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Abstract

Previous work suggested that convexity in the Euler lattice can be interpreted in terms of consonance [1]. In
this paper, a second hypothesis is presented that states that compactness in the Euler lattice is an indication of
consonance. The convexity and compactness of chords is used as the basis of a model for the preferred intona-
tion of chords in isolation (without a musical context). It is investigated if, and to which degree convexity and
compactness are in agreement with the preferred intonation of chords in isolation. As measure of consonance to
compare the model to, Euler’s Gradus function is used. It is stressed however, that in the context of this paper,
Euler’s consonance model is able to represent a general consonance model rather than only the Gradus function
itself. First, the diatonic chords are observed, after which the compactness, convexity and consonance according
to Euler, is calculated for all chords in general containing 2, 3 and 4 notes within a bounded note name space,
such that the relation between these three measures can be obtained. The principle of compactness turns out to
be a strong indicative of consonance for chords, having the preference over other consonance models that it is
simple and intuitive to use.

Keywords: Intonation, chords, compactness, convexity, Euler, consonance

1 Introduction: Tuning of chords in isolation

Many authors have agreed that the intonation of musical tones in Western music can be split in two or more
categories (see for example [2, 3, 4]), and their theories agree on the fact that one category accounts for the
intonation that is concerned with vertical musical sounds, that is, sounds without any musical context. This type
of intonation is referred to by Terhardt [2] as sensory consonance1, and by Fyk [3] as harmonic tuning. According
to Palisca and Moore [5], sensory consonance refers to the immediate perceptual impression of a sound as being
pleasant or unpleasant, and may be judged for sounds in isolation (without a musical context) and by people
without musical training. In this paper we will focus on this type of intonation applied to chords, which we will
refer to as ’consonance’.

Musicians that are not limited to the fixed equal tempered system, such as singers and string players, have
some freedom in intonation when playing a chord. These musicians can vary the tones of the chord in order to
sing or play every chord as consonant as possible. Until now, no generally accepted intonation theory has been
presented that prescribes how to tune chords in isolation. Let us for example consider the interval of a minor
seventh. This interval can be composed from a perfect fifth and a minor third or composed from two perfect
fourths, giving rise to two different tunings of the interval of a seventh which leads to (at least) two different
tunings of a chord containing the interval of a minor seventh. The question we will address in the paper is how
to tune chords in isolation, i.e. which of the many possibilities of tunings of a chord to choose.

The intonation of musical tones can be characterized by frequency ratios. Choosing a reference tone, for
example C, that is related to the frequency ratio 1, the perfect fifth C − G for example can be associated with
the frequency ratio 3/2. One way to identify the ratio belonging to a specific interval is to look at the harmonic
series, as shown in figure 1. Another way to identify the ratio belonging to a specific interval is by looking at a

1According to Terhardt [2], sensory consonance consists of roughness, sharpness and tonalness. Here, we do not consider these
explanations of sensory consonance but only address the fact that sensory consonance applies to chords without a musical context.
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Figure 1: A piece of the harmonic series on C. The interval of a perfect fifth can be found between the second and third
harmonic, therefore, the frequency ratio associated with this interval reads 3/2.

tone space that is referred to as the ’Euler lattice’2, a piece of which is shown in figure 2. This lattice can be
constructed using the following projection [12]:

φ : 2p(3/2)q(5/4)r 7→ (q, r), p, q, r ∈ Z (1)

that maps a frequency ratio to a point in a two dimensional space (fig. 2). The frequency ratio 2 corresponds
to the interval octave, the ratio 3/2 corresponds to the perfect fifth, and the ratio 5/4 corresponds to the ratio
major third. To create the Euler lattice (fig. 2), one representative that lies within one octave is chosen from the
many frequency ratios that all map onto one point (q, r). For example, the frequency ratios 6/2, 3/2, and 3/4
all map onto the point (1, 0) but only the ratio 3/2 is displayed in the figure. The resulting figure only includes
frequency ratios within one octave, that is, in the interval [1, 2).3.

Furthermore, every frequency ratio from the resulting figure can be built from a number of perfect fifths (3/2)
and major thirds (5/4). For more information, see [13] and [1]. By choosing a reference tone (C in this case)

1 3/2 9/8 27/16 81/644/316/932/27

40/27 10/9 5/3 5/4 15/8 45/32

25/18 25/24 25/16 75/64

64/45 16/15 8/5 6/5 9/5 27/20 81/80

128/75 32/25 48/25 36/25 27/25

256/135

256/225

135/128

225/128

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbbEbb

Figure 2: Euler lattice represented in frequency ratios and note names respectively. In the right figure, the C has been
chosen as reference tone. We refer to these lattices with the terms frequency ratio space and note name space.

and adding perfect fifths and major thirds according to eq. 1, we can now identify every ratio with a note name
which results in the right hand lattice of fig. 2. Projecting the two lattices from figure 2 onto each other, the
frequency ratio belonging to every interval (with C as base note) can be found.

Coming back to our argument, for some chords, like for example a major triad, the intonation may be clear,
but for others there is no consensus. Consider for example a dominant seventh chord C − E − G − B♭. It can
be tuned choosing the ratios: 1, 5/4, 3/2, 9/5 such that the minor seventh is tuned as minor third 6/5 above the
fifth; or tuned as 1, 5/4, 3/2, 16/9 such that the minor seventh is chosen to be two fourths above the root, and
many other possibilities exist.

Regener [14] stated the ambiguity involving just intonation frequency ratios as follows: Each notated interval
actually corresponds to an infinite number of frequency ratios, since multiplication of a frequency ratio by any
integer power of 81/80 leaves the notated interval unchanged. Regener [14] describes furthermore two criteria that
are commonly used or assumed in determining which are the “preferential” frequency ratios in just intonation
corresponding to a given interval:

2This lattice representation and minor variants of it have been introduced in numerous articles [6, 7, 8, 9, 10, 11] and are known
under the names ‘harmonic network’, ‘Euler lattice’ and ‘Tonnetz’. In this paper, we will use the term Euler lattice or just ‘tone space’.

3Note that the Euler lattice presented in figure 2 represents only frequency ratios involving the prime factors 2, 3 and 5, which is
referred to as 5-limit just intonation.
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1. Preferred ratios are those involving the lower numbers when in lowest terms.

2. Preferred ratios are those that can be derived by linear combination from known preferred values for other
intervals (beginning with the ratios 3/2 for a perfect fifth and 5/4 for a major third), possibly with a certain
use of intervals in mind from some musical context.

It may be clear that these two criteria are not always in agreement and do not constitute a full intonation theory
for chords in isolation.

Many functions have been constructed to measure the consonance of an interval or chord, for example
Helmholtz’s [6] roughness function, Euler’s Gradus Suavitatis [15, 16], Parncutt’s [17] pitch distance or Sethares’
[18] dissonance curve based on Plomp and Levelt’s [19] model. These functions can be used to put musical
intervals in an order of most consonant to dissonant. However, few of these functions have been used (and are
difficult to use) to decide about different intonations of the same chord. This motivates the research in this paper.
We present a model that can easily distinguish between different intonations of the same chord and selects the
one that is the most consonant. The correctness of this selection will be checked against an existing consonance
model. Note however that, although we are comparing two models, the model we present here is designed for
deciding about different intonations of the same chord, while consonance models such as Euler’s and Helmholtz’s
find their use in ranking different intervals on the basis of consonance. Although Euler’s model can also be used
to find the preferred intonation of a chord (as we will see), it is involves some mathematical calculation for each
chord, and the model itself is therefore not ideal for quickly deciding between different intonations of the same
chord. The model we will present in this paper on the other hand, will be ideal for this purpose.

This paper is concerned with intonation based on frequency ratios only. This means that the presented
intonation model applies to either simple tones or tones whose pitch is determined by the frequency of the
fundamental; the influence of other phenomena that apply to the pitch of a tone is not considered here. It has
been suggested that timbre influences consonance [20] and therefore the origin of consonance would lie in the
instruments of a specific culture. However, string and wind instruments naturally produce a sound that consists
of exact multiples of a fundamental frequency. Therefore, the term consonance used in this paper, can be thought
of as related to sounds produced by these Western instruments, and thus applies to Western music only.

2 A new model for intonation

2.1 Convexity and compactness in the Euler lattice

Comparing the Euler lattice composed from frequency ratios to the lattice composed from note names, it can
be understood that the difference between two ratios having the same note name is a factor 81/80 (or multiples
hereof), which is known as the syntonic comma (see figure 3). Thus different locations for a single note name

225/128

1 3/2 9/8 27/16 81/644/316/932/27

40/27 10/9 5/3 5/4 15/8 45/32

25/18 25/24 25/16 75/64

64/45 16/15 8/5 6/5 9/5 27/20 81/80

128/75 32/25 48/25 36/25 27/25

256/135

256/225

135/128

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

Figure 3: The difference between frequency ratios of the two indicated D’s is a factor (9/8)/(10/9) = 81/80.

exist in the note name space, all giving rise to a different ratio and therefore different intonation. A chord,
defined by a set of note names (such as C,E,G) can be represented by several configurations in the tone space,
as we can understand by looking at figure 4. By the configuration of a set, we mean the locations of all elements
in this set, indicated in the tone space. Every configuration of the chord represents a different intonation. The
configuration of a set of note names can be changed by moving the frequency ratio(s) corresponding to one or
more elements of the set by a syntonic comma (=81/80) since the ratio 81/80 is the difference between two ratios
with the same note name.
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Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(a)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(b)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(c)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(d)

Figure 4: Possible configurations of the triad C,E,G.

It has been observed that the diatonic major and minor scale as well as all diatonic chords4 form convex and
compact sets in the Euler lattice [1, 12]. Furthermore, it has been explained that convexity in the Euler lattice
can be interpreted in terms of consonance [1]. Therefore, we could hypothesize that a convex set represents the
preferred intonation. Convexity on a two dimensional lattice has been defined as follows: A set is convex if all
elements that lie in the convex hull are included in the set. In other words: A set is convex if, drawing lines
between all points in the set, all elements which lie within the spanned area are elements of the set [1]. A set of
notes can have more than one convex configuration in the note name space. For example, the two-note set C-G
tuned as 1 − 3/2 is convex, but the tuning as 1 − 40/27 is also convex. To adjust our hypothesis, in cases like
this, a choice has to be made between the two configurations to present the preferred tuning. A possibility is to
choose the most compact one. Compactness is intuitively understood as the extend to which elements of a set
are close together in a set. In a three dimensional space the most compact object would be shaped like a ball. In
this paper, the compactness is calculated by summing the distances between all pairs of points (notes in the tone
space); the lower the resulting value, the more compact is the set. As an example, the left most configuration
from figure 4 represents the most compact configuration of the chord C,E,G. The decision to choose the most
compact set is not a random choice. If two notes are close together in the frequency ratios space, they have
many prime factors in common, as the tone space was built from powers of the primes 2,3 and 5 [1]. Therefore,
the closer together two notes are in the tone space, the smaller are the integers forming the ratio that represents
the interval between the two notes. According to just intonation, ratios with small integer ratios are preferred.
Generalizing this for chords consisting of more than two notes, the intonation of a chord whose notes are the most
close together in the tone space should be preferred. Now we have motivated why to use compactness to decide
which of the possible convex sets represents the preferred intonation, we can actually make two hypotheses:

1. the preferred intonation of a chord is represented by the most compact set of the possible convex configu-
rations of that chord.

2. the preferred intonation of a chord is represented by the most compact configuration of that chord.

Note that these hypotheses contain an empirical component, since “preferred intonation” applies to the perception
of humans. However, we will follow here the path of investigating the correlation between the hypotheses and an
established consonance measure.

2.2 Euler’s Gradus Suavitatis

The hypotheses proposed in the previous section will be applied to a number of chords, and the result will
be compared with an existing consonance measure. The consonance measure we will use is Euler’s Gradus
function, since it applies, similar to the hypotheses, to frequency ratios of chords in isolation. Although nowadays
Helmholtz’s [6] consonance theory which is based on the beating of partials, seems to be most supported [21,
19, 18, 22, 23], the difference between Helmholtz’s and Euler’s theory is small in view of our purposes in this
chapter. The order from the most to least consonant interval according to Euler or Helmholtz may differ slightly,
but the question we will address in this paper is about the most consonant frequency ratios given a chord or
interval. From all possibilities, Helmholtz and Euler’s theories will choose virtually always one and the same set
of frequency ratios. For example, given the interval C − E, what is the frequency ratio that makes this interval
as consonant as possible? Both Euler and Helmholtz rate 5/4 as the most preferred intonation for this interval.

Euler developed his Gradus Suavitatis (degree of softness) Γ. The function is defined as a measure of the
simplicity of a number or ratio. Any positive integer a can be written as a unique product a = pe1

1 · pe2

2 . . . pen

n of

4Diatonic chords are understood here as all chords that are subsets of a diatonic set. In the minor mode, the chromatic alterations
leading to harmonic minor are also taken in account, such that, for example, the augmented triad can also be found as a diatonic chord.
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positive integer powers ei of primes p1 < p2 < . . . < pn. Euler’s formula is then defined as:

Γ(a) = 1 +

n
∑

k=1

ek(pk − 1), (2)

Γ(a) is a number that expresses the simplicity of a. The lower the number the simpler is a. For intervals and
chords, a so-called exponent needs to be calculated to obtain Γ from. For an interval x/y the exponent is the
ordinary product x · y so Γ(x · y) expresses the simplicity of the interval x/y. For chords where the frequency
ratios are expressed as a : b : c, the exponent is given by the Least Common Multiple (LCM) of these a, b and
c. The Gradus Suavitatis is then calculated as Γ(LCM(a, b, c)). Euler connected the simplicity of chords and
intervals with the consonance thereof. The lower the value Γ(LCM(a, b, c)), the more consonant is the chord
a : b : c. Here is an example to calculate the Gradus Suavitatis. A major triad 1 : 5/4 : 3/2 can be written as
4 : 5 : 6 which can in turn be written as 22 : 5 : 2 · 3 (to make the calculation of the LCM easier). The LCM
of these numbers is then 22 · 3 · 5 = 60 and the Gradus Suavitatis of 60 is Γ(60) = 1 + 2 · 1 + 1 · 2 + 1 · 4 = 9.
According to the tonal space that maps frequency ratios to note names (see figure 2), this chord can also be
tuned differently, for example as 1 : 5/4 : 40/27, the fifth of the triad is then changed by the syntonic comma
(81/80): 3

2
/ 81

80
= 40

27
. The ratios 1 : 5/4 : 40/27 can be written differently as 108 : 135 : 160 = 22 ·33 : 33 ·5 : 25 ·5.

Then the LCM equals 25 · 33 · 5 = 4320 which results in Γ(4320) = 16. This is obviously higher than the value
for the 4 : 5 : 6 chord and this means that this chord is less consonant than the 4 : 5 : 6 chord according to this
function.

2.3 Configurations in the tone space indicating the intonation

In the same way we can compare other chords in several tunings to see which tuning is most preferable. We
compare different configurations of a chord. As we have seen, the configuration of a set of note names can be
changed by moving one or more elements of the set by a syntonic (=81/80). In the tables 1, 2, and 3, the diatonic
chords are listed with a number of possibilities for tuning.

3-note chords convex

major triad C-E-G 1 − 5/4 − 3/2

p p p

p p p

p p p

t d

d

1 − 5/4 − 40/27

p p p p

p p p pd d

t

Γ = 9 Γ = 16

minor triad C-E♭-G 1 − 6/5 − 3/2

p p p

p p p

p p p

d

dt

1 − 32/27 − 3/2

p p p p p

p p p p p

p p p p p

d t d

Γ = 9 Γ = 15

diminished triad
C-E♭-G♭

1 − 6/5 − 36/25

p p p

p p p

p p p

d

d

t

1− 32/27− 64/45

p p p p

p p p p

d

d t

Γ = 15 Γ = 17

augmented triad
C-E-G♯

1 − 5/4 − 25/16

p p p

p p p

p p p

t

d

d

1 − 5/4 − 125/81

p p p p p

p p p p p

p p p p p

p p p p pd

t

d

Γ = 13 Γ = 23

Table 1: Diatonic chords consisting of 3 notes. Chords like C − E − A and C − F − A have been omitted as duplications of
the root-position forms. Of each chord, the convex configuration is given, together with another possible configuration. More
configurations (intonations) are possible but only one is given here. The circles represent the notes in the frequency ratio
space, the black circle representing the root C of the chord.

Since the tone space is infinitely big, there are infinitely many tunings for a chord, however only some musically
logical ones are listed here to give an example. In the first column of every table the name of the chords with

5



4-note chords convex

dominant seventh
chord C-E-G-B♭

1:5/4:3/2:9/5

p p p

p p p

p p p

t

d

d

d

1 : 5/4 : 3/2 : 16/9

p p p p

p p p p

p p p p

d t

d

d

Γ = 15 Γ = 17

major seventh
chord C-E-G-B

1 : 5/4 : 3/2 : 15/8

p p p

p p p

p p p

t

d

d

d

1 : 5/4 : 3/2 : 50/27

p p p p p

p p p p p

p p p p pd

t

d

d

Γ = 10 Γ = 18

minor seventh
chord C-E♭-G-B♭

1 : 6/5 : 3/2 : 9/5

p p p

p p p

p p p

t

d

d

d

1 : 6/5 : 3/2 : 16/9

p p p p

p p p pd t

d

d

Γ = 11 Γ = 16

half-diminished
seventh chord
C-E♭-G♭-B♭

1 : 6/5 : 36/25 : 9/5

p p p

p p p

p p pt

d

d

d

1 : 6/5 : 36/25 : 16/9

p p p p p

p p p p p

p p p p pd t

d

d

1 : 6/5 : 64/45 : 16/9

p p p p

p p p p

d

d t

d

Γ = 15 Γ = 19 Γ = 17

major-minor
seventh chord
C-E♭-G-B

1 : 6/5 : 3/2 : 15/8

p p

p p

p p

t

d

d

d

1 : 6/5 : 3/2 : 50/27

p p p p p

p p p p p

p p p p p

p p p p pd

t

d

d

Γ = 15 Γ = 23

augmented seventh
chord C-E-G♯-B

1:5/4:25/16:15/8

p p

p p

p p

t

d

d

d

1:5/4:125/81:50/27

p p p p p

p p p p p

p p p p p

p p p p pd

d

t

d

1:5/4:25/16:50/27

p p p p

p p p p

p p p pd

t

d

d

Γ = 15 Γ = 25 Γ = 20

diminished seventh
chord C-E♭-G♭-B♭♭

1:6/5:36/25:216/125

p p p p

p p p p

p p p p

p p p pt

d

d

d

1:6/5:64/45:128/75

p p p p

p p p p

p p p p

d

d

t

d

1:6/5:36/25:128/75

p p p p

p p p p

p p p p

p p p p

d

t

d

d

Γ = 22 Γ = 22 Γ = 22

major triad with
added sixth
C-E-G-A

1 : 5/4 : 3/2 : 5/3

p p p

p p pd

t

d

d

1 : 5/4 : 3/2 : 27/16

p p p p

p p p p

t

d

d d

Γ = 11 Γ = 13

minor triad with
added sixth
C-E♭-G-A♭

1:6/5:3/2:8/5

p p p

p p p

p p p

d

t

d

d

1:6/5:3/2:81/50

p p p p p

p p p p p

p p p p pt

d

d

d

Γ = 11 Γ = 19

Table 2: Diatonic chords consisting of 4 notes.

corresponding note names is given. In the other columns different tunings and their configurations in the plane
are given. The tones are indicated by circles, the black circle being the root of the chord (C was chosen to be
the root in all cases). For every chord, the Gradus Suavitatis is calculated and given in the tables. We can
test our first hypothesis which says that the convex configuration (and if there is ambiguity, the most compact
convex configuration) represents the preferred intonation. One can see that for almost every chord the convex
configuration of it in the tone space is more consonant according to Euler (i.e., lower value for Γ) than the other.
There are two exceptions to this which are the diminished seventh chord and the dominant eleventh chord. The
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5/6/7-note chords convex

dominant ninth
chord C-E-G-B♭-D

1:5/4:3/2:9/5:9/8

p p p

p p p

p p p

t

d

d

d

d

1:5/4:3/2:16/9:10/9

p p p p

p p p p

d

d

t

d

d

Γ = 16 Γ = 17

dominant
eleventh chord
C-E-G-B♭-D-F

1:5/4:3/2:9/5:9/8:27/20

p p p p

p p p p

p p p p

t

d

d

d

d

d

1:5/4:3/2:16/9:10/9:4/3

p p p p

p p p p

p p p p

d

d

d t

d

d

Γ = 18 Γ = 17

dominant thir-
teenth chord
C-E-G-B♭-D-F-A

1 : 5/4 : 3/2 : 9/5 : 9/8 :

27/20 : 27/16 p p p p

p p p p

p p p p

t

d

d

d

d

d

d

1 : 5/4 : 3/2 :
16/9 : 10/9 : 4/3 : 5/3

p p p p

p p p p

p p p p

d

d

d

d

t

d

d

also convex!
Γ = 19 Γ = 17

Table 3: Diatonic chords consisting of 5, 6 or 7 notes.

diminished seventh chord can be tuned in various ways to give the same ‘consonance value’. This can perhaps
be explained from the fact that this chord is a reasonably dissonant chord and therefore changing one of the
intervals by a comma (81/80) has less impact than doing this with a more consonant chord5.

The dominant eleventh chord is in a sense a reduction of the dominant thirteenth chord, only one note is
missing (see table 3). Filling in the missing note in the configuration that is most favored (according to Euler),
one obtains the most consonant thirteenth chord which is convex as well. In this way, we can understand why
this particular configuration for the eleventh chord is more consonant than the convex one. However, this second
configuration is more compact than the first one, supporting hypothesis number 2, which says to prefer the most
compact configuration. Hypothesis no. 2 was also validated in all other cases except for the diminished seventh
chord. The second configuration of the diminished seventh chord listed in table 2 is the most compact one. The
compactness of a configuration may be difficult to judge at first sight. In the next section we will present a
mathematical formula to calculate compactness. We checked (with a Matlab program, as we will see) all other
tuning possibilities (in a sensible range) of these chords by multiplying one or more of the ratios with (81/80)n

and verifying whether this resulted in a lower value for Γ. Note that both listed dominant thirteenth chords are
convex. The second one listed is the preferred one according to both hypotheses, since it is more compact. This
is also the configuration which is preferred by Euler’s function.

To sum up, we proposed two hypotheses in order to present the best intonation, the first saying to prefer
(the most compact) convex configuration, and the second saying to prefer the most compact configuration. The
values of consonance of the chords were calculated using Euler’s Gradus function. Of the 16 chords, for 14 of
them hypothesis 1 was validated. For 15 of them, hypothesis 2 was validated. The exceptions can be explained
from music theory and from the convexity theory itself. In section 4 the correlation between the concepts of
consonance, convexity and compactness will be investigated further. Moreover, we want to stress that “preferred
tuning” in this case is only based on the sound of the chord in isolation. In musical practice, there can be more
than one choice for the intonation of a chord depending on its musical function in the chord sequence. However,
this can still be a very useful measure because it can serve as the beginning of a full tuning theory.

3 Mathematical correlation between compactness and Euler’s con-

sonance

In the above sections we have shown that the convex and compact configuration of a set of notes may give an
indication of the most consonant sound, as predicted by the measure of Euler. In this section we will try to

5The syntonic comma 81/80 = 34/(24
· 5) has factors of 2 3 and 5 in it. Therefore, if the Least common multiple of a chord is

already high, the chance that it changes a lot after one of the intervals is multiplied by a comma is low, since the LCM is constructed
by multiplying the highest powers of 2, 3 and 5 form the intervals.
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formalize this in a mathematical way. Looking at the formula for Euler’s Gradus function (eq. 2), we understand
that the value for Γ becomes bigger when there are more factors of 2, 3 and 5 in the LCM of the chord. If two
notes are close together in the tone space, they have many prime factors in common, as explained in the previous
section. This suggests that the Gradus function is related to the compactness of a set. We will therefore try to
formalize the relation between compactness and consonance according to Euler’s function.

Since our 2-dimensional tonal space (figure 2) neglects all factors of 2, we first consider the 3-dimensional
tonal space that allows also all octave transpositions. In this way, we consider all axes representing the powers
of primes, that is the x-axis representing the powers of 2, the y-axis representing the powers of 3 and the z-axis
representing the powers of 5. In this coordinate system, a point with coordinates (a, b, c), represents the frequency
ratio 2a · 3b · 5c.

3.1 Compactness in 3D

We want to consider a set of points (representing a chord) in the 2-3-5-space (octave-fifth-third-space) and
measure its compactness. Several definitions of compactness are possible. The most intuitive way to measure
compactness for our purposes is to sum the distances between all pairs of points6. The lower the value of the
sum, the more compact the set is. The compactness C of a set of notes is then defined as follows:

C =
∑

1≤i,j≤n

|~xi − ~xj | =
∑

1≤i,j≤n

√

(xi1 − xj1)2 + (xi2 − xj2)2 + (xi3 − xj3)2, (3)

where ~x = (x1, x2, x3) defines the coordinates of a tone in the tone space. The term xi1 − xj1 now defines the
difference in the factor 2, the xi2 − xj2, the difference in the factors 3, and xi3 − xj3 the difference in the factors
5.

Each tone (note name) has more than one position in the tone space, which means that each chord has several
configurations in tone space as we saw in the previous section. The factor that changes the frequency ratio but
keeps the note name constant is 81/80 = 2−4345−1. Multiplying a frequency ratio by this factor means moving
a point in the 2, 3, 5-coordinate system over (−4, 4,−1). Given a set of points ~x1 ~x2 . . . ~xn, every ~xi has a number
of possible coordinates such that the point represents the same note name:

~xi =





xi1 − 4ki

xi2 + 4ki

xi3 − ki



 , k ∈ Z. (4)

The compactness C can thus be written as:

C =
∑

1≤i,j≤n

√

X1 + X2 + X3, (5)

X1 = (xi1 − xj1 − 4(ki − kj))
2

X2 = (xi2 − xj2 + 4(ki − kj))
2

X3 = (xi3 − xj3 − (ki − kj))
2

and the most compact configuration of a set ~x1 ~x2 . . . ~xn is given by the k2, k3, . . . , kn for which C has a minimum7.
The value for Euler’s Gradus function can now be calculated for a certain configuration of points. Therefore,

we first need to find the Least Common Multiple (LCM) of the chord. To be able to find the LCM of a chord
we have to write the chord in the form a : b : c such that a, b, c are integers (just like we did in section 2 were

the chord 1 : 5/4 : 3/2 was written as 4 : 5 : 6). Since the point xij represents the jth coordinate (meaning the
multiples of 2,3 or 5) of note xi, a whole frequency ratio is expressed as 2xi1−4ki · 3xi2+4ki · 5xi3−ki . A (3-note)
chord a : b : c can therefore be written as

a : b : c = 2x11−4k1 · 3x12+4k1 · 5x13−k1 : (6)

2x21−4k2 · 3x22+4k2 · 5x23−k2 : 2x31−4k3 · 3x32+4k3 · 5x33−k3 .

6Note that this concept of compactness is different from the concept of a ‘compact set’ in topology.
7One of the ki is fixed (k1 in this case) and set to zero because the set needs to have a reference point. If all ki were to be chosen

freely, many sets with the same compactness but different locations may exist.
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If the chord is already in a form such that a, b, c are (positive) integers, the LCM of 6 can be found as follows:

LCM(a, b, c) = 2max {x11−4k1,...,xn1−4kn} · 3max {x12+4k1,...,xn2+4kn} · 5max {x13−k1,...,xn3−kn} (7)

where max {a1, ..., an} picks the largest of numbers a1 to an.
When a, b, c are not integers, the expression for the LCM looks a bit different. To write the chord a : b : c in

a form such that it is represented by integers, a, b, c should be multiplied by the Least Common Multiple (LCM)
of the denominators of a, b, c (for example to write the chord 1 : 5/4 : 3/2 as 4 : 5 : 6 each ratio was multiplied by
LCM(1, 2, 4) = 4). The fact that a, b and c are split into powers of 2, 3 and 5 makes this process easier. Instead
of finding the LCM of the denominators we just need to find the maximum of all factors of 2, 3 and 5 in the
denominators. The LCM of 6 then changes as follows:

LCM(a, b, c) = 2v12max {x11−4k1,...,xn1−4kn} · 3v23max{x12+4k1,...,xn2+4kn} · 5v35max{x13−k1,...,xn3−kn} (8)

where
vj = max A, A = {−z|z ∈ Bj & z < 0, j = 1, 2, 3} (9)

and

Bj =
⋃

1≤i≤n

{zij} where







zi1 = xi1 − 4ki

zi2 = xi2 + 4ki

zi3 = xi3 − ki

(10)

and n is the number of notes in the chord. Finally, the value for Γ (defined in eq. 2) is given as follows:

Γ = 1 + v1 + max {x11 − 4k1, . . . , xn1 − 4kn} (11)

+ 2 ∗ (v2 + max {x12 + 4k1, . . . , xn2 + 4kn})

+ 4 ∗ (v3 + max {x13 − k1, . . . , xn3 − kn}).

We now have expressions for C and Γ and we would like to see that the k2 . . . kn that make C minimal, also
make Γ minimal, for a correspondence between compactness and consonance. A Matlab program has been
written that can calculate the values for C, Γ and the values for k that make both equations minimal. This is
done by varying the coordinates of point 2 over all points of the 3-Dim space in which every coordinate runs from
−4 to 4. Point 1 is taken at the origin. It turns out that in 86.5% of the cases both C and Γ have a minimum
for the same k. For the case n = 3 can in the same way also be calculated if the same value for ki makes the C
and Γ minimal. It turns out this is true for 70.1% of the cases. For n > 3 the problem becomes computationally
very intensive8. However, from this we can conclude that the hypothesis: the more compact, the more consonant
is true in the majority of the cases.

3.2 Compactness in 2D

In the 2-D space where all chords are projected, the frequency ratios are considered under octave equivalence.
Instead of considering the xi1, xi2 and xi3 component (2,3 and 5 component) we only consider the xi2 and xi3

component (for convenience we kept these names) in the 2D space. Thus the expression for C becomes simpler:

C =
∑

1≤i,j≤n

√

(xi2 − xj2 + 4(ki − kj))2 + (xi3 − xj3 − (ki − kj))2. (12)

The expression for Γ however, becomes more complicated. The first term max{x11−4k1, . . . , xn1−4kn} changes.
A point in the plane now only is specified by its 3- and 5-components: 3xi2+4ki5xi3−ki . The factor 2n that
together with this specifies the whole frequency ratio: 2n · 3xi2+4ki · 5xi3−ki , only serves to keep the frequency
ratio within the interval [1, 2). Therefore, to find an expression for n, we need to solve:

1 ≤ 2n · 3xi2+4ki · 5xi3−ki < 2. (13)

8The number of possible configurations of a set consisting of n points, increases with n as
(

728
n−1

)

, since this expresses the number of
possibilities to choose n points from a 9 × 9 × 9 lattice where one note is fixed in the origin.
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From this n can be analytically solved as

−(xi2 + 4ki) · log2 3 − (xi3 − ki) · log2 5 ≤ n < 1 − (xi2 + 4ki) · log2 3 − (xi3 − ki) · log2 5. (14)

Since n should be an integer, this makes:

n = ⌈−(xi2 + 4ki) · log2 3 − (xi3 − ki) · log2 5⌉, (15)

where ⌈x⌉ is the smallest integer greater or equal to x. We can therefore understand that the first term in Γ
can now be replaced by max{⌈−(x12 + 4k1) · log2 3 − (x13 − k1) · log2 5⌉, ⌈−(x22 + 4k2) · log2 3 − (x23 − k2) ·
log2 5⌉, . . . , ⌈−(xn2 + 4kn) · log2 3 − (xn3 − kn) · log2 5)⌉}, thus Γ becomes:

Γ = 1 + v1 + max{⌈−(x12 + 4k1) · log2 3 − (x13 − k1) · log2 5⌉, . . . (16)

. . . , ⌈−(xn2 + 4kn) · log2 3 − (xn3 − kn) · log2 5⌉}

+ 2 ∗ (v2 + max {x12 + 4k1, . . . , xn2 + 4kn})

+ 4 ∗ (v3 + max {x13 − k1, . . . , xn3 − kn}),

with v1 now given by:

v1 = max {−z|z ∈ B & z < 0}, (17)

B =
⋃

1≤i≤n

{⌈−(xi2 + 4ki) · log2 3 − (xi3 − ki) · log2 5⌉}

and v2, v3 as given in eq 9,10. Using these expressions, we calculate the number of cases for which the value of k
that makes C minimal also makes Γ minimal. In table 4 all percentages are given. Surprisingly, the percentages
for the 2-D lattice are higher than for the 3-D lattice. Using the Matlab program we have also checked all chords

lattice number of notes percentage correct

3-D 2 86.5 %
3-D 3 70.1 %

2-D 2 97.5 %
2-D 3 85.4 %
2-D 4 76.8 %

Table 4: Results of testing the hypothesis: the configuration of a chord that is most compact is also most consonant.

that are listed in tables 1, 2 and 3, to be sure that we indeed listed the most compact configurations in these
tables. It indeed turns out that the hypothesis “the configuration that is most compact, is the most consonant
according to Euler’s value” is true for all chords except for the diminished seventh chord.

3.3 Interpretation of results

How can these results be explained, and can they perhaps be related to convexity? We have tested the hypothesis
“the more compact, the more consonant” for all possible 2,3,4-tone sets within a 2-D 9×9 lattice or a 3-D 9×9×9
lattice. It turns out that the percentages of correspondence are reasonably high. In the 2-D space we gained a
little higher percentage than in the 3D space. One of the reasons that the relationship between consonance and
compactness is not a one-to-one correspondence has to do with the weights in the definition of Γ and with the
measure of the syntonic comma in the 2-D and 3-D space. The weights 1, 2 and 4 in the definition for Γ (eq.
11) cause Γ to change more due to a shift in the 3-coordinate than to a shift in the 2-coordinate (factor 2). Γ is
changed most due to a shift in the 5-coordinate (factor 4). Therefore we can also understand that the percentages
decrease as the number of notes increase: the more notes, the more directions in the lattice are involved. In the
expression for C (eq. 5) we see two times a factor 4 (which comes from the syntonic comma 2−4345−1) in the
terms that are concerned with the distances in the 2 and 3 direction. This means that the compactness C is more
influenced by changes in the 2 and 3 direction than by changes in the 5 direction. We therefore understand that
there cannot be a one to one correspondence between the compactness C and the consonance measure Γ. Note
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however that a one-to-one correspondence between the two functions cannot be created by choosing the weights
of our compactness function differently, due to the fact that the functions C and Γ differ on many more levels.
Furthermore, a reason for not changing the equal weights in our compactness function C, is that compactness is
an intuitive measure which can be judged by the eye. If these weights were changed, it would not be that easy
anymore to judge the compactness of two sets on first sight.

It was already intuitively clear that consonance Γ could be related to compactness C in a general way. We
have seen that for a high percentage of sets, the most consonant configuration is also the most compact one.
Imagine a convex and highly compact set in the 3-D space centered around the origin. If one of the elements of
the set is moved by the syntonic comma it is moved by the vector (−4, 4,−1) (since 81/80 = 2−4345−1). The
new set is always less compact than it was if the size of the set is less than a certain number of elements, since the
vector (−4, 4,−1) then takes the element outside the area spanned by the other elements (which makes the set
less compact). For a set in the 2-D space the syntonic comma is represented by the vector (4,−1) which yields
the same conclusion. Consider now a convex and highly compact set centered in the lattice, and imagine what
happens with the consonance Γ if one or more elements are shifted by a syntonic comma. Again if the number
of elements is within a certain range, a shift by 81/80 = 2−4345−1 will increase the LCM of the chord and the
new chord will be less consonant. Since here we have only observed sets consisting of 2, 3 and 4 elements it is
understandable that shifting one or more elements of the set by a syntonic comma makes the set less compact
and less consonant.

Now we want to make a connection to convexity. If we look at table 3, the last column represents chords that
are all introduced as alternative intonations of the chords mentioned. It is remarkable that these configurations
all have the same value for Γ, namely Γ = 17. By looking at the configurations, we understand that it does not
matter if the inner notes are filled, the value of Γ just depends on the boundary notes. This is understandable
since the value of Γ only depends on the Least Common Multiple of the frequency ratios (written in integers as
we have shown) instead of depending on all frequency ratios. The LCM picks the highest factors of 2,3 and 5,
which precisely indicate the boundaries of the chord. Therefore the value of Γ of a chord equals the value of Γ of
the chord that represents the convex hull. The convex hull of a set of points S is the intersection of all convex
sets containing S. For example, the rightmost chord at the bottom of table 3 represents the convex hull of the
two chords above this chord. It can now be seen that whenever there is a possibility of a convex configuration of
a chord, this will often be the most compact one. How often that is, we will investigate in the next section.

4 Convexity, compactness and consonance

In the previous experiments we varied the coordinates of a (2-D or 3-D) space to represent sets of notes for which
we wanted to calculate whether the most compact configuration corresponded to the most consonant configura-
tion. We now want to know whether these sets do also correspond with a convex configuration. More precisely:
which percentage of the sets of notes that have a possible convex configuration, have a convex configuration that
corresponds with 1) the most compact configuration, and 2) the most consonant configuration. For some chords,
there is no possible intonation such that the notes form a convex set in the tone space. For these chords, only
the compactness can say something about the preferred intonation. Figure 5 illustrates what percentages we
are looking for. In the figure, the set S consists of all configurations of all possible chords consisting of n notes.
The set T consists of all configurations of the chords that have a possible convex configuration. Within the set
T , the set ‘convex’ represents all convex configurations. Then, ‘most compact’ is the set consisting of every
most compact configuration of each chord (in T ). Similarly, ‘most consonant’ is the set consisting of every most
consonant configuration of each chord (in T ). The intersection of sets of our interest are given in equation 18.

a ∪ d = convex ∩ consonant (18)

b ∪ d = compact ∩ convex

d ∪ c = compact ∩ consonant

d = compact ∩ convex ∩ consonant

The percentages that we are looking for, are obtained by dividing the number of elements of the sets given in
eq. 18, by the number of chords that have a possible convex configuration. Note that the latter value is not
equivalent to the number of elements in T , since this set represents the number of configurations instead of the
number of chords.
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most compactconvex
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T

Figure 5: Illustration of overlap of convex, most compact and most consonant configuration when trying to find the preferred
intonation of a chord.

There could be more than one convex possibility per set (as is the case with the dominant thirteenth chord
in table 3). Also, it is possible that more than one configuration has the same (lowest) value for the compactness
or consonance (although this rarely happens). This only means that some solutions are not unique, but since we
count the number of chords and not the number of configurations, this does not change the obtained percentages.

We have written a program in Matlab that finds all possible 2, 3 and 4 note sets in a 9 × 9 (coordinates run
from −4 to 4) 2-dimensional lattice, and calculates for each set 1) whether it has a convex configuration and
which configurations are convex, 2) the configuration that is most compact, and 3) the configuration that is most
consonant. To distinguish between the configurations, a variable k is used in the same way as introduced in
equations 12 and 16 for the expressions for compactness and consonance. The convexity of a set is calculated
from the coordinates of the elements in the set; the coordinates change with k as in equation 4. The variable k
is varied from −2 to 2. If a wider range was chosen, the obtained points (4) would lie outside the lattice. From
short test-runs it was concluded that it is sufficient to work with a 9 × 9 2-dimensional lattice, a bigger lattice
did not significantly change the percentages. This conforms to our intuition, since we found a high correlation
between consonance and compactness (table 4), and the more compact a set is, the better it fits into a smaller
lattice. One point is chosen in the center (0, 0), so for n = 2 only one point is varied, for n = 3 two points, and
so on. To ensure that some sets are not counted twice, point 3 is varied over the points that point 2 has not
been varied over9 and so on for the points thereafter (point 1 is fixed). The number of possible sets for n points
is then calculated as follows: the lattice contains 9 × 9 = 81 points. One note is fixed at the origin so there are
80 points left for notes 2 to n to vary over. The number of possibilities10 to choose n − 1 point from 80 points
is

(

80

n−1

)

. Table 5 shows the number of sets that can be chosen from the lattice for the number of notes varying
from 2 to 4. Observing that this number increases very fast as a function of n, one can understand that it is

9In pseudo code:

for i: from 1 to total number of points do

vary point 2
for j: from i to total number of points do

vary point 3
end

end

10
(

n

k

)

= n!
k!·(n−k)!

12



n number of possible sets for n points

2
(

80

1

)

= 80

3
(

80

2

)

= 80·79

2!
= 3160

4
(

80

3

)

= 80·79·78

3!
= 82160

Table 5: Number of possible sets of n point in a 9 × 9 lattice with point 1 fixed in the origin.

computationally impossible to go much beyond n = 4. These numbers of possible sets would be the numbers
that are examined with our algorithm if all these sets have a convex possibility. This turns out not to be the
case, so the number of examined sets is reduced. The results of the Matlab program are shown in table 6. In

percentage n=2 n=3 n=4

compact & consonant 97.5 % 85.4 % 85.6 %
convex & consonant 16.3 % 41.4 % 41.2%
convex & compact 11.3 % 40.8 % 36.0%
compact & convex & consonant 11.3 % 37.3 % 34.1%

number of sets examined 80 1590 14810

Table 6: Results of the percentages as indicated in figure 5.

this table it is also indicated how many sets have a convex possibility and are therefore examined. We see that
for n = 2 all 80 sets have a possible convex configuration. For n > 2, this is not the case anymore. For example
for n = 3, only 1590 sets of the 3160 possible sets have a possible convex configuration.

Observing the results, one can see that the biggest correlation can be found between the most compact and
consonant sets, as we expected. The correlation between convexity and the other items is very low for n = 2 and
gets higher as the number of notes increases. This agrees with our intuition too, since our understanding of the
relation between convexity and consonance was through the notion of compactness (see the end of the previous
section). When considering only 2 notes, the notion of convexity differs a lot from the notion of compactness,
since two notes form a convex set if a line can be drawn between the two notes on which no other notes lie.
Therefore it is not easier for two notes to form a convex set if the notes lie close to each other than when the
notes lie far from each other, as can be seen from the low correlation between convexity and compactness for
n = 2. However, for increasing n, the correlation between convexity and compactness increases as well. Note
that regions a and b are really small, especially for small n (for n = 2, b = 0). This means that when the most
consonant configurations are also convex, they are most likely to be also the most compact configurations (a);
and when the most compact configurations are also convex, they are most likely to be also the most consonant
configurations (b). The results from table 4 differ from the results “compact & consonant” in table 6. This
difference is due to the difference in sets that is taken into account. In the experiment leading to the results of
table 6 only the sets that have a possible convex configuration were taken into account. At the end of section 3.2
we explained why the increase of n causes a decrease of the percentage “compact & consonant”. Remarkably,
there is no decreasing percentage if n increases from 3 to 4, when sets with a convex possibility are considered
(table 6).

5 Musical example

From the previous sections it appears that the notion of compactness may be proposed as a helpful tool when
trying to find the right intonation for a chord. We mentioned earlier that the intonation model proposed here
only applies to chords in isolation, chords without a musical context. This does not mean however, that this
intonation model does not apply to real music, it only means that some additional rules or choices are needed for
so-called horizontal intonation (which is referred to as ’melodic intonation’ by Fyk [3]) as well. Let us elaborate
on this a bit before we give an example of how to tune a chord according to our model.

Consider the note sequence given in figure 6. The (vertical) chords in this musical example can all be tuned
according to the compactness intonation model (see table 1 for the preferred intonations). However, the choice
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Figure 6: Pitch drift illustrated by 3
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× 3

5
× 3

2
= 81
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. The pitch of the final G will be tuned as 81/80 times the frequency

of the first G.

of connecting the intonation from one chord to the other is not obvious, and involves complications. Using the
rules for just intonation according to Regener [14] as given in section 1, the horizontal intonation can possibly
be worked out as follows. Starting with the first G, in just intonation the D will be tuned a perfect fourth 4/3
below the G. In the adjacent chord, the A will then be tuned as a perfect fifth 3/2 above the D. In the chord
thereafter, the C is to be tuned as a major sixth 5/3 below the A. The final G is then tuned as a perfect fifth
3/2 above this C. Comparing the tuning of the first and the last G, we can calculate that the final G is tuned as
3

4
× 3

2
× 3

5
× 3

2
= 81

80
of the frequency of the first G. This is called a pitch drift and is a familiar problem related

to just intonation. The problem in this example can be solved for example by tuning the subsequent A’s in bar
1 and 2 a syntonic comma apart (see Sethares’ adaptive tuning example ([20], sec. 8.5.5)). It may be clear from
this example that the rules from Regener [14] for just intonation need extension for horizontal intonation as well
as for vertical chord intonation. We see however, that the choices of the horizontal intonation do not necessarily
change the vertical chord intonation, and therefore the compactness intonation model may appear as a useful
intonation model on its own.

To give an example of how to quickly find the preferred intonation of a specific chord, we consider the first
chord of bar no. 191 of the Chaconne from the second partita of J.S. Bach (see figure 7). The chord is built from

Figure 7: Bar no. 191 of the Chaconne from the second partita of J.S. Bach

the notes: B,G,D, F♯. Looking up these notes in the tone space for note names, a lot of different configurations
are possible (see figure 8), but one can immediately see which configuration is the most compact. In figure 8 four
different configurations are shown, but more configurations are possible. Configuration a is the most compact
as can immediately be judged by the eye. This configuration can be projected onto the tone space containing

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(a)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(b)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(c)

Ebb

C G D A EFBbEb

E B F# C#ADG

Ab Eb Bb F CDbGbCb

G# D# A#C#F#

Fb Cb Gb DbBbb

(d)

Figure 8: Four possible configurations of the chord B,G,D, F♯.

frequency ratios, to see how to tune the individual notes of the chord, see figure 9a. The ratios indicating the
notes in the chord are the frequency ratios in relation to a reference tone C. It might be more useful to know
the frequency ratios of the notes in the chord in relation to a reference tone which is one tone of the chord itself.
Since the tone-lattice is constructed in such a way that a set of notes can be shifted along the lattice without
changing the internal ratios, the chord can just as well be visualized as in figure 9b where the G is chosen to
represent the root of the chord. In this way, it is easy to quickly find the preferred intonation of a chord.
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225/128

1 3/2 9/8 27/16 81/644/316/932/27

40/27 10/9 5/3 5/4 15/8 45/32

25/18 25/24 25/16 75/64

64/45 16/15 8/5 6/5 9/5 27/20 81/80

128/75 32/25 48/25 36/25 27/25

256/135

256/225

135/128

(a)

225/128

1 3/2 9/8 27/16 81/644/316/932/27

40/27 10/9 5/3 5/4 15/8 45/32

25/18 25/24 25/16 75/64

64/45 16/15 8/5 6/5 9/5 27/20 81/80

128/75 32/25 48/25 36/25 27/25

256/135

256/225

135/128

(b)

Figure 9: The preferred intonation of the chord B,G,D, F♯.

6 Concluding remarks

In this paper we have motivated the use of the notions of convexity and compactness as measure of intonation
for chords in isolation. We have discussed that most existing consonance measures are difficult to use to decide
about different intonations of the same chord. However, the question of ’how to tune chords’ is an important
one for all musicians that are not limited to a fixed tone instrument. Therefore an easy to use model that selects
the best intonation of a chord would be very welcome, and the first step is made in this paper, where we have
presented a model for the intonation of chords in isolation. As a measure of consonance, Euler’s Gradus function
was used for comparison, which, as we motivated, is a representative measure of consonance for this purpose.
Although a strong relation was obtained between consonance and both convexity and compactness when tested
on some diatonic chords, after investigating all possible chords on a bounded Euler lattice, it turned out that
convexity is a poor indication of consonance for chords in isolation. The notion of compactness however, showed
a strong relation with consonance for chords with 2, 3 or 4 notes. The high correspondence between Euler’s
model and the presented compactness model means that the models perform nearly equally well on the task of
selecting the most consonant intonation of a chord, with the compactness model having the advantage that it is
very simple and intuitive to use, as we have seen in section 5. It is difficult to say something about the cognitive
reality of the compactness model, i.e. is every selected intonation really the most consonant version of the chord
like humans would judge it? We have explained that Euler’s Gradus function does not differ a lot from Helmholtz
roughness model in view of the purpose of electing the most consonant tuning of a specific chord. Therefore,
in this study, Euler’s function represents more than just one consonance model. Assuming that all developed
consonance measures try to model cognitive reality as well as possible, we might say that the compactness model
corresponds to cognitive reality in a similar way as these other consonance models do, concerning the task of
finding the most consonant version of a chord.
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