

City, University of London Institutional Repository

Citation: Kloukinas, C. & Ozkaya, M. (2012). XCD – Simple, Modular, Formal Software

Architectures (TR/2012/DOC/01). .

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4122/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

XCD – Simple, Modular, Formal Software Architectures

Christos Kloukinas Mert Ozkaya

Department of Computing
Technical Report Series

TR/2012/DOC/01
14 May 2012

ISSN 1364–4009

XCD – Simple, Modular, Formal Software Architectures

CONTENTS

I Introduction 2
I-A Complex Connectors for Architectural Analysis . 2
I-B Connector Role Strategies for Control and Design Decisions . 2
I-C Design by Contract . 3
I-D Case Study . 3

II XCD Components 3
II-A Extending Design by Contract – Different Contract Types . 3
II-B Extending Design by Contract – Service Consumer Contracts . 4
II-C Testing Architectural Components . 5

III XCD Connectors 6
III-A Glue-less Connectors . 6
III-B Wrapper-like Connectors . 6
III-C Decentralized Connectors . 6
III-D Fundamental Connector Properties . 6
III-E Centralized Connectors . 7

IV System Control and Design Decisions – Role Strategies 8

V Evaluation 8

VI Related Work 9

VII Conclusions 10

References 11

LIST OF FIGURES

1 The sitdown/arise (iSA) interface . 3
2 Seat component specification . 4
3 Seat component specification in pseudo-JML . 5
4 Philosopher component specification . 5
5 Decentralized dining philosophers connector . 7
6 Centralized dining philosophers connector . 7
7 Philosopher role strategies . 8
8 Butler role strategies . 8
9 System configurations . 9

LIST OF TABLES

I Different decentralized strategy combinations . 10
II Different centralized strategy combinations . 10

Christos Kloukinas, Mert Ozkaya 1 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

Christos Kloukinas, Mert Ozkaya
School of Informatics

City University London
London, U.K.

Email: c.kloukinas@city.ac.uk, mert.ozkaya.1@city.ac.uk

Abstract—Connector-Centric Design (XCD) is a new ap-
proach for specifying software architectures that focuses on
the use of complex connectors. In XCD simple intercon-
nection mechanisms like procedure-calls, event-buses, etc.
are abstracted and components take a second place. XCD
aids the clear separation in a modular manner of the high-
level functional, interaction, and control system behaviour,
thus increasing the reusability of both components and
connectors. As such, XCD allows designers to experiment
with different interaction behaviours (connectors), without
having to modify the functional behaviour specifications
(components). It further allows designers to experiment
with different control behaviours (“role strategies”), without
modifying components or connectors.

Inspired by JML, XCD follows a formal, Design-by-
Contract approach, describing behaviour through simple
pre/post-conditions, which should make it easier for prac-
titioners to use. XCD extends Design-by-Contract so as
to separate contracts into functional and interaction sub-
contracts, and so as to allow service consumers to specify
their own contractual clauses. The specifications of XCD
connectors are completely decentralized (e.g., no “connector
glue”) to facilitate their realization and their refinement for
further formal analyses.

Keywords-Software architecture; Modular specifications;
Separation of functional interaction and control behaviours;
Design by contract.

I. INTRODUCTION

Architectural descriptions of systems are extremely
valuable for communicating high-level system design as-
pects and the different solutions that have been evaluated
for meeting system-wide, non-functional properties. Re-
searchers have advocated the need for components and
connectors to be first-class architectural entities from the
very beginning [1], [2]. However, the support for complex
connectors is minimal in languages used in practice cur-
rently, e.g., AADL [3], SysML [4]. They mostly rely on
simple interconnection mechanisms like procedure-calls
and provide no support for specifying complex connectors,
focusing instead all their attention upon components. The
end result is that architectures end up more like low-
level designs [5]. At the same time components have
to incorporate specific interaction protocols thus reduc-
ing their reusability. Worse yet, when the component
specifications do not explicitly specify which protocols
they have been designed for, we have the problem of
“architectural mismatch” [6], i.e., the inability to compose
seemingly compatible components, due to the (undocu-
mented) assumptions these make on their interaction with
their environment.

The Connector-Centric Design (XCD) approach takes
Wirth’s equation “Algorithms + Data Structures = Pro-
grams” and advocates that at the architectural level we
have “Connectors + Components = Systems”, with
connectors being essentially decentralized algorithms and
components the equivalent to data structures [7]. XCD fo-
cuses on improving the structural representation of formal
architectural specifications, so as to aid both their develop-
ment and their formal analysis. Connectors are at the very
centre of XCD, since it is them that are responsible for
meeting system-wide, non-functional requirements that no
component can meet, such as reliability, performance, etc.

A. Complex Connectors for Architectural Analysis

Let us consider n electrical resistors, r1, · · · ,rn. When
using a sequential connector (→), the overall resistance is
computed as R→(N,{Ri}N

i=1) = ∑
N
i=1 Ri. If using a parallel

connector (‖) instead, it is computed as R‖(N,{Ri}N
i=1) =

1/∑
N
i=1 1/Ri. So the interaction protocol (connector) used

is the one that gives us the formula we need to use to
analyze it – if it does not do so, then we are probably
using the wrong connector abstraction. The components
(r j) are simply providing some numerical values to use in
the formula, while the system configuration tells us which
specific value (n, r j) we should assign to each variable (N,
Ri) of the connector-derived formula. By simply enumerat-
ing the wires between resistors, as languages like AADL
do, we miss the forest for the trees. Analysis becomes
difficult and architectural errors can go undetected until
later development phases.

B. Connector Role Strategies for Control and Design
Decisions

A cleaner separation of functional and interaction be-
haviour aids in increasing the reusability of both compo-
nents and connectors. However, one can go even further,
e.g., as in BIP [8], and attempt to separate the control
behaviour as well. XCD supports this through modular
connector role strategies, which are specified externally
to connectors, and so can be replaced and modified easily.
These are used to specify different design solutions for
various issues that basic role specifications do not address
(on purpose) so as to be as reusable as possible. In fact,
such role strategies are already being used in designs
implicitly. Consider a simple call in C: foo(i, ++i),
where i=1. According to the C language specification this
call is undefined since the second parameter expression

c.kloukinas@city.ac.uk
mert.ozkaya.1@city.ac.uk

XCD – Simple, Modular, Formal Software Architectures

void sitdown(ID caller) throws (NullIDEX);
void arise(ID caller) throws (NullIDEX,

WrongCallerEX,

InteractionEX);

Figure 1: The sitdown/arise (iSA) interface

(++i) may potentially change the value of the first one
(i). So we can obtain either foo(1,2) or foo(2,2).
The C language specification does not want to specify a
specific order for evaluating parameters, explicitly under-
specifying the procedure-call connector specification. If
compilers have multiple cores at their disposal they are al-
lowed to evaluate parameters in parallel, instead of having
to evaluate each one in a specific sequential order. The C
language specification allows compilers to apply different
evaluation strategies on the caller role by delaying this
design decision until the optimal choice can be made,
based on the call context and the implementation costs
of the available strategies.

C. Design by Contract

Inspired by JML’s [9] developer friendliness, XCD
follows Design by Contract (DbC) [10] too. XCD extends
DbC in two ways. First, it separates the functional
behaviour of a component from its minimal interaction
requirements. Second, it allows service consumers to
specify contractual clauses of their own.

D. Case Study

We demonstrate the different features of XCD through
the dining philosophers problem, chosen because different
solutions exist for it – both with no centralized control
and with centralized control (a “butler”). We show how a
designer can specify the system with different connectors
(for decentralized and centralized control), without chang-
ing the component specifications, and then specify differ-
ent control policies, without changing the specifications of
either the connectors or the components.

We consider first component specifications in XCD,
concentrating then on connectors – their specification in
a decentralized manner that facilitates their implemen-
tation and analysis, and the fundamental properties that
a complex connector should provide. We then consider
role strategies for expressing control and other design
decisions, and present an evaluation of the approach before
discussing related work and concluding.

II. XCD COMPONENTS

Figure 1 shows the interface implemented by the
Seat component – the Fork one (iGP) has methods
get and put with similar signatures. Method sitdown

throws a NullIDEX exception, while arise also throws
WrongCallerEX when the Seat is occupied by someone
that is not the caller. However, arise throws yet another
exception – the enigmatic InteractionEX. Components
throw this special exception when their minimal interac-
tion constraints (rather than functional ones) have been
violated.

A. Extending Design by Contract – Different Contract
Types

Figure 2a shows the Seat component specification. It
defines its data variable set (D) and some helper predicates
(preds). Then it defines two sets of ports, (Ps, Pp), for
the “socket” and “plug” ports respectively, i.e., the ones
providing some interface and these using some interface
– what in CORBA are facets and receptacles. Finally,
it defines sets of functional (φ) and interaction (χ)
constraints, shown in Figure 2c and 2b respectively.

Constraints all follow the syntax (port-expr., method,
pre-condition, post-condition) and are grouped ([]) by
the (port-expr., method) pair they apply to. They are
labelled as (s|a)(φ |χ) – for sitdown/arise (s|a) and for
functional/interaction (φ |χ). So in sφ

1 , pseat’s sitdown

pre-condition is ¬NullCaller(c) and HolderIsCaller(c)
its post-condition. This is a JML “normal behaviour”,
unlike sφ

2 that throws a NullIDEX exception if the pre-
condition NullCaller(c) is true. Constraints aφ

1 , aφ

2 are
similar ones for arise, while aφ

3 covers the case when
the pre-condition is ¬CallerIsHolder(c). In that case, the
post-condition requires that a WrongCallerEX exception
is thrown.

This last constraint aφ

3 introduces the difference between
functional and (minimal) interaction constraints. Method
arise accepts calls where the caller is not the holder
and throws an exception, while sitdown does not specify
anything about this. According to sφ

1 it seems it simply
replaces Seat’s holder with the caller. However, this is
captured in Figure 2b, through Seat’s minimal interaction
constraints. Constraint sχ

1 asks that sitdown be delayed
until Occupied is false. This is expressed using the “when”
keyword as in JML [11], though in XCD functional
constraints are not allowed to use it. To relate it to JML,
one can think of it as a “normal” interaction behaviour,
describing a method’s acceptable concurrent behaviours.
For all “normal” interaction constraints of components,
the post-condition is always True. Figure 2b also specifies
the minimal interaction constraints of arise. Constraint
aχ

1 states that calling arise on an occupied Seat is ac-
ceptable. Constraint aχ

2 , however, states that calling arise

on an unoccupied Seat, results in an InteractionEX

exception (which functional constraints cannot use). This
is a situation that Seat does not know how to deal with –
similar to calling a method on a component without having
initialized it first. The real meaning of an InteractionEX

exception is that the component behaviour becomes un-
defined.

Interaction constraints take precedence over functional
ones and if both can throw an exception then the exception
thrown is an InteractionEX. With pre(φ) and post(φ)
standing for the pre-condition and the post-condition re-
spectively of a constraint φ , the real specification of the
Seat constraints is shown in Figure 2d. As shown there for
aχ

2 , when an interaction exception’s precondition is true,
then the functional constraints are ignored. Otherwise,
when the pre-condition of a normal interaction constraint

Christos Kloukinas, Mert Ozkaya 3 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

<D =
[
ID h :=⊥

]
,

preds =

Occupied = (h 6=⊥),
NullCaller(c) = (c=⊥),
CallerIsHolder(c) = (c= h),

NoVarAssigned = ∀v ∈ D(¬assigns(v))
HolderIsCaller(c) = (h′ = c),

NoHolder = (h′ =⊥),


,

Ps = {piSA
seat},Pp = /0,φ ,χ >

(a) Seat top-level specificationsχ

1 =

pseat,sitdown(c),

when(¬Occupied),
True






aχ

1 =

pseat,arise(c),

Occupied,
True


aχ

2 =

pseat,arise(c),

¬Occupied,
InteractionEX ∧NoVarAssigned




(b) Seat interaction constraints (χ)


sφ

1 =

pseat,sitdown(c),

¬NullCaller(c),
HolderIsCaller(c)


sφ

2 =

pseat,sitdown(c),

NullCaller(c),
NullIDEX∧NoVarAssigned






aφ

1 =


pseat,arise(c),

¬NullCaller(c)∧CallerIsHolder(c),
NoHolder
∧∀v ∈ (D\{h})(¬assigns(v))


aφ

2 =

pseat,arise(c),

NullCaller(c),
NullIDEX∧NoVarAssigned


aφ

3 =

pseat,arise(c),

¬CallerIsHolder(c),
WrongCallerEX∧NoVarAssigned




(c) Seat functional constraints (φ)

pre(sχ

1)→
∧ pre(sφ

1)→ post(sφ

1)

pre(sφ

2)→ post(sφ

2)

 pre(aχ

1)→
∧


pre(aφ

1)→ post(aφ

1)

pre(aφ

2)→ post(aφ

2)

pre(aφ

3)→ post(aφ

3)

 pre(aχ

2)→ post(aχ

2)

(d) Combination of functional and interaction pre-/post-conditions

Figure 2: Seat component specification

is satisfied, the functional constraints should also be sat-
isfied.

If one specified contracts in the usual manner, they
would need F × I cases in the worst case, combining F
functional and I interaction constraints, e.g., for arise:
Case 1: pre(aχ

1)∧pre(aφ

1)→ post(aφ

1)

Case 2: pre(aχ

1)∧pre(aφ

2)→ post(aφ

2)

Case 3: pre(aχ

1)∧pre(aφ

3)→ post(aφ

3)
Case 4: pre(aχ

2)→ post(aχ

2)
Repeating “pre(aχ

1)” each time makes specifications more
difficult to read than they need be and much easier to
get wrong. The introduction of the (minimal) interaction
constraints imposes a much cleaner and modular manner.
Figure 3 shows how the Seat component specification
would look like in pseudo JML. Non JML parts are
preceded by two “@” characters instead of one. There
are two new groups “InteractionConstraints” and
“FunctionalConstraints”, and the new “UNDEFINED_-
BEHAVIOUR” type to be used in the former group only. Key-
word when cannot be used in FunctionalConstraints

and Let constructs (in Figure 3a) introduce new predicates.

B. Extending Design by Contract – Service Consumer
Contracts

In DbC service providers specify pre-/post-conditions
for each method they provide but service consumers
cannot express their own contractual clauses. Indeed,

programming languages do not allow service consumers
to even declare the services they consume. However, in
component models like CORBA one declares both the
services it provides (our sockets) and these it consumes
(our plugs). Here we extend DbC further, so that we can
specify contracts for consumed services as well. This is
done for the Philosopher in Figure 4a. Philosopher has a
Boolean variable wte (“want to eat”), and three more (hs,
hl, hr) to state whether it has a Seat, a left and a right
Fork respectively. These change their values according to
its functional constraints in Figure 4c, which apply when
a method does not throw an exception – that is why we
call them “normal”. On exceptions the Philosopher does
not update its data. Keyword self denotes the ID of the
component instance.

The Philosopher interaction constraints in Figure 4b
state when services may be requested from others. These
constraints specify no resource acquisition/release order.
Philosopher is free to acquire a Seat after both Forks or
in between them. In fact, it can even acquire or release
a resource multiple times. The constraints state that when
it wants to eat it will need to acquire all three resources,
without releasing any of them. When it does not want
to eat, it will release all three resources (again in some
unspecified order), without attempting to re-acquire any
of them until all of them have been released. These
constraints were added so that the system can deadlock –

Christos Kloukinas, Mert Ozkaya 4 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

1 /*@ instance model ID holder;
2 @ initially holder == NullID;
3 @@Let Occupied
4 @@ \old(holder) != NullID;
5 @@Let NullCaller(c) c == NullID;
6 @@Let CallerIsHolder(c)
7 @@ c == \old(holder);
8 @@Let HolderIsCaller(c)
9 @@ holder == c;

10 @@Let NoHolder holder == NullID;
11 @*/

(a) Specification of component variables
1 /*@@InteractionConstraints
2 @@ public normal_behavior
3 @@ when !Occupied;
4 @@FunctionalConstraints
5 @public normal_behavior
6 @ requires !NullCaller(c);
7 @ ensures HolderIsCaller(c);
8 @ assignable holder;
9 @also

10 @ public exceptional_behavior
11 @ requires NullCaller(c);
12 @ signals (NullIDEX) true;
13 @ assignable \nothing; @*/
14 void sitdown(ID c);

(b) Specification of sitdown constraints

1 /*@
2 @@InteractionConstraints
3 @@ public normal_behavior
4 @@ requires Occupied;
5 @@also
6 @@ public UNDEFINED_BEHAVIOR
7 @@ requires !Occupied;
8 @@FunctionalConstraints
9 @public normal_behavior

10 @ requires !NullCaller(c)
11 @ && CallerIsHolder(c);
12 @ ensures NoHolder;
13 @ assignable holder;
14 @also
15 @ public exceptional_behavior
16 @ requires NullCaller(c);
17 @ signals (NullIDEX) true;
18 @ assignable \nothing;
19 @also
20 @ public exceptional_behavior
21 @ requires !NullCaller(c)
22 @ && !CallerIsHolder(c);
23 @ signals (WrongCallerEX) true;
24 @ assignable \nothing;
25 @*/
26 void arise(ID c);

(c) Specification of arise constraints

Figure 3: Seat component specification in pseudo-JML

<D =

{
Bool wte := True,Bool hs := False,
Bool hl := False,Bool hr := False

}
,

preds = /0,Ps = /0,

Pp = {piSA
phil seat,p

iGP
phil forkR,p

iGP
phil forkL},φ ,χ >

(a) Philosopher top-level specification

[(pphil seat,sitdown(self),when(wte),True)]

[(pphil seat,arise(self),when(¬wte),True)]

[(pphil forkL,get(self),when(wte),True)]

[(pphil forkL,put(self),when(¬wte),True)]

[(pphil forkR,get(self),when(wte),True)]

[(pphil forkR,put(self),when(¬wte),True)]

(b) Philosopher interaction constraints (χ)

[(
pphil seat,sitdown(self),True,
hs′ = True ∧ wte′ = ¬(wte∧hl∧hr)

)]
[(

pphil seat,arise(self),True,
hs′ = False ∧ wte′ = ¬(wte∨hl∨hr)

)]
[(

pphil forkL,get(self),True,
hl′ = True ∧ wte′ = ¬(wte∧hs∧hr)

)]
[(

pphil forkL,put(self),True,
hl′ = False ∧ wte′ = ¬(wte∨hs∨hr)

)]
[(

pphil forkR,get(self),True,
hr′ = True ∧ wte′ = ¬(wte∧hs∧hl)

)]
[(

pphil forkR,put(self),True,
hr′ = False ∧ wte′ = ¬(wte∨hs∨hl)

)]
(c) “Normal” functional constraints (φ)

Figure 4: Philosopher component specification
CP1 = ∀m.

∨
n

pre(mχ
n) (1) CP2 = ∀m.

∧
k

(
pre(mχ

k)→
∨
n

pre(mφ
n)

)
(2)

CP3 = ∀m.
∧
k

pre(mχ

k)→
∧
n

pre(mφ
n)→

post(mφ
n)
∧
j 6=n

(
pre(mφ

j)→ post(mφ

j)
) (3)

otherwise, Philosopher can release the resources it holds
when those it needs are not available. It is exactly for
this that we have introduced functional and interaction
constraints to plug ports. Without them designers cannot
express the constraints under which the service providers
must operate. They are essentially a service’s “environ-
ment model”.

C. Testing Architectural Components

Following the constraint semantics in Figure 2d, one
needs to check that (CP1) the interaction pre-conditions
are complete; and whenever the normal interaction pre-
conditions are satisfied that (CP2) the functional pre-

conditions are complete; and (CP3) the functional con-
straints are consistent.

In equation 1 n ranges over both the normal and excep-
tional interaction constraints and the predicate when(φ)
should always evaluate to True. So for Seat’s sitdown,
we need to verify that pre(sχ

1) holds. Being a when
predicate, this is the case. For Seat’s arise we can also
verify that (pre(aχ

1)∨pre(aχ

2)) = (Occupied∨¬Occupied)
holds. In equation 2 k ranges over the normal interaction
constraints of method m and n ranges over all its functional
constraints. Both here and in equation 3 the predicate
when should be evaluated as the identity function, i.e.,
when(φ) = φ . This is because we want to evaluate the

Christos Kloukinas, Mert Ozkaya 5 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

completeness of the functional pre-conditions only when
the method is eventually executed, in which case the when
condition should hold.

III. XCD CONNECTORS

Fork being similar to Seat we can now specify the
system connectors. If we opt for something like procedure-
call, event-bus, etc. then we are specifying our system at
a very low-level. The extra details obfuscate the design,
making it difficult to identify the high-level interaction
protocols, thanks to which the system achieves its non-
functional requirements. This is why XCD focuses instead
on complex connectors. These connectors consist of a
set of roles, each one with a set of port variables. Role
port variables are assumed by some component ports, as
specified by the architectural configuration.

A. Glue-less Connectors

XCD connectors differ from those of Wright [12], since
XCD employs no “glue” element for coordinating role be-
haviours. The glue is problematic for a number of reasons.
First, the glue is a choreography, so one needs to realize it
as a set of individual services (i.e., role implementations)
composed in parallel. But [13], [14] have shown that
the choreography realization problem is undecidable in
general. Second, if we need to consider multiple instances
of some role, then we need to manually specify in the glue
all the acceptable composed behaviours of these instances.
For example, when considering a market system with one
consumer and two merchants in [15], the glue describes
all possible interactions of the three roles – this does not
scale. Finally, the glue hinders the architectural analysis
for further non-functional requirements, such as reliability,
performance, real-time behaviour, etc. It introduces an
artificial centralization point in the connector, even if the
protocol that is being represented by the connector does
not have such a centralization point, e.g., the procedure-
call. This makes analysis more difficult, since now one
has to consider the real centralization points while ignor-
ing the fictitious ones (the glue elements of the various
connectors). It also makes the modelling more difficult
to validate. For example, in [15] the authors perform
a probabilistic analysis of a market system, assigning a
rate R1 to all transitions between the consumer role and
the glue and a rate R2 to all transitions among the glue
and the merchant roles. However, transitions between the
consumer and the glue represent in reality requests from
the consumer to the merchants, as well as responses from
the merchants to the consumer. The transitions among the
glue and the merchants also represent the same requests
and responses. We fail to see how these rate assignments
can be justified – in our view, the glue complicates the
situation so much that it is very easy to produce models
that are difficult to understand and map to reality.

B. Wrapper-like Connectors

In [12], a component should implement the roles it
assumes, L (Comp)⊆L (Role). This seems too constrain-
ing and limiting component reusability. Instead, XCD

components focus on implementing just the minimum
interaction constraints that they need to operate correctly.
The roles they assume act as a sort of wrapper, control-
ling their behaviour so that it meets the expected role
behaviours.

C. Decentralized Connectors

Figure 5 shows the specification of a complex De-
centralized connector for the dining philosophers. The
connector defines a set of roles and interaction channels
(Figure 5a). The specifications of the roles are shown
in Figure 5b. Each of them has four constituent parts:
a set of plug port variables (Pp

v), a set of socket port
variables (Ps

v), a set of role data variables (D), and a
set of interaction constraints (χ). Roles rseat, rforkL, and
rforkR, have no data or interaction constraints. Role rphil
uses variables to keep track of the state of resources and
to control it through its interaction constraints in Figure 5c
so that it only acquires resources when they are free
and releases them when it already holds them. These
constraints modify role variables only when the respective
methods do not raise an exception. Channels in Figure 5d
state which role port variables are linked to each other –
all the channels we use are rendez-vous ones.

It should be noted that this connector is not describing
the full system configuration. If there are n instances of the
Philosopher, Seat, and Fork components in the system then
there should be n instances of the Decentralized connector
as well, since a single connector instance can only connect
one Philosopher, with one Seat and two Forks.

D. Fundamental Connector Properties

There are two fundamental connector safety properties:
(XP1) local deadlock-freedom; and (XP2) interaction
exception-freedom. Local deadlock-freedom (XP1) re-
quires each connector role to not cause its component
to deadlock by constraining it too much. This can be
checked at a local level by showing that L (Comp ‖
Role)⊆L (Role).

However, interaction exception-freedom (XP2) is a
connector-level property. It requires that component socket
ports never throw an interaction exception, no matter how
the component plug ports behave. This can be checked
by composing the connector with the corresponding com-
ponents that assume its roles, while setting all interaction
pre-conditions of component plug ports to True (i.e., those
in Figure 4b). Doing so allows us to explore all possible
interaction patterns that the connector roles allow for the
components and verify that interaction exceptions have
been rendered impossible by it.

Of course, these two safety properties do not guar-
antee that the connector as a whole (or for that matter
the system) will be deadlock-free. Nevertheless we do
not view this as being problematic because we believe
that connector-level deadlock-freedom is best met through
external role strategies as discussed in section IV.

Christos Kloukinas, Mert Ozkaya 6 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

< R =
{

rphil,rseat,rforkL,rforkR
}
,Chan >

(a) Connector top-level specification

rphil =
Pp

v =
{

pviSA
phil seat,pviGP

phil forkL,pviGP
phil forkR

}
,

Ps
v = /0,

D =


Bool sitting := False,
BoolhaveLF := False,
BoolhaveRF := False

 ,χphil


rseat =[
Pp

v = /0,Ps
v =

{
pviSA

seat

}
,D = /0,χseat = /0

]
rforkL =[
Pp

v = /0,Ps
v =

{
pviGP

forkL

}
,D = /0,χforkL = /0

]
rforkR =[
Pp

v = /0,Ps
v =

{
pviGP

forkR

}
,D = /0,χforkR = /0

]
(b) Role (R) definitions

[(
pvphil seat,sitdown(self),

when(¬sitting),sitting′ = True

)]
[(

pvphil seat,arise(self),

when(sitting),sitting′ = False

)]
[(

pvphil forkL,get(self),

when(¬haveLF),haveLF′ = True

)]
[(

pvphil forkL,put(self),

when(haveLF),haveLF′ = False

)]
[(

pvphil forkR,get(self),

when(¬haveRF),haveRF′ = True

)]
[(

pvphil forkR,put(self),

when(haveRF),haveRF′ = False

)]
(c) Philosopher role “normal” constraints (χphil)

c⇀↽p,s = (pvphil seat,pvseat),c
⇀↽
p, f l = (pvphil forkL,pvforkL),c

⇀↽
p, f r = (pvphil forkR,pvforkR)

(d) Channels (Chan) connecting port-variables

Figure 5: Decentralized dining philosophers connector

<R =
{

rphil,rseat,rforkL,rforkR,rbtlr
}
,Chan >

(a) Connector top-level specification

Pp
v ={
pvbtlr seat p

iSA ,pvbtlr forkL p
iGP ,pvbtlr forkR p

iGP
}
,

Ps
v ={
pvbtlr seat s

iSA ,pvbtlr forkL s
iGP ,pvbtlr forkR s

iGP
}
,

D =


Bool sitting := False,
BoolhaveLF := False,
BoolhaveRF := False

 ,χbtlr

(b) Local Butler role (rbtlr) specification

Pp
v = /0,Ps

v = /0,Dshared = {Intdiners := 0} ,
χshared

btlr = /0

(c) Shared Butler role specification

[(
pvbtlr seat p,sitdown(c),True,
sitting′ = True∧diners++

)]
[(

pvbtlr seat p,arise(c),True,
sitting′ = False∧diners--

)]
[(

pvbtlr forkL p,get(c),True,haveLF′ = True
)]

[(
pvbtlr forkL p,put(c),True,haveLF′ = False

)]
[(

pvbtlr forkR p,get(c),True,haveRF′ = True
)]

[(
pvbtlr forkR p,put(c),True,haveRF′ = False

)]
(d) Butler role “normal” constraints (χbtlr)

c⇀↽p,bs = (pvphil seat,pvbtlr seat s),c
⇀↽
bss,bsp = (pvbtlr seat s,pvbtlr seat p),c

⇀↽
bsp,s = (pvbtlr seat p,pvseat),

c⇀↽p f l,b f ls = (pvphil forkL,pvbtlr forkL s), · · ·

(e) Channels (Chan) connecting port-variables

Figure 6: Centralized dining philosophers connector

E. Centralized Connectors

Figure 6 shows a Centralized connector for the din-
ing philosophers. Unlike the Decentralized connector of
Figure 5, this one introduces a further role, the Butler
(rbtlr). The Butler sits among the other roles, as the
connector channels (Figure 6e) indicate, and observes the
interactions of the other roles. Unlike the other roles, the
Butler has two parts – a local and a shared one, shown
in Figure 6b and 6c respectively. While each Centralized
connector instance creates a new local Butler role part, the
shared part of the Butler role will be unique and shared
among all instances of the Centralized connector, just like

all objects of a class share the “static” class attributes.
It is the shared part of the Butler that introduces a
centralized element into the system. So in the final system
configuration of n Philosopher, etc. components and n
Centralized connectors, there will be a single Butler shared
role instance that will group together the n instances of the
local Butler roles of the different connector instances. The
Butler role instance will be assumed by a single Butler
component, which serves just as something for the Butler
role to wrap itself around and does not need any data or
behaviour of its own, only ports for the Butler role port
variables.

Christos Kloukinas, Mert Ozkaya 7 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

[(
pvphil forkL,get(c),when(sitting),True

)]
[(

pvphil forkR,get(c),when(sitting),True
)]

(a) Resource acquisition order

[(
pvphil seat,arise(c),
when¬(haveLF∨haveRF),True

)]
(b) Resource release order

[(
pvphil forkL,get(c),
when(c%2 = 0∨haveRF),True

)]
[(

pvphil forkR,get(c),
when(c%2 6= 0∨haveLF),True

)]
(c) Deadlock-avoidance by asymmetry

[(
pvphil forkL,get(c),
when((rforkL.ID< rforkR.ID)∨haveRF),True

)]
[(

pvphil forkR,get(c),
when(!(rforkL.ID< rforkR.ID)∨haveLF),True

)]
(d) Deadlock-avoidance by resource order

Figure 7: Philosopher role strategies[(
pvbtlr forkL p,get(c),when(sitting),True

)]
[(

pvbtlr forkR p,get(c),when(sitting),True
)]

(a) Resource acquisition order[(
pvbtlr seat p,arise(c),when¬(haveLF∨haveRF),True

)]
(b) Strategy for resource release order


pvbtlr seat p,sitdown(c),

when(diners < numOf(btlrlocal)−1),
True




[(
pvbtlr seat p,arise(c),when(diners > 0),True

)]
(c) Deadlock-avoidance butler strategy

Figure 8: Butler role strategies

IV. SYSTEM CONTROL AND DESIGN DECISIONS –
ROLE STRATEGIES

XCD advocates the underspecification of connec-
tors. Additional interaction properties are to be imposed
through modular role strategies [7]. These can enforce an
action order, e.g., that Seat is acquired before the Forks,
or render the system deadlock-free. Deadlock-freedom
itself can usually be achieved through different techniques.
Instead of hard-coding one in the connector, XCD allows
designers to re-use the same connector specification and
experiment with different strategies for it in a modular
fashion.

Figure 7 shows examples of such strategies for the
Philosopher role. The strategy in Figure 7a forces Seat
to be acquired before the Forks, while that of Figure 7b
forces Forks to be released first. Then the asymmetry
strategy in Figure 7c avoids deadlocks by picking a
different Fork when the ID of the caller is odd or even.
The strategy in Figure 7d also avoids deadlocks but does
so by always acquiring the Fork with the smallest ID first.
In the Centralized connector we can also employ strategies
on the Butler role, as shown in Figure 8. The strategies
in Figure 8a and 8b are similar to those in Figure 7a and
7b respectively – only they are applied to the Butler role
instead of the Philosopher. Finally, Figure 8c shows how
to avoid deadlocks by preventing Philosophers from ever
filling the table.

V. EVALUATION

We have manually encoded these architectural specifi-
cations in the FSP process algebra [16] and have verified
them automatically. In the FSP encoding each port and
port variable are represented by one process that estab-
lishes the interaction constraints of their methods and for
components we also employ one process per port method
to establish its functional constraints. In total, we con-
sidered 12 different configurations for the decentralized

system in Figure 9a and 4 different configurations for the
centralized system Figure 9b, using different combinations
of strategies. In all these cases our models remained the
same, with the only difference being the enabling/disabling
of strategies.

The different role strategies defined in Figure 7 and
Figure 8 allow designers to easily experiment with control-
ling their system and evaluating different design decisions
early on. Thus, XCD aids designers to decide on, and
explicitly document, the relative importance of the various
system properties and the specific solutions they have
provided for each. XCD also makes it easier to experiment
with different strategies and configurations of strategies,
as these are represented explicitly and independently of
connectors.

Table Ia shows results from combinations of the two
ordering strategies of Figure 7a and Figure 7b with the
asymmetry strategy of Figure 7c and the resource-based
strategy of Figure 7d, for a system with 2 philosophers.
Table Ib, Table Ic, and Table Id show results for 3, 4,
and 5 philosophers respectively. We used LTSA v. 2.2
with 7000 MB of RAM. Surprisingly, we see that the best
state space reduction for two strategies is obtained when
combining the two strategies that constrain the acquisition
and release order of resources (64%, 80%, 88%, and 93%
respectively), even though these do not render the system
deadlock-free. These reductions are almost the double of
those achieved by the strategies for deadlock-freedom on
their own (33%, 40%, 51%, and 58% respectively).

Table IIa shows results from the combined “Good
Manners” strategy of Figure 8a and Figure 8b with the
deadlock-free strategy of Figure 8c, for a system with 2
philosophers. Table IIb shows results for these strategies
for 3 philosophers respectively.

It is not necessarily true that a designer should choose to
apply a deadlock-freedom strategy first. In fact, the results
obtained by the two deadlock-freedom strategies for 2 and

Christos Kloukinas, Mert Ozkaya 8 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

PhilRole1

P
h
i
l
1

PhilRole2

P
h
i
l
2

S
e
a
t
1

SeatRole1

RForkRole2

LForkRole1

LForkRole2

RForkRole1

SeatRole2

F
o
r
k
1

F
o
r
k
2

S
e
a
t
2

Role

C
o
m
p
o
n
e
n
t

port

port var.

channel

(a) Decentralized configuration

PhilRole1

PhilRole2

Butler(Local)Role1

Butler(Local)Role2

SeatRole1

RForkRole2

LForkRole1

LForkRole2

RForkRole1

SeatRole2

B
u
t
l
e
r

P
h
i
l
1

P
h
i
l
2

S
e
a
t
2

F
o
r
k
2

F
o
r
k
1

S
e
a
t
1

Butler(Shared)Role

(b) Centralized system configuration

Figure 9: System configurations

3 philosophers in Table Ia and Table Ib is a reason for
not doing so is – they are identical. So for designers to
argue why they have chosen one strategy over the other,
they have to consider a larger system, with 4 philosophers
and possibly with 5. There the two strategies produce
different results (a 51% versus 48% reduction and a 58%
versus a 55% one respectively). However, checking a
larger system is far more expensive and may lead to state-
space explosion. So we can see that constraining first with
some strategies which do not meet any critical properties,
as with the acquisition and release ordering strategies,
is a sensible step for reducing the overall state-space. It
allows designers to explore larger instances of the system,
which may potentially help identify further problems,
opportunities for optimization, or simply provide evidence
for choosing among alternative strategies for meeting a
particular property, as it does here. Designers can then
remove some of the non-critical strategies, if they need to
use the extra degrees of freedom for meeting other critical
properties, e.g., performance.

VI. RELATED WORK

Research in software architectures identified the need
for a first-class connector notion from the very beginning
[1], [2]. The problems created by the non-documentation
of protocols was also identified early on in [6] and a
formalization of connectors was presented in [12] shortly
after that – a formalization that is still being used today,
e.g., [17], [18]. Compared to [12], XCD adds the extra
element of role strategy, and the additional constraint that
connectors and strategies should not have a glue.

Work which has been done at identifying different
types of connectors [19], [20] has tended to focus at
cataloguing and specifying basic interaction mechanisms,
e.g., procedure calls, event buses, etc., especially since

these were needed to base upon them more complex con-
nectors. However, the use of basic interaction mechanisms
as connectors in an architectural specification makes it
difficult to understand what the real protocols in the system
are and leads to system specifications that are at a very
low level of abstraction, as is the case with AADL [5].
Indeed, designers are forced to incorporate the behaviour
of the more complex connectors they wish to use into
their components, decreasing their re-use potential and
increasing the chance of architectural mismatch [6]. In
fact, the presence of low-level connectors [19], [20] in a
system architecture should alert designers that they have
a potential problem. That is, they have over-designed the
architectural description and/or have failed to describe the
general protocols that are supposed to be used among
their components in a way that is sufficiently abstract,
and therefore understandable and analyzable. Blackboards,
event buses, tuple spaces, etc., are low-level interconnec-
tion mechanisms that give precious little information on
what interaction protocols a system uses and how these
meet its non-functional requirements.

Languages used by practitioners suffer from this prob-
lem in particular. A connector in UML 2.0 is just a UML
association, so architects must use modelling elements
other than UML connectors to describe connectors [21].
AADL [3] only supports certain specific, basic connector
types and does not offer the possibility to define more
complex connector types, while SysML [4] does not
support connectors at all.

Plasil et al.’s work [22]–[24] is somewhat similar to
ours, in particular the need to describe component inter-
actions as separate entities, albeit ones which still form
part of the component. Instead, XCD cleanly separates
component and connector behaviour, and further separates
the control parts of the connectors through role strategies.

Christos Kloukinas, Mert Ozkaya 9 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

Table I: Different decentralized strategy combinations

(a) 2 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 505 0.00 1104 0.00 Yes
Acq(uisition) 303 40.00 628 43.12 Yes
Rel(ease) 345 31.68 732 33.70 Yes
As(ymmetry) 335 33.66 708 35.87 No
Acq./Rel. 179 64.55 352 68.12 Yes
Acq./As. 245 51.49 504 54.35 No
Rel./As. 205 59.41 412 62.68 No
Acq./Rel./As. 133 73.66 256 76.81 No

Res. Order (RO) 335 33.66 708 35.87 No
Acq./RO 245 51.49 504 54.35 No
Rel./RO 205 59.41 412 62.68 No
Acq./Rel./RO 133 73.66 256 76.81 No

(b) 3 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 12750 0.00 42060 0.00 Yes
Acq(uisition) 6381 49.95 20178 52.03 Yes
Rel(ease) 6615 48.12 21030 50.00 Yes
As(ymmetry) 7550 40.78 24320 42.18 No
Acq./Rel. 2532 80.14 7452 82.28 Yes
Acq./As. 4850 61.96 15278 63.68 No
Rel./As. 3260 74.43 9892 76.48 No
Acq./Rel./As. 1667 86.93 4804 88.58 No

Res. Order (RO) 7550 40.78 24320 42.18 No
Acq./RO 4850 61.96 15278 63.68 No
Rel./RO 3260 74.43 9892 76.48 No
Acq./Rel./RO 1667 86.93 4804 88.58 No

(c) 4 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 304325 0.00 1340320 0.00 Yes
Acq(uisition) 123327 59.48 521992 61.05 Yes
Rel(ease) 124545 59.08 527864 60.62 Yes
As(ymmetry) 146925 51.72 631480 52.89 No
Acq./Rel. 34775 88.57 136496 89.82 Yes
Acq./As. 85725 71.83 361960 72.99 No
Rel./As. 44455 85.39 178168 86.71 No
Acq./Rel./As. 19561 93.57 75136 94.39 No

Res. Order (RO) 156675 48.52 675680 49.59 No
Acq./RO 86925 71.44 366896 72.63 No
Rel./RO 50305 83.47 204108 84.77 No
Acq./Rel./RO 20173 93.37 77568 94.21 No

(d) 5 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 7178125 0.00 39529000 0.00 Yes
Acq(uisition) 2334189 67.48 12361790 68.73 Yes
Rel(ease) 2340375 67.40 12398970 68.63 Yes
As(ymmetry) 2996250 58.26 16129250 59.20 No
Acq./Rel. 475359 93.38 2332320 94.10 Yes
Acq./As. 1497825 79.13 7915260 79.98 No
Rel./As. 691550 90.37 3484630 91.18 No
Acq./Rel./As. 235655 96.72 1132228 97.14 No

Res. Order (RO) 3191250 55.54 17227750 56.42 No
Acq./RO 1518225 78.85 8020772 79.71 No
Rel./RO 773450 89.22 3929690 90.06 No
Acq./Rel./RO 242387 96.62 1165100 97.05 No

Table II: Different centralized strategy combinations

(a) 2 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 30953 0.00 79726 0.00 Yes
Good Manners 12779 58.71 33214 58.34 Yes
Deadlock-Freedom 18265 40.99 47374 40.58 No
GM+DF 3757 87.86 9894 87.59 No

(b) 3 Philosophers

Strategies States Red.
(%) Trans. Red.

(%)
Dead-
lock

No strategies 735376 0.00 1936512 0.00 Yes
Good Manners 196118 73.33 521484 73.07 Yes
Deadlock-Freedom 584136 20.57 1543092 20.32 No
GM+DF 80560 89.05 215940 88.85 No

It should be noted here that the constraints introduced
through strategies are orthogonal to architectural style
constraints, such as those of ACME [25]. The latter are
global constraints enforcing a style, while strategies are
local constraints. So there are cases where the strategy
constraints are met but the style ones are not, as in a pipe-
and-filter style prohibiting cycles, something that cannot
be enforced through role strategies.

VII. CONCLUSIONS

XCD is a new connector-centric approach for designing
systems, which facilitates their formal analysis at an
early stage. XCD views connectors as the most important
architectural element and uses them to cleanly separate
functional behaviour from interaction behaviour. XCD
further modularizes architectural specifications by sep-
arating control behaviour into external controller role
strategies that can be easily combined and replaced, with-
out having to modify the component or connector spec-

Christos Kloukinas, Mert Ozkaya 10 / 11 TR/2012/DOC/01

XCD – Simple, Modular, Formal Software Architectures

ifications. These structural characteristics of XCD mean
that designers can very easily experiment with different
combinations of components, connectors, and strategies, to
formally evaluate the properties of their systems and the
potential solutions that exist for meeting those, without
having to modify the specifications of any of the three
types of elements.

Inspired by JML, XCD follows a Design by Contract
(DbC) specification approach so that it is easier to use.
XCD extends DbC in two ways. First XCD introduces a
new structure for contracts so as to distinguish between
the different behaviour/contract types (functional/interac-
tion) in a clean manner. Second, XCD extends DbC so
that service consumers can specify contractual terms
too, expressing their intended use of the services they
are interested in, i.e., providing a service “environment
model”.

Apart from developing tools to support the XCD ap-
proach, we are currently considering extensions of it so
that it can deal with events (i.e., asynchronous calls), and
different types of interaction channels (buffered, lossy,
etc.).

ACKNOWLEDGEMENTS

This work has been partially supported by the EU
project FP7-257367 IoT@Work – “Internet of Things at
Work”.

REFERENCES

[1] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” SIGSOFT Softw. Eng. Notes, vol. 17,
no. 4, pp. 40–52, Oct. 1992.

[2] D. Garlan and M. Shaw, “An introduction to software
architecture,” in Adv. in SW Eng. and Knowledge Eng.
Singapore: World Scientific Publishing Company, 1993, pp.
1–39.

[3] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE archi-
tecture analysis & design language,” in IEEE Intl Symp. on
Intell. Control, Oct. 2006, pp. 1206–1211, www.aadl.info.

[4] L. Balmelli, “An overview of the systems modeling lan-
guage for products and systems development,” J. of Obj.
Tech., vol. 6, no. 6, pp. 149–177, Jul.–Aug. 2007, www.
sysml.org.

[5] D. Delanote, S. Van Baelen, W. Joosen, and Y. Berbers,
“Using AADL to model a protocol stack,” in ICECCS, Apr.
2008, pp. 277–281.

[6] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
mismatch or why it’s hard to build systems out of existing
parts,” in ICSE, Apr. 1995, pp. 179–185.

[7] C. Kloukinas, “Better abstractions for reusable components
& architectures,” in ICSE-NIER – ICSE Companion. Van-
couver, Canada: IEEE Press, May 2009, pp. 199–202.

[8] S. Bliudze and J. Sifakis, “The algebra of connectors –
Structuring interaction in BIP,” in EmSoft, Oct. 2007, pp.
11–20.

[9] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond
assertions: Advanced specification and verification with
JML and ESC/Java2,” in FMCO’05 – Formal Methods for
Comp. and Obj., ser. LNCS, vol. 4111. Springer, 2006,
pp. 342–363.

[10] B. Meyer, “Applying ”design by contract”,” IEEE Com-
puter, vol. 25, no. 10, pp. 40–51, 1992.

[11] E. Rodrı́guez, M. B. Dwyer, C. Flanagan, J. Hatcliff,
G. T. Leavens, and Robby, “Extending JML for modular
specification and verification of multi-threaded programs,”
in ECOOP, ser. LNCS, vol. 3586. Springer, 2005, pp.
551–576.

[12] R. Allen and D. Garlan, “A formal basis for architectural
connection,” ACM TOSEM, vol. 6, no. 3, pp. 213–249, Jul.
1997.

[13] R. Alur, K. Etessami, and M. Yannakakis, “Inference of
message sequence charts,” IEEE Trans. Software Eng.,
vol. 29, no. 7, pp. 623–633, 2003.

[14] ——, “Realizability and verification of MSC graphs,”
Theor. Comput. Sci., vol. 331, no. 1, pp. 97–114, 2005.

[15] F. Di Giandomenico, M. Z. Kwiatkowska, M. Martinucci,
P. Masci, and H. Qu, “Dependability analysis and verifica-
tion for connected systems,” ser. LNCS, vol. 6416, 2010,
pp. 263–277.

[16] J. Magee and J. Kramer, Concurrency – state models and
Java programs, 2nd ed. Wiley, 2006.

[17] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. John
Wiley & Sons, 2010, ISBN-13: 978-0470167748.

[18] V. Issarny, A. Bennaceur, and Y.-D. Bromberg,
“Middleware-layer connector synthesis: Beyond state
of the art in middleware interoperability,” ser. LNCS, vol.
6659, 2011, pp. 217–255.

[19] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a
taxonomy of SW connectors,” in ICSE, 2000, pp. 178–187.

[20] D. Hirsch, S. Uchitel, and D. Yankelevich, “Towards a
periodic table of connectors,” in COORDINATION, ser.
LNCS, vol. 1594, 1999, p. 418.

[21] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and
J. R. O. Silva, “Documenting component and connector
views with UML 2.0,” TR CMU/SEI-2004-TR-008, 2004.

[22] D. Bálek and F. Plasil, “Software connectors and their role
in component deployment,” ser. IFIP Conf. Proc., vol. 198.
Kluwer, 2001, pp. 69–84.

[23] F. Plasil, M. Besta, and S. Visnovsky, “Bounding compo-
nent behavior via protocols,” in TOOLS (30). IEEE, 1999,
pp. 387–398.

[24] F. Plasil and S. Visnovsky, “Behavior protocols for software
components,” IEEE Trans. Software Eng., vol. 28, no. 11,
pp. 1056–1076, 2002.

[25] J. S. Kim and D. Garlan, “Analyzing architectural styles
with Alloy,” in ROSATEA, Jul. 2006.

Christos Kloukinas, Mert Ozkaya 11 / 11 TR/2012/DOC/01

www.aadl.info
www.sysml.org
www.sysml.org

	Introduction
	Complex Connectors for Architectural Analysis
	Connector Role Strategies for Control and Design Decisions
	Design by Contract
	Case Study

	XcD Components
	Extending Design by Contract – Different Contract Types
	Extending Design by Contract – Service Consumer Contracts
	Testing Architectural Components

	XcD Connectors
	Glue-less Connectors
	Wrapper-like Connectors
	Decentralized Connectors
	Fundamental Connector Properties
	Centralized Connectors

	System Control and Design Decisions – Role Strategies
	Evaluation
	Related Work
	Conclusions
	References

