modules, translates a sequence of phonetic pairs
into corresponding words. Area S1 receives single phonetic pairs e.g.
from a speech recognition software. Area S2 again represents pho-
netic pairs, but in contrast to S1 it is able to activate a superposition
of approximately 10 pairs. S2 is used to remember all phonetic pairs
that the system heard in the near past. S2 projects into S3, which
stores all words known by the system. The word that matches best to
the given phonetic pairs is activated (or a superposition, if more than
one word matches closely). There are additional control modules that
inhibit S2 and S3 if silence is heard (a new word starts) and measure
the quality of the word representation.

The language part, consisting of modules A1-A4, A5X and several
status modules, then analyses the output sequence of words from the
word recognition part with respect to a regular grammar. The mod-
ules A1-A3 serve as auditory input areas and represent auditory, syn-
tactical and semantical aspects of the input word.

The modules A4 and A5X mainly serve grammatical functions,
where A4 works as a sequence memory and represents the gram-
mar the system is able to understand. Areas A5X store the words
with respect to their grammatical role, i.e. they classify into subject,
predicate, attributes and objects of the sentence. Here, ASS holds the
subject, ASP the predicate, A501a an attribute, A5O1 the first ob-
ject, A5O2a an attribute to the second object and A502 the second
object of the sentence.

There are additional control modules in the language model that
give miscellaneous status information on the model. For a more de-
tailed description of the model see e.g. [8, 11].

The system is able to understand regular grammars. The current
implementation allows only for very simple sentence types, namely
“subject predicate object” sentences (SPO) and “subject predicate
adjective” sentences (SPA) and different versions of them. The fol-

lowing sentences are all valid and can be correctly understood by the
system:
“bot show plum”, “bot show green apple”, “where is plum?”,“this

is plum”, “this is green”,“wall is red”,“bot put apple plum”,“bot put
red plum yellow lemon”.

3 NEURAL ASSOCIATIVE MEMORY

Each module in our network is modelled with a variant of the so
called spike counter model of associative memory (see [9, 7]) which
is based on Willshaw’s binary associative memory [21]. The spike
counter model extends Willshaw’s model by a more sophisticated re-
trieval algorithm that allows in particular for much better pattern sep-
aration if the memory is addressed with a superposition of patterns.
Further extensions allow for automatic activation of a superposition
of patterns if the input is not uniquely addressing one of the stored
patterns and the memory is configured to allow ambiguous repre-
sentations (see section 4 for details). The spike counter model uses
spiking neurons and allows to measure spike time coincidences. We
have chosen Willshaw’s model as a basic system because it is a bi-
ologically plausible while still simple implementation of the idea of
cell assemblies.

In this paper, we use a rather technical implementation of the
model which still allows for fine measurement of spike timing and
especially of the temporal order of the spikes. The neurons are of
a simple integrate-and-fire type with reset. We further simplify cal-
culations by introducing global time steps that roughly correspond to
one time step within the binary Willshaw model. The global steps are
subdivided by a finer relative time scale that allows for exact repre-
sentation of spike times. In one global time step, each module calcu-
lates one complete pattern retrieval with respect to the relative time
scale. After the global step ended, the output activity of all modules
is propagated through the hetero-associative connections between the
modules, before the next global time step starts.

In one retrieval step, each neuron counts to how many address-
ing neurons it is connected (amount of input it receives) and this
influences the speed of growth of the neuron’s membrane potential.
During the retrieval, if a neuron spikes, the spike is fed back through
auto-associative connections and the membrane potential of the auto-
associatively connected neurons start growing faster, supporting the
pattern that has already started to become active. In addition to that,
neurons that are not auto-associatively connected to the neurons that
have already spiked are inhibited, which is realised by additional
spike counter variables. For more details, see [10, 7]. Each neuron is
allowed to spike at most twice per global step and the retrieval ends
as soon as no more neuron is able to spike. The algorithm necessar-
ily terminates, because at some point, either all neurons have already
emitted two spikes or the remaining ones are inhibited so strongly
that they are not going to spike anymore (i.e. they receive no more
input in the current global step).

For demonstration purposes we use a special way of displaying
neural activity in the system (see figure 3). Instead of showing neu-
ral activation directly, we display names of the patterns that match
best. In our architecture, all patterns that are stored in the associative
memories have names. After each global time step, the result of the
pattern retrieval is determined as shown in figure 3: In a first step, a
histogram that measures the overlap of the current neural activation
with each stored pattern is calculated. Then, the names of all patterns
that have a large enough overlap are displayed in the box represent-
ing the cortical module. There is a maximum number of patterns dis-
played so that displaying superpositions of many patterns does not
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Figure 3. From neural activation to pattern name display: In the left part,
an example neural activation pattern of one cortical module is shown. In the
middle, the overlap histogram over all stored patterns is calculated. Note that
each pattern has a name in our architecture. From the histogram, the name(s)
of the best matching patterns are determined and used for displaying the
neural activation in the module (right).

require too much processing time and space on the display.

4 DISAMBIGUATION

The model is able to represent and resolve ambiguous inputs, e.g.
the sentence “bot lift bwall” with an ambiguity between “ball” and
“wall” can be correctly understood as “bot lift ball”, because a wall
is not a liftable object. The model is also capable of representing
ambiguities until contextual information arriving later can be used
to resolve it. For example, the sentence “bot show/lift green wall”
with an artificial ambiguity between “show” and “lift” is correctly
understood as “bot show green wall” as soon as “wall” comes in,
because a wall is not liftable. Before “wall” is heard, a superposi-
tion of “lift” and “show” is kept in the corresponding module in the
language model (ASP).

In the following we will explain shortly how representing and re-
solving ambiguities works. For more details on the neuron model see
also [10].

Each cortical module has a special parameter «, the so called sep-
aration strength. When this parameter gets lower, the module allows
for superposition of several patterns, the lower the parameter is, the
more patterns can become active at the same time. If « is in a medium
range, only patterns which overlap can be active concurrently, while
even lower separation strength allows for arbitrary superpositions
of patterns. High separation strength forces the module to activate
one pattern at most and leads to a hard decision if the input is not
unique (it is a random decision if more than one pattern are addressed
equally strong and « is really high).

Furthermore, each module can measure the quality of the address
pattern, where the quality becomes high when exactly one pattern
is addressed strongly, while it becomes lower if several patterns are
addressed equally strong. The exact mechanisms for determining the
quality measure is quite complex. Roughly speaking, the module per-
forms a control retrieval with high separation strength to find out
which pattern is addressed strongest and compares the results with an
additional retrieval with the actual value of the separation strength.
In this two retrievals, the neurons are allowed to spike up to two
times each, and the second retrieval is cancelled shortly after the first
neuron emitted its second spike. The idea is the following: When ex-
actly one pattern is addressed strongly, the whole pattern will spike
twice before any other neuron, that is only driven by noise, can emit
a second spike. If however a superposition of patterns is addressed,

the overlap spikes twice before the other neurons can do so because
it gets the strongest input activation. If two disjoint patterns are ad-
dressed almost equally strong and the maximum value of the separa-
tion strength is not too high, a few neurons from both patterns will
spike in the second retrieval, leading to a high activation, which in
turn decreases the quality measure.

With a feedback connection from the quality measure to the sep-
aration strength parameter, the modules become able to automati-
cally decide whether they have to activate a superposition of several
patterns or if they can switch to a higher separation strength: If the
address pattern does not match a stored pattern uniquely, quality be-
comes lower, separation strength is decreased and a superposition be-
comes active. If on the other hand the separation strength is already
low, but the address matches precisely one of the stored patterns, the
activity in the second retrieval will be decreased, leading to a higher
quality measure which in turn increases separation strength. This in
turn will lead to even lower activity in the next retrieval, until sep-
aration strength becomes high enough to decide for the addressed
pattern and suppress the noise.

5 RESULTS

We have implemented the language understanding system on a Ac-
tivMedia PeopleBot robot platform. While the robotics part of the
software (object detection, motor control) runs on the PeopleBot’s
onboard-PC, the neural network for language understanding runs on
a separate PC and communicates with the robot via wireless LAN.
The current network involves about 26000 neurons in total and has a

b_aa

b_aa sil_b

bot
ball

P
invalid
WordQual
good short

Figure 4. The word recognition system after half of the word “bot” is
processed. The already processed phonetic pairs are activated as a
superposition in module S2. S3 already has some suggestions for matching
words active.

vocabulary of about 50 words. On a standard laptop machine (Pen-
tium 4M, 1.5GHz), the network needs 5 seconds to process the sen-
tence “bot show apple”, missing real time constraints by a factor
of about 5. Note that the language understanding part meets real
time constraints and can grammatically analyse a sentence faster than
one is able to speak it. In the word recognition part, however, each
phonetic pair currently requires three global processing steps which
slows down the system. Note that the word recognition part is work
in progress and we believe that a more efficient implementation on
a faster PC would suffice to meet real time constraints for the whole
architecture.

In the following, we will show in detail how the system processes
the sentence “bot lift bwall”, where the ambiguity between “ball”
and “wall” is already present in the phonetic inputs, i.e. we assume
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Figure 5. Top: The word recognition system after the word “bot” is
completely processed. S3 has a unique assembly activated, the
“Complete”-field has recognised that a complete word is understood and the
word quality is good, meaning that it was possible to uniquely decide for a
word that matches well with the list of phonetic pairs in S2. Bottom: The
language understanding system at the same time. The “bot” pattern has
already been transfered to module Al, the first input module in the sentence
layer.

sil_sil

lift
b
complete
WordQual
good short

lift

lift _word
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Figure 6. The system after the word “lift”” has completely been processed.
In the language understanding system (bottom), ASS represents the subject
of the sentence and ASP the predicate. In the word recognition system (top),
S2 still shows the superposition of all phonetic pairs representing the word
“lift”, while S3 has uniquely decided for the word “lift”. S1 is about to
receive a pair of two silence markers (“sil_sil”) which causes the S2 and S3
areas to be inhibited as a new word is going to begin.
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Figure 7. The system after the ambiguous input “bwall” has been
processed. S2 shows a superposition of the phonetic pairs that lead to the
ambiguous activation in S3. In S2, the more recent input pairs are at the top,
so the first recognised phonetic pair for “bwall” was “sil_b” and the second
was “w_ao”. The two pairs are not matching, which causes the ambiguity.
The pattern “bwall” already arrived in module A1 of the language
understanding system. The memory has activated a superposition of the
“ball” and “wall” assembly.

that the speech recogniser mixed up the “b” and “w” phonemes in
the beginning of the word “ball”. In figure 4, the state of the word
recognition system is shown after the first two phonetic pairs of the
word “bot” are processed. S2 shows a superposition of the two pairs,
where the older one is display at the bottom because it spikes later.
In S3, possible candidates for matching words become active. With
only two pairs in S2, all words beginning with “b_aa” are possible,
hence, “bot” and “ball” show up in S3 (due to our limited vocabulary,
there are no other matching words). Figure 5 shows the system after
the word “bot” has been processed completely. The word recogni-
tion part shows a unique decision for “bot” in module S3, while the
language understanding system receives the input word “bot” in its
first input area Al. The additional status fields have recognised that
a complete word is understood (which is currently caused by detect-
ing a ”xx_sil” pair which means that a silence period is starting) and
that the quality of the recognised word is good, i.e. that the system
was able to uniquely decide for the word “bot”. The field “Word-
Size” only switches between short and long words, which helps to
avoid confusion between long words and shorter words contained in
them, e.g. between “bot” and “bottom”. Whenever enough phonetic
pairs (more than 5) are detected in module S2, a long word is as-
sumed and all short words are inhibited, if a small word is expected,
all long words are inhibited. Otherwise, a superposition of “bot” and
“bottom” would always become active if “bot” is entered.

A few global steps later, the word “lift” has been processed com-
pletely (see figure 6). In the language understanding modules A5X,
the subject (“bot”) and predicate (“lift”) of the sentence are acti-
vated, while in the word recognition part, the superposition of pho-
netic pairs leading to “lift” is still visible. Figure 7 shows the system
after the ambiguous input “bwall” has been processed. S2 shows all
phonetic pairs that are responsible for the ambiguous state. The pairs
the system processed first (the ones displayed at the bottom of S2)
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Figure 8. The language understanding system after the “bwall”-pattern is

activated in A501.
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Figure 9. Disambiguation starts to work in module A5O1. There is a weak
bidirectional connection between A5P and A501 relating verbs with
matching objects. When this connection starts to resolve the ambiguity, in a
first step, the “wall” assembly is eliminated and “ball” becomes the most
likely pattern. The other patterns showing up are other objects that can be
lifted, they become active due to the disambiguation connection from AS5P to
A501, but they spike much later than the “ball” assembly. They will be
inhibited in a later time step when disambiguation is finished.

are “sil_b”, “b_w” and “w_ao”, showing that the phonetic input is al-
ready ambiguous. The system realises that a unique decision is not
possible and activates a superposition of “ball” and “wall” in S3. The
ambiguous representation is then forwarded to the language under-
standing module, which shows the ambiguous pattern in its A1 mod-
ule. Several processing steps later, the superposition of ball and wall
becomes active in module A501 (see figure 8). Here, disambiguation
starts to take place via a weak bidirectional hetero-associative con-
nection from ASP to A5O1. The connection relates the verbs stored
in ASP with objects in A501 that the corresponding actions can be
performed with. One time step later, the connection starts to work
and the “wall” assembly is already inactive in A501 (see figure 9).
There are many other patterns showing up in A501. They are acti-
vated by the disambiguation connection from ASP and are all objects
that are liftable. Due to the ambiguity that has already been present
in A501, the module is currently allowing the activation of super-
positions of patterns (low separation strength). The liftable objects
get input from area ASP, and although the input is very weak, in the
current state of A50O1 it is enough to get the patterns activated. A
closer look at the spike timings shows however, that the “ball” pat-
tern spikes much earlier than all the other assemblies, meaning that
“ball” is the most likely interpretation of the superposition. A few
time steps later, the module A501 managed to completely resolve
the ambiguity (see figure 10). The liftable objects are similar to each
other, while wall and ball are completely different patterns. If similar
patterns (with larger overlap) are active, the quality of the retrieval
is better than in the case of two completely disjoint active patterns.
Thus, the quality increases as soon as the wall assembly is not active
anymore, leading to a slow increase of the separation strength. This
in turn deactivates the very weakly activated additional pattern and
resolves the ambiguity to the correct “ball” assembly.

ok_SPOs

A5S ASP A501a A501
bot lift _obj ball

Figure 10. A few time steps after the state shown in figure 9, the
ambiguity in the language model is completely resolved due to the context
information from the whole sentence.

6 DISCUSSION

‘We have presented a neurobiologically plausible neural network ar-
chitecture for understanding language, which is implemented in a
robotics context. The model is able to detect and represent ambigui-
ties on different levels of processing and to resolve them as soon as
enough context information becomes available.

Our architecture aims at large-scale cortical modelling which uses
the interaction of several cortical areas to achieve the understanding
of language and the organisation of appropriate responses to these
sentences. There are related approaches to brain modelling (see e.g.
the work of Arbib and others (e.g. [1, 2]) or the NOMAD project (e.g
[12])), but our system can better be understood in the context of a
larger model [5] that covers many cortical areas and integrates many
different tasks (e.g. language understanding, visual object recogni-
tion, visual attention and action planning). Most of the other systems
deal only with one or two of these aspects at a time but implement
them with a biologically more realistic neural network or focus on
learning from a naive initial state. Other approaches deal more specif-
ically with the interpretation or parsing of sentences (e.g. [4, 19, 13]),
but often without considering the possibility of embodiment.

A language understanding system like the one presented in this
paper generally has at least two difficult problems to solve: The first
one is to find out the correct sequence of spoken words from an input
stream of phonemes (or other primitive entities a speech recognition
software handles), the second one is to analyse the resulting stream
of words with respect to a given grammar. In both levels it is neces-
sary to be able to represent and resolve ambiguities: the input from
speech recognition software is error prone and even if there are no
errors in the input, unique decisions on the single word level without
contextual information from the whole sentence might not be possi-
ble (e.g.if two words can be concatenated to one longer word it might
not be possible to distinguish whether two single words or one long
word was spoken). These ambiguities might only be resolved in the
context of the whole sentence or might require an even broader con-
text. Thus the ambiguous state must not only be kept over time in one
of the processing levels, it must also be forwarded to the next level
in some cases.

In earlier work (see e.g. [5, 8, 10]) we have already shown that
resolving ambiguities with the help of contextual information and
keeping ambiguous states over time is possible with our architecture.
This paper now demonstrates that forwarding ambiguous states be-
tween several levels of processing is possible with our model. Our
previous work was operating on whole-word input, while the new
network presented here now implements two stages of sequence de-
tection: On the first level, sequences of phonemes are translated into
corresponding words. On this stage of processing, the restrictions
with respect to “grammar” in the sequence are not very strong, so
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we decided to chose a robust architecture that does not rely on gram-
matical information and is very fault tolerant. On the second level, a
sequence of words is detected and interpreted as a sentence. On this
level, grammatical restrictions become important which is reflected
by the more complex architecture in the language understanding part,
which is motivated by the theory of deterministic finite automata and
their representation with neural networks (see e.g. [11]).

Obviously, the system should be extended to cover a larger vo-
cabulary and more types of sentences. This will be done in future
extensions of our network. Extending the model only requires stor-
ing more items in the various associative memories. The current sys-
tem could handle a larger syntax and vocabulary (at least a factor of
three or four times). Further increase would require more neurons.
According to the theory of associative memory (see [15, 16, 17, 18]),
the storage space needed for the program will increase linearly with
the size of the task, whereas the number of neurons and even more
the computation time will increase less than linearly.
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Active Sonar Target Identification Using Evolutionary
Neural Logic Networks

Athanasios Bakonas' and Georgios Dounias® andNikitas Nikitakos*

Abstract. A real-world problems addresseth this work using
a novelapproach belongintp the area of neal-symbolic g/stems.
Specifically, we applyevolutionay techniqees for the developmeén
of neurallogic networks of ditrary length and topolog. The
evolutiorery algorithm consists of grammar guided genetic
programming gng celldar ercoding for therepresentation fo
neural logic networks into pofation indviduals. The application
areais relatedto the classifiction of active sonarsignals.Our am
is to demonstrate the capdity of the gstem to produe
conpetitive to feedforward sural networks resultsyet potentially
interpretade. Our experinents show that the ovetabystem is
capalte to geneate arlbitrarily conneced and cmpetitive evdved
solutions for ke ative sorar targd idertification, leading
potentiallyto knowledge extaction.

1 INTRODUCTION

Sonar has beemsed for submare and mine detection,epth
detection, conmercial fishing, diving safetyand communication at
sea. It is aystem that usedransnitted and rdiected underwar
sound waves tdetectand Icate sbmerged objects or measure the
distances undesater, qualities that fly explicate itsname(i.e. an
acrorym for SOund, NAvigation and Raimg). There aretwo
major kinds ofsonar, actie ard passive. Actig sonarcreatesa
pulse of sound, oftercalled a "ping", andthen listens for
reflections ofthe pulse. The pulseay be at castant freqancy or
a chirp ofchangng frequeng. If a chirp the re@iver corréatesthe
frequency of the refections tothe knownchirp. The resultant
processing gaiallows the eceiverto deive the same information
as if a nuch shorter pulse of ¢hsane totd power were entted.
Various intelligent techniges havebeen develog during the past
in order toexdoit the sonar ea [7,24,25] and computatica
intelligerce (CI) is among tem. Although CI has nowaday
substituted tdiional artificial intelligence in ngjor applcations
for a number ohigh-level decign tasks common expenystems
remain still appicale. The reasn can be found into the neeaf f
symbolic repreentation of te knowledge imo these gstems,
which isa feaure in which many Cl systens fail to suced. In
other wordsijt is consideredhatsymbolic repesentatiorcan ke of
significant value in theseystens for humans, bynakingclear the
infererce pra@ess to users. Among Cl methodologiegural
networks are mwerful conrecionist systenms that sill lack the
element d complete and accurake interpretation into huran-
understanddk form of knowledge andemain a black boxfor
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experts. To deal with this siuation a nunber of atermative
approachks have been proposédteural logc networks [19]belong
to this @tegory, and ly thar ddinition can ke interpreaed irto a
number of logical or Prolog rulethat consistan exper system.
Virtually evewy logic rue can Ie represeted into these atworks
and then transfoned into Prolog commands. Although this model
offers excellentresults when wexd within the Al framework (i.e.
building a ystem in a top-dowmprocess), the ggication of neual
logic networks in Cl's data ming tasks — condéered a bottom-up
procedure-has undergone limitesuccess. Th reason lies irthat
proposed ystems suffered at lelagne of the follaving limitations:
(a) Theextracted neuralogic retwork canno be interpreted into
expert rules [19]18]. (b)The propsed methodolog
cannot expresgeural logicnetworks in their gneric graph fom
[5]. (c) The user has to selewpology and network connectio
model [19}[18]. The apfication of neural logc networks into
adapive taks seens pronising: theextraced nodel will presive
its interpretbility into a nunber of expet rules and tare is no
needed ary knowledge-acquing step. Mogover, a solution
obtaired this way, leads to potential knavledge exraction.
Recetly, a nav system nanely the evoldionay neurd logic
networks (ENLN), has beemproposed [20]that fulfils those
requirements. The new amach uses grammar-guidedenetic
programming to produce earal logc retworks. The evolved
solutions can barbitraily large and connected networks, sinae
indirect encothg is adopted. Alsoneural logic networks produced
by this methodology can dways be interpreted irto human-
understanddk expert rles, thus leadingto potential knowledge
extraction. Our aimin this paper iso denondrate the e#civeness
of the methodolog of evdutionary neural netwaks into real-wold
problems. The paper is @mzed as follavs. Next section
describes th theoretical backgrund, presaing the neual logic
networks concept anthe gammar guided enetic programming.
Following this section, wedeal with tlke design and the
implementaton of the ENLN system Next, the esults and a
following discission are presentedihe pper ends with ar
conclusionanda descrifion of future work

2 BACKGROUND

2.1 Active Smar

In Sea-Water environments prgpagaton tothe target reflecion off
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Figure 1. Exanple of a neuwal logic netwok and its output.

the target,and propagation tothe receiver sgad active sonar
transnit signd in time and freyueng. Traditiondly, deecion ard

subsequent range estimation lhasn performedybthresholdinga

normalized matched filter outpufor each of several beams
pointing in directions of intest This is ory justifiable asa

generalized liklihood ratio testvhenthe receied echo is simpha

time-shifted sc@d version of the transtted waveform plus whie

noise, obviasly not a realistic &rario in the shallow-water active
problem. Tlke pimary objectie of the deector is © deermine if
thereis a target echo preert in the re@ived time series Subddiary
to detection is the estimation tife starting andtopping timeof
the echo to besed for subseque signal processing such amre
accuete range and baring edimation depgh edimation, or
classificaion. Traditiorally, signal segnenttion is perforned by
clusteing matched filter threshold crossings. Without ext
knowledge of the environment and a priori information on
targe location and reflection properties, tie staring time, duation,
and shape dhe receive@choare unknown, thaihindering @sign
of an opimal receiver. It is, however,desrable to explot avalable
environnentd information totheextert thatit canfeasilly improve
detection perfomance. Wre the optimal detector implementabé, it
would coheretty combine tle sandard matched filter outp
accordng to the noltipath stucture and thetarget refédion
propertes. Fewliterature papers existin applicaions with adive
sonar. In [25] a procedure omapping unknown obstaclesing
acive onar is preented An acive nar inmging and
classificaion systemis described in [2were thee reural netwok
archtedures were used asclassfiers. In [6], the Robabiistic
Multi-Hypathess Tracking (PMHT) algoithm proposed ¥ Streit

and Luginbuhl in 1995 is adapted for use in active sonarV

applications. 3], a remote aerial, laser-asedsonar method fo
detectingandlocating undenater targts from the aiis discussed.

2.2 Neural logic networks

The neual logic networkis afinite directed gaph. t is usually
consisted v a set of input ndes and an output node. iis 3-

valued form, tle possible vale for a node carfe one of three
ordered pair activation vads (1,0 for “true”, (0,1) for “false” and

(0,0) for “dont know”. Evey synapse (edg) is assigned also an

ordered pair weight (x)ywhere x andy are real nhumbersAn
example neral logic andits outpit value (a,b) ofnode P is shown
in Fig. 1 Different sets of wights enable th representatiof
differert logical operationslt is actually possible to map gnrule
of conventioal knowledge into aneural logic network. Netal
logic retworks can be examndedinto fuzzy neural logic etworks,
enabling this waythe handling 6 real vdued attributes[19]. The
interprtation of the network into Prolog rules straightforward.
Even thougtpowerful in their cfinition, neurallogic networks are
not widdy apgied. The main rean canbelocatedin the factthat
for the known training methodologies [1[8], the refirement d
the edg weights reducessgnificanty the interpretahlity of thee
networks

(a,b) =

k k

L0 ifY ax,-> by 21

j1 1
k k

O i) ax, -3 by <-1
=t =

(0,0) otherwise

to expet rules,thus deprivingthese networksrém their vduable
featue. Some stepsfor the presrvation d the interpretbility have
been perforrad by [1], without however tle ability to express
arbitrarily large and coneced neural logic networks.In this
diredion, the dedfinition and useof the neulonet is demonstrated in
[4], still however producingreedike rule progrars.

2.3Grammar Guided Genetic Pogramming

The ability to constructfunctional tees ofvariable length is a
major advantag of genetic pspgramming over gnetic algoithms.
This propety enables ta search for vgrcomplex solutions that
are usialy in the form of a maethematical formula - an apprach
that is commonlyknown as gmbdic regression. Later gradigns

theextended this concept to caltate ay booleanor programming

expression. Caequently conplex intelligernt stuctures, suctas
fuzzy rule-ba®d systens or decision treeshave already been ued
as the desirabltarge solutionin genetic programming approaches
[1], [22], [23], [24]. The main qualificatio of this solving
procedure is that the featuwe <lection, and the gstem
configuration, drive in the sarching process and do not require
ary human inelvement. Moreover, @petic gogramming, by
inheriting the gnetic algoithms' sbchastic search propertjefoes
not u® local search rather uses the typer plane arch-, and so
avoids drivingthe solution toary local minimum. The potential
gain ofan atomated feature setdon andsystem configurations
obvious; no prio knowledgeis required and, furthermore, not gn
human expeiise is nededto constructan intelligent system.
everthdess, bhe task of implementing mplex inteligent
structures into gnetic programing functional sets in not rath
straightforward The furction set tha conposes an inglligent
system retans a specific hiemarchy that must be traced in tre GP
tree pernssible sructures This writing offers two advantages.
First, the ®ach proces avoids candidate solutions thaare
meaningless or, at least, obscu®econd,the seath space is
reduced signitantly among onlyadid solutions Thus, a genotype
- a pant in the searclspace-corresponds alwagto a plenotype -a
point in the solution spacdhis approach -knan aslegal garch
space haniig method [28} is applied in this work using contéx
free grammars. As we will discuss in the next paragraptine
implementation of constraintssing a gratmar can be the wst
naturd way to express a faity of allowable arditectures.While
each inelligent system -such asa neural logz network- hasa
functioral equivaent -by meansof being compsed ly smaller
elementay functions-, what deéfies and dstinguises this gstem is
its grammar.

2.4 Context-freegrammars

The gemtic programming procedure make proved greegl in
computatioal and time resource€onsequentlywhen tle g/ntax
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<PROG> : = PROG <PLACE1><SYNAPSE>

<PLACEl1>: = Sl <PLACE1><SYNAPSE><PLACE2>
| P1 <PLACE1><PLACE1l>
| IN

I'N : = Data attribute (systeminput)

<PLACE2>: = S2 <PLACE2><SYNAPSE><PLACE2>
| P2 <PLACE2><SYNAPSE><PLACE2>
| E

E = O

<SYNAPSE> = LNK <NUM><CUT><SYNAPSE>
| CNR <CNRSEL><K>

<NUM> = NuM

<CUT> o= aJr

<CNRSEL>: = CNRSEL

<K> = K

NUM = Integer in [1, 256]

CuT = Integer in [0,1]

CNRSEL = Integer in [0, 10]

K = JInteger in [0,9]

Figure 2. Context fee ganmar for the podudion of neural logic networks
within the genetiprogranming framewok.

form of the desid solutionis alread/ known, it is useful toestain
the gemtic progamming from seardhg solutims with diffeent
syntax forms [8}[14]. The most advantagpus method to
implement such restiions among other appmohes [15] is to
apply syntax comstraints togeretic programming trees, usuabyith
the help ofa cotext-free grammar declaed in the BackusNaur-
Form (BNF) [4]. The BNF-gamma consists of terminal ned
and non-terminal nodes and rigpresented \b the set {N,T,P,5
where N is the set of non-termais, T is the sebf terminals, P is
the set of ppduction rules an& is a member of Morrespondingo
the starting ymbol. The use of tanterms terminal and non-terrain
in a BNF-grammar, does notrrepond to what is usuallyeferred
in geretic progmamming as terminal and fation [14]. Ratter, a
function -a nonterminal node interms of tle GPtreearchitectue-
is expresed asterminal in a BNF granmar.

2.5 Cellular Encoding

Although mapping decisiondes or fuzzyrule-based gstems to
specific grammars can be rettively eay to implement, tre
exection of massivelypamllel processing itelligent ystens -such
as the neural gic networks- is noforthright. In order to explce
variabe sized solutions, we plied indrect encoding. Té most
common one is the celar encaling [9], in which a gnotype can
be reazed asa desriptive prenotype for the desired solutio
More ecificaly, within such afunction set, there areelenmertary
functions that modify the sg/stem archtedure together with
functions ttat calcdate tuing variables. Curent implementtions
include encoéhg for feed forvard and Kohonen neuraktworks
[16], [21] and fuzzyPetri-rets [27], [21]. In his original work
Gruau als usd a corgxt-free granmar - a BNF gramnar- to
encode indectly the neual netwoks. On the dter hand, in [27h
logic gammar - a conéxt-nstive one- isadapéd to encod fuzzy
Petri-nets. In ouwork, we showthat aslong as the dpth-first
exection of the program nodesf a GP treeis ensuredwhich is
the deéult-, a ontext-free granmar such asa BNF gramnar is
adequate foexpressing neuraletworks. Gruats original work ras
been faing sone scepticism[11l] on the abiliy to expess
arbitrarily conreced networks Later ddvelopments [8] seem to
offer less restrictie grammarthough the cufunction in thoe
implementatons still maintained bounded effect A similar
techndogy, cdled edg ercoding, dewelopedby [12] is also tody
used with hunan conpetitive results in a wide area ofapgications.

Table I. Operations foFunction CNR

Calculation
Conjunctian
Diguncton
Priority

At lead k-true

At least k-false
Majority influene
Majority influene of k
2/3 Majority
Unanimity

If-Then operation,
Kleere's model
Difference

U
&
o
3
o
Q
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3 DESIGN AND IMPLEMENTATION

The dita is nomalized to the systen's accepteble data range and
the proedurecreatsthe evdutionay neural logc network, which
is then tested onnknown dataTheresulted network is stored and
the rdesextracted candusedwithout the nreedof a computer.

3.1 Data Pre-processiig and Genetic Programmig
Setup

The Sonar da set is consistl of sixty realvalued attributes
betweer0.0and1.0 usedo ddine 208 mines ahrocks. Attributes
are oltained by bouncing sonasignals ofa metal clinder (or rock)
at varous angles and rises irefjuency The value of te attribute
represents thamount of eneygwithin a particliar frequeny bard,
integrated oer a cetain period of time. It is aceptedthat the
genetic programming procedure ynauffer size problems during
initialisation [14. Although thefine-turing of our algorithm was
not the main concern of thipaper, we inestigated varias
initialisaion approaches.Without chiming optimality, the GP
parangtersare adaptedby [20]. This setuptogether with function
seledion probdility optimisaion, offeed for the preseted
grammar stable and effectiveuns throughout experiments.
Although the initialisatiorof the population is andom, using this
probability biasthe algoithm is forced to gemrate indviduals of
aceptabe dze This optimisation was deciced after
experimentation since it is not possible to obtain a geh
principle regarthg the most prper probability values for ewer
case. As it can be observed [R0], the setup denotes our
preferee for sgnificantly high mutation raes, especialy shrink
mutation [17]that slows down theode bloat causedylrrossover
operations.

3.2 System Gammar and Operating Functions

The proposedystem grammar ish®wn in Figure 2. Initialymbol
(root) of a genetic programming tree can be a node pé ty
<PROG>. Tle functionsetis asfollows:
e Function PROG: The funch PROG creates the
embyonic network thats usedater by the functions S1,
S2, P1 andP2 b be expandedAn alternative ame for
this function, whichis usedthroughout this pper,is the
term “CNLN".
e Function S1: Th function S1 enters a node serial to
thenode thatis applied andis applied to inputnodes.
e Function P1:Th function P1 eters a nod in parallelto
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(CNLN (P1 (P1 (R (SL (SL (In T10) Rule 0 0) B (Rule 00) (S2 E (Rue0 0) B) (P1 (SL (In T4) (Rule0 0) (2 E (Rule 103) (S2 E (Rulel03) B)) (In T11))
(P1 (RL (In T3) (SL (In T48) (Rule 128) B) (P1 (R (P1 61 (SL (In T10) (Rule 00) E) (Rule 00) (S2 E(Rule 00) B)) (P1 61 (S1 (h T4) (Link 50 0 (Rule 0 0)
E) (Rule 10 3) E) (P (S1 (h T4) (Rule 128) (P2 E (Rule 10 3)$2 E (Rule0 0)E))) (In T11)))) (R (PL (In T58) (3. (In T24)(Rule 128) (F2 E (Link 133 0
(Rule 00)) E))) (PL (P1 (SL (In T52) Rule 0 0) E) (R (SL (InT4) (Link 1330 (Rule 103)) (P2 E (Rule0 0) (2 E (Rule0 0)E))) (P1 (2 (In T28) (Rule M)
(P2 E (Rulel03) (S E (Ruled 0) E))) (nT11)) (P1 @1 (In T58) (SL (In T24) (Rule 128) (P2 E (Link 1330 (Rule 0 0)) E)) (P1 (R (S1 (n T31)(Rue 10 3)
E) (In T49)) (h T42))))) (In T4)))) (n T50)) (Rule 28))

Figure 3. Extracted solution and theoresponding neral logic netwok for the Active Sonaclassification poblem

the node tht is applied and is also apfied to input
nodes.

Functio S2: Tte function S2 enters a node serial to
the node that ispplied, andis used for hiddn layer
nodes.

Function P2:The function PZerters a nodén parallelto
the node that is applied, arsalso used for hidden lay
nodes. Tk mechanism, congiag of two dfferent sets
of expanéhg functions (PlandS1 vs. P2 an&2), is ued
to ensure that gulation indviduals will incluce at least
one inpdi nocke.

Function IN: The opeation of function INis toassign a
variale to the imput node thtit is applied.

Function E:The operation of faction Eis to mark the
end ofthe ex@nsion of the retwork.

Function LNK: This functionprovides the framework
for the applcation of cu function. It actudly enales tre
non-full conrecivity of the nework, a eatue that offers
largersolution searchspace.

Function CNR: This funton performs the node
infererce. Bagd on the first mrameter the
corresponding calculation igerformed. Thesecond
paraneter asists the calclation for the at-last-k and
majority-of-k operators. Possible computationsare

shown in Table I. An altertize narre for this function
which is used throughout thgaper, is the term “Rule”.
In order to bealle to praess values otherdh tue, false
and don't knwy, we applied the fuzzy propagation
algorithm [19] which allows us to process anreal
valuedvariablequsing propenarmalization)

Function NUM: The function NUM returns aimteger in
the irterval [1,256]to be used Y the calliig LNK
function

Function @T: The function T returns arintegerin
the inerval [0,1] to be usedythe caling LNK function
If the returnedvalueis 1, tten tte link will be ignored in
the catulations (consdered"cut").

Function CNRSEL:The furction CNRSEL returns an
integer in theinterval [0,8] to beused ly thecalling CNR
functionasits first paraneter.

Function K: The fundion K returns aninteger in the
interval [1,256]to be usedthe calling CNR function if
the retured value of the NRSEL is 3,4 or 6
(correspondindo the calclation of the at least kirue, at
least k-fale andmajority of k functions).

Having dscussed theystem degn, in the followng sessionwe
shall applythemethodolog in theactive sonar target identification

domain.
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4 RESULTS AND DISCUSSION

The emote detection ofinderseamnines inshallow waters using
acive onar isa crucal capabiity required to naintain the secuity
of important harbours ands coastleeas. It is often verdiffi cult
to distingush active sonarretuns from mines andeturn from
clutter on the sea floor. Theris currentlyno reliable signal
classifcaion shene for autonatically interpreting such sonar
returns. Instead highlgrained onar operatorsust be relied upon
to iderify the preene of a mne. The pe®nt dudy was
conducted toexplore the use ofneural networks as a mean$ o
automating mine-hunting operatiomMdore ecificdly, the g/stem
develops a decision whethtte signal coresponds to a ¢nder
(mine) or to a rock [7]The dathase is consisted of two parts. The
first part contains 111 recordshich ae acquired ¥ returnirg
sonar signals froma netal ¢ylinder in \arious positions. The
second paris comprised ¥ 97 records which correspond to sonar
signals returad by rocks in simila situations. Taining andestirg
data ecordswere randonty seleded ty these sts. Also, in orcer to
avoid overitting during the wining phase, we used a valithn
set. Acordingto the litergure, the targé is to developa ystem
with high accuagy and potertial knowled@ interpreaton. The
evolved reural logic network ad its graphical epresentatiorare
depicted in Figre 3. This solution adbves a 86.27% (44/5)
accunagy in unknown data. The accaxy in the trainingdata was
88.24% (90/10p and in tke validation data set it was 80%9
(41/51). In tle literature, the derived accuagy for the varias
systens appliedin the sam daa set ranges from 73.1% to 8%2
Other expaments in [3Jusing reural logc networks b means of
genetic proggmming offer forthe sane data set anequivalent
clasificaion score (86%) whenneulonet asociation rules are
applied, anca lower score (78%) when conjunctie association
rules are u®d, a direct score comparison nb being applicable
however, mce different training andtest data ets hawe been ued.
The extaced neural logi ndwork, due to the nater of the
problem maintains significant conplexity, yet it acheves
conmpetitive to tte literatue resuls. It is worth tonote also, tht aur
solution @n stil be inerpreted into a number blogical or Prolay
rules, although solution intergation was not among our primya
targes for the specific problem

4 CONCLUSION AND FURTHER RESEARCH

The am of this paper wago deanondrate tle efectvenes of the
evolutiorary neural logic networks paradig into real-vorld
problens, such asthe adive snar targeidentficaion. In geneal,
neural networks&re powerful conectonist /stems that have been
introduced in areas wher symbdic procesing gstems of
traditond artificial intelligene used to be appliedAs a tool of
computatioral intelligerce, theadaptaion of the neural etwork to
the problem domain using andudive method, offers advantage
over exm@rt systems where thknowedge must becqured first,
before tle g/stem development. By sin@ treir first applcation,
interpretation d the obtainecknowledge was researchtarget fo
neural networks. In the scopa this area,the neural log
networks have been proposed adass of networks thatybtheir
definition peseve their interpretility into symbolic knowledge.

Until recenty however, tle appication of an dfective training /
production method within the Ciframework has not been
suaessful. A novd systen that uses genetic rpgramming with
indirect ercoding that has ben proposed recely [20], overcones
these prolems,producingautanatically designed andtunedneural
logic networkswhich always preserveher interpretallity. In this

work we applié the gsteminto a real-wdd problem the Adive
Sonar classification problem. &lsystem has been proved cajmb
of producing cometitive to the literatue resits. The acquied
solution althoub being in acomplicated form, it stilmaintains its
interpetakility. The conplexity of the solution is réher
straightforwartly related to the nate of the prolem, i.e. plysical
measurements. Howeveras obviously seen, the soluion
interpretation could not k@ among the prirary targets 6 this
resarch rather than the high lassification rae. Hence, acordng
to the expes, the applicatiorto a sonar classification problem
shows that under partular drcunmstancesthe system can be
implemented to soméegreednto this ral situation problem.

Future work inelves theappication ofthe ystemin other snar

data setsas well as in ther areas,and the incorporatiorof

recursve dructures into the rural logc network archiectue.

Moreover, te minimum description length principle will be

develomd to beincluded as aranti-overftting measure into the
acive sonartarget identification problem Findly, we (elievetha

parametetuning optimisation of the underling gemtic

progranming algorithmwill offer better effiaency; hene this will

be of pimary importane among our future work.
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Construction of Neurules from Training Examples: A
Thorough Investigation

Jim Prentzatand loannidHatzilygeroudis?

Abstract. Neurules area type of hyrid rules ombining a
symbolic and a connecbinist representatio. A neurule bse
conssts of a number of autonmous adaline wits (neuruls), in
contrastto exiting neuro-sgnbolic knowledgebass. A neuruk
base $ constrwcted fram training exanples. To overcane the
inability of the adaline unit to classifynon-separable traingn
examples, the rotion of ‘closeress’ betwen training examples
has leen wed D split the nitial training setmto sulsets that can
be sucessfully trained. In this paper, we instigate previogy
unexplored gpects regardinghie constructin of neurules from
training exanples. First, ve compare differentsplitting policies,
i.e. policies sing different criteria for splittig the trainingset.
We also introduce two alternative approashto splitting nb
solely relying on cleeness and eopare themwith our initial
approach, whie is solelybaseé on closenss. The canparison
demonstrates he effectivenss of the notion of ‘closeness’ in
splitting the nitial non-sepeable training set. Finally we
evaluate the generalization @apity of neurués.

1 INTRODUCTION

Receantly there has éen extensive reseech activity at
combining (or integrating) the sybolic andthe comectionst
approache for problen solving in intelligent systems [3, 4, 5,
12, 13, 14, 1519, 21]. Especiallythere are a maber of efforts
at canbining symbolic rules ad neunl networls for
knowledg represemtion [6, 20]. What thg do is a kind of
mapping fran symbolic rules to a neurd network. Ako,
connectimist expert systems are a tpe of integratedsystems
that represet relationshig between concepts, consilered as
nodes of a n@al network [/, 8]. The strong point of those
approache is that knowlede elicitation from expers is
reduced to aminimum. A weak point oftham is that the
resulted systans lack the naturalnes ard modularity of
symbolic rules. This $ mainly due to tle fact that thee
approache give pre-eninence to conactionisn. Sg
explanatims ae often providd in the fom of if-then rules
rule extraction rethods [1, 2].

Neuules constitute a hbrid rule-based representatin
schane achiving a unifom ard tight integraion of a synbolic
component (production ruls) and a conrgtionist one (tle
adalineunit) [8, 9]. In contrasto other integiated aproachs,

1 Technological Educational Institute bAmia, Depantnent of Informatics
and CanputerTechnolagy, 35100 Lanmg, Geece, enail: dprentzas@ilam.gr.

2 University of PatrasPept of CanputerEngineeing & Informatics,26500
PatrasGreece,email: ihatz@ceid.upatras.gr.
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neurules givepre-aninenceto the symbolic component. Each
neurule is cosidered as andaline unit. Thus, neurules givee
more natural way of regesenting knwledge sice the

construced knowledge lase retains themodularity and (b

same degre) the naturalnss of symbolic rules. Also, the
correspondig inference mechansm, which is a tightly
integratedprocess, resudt inmore efficient inérence tlan trose

of symbolic rules, and eglanatons, in the fom of if-then ruks,

can be proded [11]. Mechanism for efficiently updatinga

neurule bae, given chages b its sairce knavledge, havalso
been develped[17, 18].

One wayof corstructing nairules is fran empirical data (i.e.,
training exanples) [LO]. A difficult point in this approacts the
inherent inabiliy of the adaline unit to clasgi non-separable
training exanples. To overcome thidifficulty of the adaline
unit, we introdiced the notion of ‘closeness’, as far ate
training exanples are oncened. That is,when the IMS
algorithm fails to produce weights that classify all the
examples, due to non-separdity, we split the initial training
set of the nvolved reurule in two sulsets, which contan
‘close’ examples, andtrain a copy of the neurule for ach
sulset. Failureof training anycopy leads to further splittings
far as succss is achieved.

In this paper, we invegfate previously unexplored aspcts
regarding the construction of neurufesm training examples.
First, we ompare differentsplitting policies, i.e. policies usig
different criteria for splittingthe training set. Secondye
introduce alterative approahes to corstructing neurules frm
training examples, notsokely relying on cleseness toperform
splitting. We also canpare these alternativeapproachs with
our initial apgoach, whichis solely based oncloseness.
Finally, we presentexpermental results evaluatig the
generalizatn apability of neurules and eoparing it with the
generalizatn capabilityof a back-propagationeural netwrk
and a single atine unit.

The structure of the paper is as follows. S8t preserst
neurules, thanechansm for their construébn from training
examples and different splitthg policies (based on cheress).
Section 3 intrducesalternatve approacés to splitting (not
solely relying on clos@ess). Section 4 presents expental
results ad finally Section 5 cocludes the pagr.



2 NEURULES

2.1 Synax and Semantics

Neuules (: neual ruleg are a kind of lybrid rules. Each
neurule (Fig. 1a) is congdedas an adalinenit (Fig.1b). The

inputs G; (i=1,...n) of the unit are theonditions of the rule.
Each codition C; is assgneda number sf, called asignificane

factor, correspading tothe weight of the correspondig input

of the adalineunit. Moreovey each rule itdé is assiged a

number sf,, called thebias factor, correspondig to tke bias of

the unit.

Each input tkes avalue fran the following set of dscree
values: [L (true), -1 (false), O (unknown)]. TheutputD, which
represerg the conclwsion of the rule, is calculated via @h
formulas

D=f(a), a=sfy+ zn: sfi C; Q
i=1

wherea is the activation valie andf(x) the activation functon,
which is a threshold function:
1 ifa>0
fa) =
-1 otherwie

Hence, tle ouput cantakeone of twovalues, *-1' and ‘1’,
representig failure and suass of the rule respectively

(sb) if CL(sh),

C, (sh),
(sf)
G (sh)
then D
C
(@) (b)

Figure 1.(a) Fom of a neuule (o) caresponding adalie unit

The general sytax of a neurule (in a BNF notation, where

{} denotes zego, one or rore occurrence and ‘<>’ denogs
non-teminal symbols) is:

<rule>::= (<bia-factor>)if <conditions>then <conclisions>

<conditiors>:= <condition> { <conditiorr}

<conclwsiors>;:= <conclwsion>{, <conclusiorr}

<conditiorr::= <variable> <|-pedicate> <alue>
(<significance-factor>)

<conclwsiorr::= <variable> <fpredicate> <vae> .

In the aboveal€finition, <variable> dena@tsa variable, that is
a symbol repreenting a cacept in the domai, e.g., 'sex’,
‘pain’ etc, in amedical danain. A variable h a condition can
be either anput variableor an intermediate variatd, whereas
a variabé in a conclwsion canbe eitter anintermediateor an
output vaiable. <l-predica¢>denotes asymbolic or anumeric

36

predicate. Thesymbolic predcatkes are {g, isnot}, wherea the
numeric predeatesare {<, >, =}. <r-predicag> can only be a
symbolic prediate. <vale> denotesa vale. It can ke asymbd
or a number. <bias-factor>ard <sgnificane-factor> are (ral)
numbers. The significance famt of a condition representhe
significarce (veight) of te comdition in drawirg the
conclwsion.

2.2 Constructing Neurulesfrom Training Examples

Each neurulesi individually trained via atraining sef which
contairs training exanples in the form [vy v, ... v, d], wherev,
i= 1, ...n are heir compomnt values, corresponding to &n
inputs of tke neurule, andd is the desired output (‘1" for
success ‘-1’ for failure). We call success examples the
examples with d=1 andfailure exampls the ones with d=2.
The learning kgorithm employed is the stadard leastmean
square (LMS) byorithm.

Howewer, there are cases wete the LMSalgorithm fails to
specify the right significance factors fora nunber of neirules.
That is, the adaline unit of a rule does not correctissfy
same of the taining exanples. This mears that the trainig
examples correspondto anon-separal® (bookan) functionTo
overcame this problem the initial training set is split ird two
sulsets n a way that eachsubset ontairs succes exanples,
which are ‘cbse’ to eaclothe in sane degree. Theclosenss
betweentwo examples is defined a the rumber of common
component values. For eample, the cleeness of 1 01 1 ]
and [L 101 1] is ‘2. Also, we define akast closenss pair
(LCP), a pair of sucas exaples wih the last clseness ina
training set. Therenay bemore than one LCP in a training set.

Initially, aLCP in the training set is found érwo sulsets
are created ah containingas its initial element one of he
sucess eamples of that gir, called its pivot. Each of the
remaining swccess exaples & distributel between the wo
sulsets kased on its cloenessto the pivotsMore specifically,
eachsulset cortains he suaess eamples, which arecloser ©
its pivot. Then, the failure ergples of the inial set are aded
to both subset to avoid newle misfiring. After that, wo
copies of theriitial neurule, one for each subset, are &din
employing theLMS learnirg adgorithm. If the factors ofa cqy
misclassify some of its examples, thecorrespondingsulset is
further split into two other subsgtbased omne of its LCPs.
This continus, until all exanples are clssified. This mears
that fran an initial neurulemore thanonefinal neurulemay be
produced, callésibling neuules(for details seelf0]).

To illustrate hav sditting is performed, we wse as an
exanple the taining set premnted in Tale 1. As it is cler,
the mgjority of the exanples inthe training set are failure
exanples, wheeas successxanples, whit are shownn
bold, are a minority. The tming sethas been &tracied
from enpirical dad concerning five inpu (domain)
variables ard an aitput variable (diseasé that depeds m
the five domainvariables. Giventhat ead inpu variable can
take more than one dscrete @ue, eachinitial neurule hes
thirteen conditims (C1-Cl3). D carespamds to the
conclsion. Actually Tablke 1, for simplicity reasos, stows
only asubsetof the failure exanples.



Table 1. An exanple training set

C C C C C C C C C C C C C D
1 2 3 4 5 6 I 8 9 10 11 12 13

-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1

For preseration reasors, rames P1-P5 are assiged to
the five sicces exanples/patterngof Table 1), aspreseted
in Tade 2. Abq, let F ke the set bfailure exanples inthe
training set.

Table 2. Successxamples

synbol description
P1 [-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1, -1, 1]
P2 [-1,-1,1,1,-1,1,-1,-1,-1,-1,-1, 1,1, 1]
P3 [-1,-1,1,1,-1,1,-1,-2,1,-1, 1, -1, -1, 1]
P4 -1,1,1,-1,-1,1,-1,1,-1,1,-1,-1, -1, 1]
P5 [1,1,21,1,4,-1,-1,-1,-1,-1, -1, -1, 1]
{PLP2,P3, P4 P51 U F
P1 P5
T Bl
(PLLPL,PAUF {PLP5IUF
PS’,/\P-EL p2 /ﬁ\\PS
~ 5 - e
[PIIUF (PP U F [FP2IUF {P5} U F

Figure 2. Splittings of the training set of Table 1

Due toinseparaliity, the intial training set {P1 P2 P3
P4, BB} U F is spit in two suwbsets: {P1P3 P4 u F and
{P2, P5} U F with as least lbsenes par (P1, P5). Subse
{P1, P3,P4} U F is slpsequerly split into stbsets {P3 U F
and {P1, P4}u F. Subset{P3} U F produes a nerule(see
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Figure 3). Subset {P1P4 U F producesanoher neurule.
Similarly, from subset {R, P5} U F two other neurules ae
producel (corresponding to its two leaves).The peformed
spittings are illustratedin Figure 2, as a tree.

In creding the traning subsets some requiremerts were
implicitly satisfed. Each traimg sulset contins: (a) all te
failure exanples of the initl training setto protect from
misactivations and (b) atleast oe sucess exaple to
guarantee the activaton o the orrespnding reurule.
Furthemore, the two sulsets created bplitting a éub)setdo
not have common succss exaples to avoidhaving different
neurulesactivaed by the sane suxess e&ample(s). In the
following sectons, the apprazd to splitting lased on cleeress
will be called CLOSENESS-SPLIT.

A point of inteest in trainirg a neurule witha non-seprable
trainingset s how to chosealeastcloseness pair (LCP), in he
process ofroducing the two subets of te initial training set
Not all LCPs result in the s@® number of final neurules. So,
we are loking for the LCP thafinally produces theninimum
number of sibling neurules. tried three heuristienethods
for that: therandom choie, thebest distibution and themean
closeress métod The randan choice rathod (RC) choses
randonly one of the LCPs and is thenglest and last
expersive of the threemethods. Thebest distribution methal
(BD) suggess choosing he LCP that assusedstribution of the
two elanents d all the otker (or most of tre other) LCR in
different sets. So, exaples with leastclosenss will be
included in different set which may assureseparability The
mean cleeness method (MC) initially computes themean
closeress ofeach of thetwo sutsets to le created fron each
LCP. Then, it calculag the mean cleeness of each LCP,



which isthemean cleeness ofthe twosulbsets, and cbosesltie
LCP with the greatestmeanclosenss. It is dvious thatMC is
(computationally) themost exensivemethod.

NR1

(-13.5) if venows-aonc is slight (12.4),
blood-monc is nodeate (11.6),
at-concis moderat (8.8),
scaneoncis normal (8.4),
cg-concis moderae (8.4),
blood-monc is slight(8.3),
venous-onc is noderate 8.2),
venous-onc isnomal (80),
aterial-conc is slight 6.7),
cg-concis slight @.5),
blood-onc isnormal (4.4),
blood-®nc ishigh (1.6),
venous-onc ishigh (1.2)

then disease is inflammation

Figure 3.0ne of the pyduced neuldes

3 ALTERNATIVE APP ROACHES

In this section we presenttwo alternatie approache to
splitting a nonseparabletraining set notsolely relying on
closeress. The two alternative approaches will be calle
ALTERN-SPLIT1 and ALTER-SPLIT2 repectively. Both of
theseapproabes satisfythe mplicit requirenents mentioned n
the previous section. The idea behind hbapproache is
simple. More specifically, they focus on theexamples which
are misclassified by the weights calculatl by LMS and try ©
split the trainng set into tw sulsets: or containing tle
correctly classfied sucess &amples (along with all failure
examples) and one contaiing the misclassified secess
exanples (alog with all failure examples). This proces carbe
followed onlyif some (not all) success exanples (and pssibly
failure exanples) aremisclassfied. If all sucess exaples are
misclassified oif only failure exanples are misclasified, there
is no alterative but to splitbased @ closeress. Therefore, in
this procss ore should ditinguish the folleving cases: (a)all
of the sucess exmples are misclassified, (b) only failure
examples are misclassified, (c) only sane of the succss
examples and none of the fdure ones aramisclassified, (d)
failure exanples ad some of the sucess examples ae
misclassified. In case (a) and (b) spliting is baed on
closeress. Thetwo gproackes differ only in the way of
handling cae (d).

More formally, approach ALERN-SPLIT1 isasfollows:

If all success exanples are misclassified by the calculated
weights, split the training set bad on cleeness.

. Else, if only failure exaiples aremisclassfied, split the
training €t based on claness.

. Else, if onlysone of thesuaess examples (and none of the
failure exanples) aremisclasdiied, split the training set in
two sulsets: ore containiig the correctlyclassified socess

1.

2

38

examples (along with all failure exaples) and one
containing tle misclassified secess eamples (along with all
failure exanples).

. Elsg, if failure exanples ard sone of the swcecess exanples

are misclassified, split the traiing set in tw sulsets: one
containingthe correctly classfied siwccess examples (along
with all failure exanples) and one ontaining the
misclassified succes examples (along wit all failure

exanples.

Approach ALTERN-SPLIT2 doesthe sam as ALTERN-

SPLIT1 in step 1, 2, 3 ad handlesstep4 based m closeress.
It can be ealy seen that ALTERN-SPLIT2 lies between
CLOSENESS-SPLIT and ALTERN-SPLIT1.

4 EXPERIMENTAL RESULTS

In this setion, we present arious eperimental results usig
datasets fnm the UCI Machine LearningRepository [15]. The
experimental results involve the following aspets: (3
evaluation of e three different splitting gbicies kased on
closeress (i.e., RC, BD, MC), (b) cgparison of the hree
approaches tosplitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2 and (c)evaluation of the
generalizatin capabilityof neurules andarparison withthe
generalizatn capabilitis of the back propagation uel
networks ad the adaline unit.

Table 3.Number of neuules poduced bythe RC, MC and BD policies

Dataset Condi- | Conclu- | o | yc | BD
tions sions
Monks1_tain
- 17 2 17 17 13
(124 pattens)
Monks2_tain
- 17 2 46 47 38
(169 pattens)
Monks3_tain
- 17 2 14 11 12
(122 pattens)
Tic-Tac-Toe
27 2 26 26 24
(958 pattens)
Car
21 4 151 163 153
(1728patterns)
Nursery 27 5 830 | 839 | 823
(12960patterns)

Table 3 depids ewerimentd resuls for CLOSENESS-
SPLIT canparing RC,MC ard BD. Camparison is basedon
the number of neurules prodeed fran eachsplitting method,
shownin columns ‘RC’, ‘MC’ and ‘BD’. Column ‘Conditions’
denote the number of conditions for eachlding neurule ad
column ‘Condusiors’ the number of dfferent (final)
conclwsiors. Fa the ‘monks’ datases we usel the trainhg set
provided in he UCI Repaitory. Based orthe resuls of Tabé
3, none of the thremethods is ckarly better han the othersof
all dataset Further on, there is no great difference in
number of nerrules prodced by the thre methods. BD
performs betterin most of the cases. RC, the simplest of the

the



three methods, perfoms quitewell even in the large daiset
compared to ke other twomore complex methods. On theother
hand, MC, vhich is conputationally the most expesive
method, doesnot perfom quite well canpared to the otér
methods to usify its use.So, BD orRC canbe considered &
better alternatiesas faras thenumber of prodiced reurules is
concerned.The number of produced nerules & the baic
criterion of the coparisms, becase it play a crucial rolen
inference efficiencyand neurule-bassze.

Table 4 presnts experinental resits regarding ALTERI-
SPLIT1 and ALTERI-SPLIT2. RC, MC and BD play aale
for subsed in which splitting based on deness is used.

Table 5 preents sunmmary results ceparing the thre
approaches tosplitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTER-SPLIT2. Comparison is bagd on the
minimum number of neurules produced fmoeachmethod. In
parenthses, thename of the spitting policy (i.e., RC, BD, MC)
used, vhen poducing tle minimum number of neurules 3
shown.CLOSBENESS-SPLIT $ gererally better than thether
two methods. This denonstrate the effectivaeess of the notio
of ‘closeress’. This last onclusion & further ntensifiedby the
fact that ALTERN-SPLIT2 that liedbetweemPALTERN-SPLIT1
and CLOSENESS-SPLIT gnerally perfoms beter than
ALTERN-SPLIT1. The redts al® show that itmay be worth
to enploy ALTERN-SPLIT1 and ALTER-SPLIT2. A furtter
result is that BD generallgerfoms beter than RC and MC.

Table 4. Number of neurules poducedby ALTERN-SPLIT1 ard
ALTERN-SPLIT2

ALTERN-SPLIT1 ALTERN-SPLIT2
Dataset

RC MC BD RC | MC BD

Monks1_tain 22 24 24 19 16 13

Monks2_tain 34 32 33 43 49 39

Monks3_tain 15 15 15 14 11 13

Tic-Tac-Toe 44 41 40 43 41 38
Car 189 171 169 152 | 161 154
Nursery 1330 | 1382 1378 | 837 | 842 | 821

Table 5.Number of neunles poduced byCLOSENESS-SPLIT,
ALTERN-SPLIT1 and ALTERN-SPUT2

testing set in four different runs. Needless tsay that te
training exanples in the testsets vere notincluded in the
training ses. Different and dijoint test set were sed ineach
run, so tlt the union of the fur testsets femed the whole
dataset. The ctasificaton acuracy was conputed & the mean
value of tle accuracés obtained fron the four runs.For
‘monksl’ and monks2’ dataets this procede for creating
training andtest ses was appled to the corresponding ést ses
of 432 trainingexamples available in tre UCI reposibry. For
the ‘monks3’ dataset, the traimg and test sedvailable in the
UCI repositorywere usedsince the trainingset is reportedo
contain nose. It should benentioned that wevere not able to
construct a bek-propagatiomeural networkfor the ‘Nursery
dataset with copetitive genedlization ca@bility .

For the training of back-propagation neursdtworks, the
standard bek-propagation a@orithm was employed ushg a
momentum in adjusting theweights ard ore layer of hidden
nodes. The aues of tkesethree back-propgation paraneters
along withtheaverage error tlesholdwere tined separatelyor
the training setof each diaset after a maber of expemnents
(based on ermeand-trial). Trainingstoppedwhen either he
number of training epochreached an uppehreshold or the
averagesquared error beame less tharor equa to the awerage
error threshold Furthemore, no cres-valdation was used
when trainng the adline unit, the nerules orthe kack-
propagationneural network (erhapswith cross-valdation tre
results of Tat# 7 for all approachs would have been slightly
better). Also, if the activatns of multiple output nods
exceeéd 0.5 (vhen a éstexample was given as input), thethe
example tok the categoryof the most actve output node (i.e.,
the one with thgreatest activain) [20].

Table 6.Generalization of neutes poduced fran RC,MC, BD policies

Dataset CLOSENESS- ALTERN- ALTERN-
SPLIT SPLIT1 SPLIT2

Monks1_tain 13 BD) 22 RC) 13 BD)
Monks2_tain 38(BD) 32MCQC) 39 BD)
Monks3_tain 11 MC) 15 (RC, MC, BD) 11 (MC)
Tic-Tac-Toe 24 BD) 40 BD) 38 BD)
Car 151 RC) 169 BD) 152 RC)
Nursey 823 BD) 1330 RC) 821 BD)

Dataset RC MC BD
Monks1 100% 100% 100%
Monks2 9630% | 9699% | 9792%
Monks3 9236% | 9352% | 96.06%
Tic-Tac-Toe | 9885% 9750% 9812%
Car 9444% 9456% 9450%
Nursery 9963% 9953% 9952%

neurl netwok

Table 7.Genealization of adaline unineuules and baclpropagation

Tables 6 ad 7 present raults regarding ta classification
accuracy(generalization) of neurules on unsdest exenples.
Table 6 conpares tle classification acuracy of neurules
produced fron the threesplitting policies based on cieress.
Table 7 conpares the dssifiation acwracy of neurules (i.e
the best result of Table 6)with the one of the adalineunit ard
back-propagtion neuralnetworks. The reults for ezh dataset
(except for the threenonks datases) were produced bysirg
75% of the exampk & training set and 25%fdhe exanples as
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Dataset Adaline Unit Neurules BPNN
Monks1 6782% 100% 100%
Monks2 4375% 9792% 100%
Monks3 9213% 96.06% 9722%
Tic-Tac-Toe 6190% 9885% 9823%
Car 7893% 9456% 95.72%
Nursery 8226% 9963%

The results inTables 6 and Bhow that Burules geeralize
quite well. Tdble 6 shows that noneof the threesplitting
policies perfoms better than the othersin all datasets.
Comparing theresults of Tablé and Table Gt can be said tht
it is not unlikely that a splitthg policy may generalize better



than theother plicies althou@ it produed agreater nmber of
neurules. Tald 7 shows that neurules outgrform the adiline
unit and are worse thanatk-propagationneural netwdss.
These result are very promising. It was expected thatet
generalizatin capability of neurules wou be samewhere
between he alaline unit ad the back-pspagation sural
network. This $ dueto the natre of the thre approachks: the
adaline unit is a single unior performng classifiation, a
neurule bae casist of a nunber of autonmous adline unis
(neurules) ad a back-propgdion neural etwork is a multi-
layer network containing hidden nods useful for the
computation ofnon-serable functioss.

A parameter nat shown in Tabk 7 involes thetotal effort in
constructng te correspoding knowlelge base. The
constructbn of a neurule base is easthan tlke constructia of
a back-propgation neural network. When constrating
neurules, oneshould only try out the different spliting
approache So,corstruction of neurule is straghtforward. On
the other bBnd, in the @se of a ba&k-propagationneual
network, one should simultaneously adust three differat
paraneters (baed on error-and-trial): theumber of hidden
nodes (asuming one hideén kyer), the learning rate and eh
momentum. The nunber of hidlen nods is aninteger, wherea
the learniig rate andthe momentum are ral numbers lying
between 0.0 r@d 1.0. Simnltaneosly adusting those the
paraneters canbe a non-trivial and time-consuming tesk.
Howewr, the adjisiment of those paraneters plys an
important role in the classification actag/ of the neural
network regardig the training and test sets.

It should ke aso mentioned that whken we develped a
method for pralucing reurules from trainingexamples [10], we
did not have generalizatiors aur primary intention. Our effort
was b dewop an alernative method to the oneproduchg
neurules throug conversion frm existing symbolic rule bases
[9]. In this way the knowkdgeacquisiton pro@ss is failitated
since reurules can be costructed fran two aternative sarces,
existing symbalic rule bases and training eamples. Haveve,
according to th results of this paper, regarding generalizati
capability of neurules, neurules caul be a choice in
applicatiors with availabé training exenples and in which
naturalnes, modularity of the knowledg baseand provision of
interactive infeence and exphationmechaisms are dsirade
factors beides generaliation Obviously in applicatiois n
which generalization is he aly concern, one shud chose
back-propagtion neural netwrks.

5 CONCLUSIONS

In this paer, we invetigae previously unexplored apects
regarding the construction of neurufesm training examples.
Results validte our initial choice, deomstrating he
effectivenasof solelyusing tle notion of ‘cleenas’ to hand
non-seprable training sets. Alternativeplitting appractes
performed worse. Furthemore, experimental results sbw that
neurules genedlize quite well even compared to bek-
propagation neral networks.Our future resarch will involve
investigation of possil® improvements to the construoctin ard
generalizatin capabilityof neurules.
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Towardstheintegration of abduction and induction
In artificial neural networks

Oliver Ray' and Artur d’Avila Garcez?

Abstract. This paper presents a method for redising abduction
in artificial neural networks (ANNS) by generalising existing neuro-
symbdlic approadhes from normal logic programs to abductive logic
programs (ALPs) in order to provide amore expressve formalism
for representing and reasoning about partial knowledge and integrity
constraints. The dm is to develop a massvely-parallel technique for
abduction that can also be integrated with standard conredionist
learning approaches to offer more control over which assumptions
can and cannat be made in learning. Existing methods for abduction
in neura networks are not well suited to this task as they only apply
toarestricted a dassof abduction problemsor they do nd adequately
address the problem of computing multiple solutions. By contrast,
this paper proposes an approach for translating ALPs into ANNs
whereby no restrictions are imposed on the underlying programs
and, if required, the network can be made to systematically compute
al abductive explanations or provide aguarantee when nore exist.
Moreover, since the topology of the network mirrors the structure
of the program, it can be aquired and revised by standard neuro-
symbdlic training techniques and can also be exploited to impase a
preference on the order in which the solutions are found

1

Neurosymbadlic integration [9, 6] aims to combine the advantages of
artificial neural networks (ANNSs) and logic programs by providing
pradical methods of learning that use dedarative representations of
knowledge. This is dore by translating logic programs into neural
networks: either to yield an initial network which can be trained on
further data with techniques such as badk-propagation asin [20]; or
to compute the consequences of the program under the stable model
semantics by means of massvely parallel deduction as in [8]. But,
normal logic programs are not espedally suited for representing and
reasoning abou partial knowledge that is inherent in learning; and
this limitation motivates the study of more expressve formalisms for
deding with uncertainty.

Abdctive logic programs (ALPs) [10] are an extension of normal
logic programsthat are more suitable for handing incompleteknowl-
edge. In particular, they allow the truth or falsity of some ground
literals, known as abdcibles, to be left unspedfied subject to given
integrity constraints. Unlike normal logic programming, abdictive
procf procedures are freeto assume any consistent set of abduwcibles
when solving a goal. Thus, abduction does nat merely determine
whether a given goal follows from a program, but computes a set
of assumptions which, when added to the program, ensure that the
goa succeeals. Each set of abduwcibles is cdled an abdictive expla-
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nation and represents an extension of the program that is referred to
as ageneralised stable model [11]. By extending the program in this
way, abduction can extrapolate potentially useful assumptions from
partially completetheories.

The incompleteness of knowledge inherent in learning suggests
inductive techniques may benefit from afadlity for abduction. This
claim is suppated by logic-based madine learning systems which
haverecently shown that abduction andinduction can be combined to
adieve superior reasoning capabilitie s, as shownin [15, 12, 4]. The
benefits off ered by reural networks over logical approachesin terms
of noise-tolerance and massve-parallelism provide an even greaer
incentive to investigate the integration of abduction and induction at
the subsymbadlic level. But, existing methods for abduction in neural
networks are not well suited to this task asthey only apply to a very
restricted a dassof abduction problemswhose expressvity is limited
to definite agyclic programs [7, 18, 2, 22] or they do nd adequately
addressthe problem of computing multiple solutions[13, 21, 14, 1].
In this work we seek to demonstrate the importance of abductive
reasoning in the neurosymbolic context and to set the scene for the
subsymbalic integration of abduction and induction.

This paper presents a novel methoddogy for abduction in neural
networks by generalising existing neurosymbdlic approaches from
normal logic programs to abdictive logic programs. This provides
aformalism for expressng urcertainty and querying programs with
more than ore stable model. An agorithm is given for translating
ALPsinto ANNSs auch that the fixpaints of the network represent the
generdlised stable models of the program. The trandation is intro-
duced in three steps. First, a function 6 is defined that maps logic
programsinto ANNs by adapting existing neurosymbalic encodings.
Seand, a function ¢ is defined that maps agyclic ALPs into ANNs
by extending the program with some alditional clauses for abduc-
tion. Third, a function v is defined that maps arbitrary ALPs into
ANNSs using a preprocessng transformation which allows positive
and regative gyclesto be uniformly handed throughabduction.

The paper is structured as follows. Sedion 2 recdls some natation
and terminology relating to neural networks and logic programs and
it introduces the task of ALP. Asthis paper does nat diredly address
the problems of learning or extrading of programs from networks, it
is sufficient to only consider networks of binary threshold neurons.
Sedion 3 defines the functions @ and ¢ and shows how the networks
they produce can compute the generalised stable models of agyclic
abductive logic programs. Sedion 4 then shows how the gproach
is extended to abductive logic programs with positive and regative
cycles. The paper concludes with asummary and dredionsfor future
work. All of the examples have been implemented and tested using
the BrainBox neural network simulator [5] andthe aconfiguration files
may be downloaded from [16].



2 Background

(Threshold) Neural Networks: A neural network, or just network
heredter, is agraph (IV, E') whose nodes N are cdled neurons and
whose edges E C N x N are cdled conredions. Each neuronn €
N is labeled with ared number ¢(n) cdled its threshod and eah
conredion (n,m) € E islabeled with ared number w(n, m) cdled
its weight. The state of a network is afunction s that assgnsto eah
neuron the value O or 1. A neuronis said to be active if its stateis 1
and it is said to be inactive if its stateis 0. For eat state s there is
aunique successor states’ such that aneuronn is adive in s’ iff its
threshdd is excealed by the sum of the weights on the mnredions
coming into n from nodes which are adivein s. A network is said to
be relaxed iff al of its neurons areinadive. A fixpoint of the network
is any statethat is identical to its own succesr state If afixpoint ¢ is
reatable from an initial states by repeaedly computing succesor
states, then ¢ is referred to as the fixpoint of s.

Normal Logic Programs. A rule is an expresson of the form
H «— Bi,...,B,,~C4,...,—Cy,, wherethe H, B; andC7 are dl
atoms. The &om to the left of the arow is cdled head of the rule,
while the literals to the right comprise the body. The head atom H
andthe pasitive bodyatoms B; are said to occur paositively in therule,
while the negated bodyatoms C'; are said to occur negatively. A rule
with no regative body literals is cdled a definite clause and written
H < B, ..., By,. Arulewith no bodyliterals at al is cdled afact
andwritten H. A normal logic program, or just program heredter, is
aset of rules. If P isaprogram, then Bp (the Herbrand bae of P) is
the set of all atoms built from the predicate and function symbals in
P; and Gp (the groundexparsion of P) is the program comprising
all groundinstances of the dauses in P. In additon, 4,7 and A5
denate, respedively, the sets of groundatoms that occur positively
and regatively in Gp; and Dp (the dependency graph of P) is the
directed graphwith signed edges whaose nodes are the aomsin A U
Ap andwherethereis a positive (resp. negative) edge from a to b iff
thereis a dause in Gp with a in the head and b occurring pasiti vely
(resp. negatively) in the body A cycle in Dp is positive if it has no
negative alges and is negative otherwise. A program P is said to
be acydic iff Dp contains no (paositive or negative) cycles. A stable
model of P is aHerbrand interpretation I C Bp that coincides with
the least Herbrand model of the definite program P! obtained by
removing from Gp ead rule containing anegative literal not satisfied
in I, and by celeting all of the negative literals in the remaining rules.

Abductive Logic Programs.  An abdctive logic program [10] is
atriple (T, IC, A) where T' is aprogram (the theory), IC'is a set of
rules (integrity constraints) with the head atom L (dencting logical
falsity), and A is aset of groundatoms (abdtcibles). Given aset G of
groundatoms (the gods), thetask of ALPisto computeasst A C A
of abdwcibles auch that G and IC are satisfied in some stable model
of TUA. Intheterminology of [11], thegoa G is said to be satisfied
in ageneralised stable model of 7', and A is said to be an abdctive
explanation of G with respea to 7', IC and A.

To select between dternative explanations, additional preference
criteria are often utilised. The most widely-used criterion is that
of minimality [10], which intuitively means the nore of the goms
in the aduwctive explanation are reduncdant (i.e. there is no strict
sub-explanation). Formally, an explanation A of G with resped to
(T, IC, A) is minimal iff thereis no A’ C A such that A’ is an
explanation of G, For conveniencethe four inputs (7', G, IC, A) are
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collectively cdled an abdictive montext. An abductive context is said
to be definite, agyclic, etc, iff the theory T is definite, agyclic, etc.

Definition 2.1 (Abductive Context). An abductive cntext is a four-
tuple (T, G, IC, A) where T is set of rules, G and A are sets of
ground aoms, and I C is a set of integrity constraints.

Example 2.1. Consider the abdwctive context below describing an
old car. The theory states that the car wornt start if its battery is flat
or its fuel tank is empty; that the battery is flat on wet days; that the
car will overheat if its fan is broken; andthat the lights of the car
are on. The integrity constraint states that the lights cannd be on &
the same time the battery is flat. The god to that must be proved is
wont_start. The abdicibles which may be assumed are wet_day,
fan_broke, fuel_empty.

wont_start < battery_flat
wont_start < fuel_empty

T = battery_flat — wet_day
overheat «— fan_broke
lights_on
G = { wont_start }
¢ = { L « battery_flat,lights_on }
A = { fan_broke, fuel_empty, wet_day }
There are two abuctive elanations of this context: Ay =

{fuel_empty} and Ay = {fan_broke, fuel_empty}. The former
is minimal but the latter not (asit is a superset of the former). These
are the only corred explanations snce all other sets of abdcibles
fail to satisfy either the god or the integrity constraints.

3 Neural Network Abuction: Simple Case

This sedion presents a first methoddogy for redising abduction in
neural networks by defining atranslation which maps definite agyclic
abductive logic programs into networks whase fixpoints correspond
to the generalised stable models of the program. The initial restric-
tion to agyclic programsis merely to simplif y the presentation of the
key ideas and is immediatdy lif ted in the next sedion throughsome
simple syntactic preprocessng of the inputs.

The proposed methoddogy builds upon existing neurosymbalic
techniques for transforming logic programs into neural networks and
is easily adapted to suit any choice of encoding. In this paper, for
ease of exposition, we introduce atranslation based on multi-layer
threshald networks, which combines the gproaches in [20, 8] and
is easily generalised to the reaurrent sigmoida networks using the
techniquesin [6] to allow badkpropagation learning.

As formalised in Definition 3.1 below, the neural network 6(P)
correspondng to a normal program P is obtained from the ground
expansion Gp of P by adding the following nodes and edges for
eadrule r of theform H < By,...,B,,—~C1,...,=Cp in Gp:

e anocke with threshold n — 1/2 to represent therule r

e anodewith threshald 1/2 for ead atom H,B;,C; in therule
(which has not already been added throughan ealier rule)

e an edge with weight 1 from r to the head atom H
e an edge with weight 1 from ead unregated bodyatom B; tor
e an edge with weight —1 from eat negated bodyatom C; to r



Definition 3.1 (). If P is a program, then 6(P) is the network
(N, E) such that

o T,H,Bl,...,Bn,C1,...,Cm
N = U { |TIH<—Bl,...,Bn,—\Cl,...,—!Cm }
reGp
E = U (T,H),(B177')7...,(Bn,’f’)7(0177'),...,(0m,’l“)
- |7”:H<—B1,...,Bn,‘|cl,...,‘|cm
regGp
andforall r = H «+— By,...,B,,~C4,...,~Cn € Gp
t(H)=1/2 w(r,H) =1
t(CJ):1/2 w(CJ T):*l

Example 3.1. If P is the program T in Example 2.1 abore then
0(P) is the network below. For corvenience nodes representing
atoms are lightly shaded and ae anndated with the name of the
atom, while nodes correspondng to the rules in the program are
darkly shaded.

wont_start

over_heat lights_on
C battery_flat f
o

fan_broke fuel_empty wet_day

The &owe trandation produces a neural network encoding of a
given program. In common with other approaches, it can be shown
that if the program is agyclic, then the fixpoint of the relaxed network
exists and corresponds to the unique stable model of the program.
But, in order to perform abduction, this procedure must be suppe-
mented with some way of representing gaals, integrity constraints
and some means of adivating and evaluating different combinations
of abdwibles. As formalised in Definition 3.2 below, the required
abductive macdhinery can be obtained by transforming an abductive
context (7, G, IC, A) into a logic program with one set of clauses
(T" U G' U IC" U A’) representing the context and anather set of
clauses (C'U K U L) representing some alditional logic to ensure the
fixpaints of the network correspondto the generalised stable models
of the theory.

Definition 3.2 (¢). Let (T,G,IC, A) be an abdwctive context. Let
N be the number of abdicibles in A. Let P be the length of the
longest direded path in Dy with no repeated nodes. Let M be the
smallest integer greater than ar equd to 3 (P + 2N + 3). Let goal,
ic, soln, next, done, sync, nogood, hold, a;, b;, ¢;, d; and k; be
propasitions not appearing in (T,G,IC,A) foral 0 < i < N
andfor all 0 < 5 < M. Then ¢(T,G,IC, A) is the network
(T UG UIC'UA"UC UK U L) where

T = T

G'" = {goal — Bi,...,B,|{B1,...B,} =G}
I¢" = {ice—1ILi,...,Lyn| L~ Ly,...,Ly, € IC}
A’ = {4, —a;|A € A}
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Qi < A4, C;
a; «— d; by «— next
b; — a; done «— by, —an

done « done

}

ci —bi—1,7ai-1,a;

|

ko — —‘hold, —\kM
sync «— ko, k1

}

d;i — bi—l, Ai—1, A5

M
K:U{ ki — ki—1 }U{
i=1

nogood « ic

nogood «— —goal

soln — sync, —nogood
soln «— soln, —nogood
hold « soln

hold <« done

next «— sync, nogood

The four theories 7”,G’,IC" and A’ are arepresentation of the
abductive context in which goal is true when the goal is satisfied, ic
is true when an integrity constraint is violated, and ead abdicible
A; istrue when the correspondng atom a; is true. More formally, T’
is the theory T', G’ comprises a single clause with goal in the head
and the a@oms of G in the body, 7C’ is obtained by inserting ic into
the head of ead constraint in IC, and A’ contains one dause of the
form A; < a; foreah abdwcible A; € A = {A4,..., An}.

The last threetheories C, K and L denote some control logic for
adivating different combinations of abdwcibles until an explanation
is found @ al posdbilitie s are exhausted. When a solution is found
the network will enter astable statein which soln is adivated andthe
a; indicate which abdwcibles arein the explanation. If next is briefly
adivated (for two conseautive time paints), the network will leave
this stable stateand look for the next solution. Once dl possbilities
have been tried, the network will enter a stable statein which done
is adivated.

The theory C' represents a binary courter whose outputs
anan—1 ...a1 ead drive one adwible. The network encoding of
C' is shown below. The murter advances ead time the node next
is briefly adivated and it adivates the nodce done when the courter
overflows. Each hit of the murter usesfour nodes, a;, b;, ¢; andd;, to
implement a divide by two register that toggles the stateof a; when-
ever the stateof a,;—; changes from onto off —with the nodes ¢; and
d; signalling a; to turn off and on respedively.

done

by

[ ay an-1

The theory K represents a dock whase output sync is used to
advancethe oourter if the aurrent stateis not asolution. The network
encoding of K is shown below. The nodes k; form aloop where the
stateof ead ore follows that of its predecessor; except for the first,
which oppaes the last. The period of the dock is propational to
the number of nodes M + 1, which is chosen to give the rest of the
network sufficient time to stabilise between successve signals. The
clock is disabled when hold is adive. The output sync is adive when
ko ison bu k1 is not — which is true for 2 conseautive time points
out of every 4(M+1).



kO k1 ki
hold @
G -
kM kM-1 I(i+1

The theory L represents some simple control logic that uses sync
to advance the courter or to suspend the dock acarding to whether
the aurrent abdwcibles are avalid explanation. The state of nogood
indicates when the goal is not satisfied or one of the integrity con-
straints isviolated. When sync becomes adive, either next or soln
will be adivated depending onthe stateof nogood. Thefirst case will
advance the network into the next statewhile the second will force
the network to stabilise.

Example 3.2. If (T,G,IC,A) is the ontext in Example 2.1
above then ¢(7T,G,IC,A) is the network shown in Figure
1(a). The theories T',G’,1C’, A’ are shown below. There are
N = 3 abduibles in A and the longest smple path in Gr is
(wet_day, fuel_empty, fan_broke) with length P = 3. The least
upper bound 6 1 (P + 2N + 3) is M = 6.

T = T

G'" = {goal — wont_start}

IC" = {ic < battery_flat,lights_on}
{ fan_broke «— a1 }

A = fuel_empty «— az

wet_day <— as

For any agyclic abductive mntext (T, G, IC, A) it can be shown
that the fixpaint of the relaxed network ¢ (T, G, IC, A) exists and
is computed in a finite time. If soln is adive in the fixpaint, then
that staterepresents a generalised stable model of T that satisfies G
and IC, where the hypahesis A consists of the adive ebducibles.
All other solutions can be computed by triefly adivating the neuron
next to force the network to seach for the next stable state which
also existsand is computed in finite time. If done is adive, then no
further solutions exist.

In Example 3.2 abowe, it can be verified® that the initially relaxed
network rejects the initial hypahess H = {fan_broke} (which
does nat satisfy the goal) and converges instead to the solution A; =
{flat_battery}. If asignal is then applied to next, the network will
converge to the next solution A, = { flat_battery, fan_broke}. If
ancther signal is applied to next, the network will reject all other
hypaheses and converge to the final done state indicating that no
other solutions exist for this context.

4 Neural Network Abduction: General Case

This sedion shaws how the methoddogy introduced above ca be
extended to abductive logic programs with cycles using asimple pre-
procesdng transformation. But, before doing so, it is instructive to
illustrate why programs with cycles are patentially problematic.

3 The reader can use the software avail able from [5] with the data & [16] to
runthe network in Fig 1(a) by hdding davn ctrl-F1 to advancethe network
one time paint and doulbe dicking reuron 98to apply a signal to next.
Note that the datafile contains ssmeredundant neuronswhich merely serve
to ensure that the conredions between neurons follow the same easy-to-
read layout as shown in the figures abowve.
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First consider positive oycles by suppasing that the rule
fan_broke <« over_heat is added to T' in Example 2.1 and the
constraint L« over_heat is added to IC'. The problem is that
the gycle between fan_broke and over_heat introduces a memory
into the network that causes a permanent violation of integrity. Once
over_heat is adivated by fan_broke, they both remain high, and so
doesic. Hence, the corred solution A; would be rejected due to the
memory of the violation caused by the initial hypathesis H.

One solution to this problem is to relax the sub-networks 77, G’
IC" and A’ after eadh set of abducibles is tried. This can easily be
adieved by adding a spedal abdicible true to the body d ead rule
that is always conreded to the least significant bit a, of the murter
to ensure that its stateis continuouwsly aternating with resped to the
other abducibles. In this way, any self-sustaining loops are system-
atically deadivated before the next set of abducibles is presented to
the network.

Next consider negative ¢ycles by suppaing that the rules
door_open «— —door_closed and door _closed «— —door_open are
added to T" in Example 2.1 and the &om door_open is added to G.
The problem is that the gycle between door_open and door _closed
introduces an instability into the network that prevents any fixpoint
being reated from the initially relaxed state Instead of converging
to a stable statein which door_open is adive and door _closed is
inadive, these aoms continually force eab other to change state

Following [3], one answer to this problem involves re-writing
negative literals as positive abduwcibles and implementing negation
throughabduction. This is achieved by introducing a new abduwcible
predicate p; to denate the negation —p; of ead predicate p; in the
context and adding integrity constraintsto ensure that for any ground
terms t1, ..., t, exadly one of p(t1,...,t,) and p*(t1,...,tn) is
true. As shown in [11], there is a 1-1 correspondence between the
generalised stable models of the original and transformed contexts.

These solutions are implemented together in Definition 4.1 below,
which transforms an arbitrary context (7, G, IC, A) into a definite
context (T, G", 1C", A"") before using ¢ to generate the network.
Sincethe latter context is definite, there ae no pdential instabilitie s
in the network caused by regative ¢ycles; and asauming that ¢ maps
true to a1, there will be noresidual memory in the network caused
by pasitive g/cles. Thus, it can be shown that the stable states of
o(T",G", IC", A") reathable from the relaxed state by applying
signals to next are the generalised stable models of (7, G, IC, A).

Definition 4.1 (v). Let (T, G, IC, A) be an abdetive mntext not
containing the propasition ¢true. Let R = {p1, ..., pr } bethe set of
predicates p; appearing in (T, G, IC, A) andlet S = {p7,...,p}}
be a set of predicates p; not appearing in (7,G,IC,A). For
each atom C of the form p;(t1,...,t,), let C* denote the atom
pi(t1,...,tn). Reall that AL ;. denctes the set of atoms that
appear negated in the ground exparsion of the program 7" U IC.
Then (T, G, IC, A) is the network ¢(T", G”, IC", A”) such that

o H « true,B1,...,Bn,CY,...,CH,
o |H < Bi1,...,Bn,7C1,...,~Cpn €T
G'" = GUl{true}
ICH _ J—<_Bl7"'7B’nvc{7“'7C;;1
o | L~ Bi1,...,Bn,~C4,...,mCy € IC
U {L—0CC"|CeA 1}
U {L<——|C,—|C’*\CEA;UIC}
A" = AU{true} U{C*|C € A7 0}



nogood

Figure 1(a) Example 3.2

Example 4.1. Consider the context obtained by exending Example
2.1 as described above with one dause fan_broke «— over_heat
stating that the fan will break if the car overheats; with two clauses
door_open «— —door_closed and door _closed «— —door_open
gtating that the car doar is open if it is not closed andvive veasa;
with one god door_open; andwith one constraint L «— over_heat.
The theories 7", G, IC"" and A” obtained by apgying Definition
4.1 to this exended context are shawn below.

wont_start «— true, battery_flat
wont_start «— true, fuel_empty
battery_flat «— true, wet_day
overheat < true, fan_broke
fan_broke «— true, over_heat
door_open «+ true, door _closed™
door_closed «+ true, door_open™
lights_on «— true

G" { wont_start, door_open, true }
1« battery_flat,lights_on
1« over_heat
1L« door_open, door_open™
1« door_closed, door_closed*™
L« —door_open, =door_open™
L« —=door_closed, —~door _closed*

IC”

fan_broke, fuel_empty, wet_day,

A//
door_closed™ , door_open™ , true

{ j

For lack of space the network (T, G,IC,A) is not shown.
Howeve, the reader can easily verify that the relaxed network con-
verges to a fixpaint in which exactly threeabdtribles are activated:
fuel_empty, door_closed™ and true. This implies that G and IC
are satisfied in a stable model of the program obtained by addng the
hypothesis A = {fuel_empty} to the exended theory. Moreover,
if a signa is apgied to next, the network will corverge to the dore
state, indicating that no ather solutions exist for this context.
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Figure 1(b) Example 4.2

The gproach described above comprises a sound and complete
method for solving ALPs in ANNSs. It is interesting to distinguish
two spedal cases of this problem which are of pradical importance
first, given a aontext in which /C and A are both empty, ALP reduces
to the problem of dedding whether G follows from T'; second, given
a oontext in which G, IC and A are dl empty, ALP reduces to the
problem of computing the stable models of T'. It is instructive to
consider a dassc example of this latter problem.

Example 4.2. Consider the following abdictive context:

(373} 0m)

As remarked previously, solving this context amourtsto computing
the stable models of the following program:

{103

As observed in [8], this program is not easily handed by many
other approachesasit hastwo stable models: {¢} and{p}. Applying
1 to this context results in the transformed context below and the
sub-network shown in Figure 1(b) above. 4

pb—"q
q<—p

p—q
q < 7p

— P, p* p*
{popime ey 200
q p*, P, P true

< Tq, g*

The reader can verify that the relaxed network corverges into a
stable state where ¢, px and true alone are active — correspondng
to the stable model {q}. Applying asignal to next forcesthe network
to corverge to the nex stable state where p, g+ and true alone are
active — correspondng to the stable model {p}. Applying andher
signal to next results in the network converging to the final done
state — indicating that these are the only two models.

4 Note that the network representation of C, K and L is not shown because
it isidenticd to that givenin Figure 1(a).



5 Conclusion and Future Work

This paper presented a method for abductive reasoning in neural net-
works. In particular, it proposed an agorithm for translating abduc-
tive logic programs into neural networks = that abductive inference
can benefit from the massve neural paralelism. The methoddogy
extends the original program with some alditional logic to ensure
that the fixpaints of the network correspondto the (generalised sta-
ble) models of the (abductive logic) program. It also uses a well-
known relationship between negation and abduction in order to cor-
redly hande programs with positive and negative gycles. In contrast
to ealier work, no restrictions are placed on the programs and, if
required, the network can be made to enumerate all explanations.
Moreover, because our methoddogy is a generalisation of existing
neurosymbalic techniques, we believe it can be more eaily com-
bined with standard learning approadhes. In this way, we seeour ap-
proach as afirst step towards the principled subsymbalic integration
of abduction and induction —which could eventualy have implica-
tionsin cogritive modellin g and scientifi c discovery.

The goproach presented in this paper can be improved in several
ways. For example, it is posdble to implement the courter using only
half the neurons and helf the propagation delay per bit. Also, instead
of making true an abduwcible, it is sufficient to define true < —next
in order to relax the program sub-network before eat new set of ab-
duciblesis presented. In the case of Example 4.1, these optimisations
alone reduce the number of time points needed to search the aitire
hypahesis spacefrom 2560to 896. In addition it is possgble to dis-
pense with the dock and issue asynchronisation puse by detecting
when the program sub-network reades its fixpaint. This will further
improve dficiency as the dock method always assumes the worst
case propagétion delay.

Even with these modificaions, we ae still far from redising our
goals. One problem with our current approad is that, athough par-
dlelism is exploited when chedking ead individual hypahesis, the
number of hypaheses chedked is exporential in the number of ab-
ducibles. Two complementary strategies shoud be explored in order
to address this problem. The first is to use some form of pruning
during the seach asin symbadlic ALP systems such as[17]; and the
seandis to use some form of simplifi cation when preprocessng the
program asin Answer Set Programming (ASP) systems auch as[19].
An important extension of the work involves exploiting the structure
of the network to impaose apreferenceonthe order in which solutions
are found For example, the courter can be modified to output num-
bers in the order 0001 0010 010Q 100Q 0011 ... with the fewest
number of bits high so that explanations will be discovered in order
of minimality. In addition, the ebducibles topdogically far from the
gaoa can be conreded to the least significant bits of the wurter, so
that explanations will also be discovered in order of basicality [10].

A key diredion for future work is that of integrating abductive
reasoning with inductive learning in order to redise the benefits sug-
gested by recent symboalic machinelearning systems[15]. By provid-
ing a richer formalism for representing and reasoning about partial
knowledge and integrity constraints, abduction could help to exer-
cise afiner degreeof control over which assumptions can and cannat
be made in learning. In this context, it may be more gpropriate to
use avariation of the methoddogy presented in this paper, whereby
the network’s topology is projected orto a single layer reaurrent net-
work (computing the immediate consequence operator of the under-
lying program) and the threshold units are replaced by sigmoid neu-
rons. This shoud enable an experimental validation of the goproach
aswell as amore detailed comparison with symbalic systems.

Althoughmany problems remain to be solved, we have presented
some new techniques that may eventualy lead to afruitful synthesis
with other approaches. Someinteresting feaures of our methoddogy
include combining the neural hardware description with the object
logic program and wsing abduction to handle negation and cyclesin
the object program. It remains to be seen how these can be usefully
integrated into a neural network learning framework.
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