IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2009). Closure Algorithms for Domains with Two
Variables Per Inequality (TR/2009/DOC/01). .

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4120/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Closure Algorithms for Domains with Two
Variables Per Inequality

City University London, Technical Report
TR/2009/DOC/01

Jacob M. Howe! and Andy King?

! Department of Computing, City University, London EC1V OHB
2 Portcullis Computer Security Limited, Pinner, HA5 2EX, UK* **

Abstract. Weakly relational numeric domains express restricted classes
of linear inequalities that strike a balance between what can be described
and what can be efficiently computed. Such domains often restrict their
attention of TVPI constraints which are systems of constraints where
each constraint involves, at most, two variables. This technical report
addresses the problem of deriving an incremental version of the closure
operation. In this operation, a new constraint is added to a system that
is already closed, and the computational problem is how to efficiently
close the augmented system.

1 Introduction

One important thread of research in program analysis is finding the sweet-point
in the design space for numeric domains. The research problem is to balance
the expressiveness of a domain against the complexity and computational over-
head of deploying it. The domain operations for general polyhedra [4] are of
exponential complexity, irrespective of how they are computed: Chandru et al.
[2] showed that eliminating variables from a system of inequalities can increase
the number of inequalities exponentially; Benoy et al. [1] showed that polytopes
(bounded polyhedra) exist whose convex hull is exponential in the number of
inequalities defining the input polytopes. The class of so-called weakly-relational
domains can be considered as a response to this. Octagons [7] possess cubic do-
main operations because the class of polyhedra they can represent are restricted
to systems of inequalities of at most two variables where the coefficients are -1, 0
or 1. Other weakly-relational domains whose operations reside in low complex-
ity classes are pentagons [6], two variable per inequality (TVPI) constraints [12],
bounded differences [5] and octahedrons [3].

Another practical issue that is too frequently overlooked is the conceptual
complexity, as opposed to the algorithmic complexity, of the domain operations.
Flaws have been discovered in numeric domain operations that have been closely

*** Andy King is on secondment from the Computing Laboratory, University of Kent,
Canterbury, CT2 7TNF, UK

scrutinised. This problem is exacerbated by the way domain operations are de-
ployed in fixpoint calculations, and combined with other domains in reduced
product constructions, which can make isolating the source of a bug difficult.

The most subtle domain operation for systems of TVPI constraints is incre-
mental closure [10]. A system of TVPI constraints is closed if whenever a TVPI
constraint ¢ is entailed by a system I, then c is also entailed by the TVPI sub-
system {¢’ € I | vars(c’) C vars(c)}. Given a closed TVPI system, incremental
closure adds a new TVPI constraint and, if necessary other constraints as well,
so as to ensure that the augmented system is closed. Closing a system I amounts
to adding resultants [8]. For instance, if t —y <0 € I and y — 2 < 1 € T then
the two constraints can be combined to give the resultant x — z < 1. Since the
resultant is entailed by I then if the sub-system {c € I | vars(c) C {z, z}} does
not already entail it, then the resultant needs to be added to I. This process is
iterated until no new resultants need to be added. The computational problem
is putting is a bound on the number of iterations.

An incremental closure algorithm has been presented elsewhere [10], complete
with a sketched correctness proof [10, page 159]. However, the proof makes unjus-
tified assumptions about the effect of adding a new constraint. It is not that the
algorithm is fundamentally flawed; rather that any correctness argument must
consider the role of unary constraints. To illustrate why unary constraints are
important consider the set of inequalities I = {—xz+2 < 0, —z+2z < 0} and the
problem of closing the augmented system Iy = IU{x—y < 0}. Since z—y < 0 is
entailed by Iy and yet Iy does not contain any constraints over y and z, it follows
that Iy must be extended with z —y < 0 to give I} = Iy U {z — y < 0}. Now
observe that I entails 2z —y < 0 yet {c € I | vars(c) C {z,y}} = {z —y <0}
does not entail 2z —y < 0. Thus I; is augmented to give Iy = I; U {2z —y < 0}.
But I, entails 2z — y < 0 which is not entailed by {c¢ € Is | vars(c) C {y,z}} so
yet another constraint that must be added. Iy can be extended ad infinitum in
this way without achieving closure.

This problem stems from [itself since this system is, in fact, not closed
even through it involves just two variables. In particular I entails the unary
constraints x < 0 and z < 0 neither of which are entailed by their respective
sub-systems of I. The constraints 2o —y < 0 and 2z — y are actually redundant
when the unary constraints are included in I. In fact, if I' = T U {z < 0,2 < 0}
then the augmented system I = I’ U{z — y < 0} can be closed by merely
adding the single resultant z — y < 0. The conclusion is that any argument
addressing the correctness of an incremental closure algorithm must consider
unary constraints. More generally, any correctness argument must consider how
unary constraints (or binary constraints for that matter) combine with resultants
to render unnecessary the derivation of further resultants.

To this end, this technical report presents a series of lemmata that lead to
a result, a proposition, that stipulates exactly how a closed system of TVPI
constraints needs to be updated when a new constraint added. This provides a
rigorous foundation for an incremental closure algorithms for TVPI constraints,
or even sub-classes of these constraints.

2 Preliminaries

The study commences with the class of two variable per inequality constraint
[8,12], denoted TVPI, that are defined over a given set of variables X:

Definition 1. TVPI = {az + by <d | z,y € X ANa,b,d € Q}

This class of inequalities is more expressive than octagons [7], and possesses
the property that each subset S C TVPI is closed under variable elimination.
For example, the variable y can be eliminated from the system S = {z — 2y <
5,3y +z < 7,5y —u < 0} by combining pairs of inequality with opposing signs
for y. This yields the projection {3z+42z < 29, —2u+5z < 25}, which is indeed a
system of TVPI inequalities. Since variable elimination can be used for deciding
satisfiability, it is natural to ask whether there is a more tractable sub-class of
TVPI that retains this property. One such class is given below:

Definition 2. Log = {az+by < d|z,y € XNa,b € {-2",0,2" |n € Z}Nd € Q}

Log is a strict subset of TVPI because (apart from 0) the absolute value of coef-
ficients are restrained to be powers of two. It therefore suffices to represent the
logarithm of an absolute value, rather than the value itself. This representational
property is hinted at by the name logahedra, that we shall henceforth use to refer
to these constraints. As with TVPI inequalities, a logahedral inequality can be
binary, that is, involve two variables, when a # 0 and b # 0; or be unary, when
either a = 0 or b = 0 (but not both); or be constant when a = b = 0. A dense
representation for the binary case can be achieved by observing that ax +by < d
can be expressed as + b/ay < d/a if a > 0 and —z — b/ay < —d/a otherwise.
Therefore to represent ax + by < d it is sufficient to distinguish the variables
x and y, represent the signs of a and b (as two bits) and then either represent
lg |b/a| and d/a or 1g|b/a| and —d/a. A unary inequality such as ax < d can be
expressed as x < d/a if a > 0 and —z < —d/a otherwise, and therefore it is not
even necessary to represent a logarithm.

Unlike TVPI, that can be alternatively be defined with a,b,d € Z, the con-
stant d is required to be rational. To see this, observe that a variable y can be
eliminated from a logahedral system S by again combining pairs of inequalities
whose signs oppose on their y coefficients. Thus if S = {z — 2y < 5,4y + z <
7,y —u < 5} then the projection is {2z + z < 17,2 — 2u < 15} which is lo-
gahedral. Rational constants arise when eliminating y from a system such as
{22 — 4y < 3,4y + & < —1} which yields the single inequality 3z < 2. This,
in itself, is not logahedral but the constraint can be equivalently expressed as
x < 2/3 which is logahedral.

This leads to the concept of semantic equivalence. We write 3x <2 =2 < 2/3
to express that one constraint is merely a multiple of the other. More generally,
equivalence is formulated in terms of the entailment relation. Given two systems
S, 8" C TVPI, S entails S’, denoted S = ', if any assignment that satisfies S
is also satisfies S’. For instance, S | S’ where S = {z + 2y < 7,y < 2} and
S’ = {x < 4} since every assignment to x and y that satisfies S also satisfies 5.

The converse is not true since the assignment {z — 4,y — 3} satisfies S’ but not
S. Equivalence is defined S = S’ iff S = 5" and S’ = S. Thus = is symmetric
even though [is not.

The action of combining inequalities, or computing resultants to use the
terminology of Nelson [8], is formalised below:

Definition 3. Ifc=azx +by <d, =d'z+bz2<d and a-a’ <0 then
result(c, ', z) = |d|by + |a|b'z < |d’|d + |a|d’
otherwise result(c, ¢/, z) = L.

Note that it is necessary to stipulate which variable is eliminated because
a single pair of inequalities may possess two resultants, as is illustrated by the
pairc=xz+y < 1and ¢ = —22 — 3y < 1 for which result(c,’,x) = —y < 3 and
result(c, ¢, y) = x < 4. The resultant operator lifts to sets of inequalities by:

Definition 4. If Cq,Cy C TVPI then

result(Cy, Cs) = {c

1 €C1 ANeg € Cy Az € wvars(er) Nwars(ca)A
¢ =result(cy,ca,x) Ne# L

For brevity, we define result(c, C') = result({c}, C) and result(C, ¢) = result(C, {c})
where ¢ € TVPIl and C C TVPI.

Another fundamental operator is syntactic projection, denoted 7y for some
Y C X, which is defined 7y (S) = {c € S | vars(c) C Y} where S C TVPI and
vars(c) is the set of variables occurring in ¢. (In a non-closed system syntactic
projection will possibly loose information.) The set vars(c) contains either 2, 1
or 0 variables depending on whether ¢ is binary, unary or constant. If Y = {z, y}
then the syntactic projection 7y (S) yields a planar system. A planar system over
Y can be filtered to remove any redundant inequalities. To this end, we assume
the existence of an operator filtery (S) = S’ which satisfies the three conditions
that 8" € S, S = S and S” # S for all S” C S’. Such an operator can be
constructed surprisingly straightforwardly [10], but rather than reproduce the
algorithm we illustrate the underlying ideas with an example:

Ezample 1. Suppose Y = {z,y} and the set S consists of the eight inequalities
that are illustrated in figure 1. Suppose that the inequalities are sorted relatively
by angle (which inequality is first does not matter since the filtering technique is
cyclic). One consistent ordering is denoted by the labels A, ..., G. Henceforth the
labels will be used to refer to inequalities themselves, thus (A, B, ..., G) is inter-
preted as a sequence of inequalities. The filtering algorithm proceeds by checking
whether the first inequality is entailed by the second and last inequalities in the
sequence; such a check resides in O(1). If entailed, then the first inequality is
removed and the remaining sub-sequence is rotated left. Otherwise, the whole
sequence is rotated left. Filtering stops when the number of successive steps that
do not remove an inequality reaches m where m is the number of inequalities
remaining in the sequence. The filtering steps required for the eight inequalities

rx—y<3/C:2x—
G:—z—y<6

Fig. 1. Filtering out (removing)

A:x—2y <16

A

y<14
G

redundant planar inequalities

sequence|check action
(A,B,C,D,E,F,G)|BAG = Ay/|remove (first) then rotate (left)
(G,B,C,D,E,F)|BAF | Gx |rotate
(B,C,D,E,F,G)|C NG [= Bx |rotate
(C,D,E,F,G,B)|D A B = C+/|remove then rotate
(B,D,E,F,G)|D A G = Bx|rotate
(D,E,F,G,B)|E A B |E Dx |rotate
(E,F,G,B,D)|F A D | Ey/|remove then rotate
(D, F,G,B)|F A B |E Dx|rotate
(F,G,B,D)|G A D [= Fx|rotate
(G,B,D,F)|BAF = Gx |rotate
(B,D, F,G)|D NG = Bx|rotate
(D, F,G,B) stop since 4 steps since removal

Fig. 2. Filtering eight inequalities

given in the table in figure 2. If |S| = n, then ordering the inequalities by angle
is O(nlgn). Although the stopping criteria can actually be relaxed, the filtering

algorithm as it stands requires just O(n)
is O(nlgn).

steps, and thus the overall complexity

Finally, with filtery in place for any |Y'| = 2, it is possible to filter a complete
system I C TVPI by computing filter(I) = U{filtery (my (1)) | Y C X A Y| = 2}.

3 Closure

Closing a set of inequalities I C TVPI [12] amounts to repeatedly augmenting

I with inequalities result(I, I) until an I’

is obtained such that no further (non-

redundant) inequalities can be added to my (I) for any |Y| = 2. Nelson [8] used

closure as a way of deciding whether a given I C TVPI is satisfiable. In the
context of program analysis, where a domain must come equipped with a merge
and entailment (fixpoint) check operation, closure provides a way of lifting planar
merge (convex hull) and entailment check operations to systems of two variables
constraints. For instance, to compute the merge of I, Is C TVPI, denoted I; LI 5,
it is sufficient to close I; and I to obtain I] and I} respectively, and then put
LUL = Uny(I]) Uny(Ih) | Y] = 2} [12]. Tt is not difficult to adapt this
technique to logahedra by relaxing each planar system M = my (I7) Uy (I3) to
a planar logahedron (which can be achieved in O(|M]) time).

Since the closure operator for Log is essentially the same as that for TVPI one
would expect that implementing a logahedral library would merely be an engi-
neering task. However, it turns out that closure for Log is cubic, whereas TVPI
does not even come with a (sound) polynomial guarantee. Moreover, reimple-
menting incremental closure for Log uncovered some overly strong assumptions
on how a closed system I can be updated by result(I,I) [10]. Repairing this
problem led to a thorough examination of incremental closure and the novel
correctness arguments reported in the following sections.

3.1 Full closure

Definition 5. The (full closure) operator close : p(TVPI) — o(TVPI) is defined:
close(I) = U;=oI; where Iy = I and I;; = filter(I; U result(1;, I;))

Nelson [8] used a divide and conquer argument to bound the number of
iterations that need be computed before stability is achieved:

Lemma 1. close(I) = I,,, where m = [lg(|X|)] and I,,, is defined as above.

This result becomes more intruiguing when the domain is that of logahedra
with bounded coefficients. Closure can be calculated in a semi-naive fashion by
defining Iy = I and §y = I and computing ;11 = filter(I; U result(d;, I;)) and
8iy1 = L1 \ I; for i € [0,m — 1]. Since | U™, &;| = O(|X|?) it follows that the
cumulative running time of result(d;, I;) is O(] X |3). Since each invocation of filter
resides in O(| X |?) and it is called m — 1 times, it follows that the running time of
closure is O(]X|3). Hence, like octagons, logahedra (with bounded coefficients)
come with a (full) closure operation that is cubic.

3.2 Incremental closure

This section presents a rigorous derivation of an incremental algorithm. To this
end, we present new results that show how a resultant, that is derived through
a cascade of resultant derivations, can be derived in a less convoluted way.

2 < 1 <2 R - A
-+ r+z< — =
Y= = _ 0 20 4+ —x< =2
D el H
2+ 2 < -1
v + —w<l1
A B
o =
r + 2y <4
2G
A~ A~
2v + 2y <10
—r+2y<1 T+2z< =2
2+ 2 < -1
A
z + 2y <4 20 4+ —x < =2
D
linearisation —v +"w <3
G _H
N A~
v + —w<l1

Fig. 3. Linearisation of a tree composed of two chains into a single chain

3.3 Linearisation of a tree

Lemma 2. Suppose ¢}, co,...,c, € TVPI and dy,dy,...,d, € TVPI. Suppose
too that ¢} € result(c}, ;) for i € [1,n] and d’;,; € result(d},d;) for j € [1,m].
If ¢ € result(c), ,d;,) then (dgy,do,...,dy) can be reordered to obtain a
sequence (eg, €o,...,en) such that ¢ = e, where ey € result(c),,,ey) and
e, € result(ef,e;) for j € [1,m].

The proof of this result centres on an algorithm that incrementally constructs
(€hy €0y .-y em) from (df,dp,...,dy). The construction is not difficult in itself,
but the formal presentation is complicated by the need to label the individual
terms that occur in the inequalities. Therefore, for clarity, the proof construction
is illustrated with an example. The proof itself follows from this.

Example 2. Figure 3 illustrates a derivation tree whose two branches consist of
chains. In this example, n =1, m = 1 and

ch=—-x+2y<1 dy=—-v+w<3
co = r+z< -2 do= 2v—ax< -2
c1 = r—2<5 di= v—w<l1

This instance of the problem amounts to constructing (e, eq, e1) from (dj,, do, d1).
To this end, the terms in ¢, = x 4+ 2y < 4, df), dop and d; are given unique labels
as shown in the figure. A resultant that is derived from two labelled inequalities

has its terms labelled with the labels inherited from the corresponding terms in
the two inequalities. For example, the resultant 2w — x < 4 adopts the label D
for the 2w term and F for the —z term. Iterating this scheme, all terms in all
inequalities down the right branch of the tree can be labelled.

The construction now proceeds from the inequality ¢, = x + 2y < 4 in the
left branch, whose terms are labelled A and B. The construction in three steps:

— The A term of ¢}, does not occur in ¢ = 2v 4+ 2y < 10 and thus needs to
be eliminated. In the right branch of the tree, A is eliminated by the F
term of 2v — & < 6 that first occurs in dy. Therefore put e, = dy whence
ey = result(ef), ¢, x) = 2v + 2y < 2 whose terms are labelled E and B.

— The E term of €] does not occur in ¢ and hence needs to be eliminated. In
the right branch of the tree, E is eliminated by the C term in —v 4+ w < 3
that first occurs in dfy. Therefore put ey = dy whence e} = result(e(, eg,v) =
2w + 2y < 8 whose terms are labelled D and B.

— The D term of ef, does not occur in ¢ and hence needs to be eliminated. In
the right branch of the tree, D is eliminated by the H term in v —w <1
that first occurs in dy. Therefore put e; = dy whence e} = result(ef, e1,w) =
2v 4 2y < 10 whose terms are labelled G and B.

Then (e, eo, e1) = (do, djy, d1) and observe that ¢ = e}. More generally, it follows
that ¢ = e];, | because, by the construction, a term is eliminated by the same
inequality dy, d), d; in both derivations, which is also similarly scaled.

3.4 Compaction of a chain

The above result is of little value by itself. However, when strengthened with
further lemmata that place constraints on what can be derived in a linear chain of
derivations, the results together place strong constraints on how non-redundant
inequalities can derived when a new inequality is added to a closed system. The
first of these results that concern chains, explain the futility of combining the
new inequality ¢, with three inequalities drawn from the closed system:

Lemma 3. Let ¢ € TVPI and ¢y, c1,co € I C TVPI where close(I) = I. Then
there exists dg,d; € I such that

result(result(result(cy, co), c1), c2) C result(result(c, do), d1)

Ezample 3. Suppose ¢ = z+y < 1 and cg, ¢1,co € I C TVPI where close(I) = I
and
cg=-"2u—z<1 cg=u—5<1 co=3v—22<0

Then
¢y = —2u+y < 2 € result(c), co)
ch =1y —10v < 4 € result(c}, ¢1)
ch =3y — 20z < 12 € result(ch, c2)

h=v—2x< -2 co=x—3y<1

ca=2y+32<-3 ¢p=v—2x< -2 do=2x+92< -7

v+92 < =9 co=-5+4w<1 v+9z < — di=-5v+4w<1

compaction 4w + 452 < —4

Fig. 4. Compaction of a single chain

Put dy = ¢ and d; = result(cy, c2,v) = 3u — 10z < 3 € T since close(l) = I.
Then observe
cf =d) = —2u+y <2 € result(c, do)
ch =dh =3y —20z <12 € result(c), d1)

Ezample 4. Suppose ¢, = v—2z < —2 and ¢y, ¢1,co € I C TVPI where close(I) =
I and

COZ:L-_SySl 01:2y+32§—3 CQ:—5U+4’LU§1
Then
¢y =wv — 6y <0 € result(ch, co)

ch=v+9z < -9 € result(v — 6y <0,¢1)
ch = 4w+ 45z < —44 € result(v + 9z < =9, ¢3)

Put dy = result(co, c1,y) = 2x + 9z < —7 whence dy € I and define d; = co.
Then observe
v+ 9z < —9 € result(c, do)
dw 4 452 < —44 € result(v + 92 < —9,d,)

Note that the above lemma cannot be simplified to assert that if ¢{, € TVPI
and cp,c; € I where close(I) = I then there exists dy € I such that

result(result(cg, co), c1) C result(cg, do)
The following example illustrates why this is not so:
Ezample 5. Let I = {cp,c1} where
ch=u+2x<0 co=—x+4y <0 c1=—-u+8 <0
Observe that close(I) = I and
result(cp, co) = {u+ 8y < 0} result(cy, c1) = {z + 4v < 0}

But v +y < 0 € result(result(cy, o), c1) and therefore the simplified version of
the lemma does not hold.

€1 {y,z} d {:E,y} C1 {yvz} d {.’E,y}

d {z,y} d {z,y}

Fig. 5. Resultant combination sequences involving ¢’, c1, c2

From the perspective of closing a system when a new constraint ¢’ is added,
it is also fruitless to recombine ¢’ with any inequality that results from a chain
of derivations that emanates from ¢’. By the previous lemma, it is sufficient to
consider chains that start at ¢’ with at most two intermediate inequalities; chains
with more intermediates can be collapsed down by the previous result.

Lemma 4. Let ¢/,¢; € TVPIL If ¢ € result(result(c’, ¢1),¢’) then there exists
¢’ € result(c/, ¢1) such that ¢ = ¢”.

Lemma 5. Let ¢/,c1,co € TVPL If ¢ € result(result(result(c, c1),c2), ') then
one of the following hold:

L. Tyars(e)(result(c’,c1) Uresult(c’, c2)) = ¢
2. ¢ € result(result(c, result(cy, ca)),)
3. ¢ € result(c, result(cy, ¢2))

Ezample 6. The three cases of the lemma are illustrated in Figure 5. The cases
differ in the variables that arise in the given inequalities ¢/, ¢; and c¢y; the in-
termediate inequalities ¢] € result(c/,c1) and ¢4 € result(c), c2); and the final
inequality ¢ € result(c),c’). The derivation sequence in the left of the figure is
exemplified by:

d=—-az-Ty<1 1 =2y+2z<2 co=5x+3y<-3
and
g =-2x+72<16 cy =6y + 35z < 74 ¢ = —6z + 245z < 524

But observe ¢} € result(c/,c1) and 32z < —18 = result(c/, c2,y) € result(c, c2).
Scaling the inequalities ¢} and result(c/, ca,y) by 35 and 64 respectively, and
then summing, we deduce that {c],result(c,ca,y)} = —6x + 245z < 524 =
c. Moreover, observe that vars(c)) = {x,z} and vars(result(c’,cq,y)) = {z},
therefore the first case of the lemma holds.

Ezample 7. The derivation sequence in the middle diagram of the figure 5 is
illustrated by:

=9z -3y <2 ¢ =5y+72< -3 co = —dxr —22 <11

10

Then ¢ € result(¢, ¢1) and ¢, € result(c], ca) where
g =4bx+212<1 ¢y =06z <233

This circumstance is addressed in the third case of the lemma since:

result(cy, c2,2) = —28z + 10y < 71
result(c, result(cy, 2, 2),y) = 62 < 233 = ¢},

Therefore ¢}, € result(c’, result(cy, c2)) and hence ¢ € result(result(c, result(cy, ¢2)), ¢)
as prescribed in the second case of the lemma.

Ezample 8. The derivation sequence in the right diagram of the figure 5 is illus-
trated thus:

d=x—-5y<7 =3y +4z< -2 co=2y—2<1
and ¢ € result(c, 1) and ¢} € result(c), c2) where
A =3r+202<11 cy=3x+40y <31 c=11w <87

Then
result(cy, c2,2) = 11y < 2
result(c’, result(cy, co, 2),y) = 11l < 87T =¢

Therefore ¢ € result(c, result(cy, c2)) and the third case of the lemma applies.

The findings can now be summarised in a single statement. The result follows
by using the lemmata to show that the result of any derivation tree, where the
leaf inequalities are drawn from I U {c'}, can be collapsed into a chain that
coincides with one of the three cases. The strength of the result is that only
these simple chains need be considered when computing incremental closure.

Proposition 1. Suppose ¢ € TVPI and I C TVPI such that close(l) = I. If
¢ € close(I U {c'}) then one of the following hold:

—celU{c}
— c € result(c, cy) where ¢g € T
— ¢ € result(result(c, cg), ¢1) where cg,cq € T

4 Conclusion

This technical report has shown how the key domain operation over TVPI con-
straints — incremental closure — can been derived by a systematic examination
of the shapes that derivation trees can that when a new inequality is added to
a closed system.

11

Acknowledgements The authors thank Phil Charles, Tim Hopkins and Stefan
Kahrs for useful discussions. We particularly thank Axel Simon, whose book
[10] motived much of this study. The work was supported by EPSRC projects
EP/E033105/1 and EP/E034519/1. Andy King’s secondment to Portcullis is
supported by a Royal Society Industrial Fellowship. Jacob Howe would like to
thank the University of St Andrews for supporting him as a visiting scholar.

References

1.

2.

10.

11.

12.

F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
Theory and Practice of Logic Programming, 5(1&2):259-271, 2005.

V. Chandru, C. Lassez, and J.-L. Lassez. Qualitative Theorem Proving in Linear
Constraints. In International Symposium on Artificial Intelligence and Mathemat-
ics, 2000. http://www.seas.upenn.edu/~chandru/amai.ps.

R. Clarisé and J. Cortadella. The Octahedron Abstract Domain. Science of Com-
puter Programming, 64:115-139, 2007.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Symposium on Principles of Programming Languages,
pages 84-97. ACM Press, 1978.

K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: compact data structure and state-space reduction. In IEEFE Real-
Time Systems Symposium, pages 14—24. IEEE Computer Society, 1997.

F. Logozzo and M. Fahndrich. Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In ACM Symposium on Applied Comput-
ing, pages 184—188. ACM Press, 2008.

A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation,
19(1):31-100, 2006.

C. G. Nelson. An n'8™ Algorithm for the Two-Variable-Per-Constraint Linear
Programming Satisfiability Problem. Technical Report STAN-CS-78-689, Stanford
University, Computer Science Department, 1978.

H. Raynaud. Sur L’enveloppe Convexe des Nuages de Points Aléatoires dans R™.
Journal of Applied Probability, 7(1):35-48, 1970.

A. Simon. Value-Range Analysis of C' Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities. Springer-Verlag, 2008.

A. Simon and A. King. Exploiting Sparsity in Polyhedral Analysis. In C. Hankin,
editor, Static Analysis Symposium, volume 3672 of Lecture Notes in Computer
Science, pages 336-351. Springer-Verlag, 2005.

A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an
Abstract Domain. In M. Leuschel, editor, Proceedings of Logic Based Program De-
velopment and Transformation, volume 2664 of Lecture Notes in Computer Science,
pages 71-89. Springer-Verlag, 2002.

12

A Proof Appendix

Proof (for lemma 3). Let cj,, € result(cj,c;) for i € [0,2]. Moreover let ¢ =
result(cy, co,), ch = result(c],c1,u) and ¢ = result(ch, ca,v).

— Suppose vars(cy) = {x,y} where z # y.

Suppose u & {z,y} and v & {u,y}. Since & # y then vars(c;) = {u,y}.
Since v € vars(ch) and v € {u,y} then vars(c;) = {u,v}. Since v €
vars(cy) then suppose vars(ca) C {v, z}. Moreover, suppose

co=au+bv<d dh=dut+ey<g co=bv+fz<h
Since ¢, # L it follows that a.a’ < 0 and since ¢ # L it follows that

b.b' < 0. Then ¢ = |V||aley + |a'||b|fz < |V/||a’|d + |V||alg + |a’||b]h =
result(result(cy, c2,v), ¢}, u).

e Suppose u € {z,y} and v = u. Impossible since u & vars(ch).
e Suppose u € {z,y} and v = y. Since = # y then vars(c}) = {u,y}. Since

u & {x,y} then vars(co) = {u,z}. Since u € vars(cy) then suppose
vars(er) € {u, z}. Moreover, suppose

co=au—+br <d c():b/ereySg co=du+ fz<h

Then a.a’ < 0 and b.b" < 0 hence ¢} = result(result(cg, c1,u), cp,).

e Suppose u = x. Impossible since = & vars(c}).
e Suppose u = y, v # y and v € wvars(ci). Then vars(c;) = {v,y}.

Since y € wars(c}) then suppose vars(cy) C {y,z}. Likewise, since
v € vars(cz) then suppose vars(cz) C {v, w}. Moreover, suppose

co=av+by<d g =Vy+ex<yg co=adv+ fu<h

Then a.a’ < 0 and b.' < 0 hence ¢ = result(result(cy, c2,), ¢}, y).
Suppose u =y, v # y and v € vars(c}). Then v € vars(cy). But since
x & vars(c}) then it follows that v # 2 and vars(co) = {v,z}. Since y €
vars(cy) suppose vars(c1) C {y,z} and likewise because v € vars(cz)
suppose vars(ce) C {v,w}. Moreover, suppose

co=ar+by<d cp=ev+azr<yg
co=by+fz<m co=¢cv+hw<n

Then b.b' < 0,e.¢/ < 0and a.a’ < 0hence ¢ = result(result(cj, result(co, c1,y),), c2, v).

Suppose u = y, v # y and v & vars(c;) and v € vars(c)). Then v &
vars(ch) which is impossible.
Suppose © =y and v = y. Impossible since y & vars(ch).

— Suppose vars(cy) = {x}. Since x & vars(c}) then u # x. Since u € vars(c})
then vars(cp) = {u,z} hence vars(cj) = {u}. Since v € wvars(c,) then
v € vars(cy) hence vars(c) = {u,v}. Then ¢ = result(result(co, c1,u), ¢,).

13

Proof (for lemma 4). Suppose ¢; = result(c, ¢1,) and ¢ = result(c], ¢, u) such
that ¢j # L and ¢ # L. Suppose vars(c’) = {z}. Since = ¢ vars(c}) and because
¢ # L it follows that u € vars(c’) such that # u which is a contradiction. Thus,
henceforth, suppose vars(c’) = {x,y} for x # y. Moreover, suppose ¢ = az +
by < d. Since x € vars(cl) suppose vars(e;) C {x z}. Moreover, suppose ¢; =
a'x+b'z < e.Since ¢f # L then a.a’ < 0. Then ¢} = |a’|by + |a|b’z < |a'|d+ |ale.
If y # z then |a’|b.b > 0 which contradicts ¢ € result(c},). Thus z = y and
u = y and therefore ¢) = (Ja|b’ + |d’|b)y < |ale + |a’|d. Since ¢ € result(c],)
then (|a’|b + |a|d’).b < 0.

— Suppose b > 0. Then |a’|b+ |a|b’ < 0 and thus ¥’ < 0.

e Suppose a > 0. Then ¢ = (ab' —a'b)y < ae—d'd and ¢ = a(a’b—ab)z <
d(a’b— ab’) + b(ae — a’d) = abe — ab’d = a(be — b'd). Furthermore, since
b.b' < 0 then result(c/, cl,y) (a'b—ab)x < (be —V'd)=casa>0.

e Suppose a < 0. Then ¢j = (a’'b—ab’)y < a’d—ae and ¢ = a(ab/ —a’'b)x <
d(al’ —a'b) +b(a’d — ae) = a(b'd — be). Moreover result(c’, c1,y) = (a’b—
ab)z < (be —b'd)=casa<0.

— Suppose b < 0. Then |a’|b+ |a|b’ > 0 and thus &’ > 0.

e Suppose a > 0. Then ¢f = (ab — a'b)y < ae — d'd and ¢ = a(ab’ —
a'b)x < d(ab — a'b) — b(ae — a’d) = ab'd — abe = a(b'd — be). Moreover
result(c’, c1,y) = (ab/ — a’b)x < (b'd — be) = c as a > 0.

e Suppose a < 0. Then ¢j = (a’'b—ab’)y < a’d—ae and ¢ = a(a’b—ab)z <
d(a’b—ab") —b(a'd — ae) = a(be — V' d). Moreover result(c, ¢1,y) = (ab’ —
a'b)x < (b'd—be) =casa<0.

Proof (for lemma 5). Suppose ¢| = result(c,c1,y), ¢b = result(c],ca,u) and
¢ = result(c, ¢h,v). Suppose vars(c’) = {y}. Then vars(c}) = {z,y} for # y.
Thus vars(c}) = {z}. Since vars() = {y}, y € vars(cy). Thus vars(c1) = {z,y}
whence vars(ch) = {y}. But vars(c’) = {y} thus ¢ = L which is a contradiction.
Thus, henceforth, suppose that vars(c') = {z,y} for = # y.

— Suppose vars(c;) = {y,z} and vars(c2) = {x,y} where y # z. Then
vars(cy) = {x, 2}, vars(cy) = {y, z} and vars(c) = {x, z}. Suppose

d=ar+by<d co=by+tex<f co=dz+b'y<g

Suppose a < 0 and b < 0. Then ' > 0 and ab’ < 0 whence @’ > 0. Since
b < 0 then —ab’'b” > 0 whence b” > 0. Moreover ab” — a’b > 0. Then

iy =ablx —bez <V'd—bf
ch=—ab'b'y —a'bez < a'b'd—a'bf —ab'g
c=—a’t't'z 4+ a'b%ez < —a'bb'd + a'b> f + abb'g — ab'b"d
result(¢’; ca,y) = (ab” — a’b)x < b'd —bg =2z < (b"d — bg)/(ab’ — a'b)

Scaling ¢} by —a’b > 0 and result(c’, c2,y) by —ab’(ab” — a’b) > 0, and then
summing, we derive:

—a®V'b"x + a'bPez < ab(bg — b"d) + d'b(bf —b'd) = ¢

14

Thus {c, result(c’,c2,9)} = ¢. Analogous arguments follow for a > 0 and
b<0;a<0andb>0; and a > 0 and b > 0. Hence, in all four cases, case 1
of the lemma holds.

Suppose vars(c1) = {y,z} and vars(c2) = {z,z} where # z and y # z.
Then vars(cy) = {z, z}, vars(cy) = {x} and vars(c) = {y}. Suppose

d=ar+by<d ca=by+tez<f c=dx+ez<g

Suppose b < 0 and ¢ < 0. Then b > 0 and —be > 0 whence e > 0. Moreover
—b'e’ > 0. Then

i =abx —bez <bd—bf
ch = —(ab'e' +ad'be)x < —beg — €' (b'd — bf)
result(cy, co,2) = d'ex —be'y <eg—e€'f
)

result(c/, result(cy, c2, 2),y) = —(ab'e’ + d'be)x < —b(eg — €' f) —b'e'd = ¢},

Analogous arguments follow for b > 0 and ¢ < 0; b < 0 and € > 0; and
b> 0 and €’ > 0. Therefore, in all four cases, case 2 of the lemma holds.
Suppose vars(cy) = {y, 2} and vars(ce) = {y, 2} where y # z. Then vars(c}) =
{z, 2}, vars(chy) = {x,y} and vars(c) = {x}. Suppose

d=ax+by<d c=by+ex<f co=by+ez<g

Suppose b < 0 and ¢ < 0. Then ¥ > 0 and —be > 0 whence e > 0. Then
—bb"e > 0 whence b” > 0. Then

cy =abx —bez <bd—bf
ch=—abe'r —bb'ey < —beg + €' (bf — b'd)
c=a('e—be)x < —beg+be'f —bde' +b'ed
result(cy, co,2) = (Ve —be)y<eg—e'f
result(c, result(cy, c2,2),y) = a(b’e —b'e')z < (W'e—Ve')d—bleg—e€'f)=c

Analogous arguments follow for b < 0 and ¢ > 0; b > 0 and €' < 0; and
b> 0 and €’ > 0. Therefore, in all four cases, case 3 of the lemma holds.
Suppose vars(cy) = {y, 2} and vars(ce) = {y, 2} where y # z. Then vars(c}) =
{z, 2}, vars(chy) = {x,y} and vars(c) = {y}. Suppose

d=ax+by<d c1=bytez<f c=by+ez<yg
Suppose b < 0 and ¢’ < 0. Then &' > 0 and —be > 0 whence e > 0.

cy =ablx —bez <V'd—bf
chy=—ab'e'z —bb'ey < —beg + €' (bf —b'd)

But a. — ab’e’ > 0 and thus result(ch, ¢/, x) = L which is impossible. Analo-

gous impossibility arguments follow for b < 0 and ¢ > 0; b > 0 and ¢’ < 0;
and b > 0 and ¢’ > 0.

15

