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Abstract—This paper presents a new approach torule paper, we tackle both of these issues by proposing a new
extraction from Support Vector Machines. SVMs have been any-time rule extraction algorithm, which uses the SVM as
applied successfully in many areas with excellent generalization an oracle (black-box) and synthetic data for querying and

results; rule extraction can offer explanation capabilityo SVMs. | tracti th King fewer assumptions about the
We propose to approximate the SVM classification boundary 'U/€ €xtraction, thus maxing tew umptions u

through querying followed by clustering, searching and then to ~ training process and the SVM training data. The algorithm
extract rules by solving an optimization problem. Theoretical is not restricted to a specific SVM classifier such as the
proof and experimental results then indicate that the rules can Jinear classifier considered in [6], neither does it depend on
be used to validate the SVM results, since maximum fidelity {he ayailability of specific training sets for rule extraction.
with high accuracy can be achieved. . - . .
Instead, it seeks to capture the information encoded in the
geometry of the SVM by approximating the region separated
by the SVM classification boundary through querying [12]
In recent years, Support Vector Machines (SVMs) havand searching, and then extracting rules by solving an
been utilised in many applications offering excellent genepptimization problem, which we describe in detail in the
alization results. In many cases, however, developers pretsgquel. We also prove the soundness and completeness of our
not to use SVMs because of their inability to explain howapproach, and run experiments and compare our approach
the results have been obtained. For example, if used for stoghth other extraction methods. We examined rule accuracy,
predictions, an SVM can provide users with a mechanistidelity and comprehensibility in two applications: the iris
for forecasting, but the knowledge associated with the prétower dataset and the breast cancer-wisconsin dataset. The
dictions may be incomprehensible; users may have to trugisults indicate the correctness of our approach through
the prediction results while unable to validate the rules ghaximum fidelity.
the data. The paper is organised as follows: Section 2 gives a
The area ofrule extractionaddresses the above problembprief introduction to SVMs. Section 3 describes our new
By extracting rules from SVMs, we can explain the reasoningxtraction algorithm. Section 4 presents the proofs. Section
process and validate the learning system. Rule extracti@contains the experimental results, and Section 6 concludes
helps, therefore, to integrate the symbolic and connectionishd discusses directions for future work.
approaches to Al, offering ways of combining the statistical
nature of learning with the logical nature of reasoning. Il. SUPPORTVECTORMACHINES
Since the early 1990s, various algorithms to extract rules We consider the problem of classifying points in the
from trained neural networks have been proposed, notahiydimensional input spac&™. Consider the training data
[4], [2], [17], [11], [14], [12], [5]. Some of these search for set {(x;,v;)}, ¢ = 1,...,n, y; € {1,—1} andx; € R™. In
rules by decomposing the networks and extracting rules féie case of linear SVMs the decision function is a separating
each unit, and some extract rules directly from the inputiyperplanef(z) = sign(w-x+b). The optimal classification
output values of the networks, thus treating them as blackyperplane that maximizes the distance between class-
boxes. Recently, SVMs started to be considered for rule and A = —1 can be found byminimizing 1/2|w||?
extraction because of their excellent generalization capabilityubject toy; (w - x; + b) > 1.
Angulo et al [19] used support vectors and prototypes to draw The Lagrangian/ below has been introduced to solve this
regions indicating an equation rule or interval rule. Barakggroblem:J = fw”w—X7_, o (y; (w-x;+b)—1), wherea; >
and Diererich [15] used support vectors to construct syntheticis known as the lagrange multiplier. With respectt@and
data, feed the data into a decision tree learner, and extra¢cminimizing J leads tow = X5¥, a,y;x; andX?™  a,y; = 0
rules. Fung et al [6] proposed an algorithm that approximateghere sv is the number of support vectors [21]. By making
linear SVM hyperplanes by a set of rules. some substitutions, we arrive at the hyperplane decision
In our opinion, a satisfactory extraction method, strikindunction f(z) = sign(X{%,ay:(x; - x;) +0), j = 1,...,n,
a balance between the need for correctness and efficienaere () denotes inner product.
is still lacking. Most of the extraction methods are designed For nonlinear classification, the SVM has to map the data
for specific architectures and training sets, or are affectqubints into a high dimension feature spakein which the
by the tradeoff between efficiency and rule accuracy. In thidata can be linearly separated. It R™ — H. By using

I. INTRODUCTION



kernel functionsK (x, 2') = (®(x) - ®(2")), all the necessary  Querying. The generality of GSVMORC is because it
operations in the input space may be carried through, and thenerates a subset of synthetic training inputs to query the
decision function can bé(z) = sign(X2; 03y, K (x3,x;)+  SVMs, which then returns back the class labels of the inputs.
b). For more details on SVMs, see [21]. We use a random data generator to produce a large amount
of inputs. Only those inputs locate in the range of the
input space, and their values of a density estimathix)

Most rule extraction algorithms suffer from a lack ofare larger than a user-defined constraiit are retained.
generality, a balance between correctness and fidelity, @inlike TREPEN [13] which uses theernel density estimates
both. In this section, we present a novel rule extraction abf individual features GSVMORC usesnultivariate kernel
gorithm calledGeometric and Oracle-Based Support Vectotlensity estimatesvhich takes into account theelations
Machines Rule ExtractiofGSVMORC), which is designed within features M(x) used by GSVMORC models the
to alleviate these limitations. GSVMORC utilizes the pointgrobability density function for inputs as:

IIl. GEOMETRIC SVM RULE EXTRACTION

on the SVM classification boundary and synthetic training N
instances to construct a set of optimized hypercube rules. The /() — 1 1 [ 1 e~ B
area covered by those rules is maximized and approximates N Pt H;”:l hj = (v2m)m™

the area of interest The definitions of thehypercube rule
and thearea of interesfare given as follows.
Definition 3.1: Hypercube Rule:lt is said that an m-

where X; are the given training samples, < ¢ < N.
h = [h1,he,...hy] is a vector of bandwidth such that=
1

dimensional hypercub& characterizes a rule if every point [(m+2iN] o whereo |s_standard deviation O.f the tra|r_1|ng
samples. Figure 1 contains the input generation algorithm.

in the scope offf falls into the same class classified by the
SVM network. More precisely:

DRAWINPUTS

= ; < s < U <5< . .
H {X” /\ZJ Sy Suj o Ap 1<y s m} Input: a constraintc1, the lower and upper bounds of the input

. ‘ ‘ ‘ spaceL andU, a random data generatg(x), a density estimator
wherex; = [x;1, ..., Tim], [; @ndu; are the upper and lower M(x) and the number of iteration

bounds onH. Ay indicates a class label, ana is the iimesT

dimension of the input space. Output: the input setx = {x; : ¢ > 1}
Definition 3.2: Area of Interest. This is the whole region (1) Initialize the input setx .
covered by a classl, in the input space. 2 GenerateT' random data{x; : 1 < i < T'} based ory(x)

(3) for eachiteration: < T do

I(Ag) = {Xi | the class of x; = Ak, lj <z <uj, }, Eg; If LC%\I?JIaSteUJ\/}F(]ih)

wherel < j < m,i > 1, x; is an m-dimensional input (6) if M(xi) > cl then
vector. v; andl; are the upper and lower bounds of;. x:=xUxi
x;; refers to thej*” dimension ofx;. There is no vector

x; € I(Ay) such that the classification af equals the other Fig- 1. The DRAWINPUTS function: call a random data generglor) to
create uniformly distributed data; use a density estimafdix) to reserve
class rather tham,..

. . o those data whose probabilities are larger than an arbitrary nuwiber
The aim of GSVMORC is to use the classification boundaryteanwhile, the outputs should lie betweénand U

and synthetic training instances to extract the hypercube

rules without considering the inner structure and the support After obtaining those synthetic inpufs;,i > 1}, we treat
vectors of the SVM network. It treats the SVMs @sicles  them as the inputs of the SVMs; the SVMs are considered
and makes fewer assumptions about the architecture aasloracles®. Suppose we have an SVM computing function
training process, hopefully being applicable to other nonf(x). For each inputx;, we feedx; into the SVM and
symbolic learning methods. All we assume is that an SVNjet the corresponding output = f(x;). The instances

is given which we can query and find the classificatio(x;,y;),7 > 1} are created. Note that the distan¢drom

it gives for input vectorsx;. After querying, a clustering x; to the separating hyperplane is also obtained when SVM
process is imposed on those inputs with the samey;, answer the queries from,;.

in order to group them into a set of clusters. Then, by The last step in querying is called SELECTINSTANCE.
means of a binary search algorithm, we look for the palihts GSVMORC defines a factor so that it is much more flexible
that lie on the SVM classification boundaries. Subsequently its ability to choose differing sizes of instances. In order to
an initial optimal rule set can be extracted for the pointselect the instances with much highefi(x), thosex; (i > 1)

in P and synthetic training instance set by solving an

optimization problem whereby we attempt to find the largest INotice that the SVM is considered adkack box All we need to know
key input-output patterns, rather than the inner structure. This complies

. . . . ar
consistent hyperCUbeS in the |nput- Space. _F|_n?-|_|y' Seve'ﬁfh Thrun’s desideratum for a general rule extraction methaabafaining

post-processing measures are applied to this initial rule setuiremerig]. The querying process makes our approach independent of
in order to derive (a relatively small number Of) generanzeény special training data, neither does it make any assumption about the

| f | hat foll lai h of th b network’s structure. It can be applied to any SVM classifier, regardless of
rules from. In what tollows, we explain each o € aboVeye algorithms used to construct the classifier, including Sequential Minimal

steps of our extraction algorithm. Optimization (SMO) [10] and DAGs-SVM [9].




with the same class label are sorted first. Suppose that thétence, the intra-cluster deviation is defined as follows:
are C'N classes involved in the classification problem and

that the number ok; for each class is:(G). In this case, intra _ Eq:(sm % p(rn)) 1)

we choose the first/C'N instances, or the whole group of

instances if2(G) < n/CN, to build up the synthetic training

instance sef. Wherep(?“h). =57 o o
One key issue in querying is how to know the classes And the inter-Cluster mean and deviation are specified in

h=1

"h

which are needed to be classified in a general way. GS¥duation 2.
MORC still generates a large amount random dAta=

q
{21, ...,2z1,}2, which are uniformly distributed in the input minter — Z(mrh «p(ry)) (2a)
space. These data are then input into the SVM network h=1
to acquire class labels for them. For largewe believe that .
the data inZ are able to spread throughout the input space. ginter _ Z[(mrh — minter)2  p(rp)] (2b)

Therefore, a set of classed & {Ax|l <k < CN,CN is

the total number of classggd can be obtained after filtering _ . o .
; Definition 3.3: The stopping criterionD is the rate be-
the duplicates. ; - 4 sint
3 . . . een SZTL ra an S’L’ﬂ, ET.
Clustering. Since there must be a classification boundar)yv gintra . .
between different classes, we can find the points lying on t erltfhgr”t;(l'o?e Ethrke ?sGaSL}QerO di%nvggl S;org;ggmg the daia
classification boundary between pairs of data for differe L . P :
S ; SearchingThe searching step searches for and lo-
classes. However, for a large number of training data, if we : - . .
: . ; ates the points on the decision boundaries. Given clus-
search each pair of data for different classes, this may lead o . :
) - . ters Py, Py, ...P, which fall into class A, and clusters
high complexity. Hence, we use clustering to create a balan . .
. o 1, Na,...N, which fall into classA_, we use Zhang and
between the complexity and prediction accuracy. A cluster. . -
. " iu's measure [24] to automatically look for the points on
C can be defined as a subset of training d&ta {(x;,v:)}, : -
. an SVM's decision boundaty
with the same clasg;. We consider all pair§p,n) s.t.p € P;(1 < j < a) and
. . . 9 oL J = >
.Wg use h|er.arc'h'|cal clus_termg ofi. It starts by con- -, ¢ Ni(1 < k < b). For eachp, we find a corresponding
sidering each individual point as a cluster, and it merg

. . ointn whose distance tp is minimum. And for eachn, we
the clusters by measuring the distance between two clust 1S a corresponding poiptwhose distance ta is minimum.
of data which have the same class labels. Because t

. € & described iMueryingsection, the distance from any point
mergence of the clusters is relevant only to those training 1o svm hyperplane is one of the outputs by querying

instances that have the equivalent class, just the inputs the SVM network. Letd, represent the distance fromto
are involved in the distance calculation. Our approach us@s, hyperplane and, represent the same for. In order

?hne of tr;le f?'l;).\'\fng Iinlga?e func(tjion§ingleslir_1kaige utses to find the point lying on the hyperplane, a binary search
e smallest distance between data and xj In the two procedure is performed ofp,n). In other words, if|d; —

clustersr ands. If the size ofr ands aren, andn, then ds| > ¢, the mid-pointq betweenp andn is chosen. The
_ . . r S . . . L -
d(r, 5) = mm(dwt(xi’xﬂ'))’z € (1, "."nr)’j € (1,...,ms); SVM network classifieg and computes the distance between
Complete linkageuses the largest distance between dgta ¢ and the hyperplane. If the class@équals that of, thenp
. - i . ,
and Xé’, T trhe StWO clustersr and s such thatd(r,s) = g repjaced byy; otherwise is replaced by;. The process
maz (dist(x}, x3)). carries on untilld, — ds| < ¢ is achieved, where denotes
In order to reduce the randomness of the number of, arbitrary small number.
clusters, astopping criterionis defined for the clustering  gyiracting. The main idea of our rule extraction approach
process. Givery clusters{r,, h = 1,2,...q}, the classes g (4 find a set of optimal rules that 1) covers the maximum
of the clusters are identical, and the number of data in eaghe, of thearea of interestand 2) covers the largest cardi-
clusterr;, is n"™. It is obvious that the mean and variancena"ty of synthetic instances at the same time.

of each cluster relate to the data, 1 < i < n™ inside this Suppose that there are a set of poifitdying on the SVM

h=1

cluster. Hence, the mean™ of each cluster, is: decision boundary, wher# is the result ofsearching a set
nh of synthetic training instanceS generated fromguerying
m'h — 1 in for classesA = {A4,,1 < p < CN}, and the SVM function
nth =1 f(X)
. . To realize the first goal of the rule extraction algorithm,
and the variance™ is we try to solve the following optimization problem:
1 2 o .
Tho )2 mazimize (x; — Xo,) (3a)
= Yk ) 1

i=1 =1

SNotice that for simplicity we have been consideriffg= 2 classes, but
2h, is an arbitrary large integer. our extraction algorithm is applicable to any number of classes.



subject to [<x<u (3b) with many advantages such as improved convergence and
more uniformity. Therefore, the hyperculd¢ is considered

/ (f(x) —Ap)dx =0 (3c) to be composed of the points that are uniformly distributed
! as:
. 1 & u
yvhgrexoi denot.es the_z“’ ellemen.tﬁof vectorxy € X (xo *Z|f(ai) — A %/ £ (x) — Ap| dx
indicates a starting point); is the:*" element ofx, [ andu ni— !

are the m-dimensional vectors giving lower and upper bounc\iNshere s a low-discrepancy sequence inside the hvoercube
to this optimization problem. & pancy seq yp

The obiecti . : . - él,u], wherel < i < n, andn here means the number of

jective function (Equation 3a) aims to maximize the’ . N L
volume of the hypercube that a rule covers, and it has tV\%omts selected for approximation in té. The estimation

. ! ) - . error then becomes

constraints. One is a bound constraint to limit the optistal '
in a given area, while the other is a nonlinear constraint that u 1 <&
is used to exclude the points that have different class labels. €= /z [F(x) = Ap|dzx — n Z |f(a:) — Ay

The values ofl and u in Equation 3b can be calculated =1
based on the lower and upper bounds of the input space. Fofrrom the above, it can be shown that the larges, the
example (see Figure 2(a)), suppose the scope of the inmloser the approximation approaches the integral. It is clear
space is[L1, L] < x < [U;,Us)], andxg = [xo,,X0,] iS @ that the complexity increases with the riserofTherefore, in
point lying on the SVM boundary. Note that when we changerder to strike a balance between error estimation, fidelity,
AXg, ONxg, OF —Axg, 0Nxg, (Axo,, Axg, > 0) the SYM  accuracy prediction and complexity, a properhas to be
classification onx, is classA,. Hence, it is reasonable to chosen. In the cross-validation experiments, we foune
assume that an optimal point can be found and that a rule fod00 as a suitable number for our benchmark datasets.
class4, in a rectangle between poinks and [U;, Ly] can With this, the standardattern search algorithns applied
be constructed. Herd{/;, Lo] is defined as arorientation to obtain a solutiorx* to the optimization problem. Charles
for xo. [ andu are then narrowed down fo= [xo,, L2] and and Dennis analyze the generalization of the pattern search
u = [Ur,X0,]. by evaluating the objective function [1]. After obtaining the

If more than onerientationis found for class4,,, then the optimal pointx*, together with the starting point,, the
principal orientations have to be selected. ket [v;,v2] antecedents of a rule can be constructed by picking the
stand for an orientation fakg. In the above exampley = minimum and maximum values of* andx,, as shown in
[Uy, Lo]. Selecting the orientations fot, involves deciding Figure 3. Figure 2(a) gives an example of a hypercube rule
how to compute the significance of each orientation. Equavith the starting point.
tion 4 shows conditional probability estimation that GSV- Finally, to find the set of rules covering all the synthetic
MORC uses to determine the significance of each orientatiotraining instances, Equation 3 is used again, and iRgitis
The estimation represents the probability distributionxof replaced withs € S (see Figure 2(b)). The process is the
lying in the area between andxg, given class4,. In Equa- same, which ensures the extracted rules cover most of the
tion 4, P(min(v,x¢) < x < max(v,xo)[\class = A,) synthetic training instances as well as the maximum area of
indicates the probability ok falling into the area between the area of interest
v as well as belonging to clas$,, and P(class = A,) is Figure 3 summaries the rule extraction algorithm and its
the possibility that the classification ®fequals4,. Assume associated rule generation algorithm, as discussed above.
that the distribution of synthetic training examples is similar The rule set obtained fromaxtractingmay contain over-
to that of the problem domain. Hence, the probabilitietapping rules, for which a set of post-processing measures in
P(min(v,x0) < x < max(v,xo)[\class = A,) and the next section are employed to solve this problem.
P(class = Ap) could be worked out from the synthetic data
set. The value oP(min(v,xy) < x < max(v, Xg)|class =
A,) is then calculated by dividing®(min(v,xg) < x <
max(v,xg) (| class = A,) by P(cass = A,). The R —
end result is that those orientations that have the maximum
probabilities are selected as the principal orientationsc.on

P(min(v,xq) < x < max(v,Xq)|class = A,) \J‘

_ P(min(v,xo) < x < max(v,xo)[class = A,) @ xi X1
B P(class = Ap) @) (b)

As presented in Equation 3c, the nonlinear constraint Eg-bf-_ 'edﬂif eﬁlfSaC“”%,the ,fuh'f ffotm ﬂ:_e Sttf;ftingl D?ihtouxotzhl Vzhi?h,
. . . . . . IS obtalned fro earcning rignt: extracting tne rule to cover tne training
a multi-dimension mtegrgl on a linear/nonlinear function y,i, and approximate the area thigs covers, the starting point 1, o).
GSVMORC uses a quasi-Monte Carlo method [22] to ap-

proximate the integration because it is a superior method

X2

X2 [X0"1, x2] <x < [x1, x072]
> A

B




Extracting

Input: A set of pointsX on the SVM boundary obtained from
the searchingstep; a set of training daté obtained from
queryingstep and the class labgl,.
Output: A set of rulesk = {r},

wherer = Al; <z; <wu; — A4p, 1 <i<m
(1) foreachte X

(2) Construct the lower and upper boundand
by finding the orientations ak

3) Apply pattern search algorithm [1]witky = ¢ to
obtainx*

(4) Call rule generation algorithm with parametet’

andx, to construct a rule- and makeR := Ur
(5) for each s € S and its corresponding e X

(6) Construct the lower and upper boundand v
by finding the orientations of

) Apply pattern search algorithm [1] witkg = s to
obtainx*’.

(8) Call rule generation algorithm with parametecé’ ands

to construct a rule’ and makeR := RU 7’

Rule Generation Algorithm

Input: m-dimensional pointx™ andxg

Output: a ruler

(1) Let lower bound! = [min(x7, X0, ), ..., min(Xn,, Xo,, )]
(2) Let upper boundu = [max(x7,Xo, ), ..., maz (X, , Xo,, )]
3) Generater = Al <z <u; — Ap, 1 <i<m

Fig. 3. Rule extraction algorithm

Post-Processing.The purposes of these post-processin
measures are to detect generalized rules, to prune rules wi
high error estimation and to construct non-overlapping rules

with high coverage rate.

The notions ofnon-overlappingand coverage rateare
defined as follows.

Definition 3.4: Non-overlapping RuleGiven two rules,
rm=Aa; <x; <b — Ayandry = A¢; <z <d; — Ap,
r1 and ro are said to be non-overlapping iff, < ¢; or
a; > d;, for anyi, 1 <i <m.

111

A

11/ 101 o1l

100 010 001

000

Fig. 4. Ordering on extending to the edge of the problem domain.

element means that the value of every dimension is mapped
to 0 or 1 according to the above regulations.

Figure 4 shows an example of a topology where the
dimension of the input space is 3.

We assume that the rule initially constructs a rule set
R. The function hasn — 1 iterations, and for each iteration,
r; in R is picked, and every dimension of is extended,
wherel < j < n andn is the number of rules ikR. At
the first iteration, there is only one rule i that isr; = r,

j = 1. Subsequently, each dimensibis extended td.;, and

the new valugL;, ;] is verified if it satisfies the constraint
LS (([f(xi) — Ap]) = 0. Next, for the same dimension,

is then extended t&;, and a similar verification is performed
on this new value. If there is any extension on the value of
the i** dimension ofr, the new ruler’ is kept for the next
jferation. After going through each dimensionqgf all the
mgﬁw rules,r’, are put together for a new rule sBt

Finally, if the value of the'" dimension equals the scale of
the input space, which is believed to be applicable throughout
the total range of thé” dimension, GSVMORC then filters
this dimension from the antecedents of the rule.

The complexity becomes exponential if the algorithm goes
through every element in the topology. It increases with the
rise of the dimensionality of the input space and even grows
to be intractable in the worst case. Hence, in practice, an

Definition 3.5: Coverage rate is the rate between the nunf2Ptimizing measure known as trueacking of topologyhas
ber of testing data that are predicted correctly by a rule arRfen adopted.

the entire testing data.

Firstly, the definition of alashof the topology is given. A

1) Rule Extending:Given that the input space of a prob-clashis an occurrence when the new region of a rule consists

lem domain is from[Ly, ..., L,,] to [U1, ..., U,,] and that of Of the points for another class. The rule can be represented

arule isr = [ly,...,lm] < x < [u1,...u,n] — A, the rule- as an element in the topology.

extending step attempts to extenihto a larger scope. Atthe ~ When aclashis identified on a certain element, the rule-

same time, the new rulg still satisfies the constraint that the extending process would not continue on with the remaining

area covered by’ belongs to the same class. To exhaustivelglements that have connections with the element that has the

find all the potential rules in an extended scope, a topologgfash This is calledcracking of topology

is used to achieve this. Consider a three-dimensional problem. The antecedents
Let the original value ofr be 0 and the new value of of an initial rule are interpreted a¥00. It is then easy to

a rule be 1. For example, if the@*! dimension ofr is make a structure in the order of Figure 4. Given such an

extended toL, thenr becomed’ = [L1,ls,...,1,,] < x < ordering, some conclusions can be drawn. If an element

u = [uy,...,un] — Ap. Hence, the new valufl,,u;] on in Figure 4 deviates from}- > | |f(a;) — 4,| = 0, then

dimension one is regarded as The definition of topology a clash would be detected, which indicates that no other

is defined as follows. element along the ordering of this element would satisfy
Definition 3.6: Topology: An arrangement in which each = >" | |f(a;) — A,| = 0.



2) Rule Pruning: The rule pruning stage aims to prune example, letr; be [a1,..,an] < x < [b1,....,0m] — 4,
those rules that have a relatively large estimated errandry be [ci,...cp] < x < [dy,..,dm] — Ap. If a; <
GSVMORC uses #testto analyze the null hypothesis thate; < b; < d;, 1 < i < m, then the overlap of; and
the mean of the estimated value and the expected valueafis {[c1,..,cm] < x < [by,..by]}. Supposer, does not
the integral of a ruler are equal, that is the mean of thechange and-; has to be divided. For each dimensigna
estimated value equals O. non-overlapping rule can be constructed in three steps:

As GSVMORC uses quasi-Monte Carlo method to ap- Part 1. Keep the original valuey; < x; < b; of r for
proximate the integration function in Equation 3c, therghose dimensiong < .
is a potential error between the approximation value and Part 2. Use the non-overlapping valug < z; < ¢; for
the integral. Most existing studies use the Koksma-Hlawkthe dimensionj = i.
inequality [3] to state the limit of the integration error. Part 3. Use the overlapping values < z; < b; instead
" U of the original values of4 for those dimensiong > i.

1 Z |f(xi) — Al _/ 1F(x) = A,|| < V(f)Dy As a result, the non-overlapping rule is the concatenation
n- L of these three parts.
For example, given two rules; = {[1,4,3] < x <
7,6} — A, andry = {[2,5,4] <x < [5,9,8]} — A,,
the intersection part of these rules[255,4] < x < [5,7, 6].
df i1 = 2 andry remains, then; should be split into three
arts:
part 1.1 < zy < 4;
part 2.4 < x5 < 5;
part 3.4 < z3 < 6.
Then the non-overlapping rule i$l,4,4] < x <

However, it is usually difficult to calculate the total vari-
ation V(f), which makes it problematic to estimate error[
through Koksma-Hlawka inequality.

Morohosi and Fushimi [7] introduce a statistical metho
for quasi-Monte Carlo error estimation. The rule pruning of
GSVMORC is based on their method. The general scheme
of the method is as follows.

Suppose a rule with an area ranging from) tou, M
data sets{x » ., wherej =1,.. M, <x; U) < 4 and
{xz }?:1 is a set of pseudorandom data. For each data set

: . '4) Rule SelectlonThe last step of post-processingige
the value of Equation 5 is computed.

selection This discards those rules with zero coverage rate.
) 1 The aim of this step is to extract those rules with exten-
SV = gz |f(xi) = Apl,j=1,..M () sive information. In GSVMORC, this means that the rules
i=1 predicting no data in our experiments are removed. Note

The estimate of the meahis calculated by that the selection does not change the predictive behavior
of GSVMORC, it simply deletes extraneous rules
. 1 .
= ZS(J) (6) IV. PROOF OFALGORITHM

We now prove that the proposed algorithm is quasi-
so that the error of the integral is estimated using thgoundness and quasi-completeness.

variance of the evaluated values. Theorem 1:Each ruleR : r — A, extracted by GSV-
MORC approximates the classification obtained by SVM.
M .
52— 1 Z(S(j) iy ) Note thatr refers to the area aseoctated to class .
M(M -1) — Proof: The proof structure is similar to that given by
= Garcez et al 2001 [2].
Hence, thet-testturns out to be: First, we have to show that a rul® extracted either
I at the extracting stage or at the post-processing stage can
t=—%— (8) be obtained by querying the SVM. This can be proven by
VM contradiction.

GSVMORC sets a significance level to specify how close Consider a set ofz-dimensional input vectors and a SVM
the approximation value is to the expected valudf ¢ is  f(x). If the extracted ruleR is not obtainable by querying
larger than the standard value at the significance level, tilee network, then there must exist a poiat in = such
rule is rejected. Otherwise it is accepted. that the class output of (x;) is not equivalent to4,. By

Those rules rejecting the null hypothesis are removethe definition of the rule, all the points inside the area
Therefore, GSVMORC's pruning is able to ensure thatovered byR should refer to the same class,. If a point
GSVMORC approximates the behavior of the SVM networkx; exists that belongs to the other class, this contradicts to

3) Non-overlapping Rule ConstructioAs mentioned in the definition of the rule. Therefore? must be obtainable
the extracting section, there could exist overlapping rulesby querying the network.

To remove the intersections between rules and improve Subsequently, in order to guarantee all the points-in
the comprehensibility of rules, the characteristics of norbelonging toA4,, the constralnth |f(x) — Ap| = 0 must
overlapping rules is identified, that is at least one dimensidme satisfied, wheré andU are the Iower and upper bounds
of each of two rules do not intersect with each other. Foof the expected range a.



At the implementation level, the quasi-Monte Carlo By deduction, it can be worked out thé%v’,—v” <e.

3 1f(xi) — Al = 0 is used to approximate the 1) Suppose that the area covered by a ruleSjsand
above integral process and obtain the rule There that the intersection area betweéh and V is V;.
should then be a potential approximation errér = The difference betwees; and V; refers to the part
‘fLU If(x)— A,| — fLU |f(x) — A,||, whereL’ and U’ are in S; that is classified as the other classes by an SVM.
the actual lower and upper bounds Bf With respect to Theorem 1, an extracted rule from

The rule pruning step utilizes a statistical method to GSVMORC is known to approximate the classification
check if the extracted rule has a small errBr In our obtained by an SVM. Hence, if the points belonging to
implementation, the significant level at thele pruningstep the other classes if; exist, they occupy only a very
is set t095%. Only the rules whosé-testoutcomes satisfy small part ofS; so that the deviation at this small part
the standard value at the significant level are kept, which  cannot influence the approximation valuesyf, which
means the estimation of the integral ofis close to the is 13" | |f(x) — Ap|. Therefore, by comparing this
expected v/alue df. This ensures that the approximation error with V4, it can be concluded thdfl‘;%l‘ < ¢, where
isE = LfLU |f(x) — Ayl — fLU |f(x) — Ap|| < e. Therefore, ¢ is a arbitrary small number.
it can be concluded that the SVM classification on most 2) Let us assume thaf’-"2! < ¢, wheret is an arbitrary
points is the same as that &fwith a rather small difference, integer.
and R is said to approximate the classification of the SVM. Then, forSy 1 = S; + S1 and Vi =V + V7,

[ |

Theorem 2:With an increasing number of rules, the rule |St+1v Vil = 15¢ + S; Vi~ Vi

set approximates the behavior of the SVM. L#tdenote b b
: St = Vil | |51 — VWAl
the area covered by the non-overlapping ruleRet {r; — +
Ap,i > 1} andV representhe area of interesI(A,). When Vit Vit
the number of rules increasesS, approximatesV, that is _ eWVi+V) _
@ < ¢, Wheree is an arbitrary small number. Note that Visa
r; refers to an area in class,. Therefore,
Proof: Give an input domainX C R™, a set of classes ,

Y ={A4, | 1<p<CN} whereCN is the number of V' = 5 = V' = Ve — (S = Vo)
classes, and a classifier functign: X — Y. v , v’

Firstly, we need to show that there is an upper bound on < V' = Val + St = Vi
the area of interestThe definition ofthe area of interestsee < Jwe—c v’

Definition 3.2) clarifies thaf (A4,) has an upper bound equal
to J[;%, (u; — 1;), whereu; andl; are the upper and lower wheree = 2 x ¢ is an arbitrary small number.
bounds forthe area of interest From the above, it can be demonstrated thatcan be
Next, we need to show that any part of tlaeea of approximated by a set of rules extracted by GSVMORL.
interestcan be approximated by a set of rules extracted by | emma 4:The areaS,,, covered byt + 1 rules is larger
GSVMORC (lemma 3), and the more rules we have, thghan the are#; covered byt rules ¢ is an integer).
larger the area covered by the rules (lemma 4). Proof: [Proof] As the rule is defined to be non-
Lemma 3:Considerl’ as any part of tharea of interest  overlapping (Section 4.6), this means that there is no in-
V'’ should then be approximated by a set of rules extracted rsection between the rules. The volume covered byl
GSVMORC whose area equafs. This can be represented ryles must then be larger than that covered: byles.
as‘VV;/St‘ <e In other words, ifS;, 1 < S;, then there must exist at least
Proof: This can be proven by contradiction. Supposéwo rules that overlap. This contradicts the definition of non-
that the intersection betwedrY and S; is V;. overlapping. Therefore, it can be concluded that; > S;.
Assume thafi”’ cannot be approximated ¥, extracted ]
by GSVMORC; then the area i’ that is not covered by  Lemma 3 demonstrates that any part of é#ea of interest
the rule set is large. It also means that the difference betweean be approximated by a set of rules. Lemma 4 shows that
V" andV; is large. the greater the number of rules extracted, the larger the non-
Since the difference betweeri’ and V; is also an area, overlapping area covered by the rules. Therefore, when the
a set of uniformly distributed synthetic instances can bgumber of rules increases, the area covered by the rules can
generated inside it, and GSVMORC is able to extract rulegnally approximatethe area of interestFurthermore, the
based on these instances. Hence, the sizg ofcreases, and difference between the area covered by the rules (denoted
the difference betweeVi’ andV; decrease§. This process carpy 5? and thearea of interest(denoted byV) satisfies
be continued untilV’ — V;| < ¢’ so that" ="l <, where V=Sl < ¢, wheree is an arbitrary small number.
e ande’ are arbitrary small numbers. Then, Hence, by increasing the number of rules, the rule set
V' =S| |V =V, — (S, — V)| _ V' = V| +|S, — V,| extracted by GSVMORC can approximate the behavior of
v = v > v SVM networks. [ |




IRIS Data set IRIS Data set

V. EXPERIMENTAL RESULTS

We performed experiments in three real-world datasets, =

all obtained from the UCI Machine Learning repository: : e
the Monk’s problem, the Iris flower dataset and the Breast =
Cancer-Winsconsin dataset. All of the three Monk’s problems  *
have seven attributes, which include an Id feature for each = "
instance. The other attributes are categorical, labelled as *
al,a2,a3,a4,ab,a6. All instances in the Monk’s problems T Tswesman™ T
are divided into two classeslassl = 0 and class2 = 1. (@) (b)
The Iris problem correlates four attributes (sepal length (SL), Fig. 5. Result of Iris dataset
sepal width (SW), petal length (PL) and petal width (PW))

with three classes (Setosa, Versicolour and Virginica). For

thg Breast Cancer_data;et, there are nine attributles (?'“@Bt it predicts 84% instances correctly when the number
Thickness (CT), Uniformity of Cell Size (UCSZ), Uniformity ot o sters goes to six. It is interesting to note that the

of Cell Shape (UCSP), Marginal Adhesion (MA), Single EF"value of 84%, closest to the SVM accuracy &0.33%, is

ithelial Cell Size (SECS),Bare Nuclei_(BN), Bland Chromatlr‘obtained when the training set contaBi® instances and has
(BC), Normal Nucleoli (NN) and Mitoses (MS)) and two

. . one cluster for each class. The same convergence movement
cla§se_s (b_emgn and mallgnant). We have used 5-fold Crogg: s for the Breast Cancer dataset. An accuracy of only
validation in the experiments. For each fold: 62.23% is obtained when each class has one cluster, but
1) We trained the SVM using different algorithms; for theg7 5505 of instances are predicted correctly when the number
Monk-2 and Iris datasets, we used DAGs-SVM [9], ancf clusters goes to six. For the Monk’s problem, the accuracy
for the Monk-1, Monk-3 and Breast Cancer dataset, wg only 97%, 62% and58% respectively for Monk-1, Monk-

used SMO [10]. 2 and Monk-3, when the number of cluster is one. However,
2) We generated a number of training data and queriefle accuracy increases100% for Monk-1, 78% for Monk-2

the trained SVM to obtained the class label. and90% for Monk-3, when the number of clusters increases
3) We applied the rule extraction algorithm to datasets qf 5. This is why we have chosen to use the stopping criterion

varying sizes. of Section 3 to find an appropriate cluster value.
4) We applied the rule extraction algorithm to datasets of

varying number of clusters. st Cacer Data

5) We measured rule accuracy with respect to the test set,
rule fidelity to the SVM, and rule comprehensibility.

Accuracy measures the ability of the rules in predicting

unseen cases according to a test set. The results show thaitm
when the data size increases, the accuracy of the rules ) :
increases, converging to that of the SVM as illustrated in . ¥

the following Figures. For example, for the Iris dataset (see = s m m O
Figure 5(a)), wherV equals30, the accuracy is only7.33%.
However,84.67% is achieved wherV equals100. It finally ("’_‘) ()
reaches’9.33% at N = 300, which is a value near to the Fig- 6. Result of Breast Cancer dataset
accuracy of SVM. The same behavior is verified for the
breast cancer dataset (see Figure 6(a)). WiNeaquals50,
the accuracy is only arounéb%. Although the rate of the
increase reduces, it still causes the accuracy result to finally S
reach90.14% at N = 200. While for Monk’s problem (the o
results are shown in Figure 7(a), 8(a) and 9(a) , whén
reached 00, GSVMORC achieve$00% accuracy for Monk-
1. For Monk-2, GSVMORC obtaing4.8% for a 200-size
training set compared with th&5.7% accuracy classified | e
by the SVM network. GSVMORC also achieves an average = I Y K T ametomn :
95% correctness for d00-size training set in the case of
the Monk-3 problem, while the SVM obtains aroufd% (a_) ()
accuracy. Fig. 7. Result of the Monk-1 problem

Figure 5(b), 6(b), 7(b), 8(b), 9(b) show that when the
number of clusters increases, the accuracy increases as welkidelity measures how close the rules are to the actual
As an example, in the Iris dataset, GSVMORC classifies onlyehavior of the SVM, as opposed to its accuracy w.rt a
56% instances correctly when the cluster number is ondest set. The fidelity rate in Monk-1, Iris and Breast Cancer

Prediction Accuracy (%)




e We have shown how rules can be extracted from SVMs
’ without needing to make many assumptions about the ar-
chitecture, initial knowledge and training data set. We have
also demonstrated that GSVMORC is able to approximate
and simulate the behavior of SVM networks correctly.
“ The accuracy and the fidelity of our algorithm are better
than those obtained by the SVM rule extraction approach
o T o * proposed in [19], which is an important work on rule
@ () extraction from _SVMs. GSVMORC obtaing)0% accuracy
Fig. 8. Result of the Monk-2 problem for Monk-_l, while the SVprrototype [8] predicts only
59.49% of instances correctly in the test set. Compared with
the 63.19% test-set performance by the rule base and the
77777777777 s — 82.2% SVM classification rate, GSVMORC achieve$.8%
accuracy on the test set while the classification of SVM
n is 85.7%. GSVMORC also obtaind00% fidelity, but the
SVM+prototype has jus®2.59% and 75.95% agreement
“ with SVM networks in the respective data sets. (Note that
® the performance measures for the SVM+prototype and other
" " techni_ques originate from published papers and not our own
=+ .« experiments [8].)

In the Iris problem, the SVM+prototype [19] reports an
accuracy rate off1% for interval rules and a fidelity rate
of 97.33% compared with th@6% accuracy of RBF SVM
networks [16]. Our algorithm achieves a maximum fidelity
rate (L00%) with a far higher accuracy89.33%), while SVM

problems has been 100%. Monk-2 and Monk-3 obtaineaccuracy is91.33%.

99.12% and 98.5% fidelity. In the Breast Cancer problem, titractRules-PCMap-
Comprehensibilitymeasures the number of rules and theyroach of [6] achieves an average accuracyss$ compared

number of conditions per rule. The following is an examplevith an SVM accuracy 005%. In contrast, our extraction

of the extracted rules on the Iris dataset. GSVMORC obtairggorithm shows high agreement between the rules and the

on average ten rules for each class, with four conditions p@/M. A good fidelity indicates that the rule extraction

fon Accuracy (%)

racy (%)

Prediction Accur:

0 20 80 100 0 1 2

3 4 5
Number of Clusters

(@) (b)
Fig. 9. Result of the Monk-3 problem

40 60
Size of Data set(N)

rule. method mimics the behavior of SVM networks, and a better
sepal lengtk= [4.3,6.6] A\ sepal width= [2.0,4.0] A petal  understanding of the learning process is therefore obtainable.
length= [2.7,5.0] A\ petal width=[0.4,1.7] — Iris In the Breast Cancer problem, the eclectic approach of [15]
Versicolour achieved’2% accuracy compared with an SVM accuracy of

The rule above correctly predict$ out of 150 instances 95%. Our approach performs better than that approach. It
in the data set. Overal)3% training and test examples in achieves89% accuracy which is more closer to the SVM
the Iris data set are predicted correctly. accuracy 94%).

The following is an example of the extracted rules on In RuleExSVM [23], another vital algorithm for SVM
Breast Cancer problem. GSVMORC obtained on avegfige rule extraction, rules are extracted based on the SVM clas-
rules for classl and81 rules for class-1, with an average sification boundary and support vectors. RuleEXSVM has
7.2 conditions per rule. The final rule set classifi#s14%  high rule accuracy and fidelity in the Iris and Breast Cancer
of the test cases arfi8% of the whole data set correctly. problems. For example, for the Iris problem, RuleExSVM
a3 =[4,9 Nas = [3,9] Nag = [10,10) Aar = [5,9] — —1  achieve98% relative to thed7.5% of the SVM classification

For Monk-1, GSVMORC obtained four rules for all results, and in the Breast Cancer domaf,8% accuracy
classes. On average, each rule has 2.37 conditions. Thigdsobtained. The fidelity levels of these two domains range
from the 100 synthetic training instances, which cov@0%  from 99.18% to 99.27%. However, RuleEXSVM constructs
of the test cases. For Monk-2, aroustlrules were extracted, the rules largely depending chiefly on the training samples
with around4.1 conditions per rule for class. For class 0, and support vectors. It is difficult to apply to networks other
24 rules with 5.8 conditions per rule were extracted. Forthan SVM networks. On the other hand, GSVMORC has a
Monk-3, 11 rules were extracted, with aroudt conditions high level of generality in a wide array of networks.
per rule for classl, while 6 rules with 2.7 conditions per Finally, on the issue of comprehensibilityeuroRulg18],
rule were extracted for clas$ (for examplea; = 1 A  an approach to pruning neural networks and using decompo-
az = 1 — class = 1; in this case,a; = 1 denotes that sitional extraction, produces five rules with2 conditions
ay 1S true). per rule in the Breast Cancer domain comparedl16@

Discussion and Comparison with Related Work rules with 7.2 conditions per rule in our approach. However,



NeuroRulerelies on special training procedures that facilitat¢Lo]
the extraction of the rules. GSVMORC, on the other hand, is
architecture-independent and has no special training requh[@l]
ments. It offers the highest fidelity rate and an interesting
convergence property, as illustrated in the figures above. 12

VI. CONCLUSION AND FUTURE WORK
. . . [13]
We have presented an effective algorithm for extracting

rules from SVMs so that results can be interpreted by humans
more easily. A key feature of the extraction algorithm is[14]
the idea of trying to search fooptimal rules with the
use of expanding hypercubes, which characterize rules as
constraints on a given classification. The main advantag[es
of our approach are that we use synthetic training examples
to extract accurate rules, and treat the SVM as an oradél
so that the extraction does not depend on specific training
requirements or given training data sets. Empirical resul{s7]
on real-world data sets indicate that the extraction method
is correct, as it seems to converge to the true accuracy
of the SVM as the number of training data increases arjas]
100% fidelity rates are obtained in every experiment. In
X . . 19]

future work, we may consider using different shapes tha[n
hypercubes for the extraction of rules and compare results
and further improve the comprehensibility of the extractet?0l
rules. [21]

Support Vector Machines have been shown to provide ex-
cellent generalization results and better classification resul&!
than parametric methods or neural networks as a Iearnir[}g]
system in many application domains. In order to develop
further the study of the area, we need to understand w Y,
this is so. Rule extraction offers a way of doing this bjl ]
integrating the statistical nature of learning with the logical
nature of symbolic artificial intelligence [20].

REFERENCES
[1]
[2]

Charles. A and Dennis. J. E. Analysis of generalized pattern searches.
SIAM Journal on Optimizatignl3(3):889-903, 2003.

Garcez. A. A, Broda. K, and Gabbay. D. Symbolic knowledge
extraction from trained neural networks: a sound approdctificial
Intelligence 125(1 - 2):155 — 207, January 2001.

Karaivanova. A, Dimov. |, and Ivanovska. S. A quasi-monte carlo
method for integration with improved convergence. USSC '01:
Proceedings of the Third International Conference on Large-Scale
Scientific Computing-Revised Papemages 158-165, London, UK,
2001. Springer-Verlag.

Thrun. S. B. Extracting provably correct rules from artificial neural
networks. Technical report, Institut fur Informatik Ill, Universitat
Bonn, 1993.

Pop. E, Hayward. R, and Diederich. J. Ruleneg: Extracting rules from
a trained ann by stepwise negation. Technical report, December 1994.
Fung. G, Sandilya. S, and Rao. B. R. Rule generation from linear
support vector machine&DD’05, pages 32 — 40, 2005.

Morohosi. H and Fushimi. M. A practical approach to the error
estimation of quasi-monte carlo integration. In Niederreiter. H and
Spanier. J, editorsMonte Carol and Quasi-Monte Carlo Methqds
pages 377-390, Berlin, 1998. Springer.

Nlfez. H, Cecilio Angulo, and Andreu Catala. Hybrid architecture
based on support vector machines. Rroceedings of International
Work Conference on Atrtificial Neural Networlgages 646—653, 2003.
Platt. J, Cristianini. N, and Shawe-Taylor. J. Large margin dags for
multiclass classificationAdvances in Neural Information Processing
Systems12:547-553, 2000.

(3]

(4]

(5]

(6]

(71

(8]

[9]

Platt. C. J. Sequential minimal optimization: A fast algorithm for
training support vector machines. Technical Report MSR-TR-98-14,
Microsoft Research, April 1998.

Saito. K and Nakano. R. Law discovery using neural networks.
Proceeding NIPS'96 Rule Extraction From Trained Neural Networks
Workshop pages 62 — 69, 1996.

Craven. W. M and Shavlik. J. W. Using sampling and queries to extract
rules from trained neural networks. International Conference on
Machine Learning pages 37-45, 1994.

Craven. W. M and Shavlik. J. W. Extracting tree-structured represen-
tations of trained networks. In David S. Touretzky, Michael C. Mozer,
and Michael E. Hasselmo, editorBdvances in Neural Information
Processing Systemgolume 8, pages 24-30. The MIT Press, 1996.
Fu. L. M. Rule learning by searching on adapted nétsoceedings

of the Ninth National Conference on Atrtificial Intelligence (Anaheim
CA), pages 590-595, 1991.

5] Barakat. N and Diederich. J. Eclectic rule extraction from support

vector machinesinternational Journal of Computational Intelligence
2(1):59 — 62, 2005.

NG nez. H, Angulo. C, and Catala. Rule based learning systems
for support vector machinesNeural Processing Letter24(1):1-18,
August 2006.

Filer. R, Sethi. I, and Austin. J. A comparison between two rule
extraction methods for continuous input datRroceeding NIPS'97
Rule Extraction From Trained Artificial Neural Networks Workshop
pages 38 — 45, 1994.

Setiono. R. Extracting rules from neural networks by pruning and
hidden unit splitting.Neural Computation9:205 — 225, 1997.

NOnez. N, Angulo. C, and Catala. A. Rule extraction from support
vector machines.Proceeding of European Symposium on Atrtificial
Neural Networks Bruges(Belgiuppages 107 — 112, 2003.

Leslie G. V. Three problems in computer sciendeACM 50(1):96—

99, 2003.

Vapnik. N. V. Statistical learning theoryJohn Wiley and Sons, INC,
1998.

Morokoff. J. W and Caflisch. R. E. Quasi-Monte Carlo integratidn.
Comp. Phys.122:218-230, 1995.

Fu. X-J, Ong. C-J, Keerthi. S, Gih G-H, and Goh L-P. Extracting the
knowledge embedded in support vector machines. volume 1, pages
291-296, 2004.

Zhang. J. Y and Liu. Y. X. Svm decision boundary based discrimi-
native subspace inductiorRattern Recognition38(10):1746 — 1758,
2005.



