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Studying the Effect of Metre Perception on Rhythm and Melody Modelling with
LSTMs

Andrew Lambert and Tillman Weyde and Newton Armstrong
City University London

Abstract

In this paper we take a connectionist machine learn-
ing approach to the problem of metre perception and
melody learning in musical signals. We present a multi-
layered network consisting of a nonlinear oscillator net-
work and a recurrent neural network. The oscillator net-
work acts as an entrained resonant filter to the musical
signal. It ‘perceives’ metre by resonating nonlinearly to
the inherent periodicities within the signal, creating a
hierarchy of strong and weak periods. The neural net-
work learns the long-term temporal structures present
in this signal. We show that this network outperforms
our previous approach of a single layer recurrent neural
network in a melody and rhythm prediction task.
We hypothesise that our system is enabled to make use
of the relatively long temporal resonance in the oscil-
lator network output, and therefore model more coher-
ent long-term structures. A system such as this could be
used in a multitude of analytic and generative scenarios,
including live performance applications.

1 Introduction
Beat induction allows us to tap along to the beat of mu-
sic, perceiving its pulse. This perceived pulse can be present
in the stimulus, but it is often only implied by the musical
events. Furthermore, performed music is rarely periodic and
is subject to the performers’ expressive timing. This makes
beat induction difficult to model computationally.

Finding the pulse within a musical signal is a step towards
achieving other music perception tasks, such as metre per-
ception. Metre refers to the multi-layered divisions of time
present in music, of which the referent layer is the pulse.
Other layers in music divide the pulse into the smallest sub-
divisions of time, and extend it towards larger measures,
phrases, periods, and even higher order forms. Thus, a sin-
gle ‘beat’ can occur at one or more metrical levels, whereas
the ‘pulse‘ is the series of beats on the referent layer only. A
beat on multiple metrical levels is perceived to be ‘stronger’
than other beats, creating a beat hierarchy, or metrical struc-
ture (?). The individual components of music, the rhythmic
events in time, lead to the formation of new macroscopic
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spatial, temporal and functional structures in metre. In per-
formance, these structures vary and repeat with time in their
own patterns.

The process through which humans achieve beat in-
duction is known as entrainment. Entrainment is the co-
ordination of temporally structured events through interac-
tion where two or more periodic signals are coupled in a
stable relationship. Many relationships are possible in en-
trained signals, exact synchronisation is considered to be a
special case of entrainment. Ethnomusicologists are increas-
ingly becoming aware of the importance of entrainment pro-
cesses as an approach to understanding music making and
music perception as a culturally interactive process (?).

Much prior work on pulse and metre perception has
been concerned with abstract temporal information, such as
crafted pulses in time (?; ?; ?; ?). However, metre percep-
tion and preference develops through cultural learning and
is determined by a multitude of musical signposts, including
the melody and the tempo of the pulse (?; ?).

This project aims to support melody and rhythm mod-
elling in a recurrent neural network by using an oscillator
layer for metre perception. We are evaluating the network in
different configurations and with different note representa-
tions on a melody prediction task.

2 Models
Our network consists of two connected networks. The first
is a Gradient Frequency Neural Network (GFNN), a nonlin-
ear oscillator network (?). It acts as an entrained resonant
filter to the musical signal and serves as a metre perception
layer. The second is a Long Short-Term Memory network
(LSTM) (?), a recurrent neural network, which is able to
learn the kind of long-term temporal structures required in
music signal prediction (?).

Metre Perception Layer
Oscillators have been used for beat induction in machines
for over twenty years. Certain oscillator models lend them-
selves well to beat induction tasks due to their stable limit
cycle and their entrainment properties (?). By using oscil-
lators to perceive beats, we have the ability to model beat
induction as an emergent dynamical process, which changes
over time as the signal itself evolves. Gasser et al.’s SONOR
system, for instance, adds Hebbian learning to networks of



adaptive oscillators, which can then learn to produce a met-
rical pattern (?).

More recently, the phenomenon of nonlinear resonance
has been applied to metre perception and categorisation
tasks. Large et al. (?) have introduced the Gradient Fre-
quency Neural Network (GFNN), which is a network of os-
cillators whose natural frequencies are distributed across a
spectrum. When a GFNN is stimulated by a signal, the os-
cillators resonate nonlinearly, producing larger amplitude re-
sponses at certain frequencies along the spectrum. Nonlinear
resonance can account for pattern completion, the percep-
tion of the missing fundamental, tonal relationships and the
perception of metre (?).

When the frequencies in a GFNN are distributed within
a rhythmic range, resonances occur at integer ratios to the
pulse. These resonances can be interpreted as a hierarchi-
cal metrical structure. Rhythmic studies with GFNNs in-
clude rhythm categorisation (?), beat induction in synco-
pated rhythms (?) and polyrhythms (?).

Temporal Structure Layer
There have been many connectionist approaches to musi-
cal tasks, e.g. (?; ?; ?; ?; ?). Whilst recurrent neural net-
works are good at learning temporal patterns, they often
lack global coherence due to the lack of long-term memory.
Long Short-Term Memory (LSTM) networks were designed
to overcome this problem. A simplified diagram of an LSTM
memory block can be seen in Figure ??. A self-connected
node known as the Constant Error Carousel (CEC) ensures
constant error flow back through time. The input and output
gates control how information flows into and out of the CEC,
and the forget gate controls when the CEC is reset. The in-
put, output and forget gates are connected via ‘peepholes’.
For a full specification of the LSTM model we refer to (?).

LSTMs have already had some success in music applica-
tions. Eck and Schmidhuber (?) trained LSTMs which were
able to improvise chord progressions in the blues and more
recently Coca et al. (?) used LSTMs to generate melodies
that fit within user specified parameters.

3 Experiments
Our experiments operate on monophonic symbolic music
data. We have used a corpus of 100 German folk songs from
the Essen Folksong Collection (?).

We conducted all experiments in two steps, implement-
ing the GFNN in MATLAB1 using the standard differen-
tial equation solvers, and the LSTM in Python using the Py-
Brain2 library.

GFNN
The GFNN consisted of 128 Hopf oscillators defined by the
following differential equation:

dz

dt
= z(α+ iω +

βε|z|4

1− ε|z|2
) +

x

1−
√
εx
.

1

1−
√
εz̄

(1)

1http://www.mathworks.co.uk/
2http://pybrain.org/
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Figure 1: A single LSTM memory block showing (A) input,
(B) output, (C) CEC, (D) input gate, (E) output gate, (F)
forget gate and (G) peephole connections.

where z is the complex valued output, z̄ is its complex conju-
gate, ω is the driving frequency in radians per second, α is a
damping parameter, β is an amplitude compressing parame-
ter, ε is a scaling parameter and x is a time-varying stimulus.
This oscillator is complex valued, oscillates spontaneously
according to its parameters, and entrains to and resonates
with an external stimulus. For all experiments, parameter
values were fixed as follows: α = −0.1, β = −0.1, ε = 0.5.

This gives a sinusoid-like oscillation whose amplitude is
gradually dampened over time (see Figure ??). The gradual
dampening of the amplitude allows the oscillator to maintain
a long temporal memory of previous stimulation.

The oscillator frequencies in the network were logarith-
mically distributed from 0.25Hz to 16Hz. The GFNN was
stimulated by rhythmic time-series data in the form of a
decay envelope on note onsets, synthesised from the sym-
bolic data. All sequences in the corpus were synthesised at
a tempo of 120bpm (2Hz), meaning that our metrical peri-
odicities the GFNN ranged from a demisemiquaver (32nd
note) to a breve (double whole note).

Performing a Fourier transform on the GFNN output re-
veals that there is energy at many frequencies in the spec-
trum, including the pulse (Figure ??). Often this energy is
located at integer ratios to the pulse, implying a perception
of the metrical structure.

LSTM
All experiments used the standard LSTM model with peep-
hole connections enabled and the number of hidden LSTM
blocks fixed at 10, with full recurrent connections. The num-
ber of blocks was chosen empirically as it provided rea-
sonable prediction accuracy with plenty of potential for im-
provement, whilst minimising the computational complex-
ity of the LSTM. Training was done by backpropagation
through time (?) using RProp- (?). During training we used
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Figure 2: A Hopf oscillator with the following parameters,
ω = 2π, α = −0.1, β = −0.1, ε = 0.5. The amplitude has
decayed by half in approximately 6.5 seconds.
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Figure 3: Example note onset time-series data.

k-fold cross-validation (?). In k-fold cross validation, the
dataset is divided into k equal parts, or ‘folds’. A single
fold is retained as the test data for testing the model, and the
remaining k - 1 folds are used as training data. The cross-
validation process is then repeated k times, with each of the
k folds used exactly once as the test data. For our experi-
ments k was fixed at 4, and a maximum of 2500 training
epochs was set per fold, but never reached. We also evalu-
ated on the training data and found a mean percentage in-
crease across all metrics of no more than 4.4%, indicating a
good generalisation without over-fitting.

Experiment 1: Pitch Prediction
Our first experiment was designed to investigate the effect of
adding the metre data from the GFNN to a pitch prediction
task. We created three LSTMs, all of which were tasked with
predicting pitch in the form of time-series data.

We abstracted the absolute pitch values to their relative
scale degrees to keep the model simple in these initial ex-
periments. Accidentals were encoded by adding or subtract-
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Figure 4: An example magnitude spectrum of a summed
GFNN output.

ing 0.5 from the scale degree and rests were encoded as 0
values. We first inserted scale degree numbers, their onsets
and offsets into the data stream and then re-sampled the data
using the zero-order hold method, such that one sample cor-
responds to a demisemiquaver. An example data stream can
be seen in Figure ??.
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Figure 5: Example scale degree time-series data.

The first network (LSTM1a) was designed as a baseline to
measure the impact of the GFNN. It took no input from the
GFNN, and so consisted of single input containing the time-
series scale degree data from the corpus. We constructed two
further networks, one with 128 inputs for each oscillator in
the GFNN (LSTM1b), and one with 8 inputs consisting of
a filtered GFNN output (LSTM1c). LSTM1a, LSTM1b and
LSTM1c are illustrated in Figures ?? and ??.

As shown in Figure ??, a GFNN signal has relatively few
resonant peaks of energy, therefore many oscillators would
be irrelevant to the LSTM. Thus, we hypothesised that the
filtered output would make learning easier. The input to
LSTM1b was filtered to retain the strongest resonant oscilla-
tions in the GFNN. The signal was averaged over the corpus



and the oscillators with the greatest amplitude response over
the final 25% of the piece were found. We ensured a spread
of frequencies by ignoring frequencies if another near fre-
quency was already included. The selected oscillators were
then used for all sequences.

Figure 6: Network diagram for LSTM1a, there is no input
from the GFNN.

Figure 7: Network diagram for LSTM1b and LSTM1c.
LSTM1b had full connections of 128 oscillations from the
GFNN, LSTMc had filtered connections of 8 oscillations
from the GFNN.

Results Networks were evaluated by activating each of
them with the sequences in the corpus (ground truth). We
activated the networks with the ground truth throughout the
sequence, and for the last 75% of inputs the network output
was compared to the target data.

The results have been evaluated using several metrics.
Firstly we can see the mean squared error (MSE), which is
what the networks were optimised for during training. This
provides a view of how close the output was to the target,
with a lower number meaning higher accuracy. The next
three results refer to the position of pitch changes using stan-
dard precision, recall and F-measure, where higher is better.
Finally we have a pitch only metric named “Sequence”. This
has been calculated as a proportion of samples where the
output scale degree matches the target value, where again
higher is better. Output values were rounded to the nearest
half before this comparison was made.

Pitch and rhythm are highly related, but have been singled
out here to more fully understand the GFNNs effect on the
network. The MSE and sequence metrics represent timing
and value, whereas the onset metrics of precision, recall and
F-measure represent timing only.

Table ?? shows the results tested against the validation
data. The values shown the mean values calculated over the
4 folds in the cross-validation.

We can see from the results that the filtered input from
the GFNN (LSTM1c) performed the best at predicting pitch
and rhythm. However, there is a striking imbalance between
the precision and recall scores for all networks, suggesting a
chaotic output from the LSTMs with too many events being
triggered. This lead to results that were not impressive over-
all, with pitch prediction improved, but rhythmic prediction
performing poorly.

Experiment 2: Onset Prediction
With our next experiment we wanted to investigate if the
GFNN did indeed contain useful rhythmic information for
the LSTM to learn. We designed a simpler task where the
LSTM had to predict the onset pattern used to stimulate the
GFNN from the GFNN data only.

We created two networks for this task: LSTM2a and
LSTM2b. LSTM2a had a full GFNN input, and LSTM2b
had the same filtered input from the previous experiment.
Both networks had one output and were trained to reproduce
the GFNN stimulus seen in Figure ??. A network diagram
can be seen in Figure ??.

Figure 8: Network diagram for LSTM2a and LSTM2b.
LSTM2a had full connections of 128 oscillations from the
GFNN, LSTM2b had filtered connections of 8 oscillations
from the GFNN.

Results Table ?? shows the results when the networks are
tested against the validation data.

All networks were evaluated as in experiment 1, except
we no longer have a sequence metric but include the Pearson
product-moment correlation coefficient (PCC). This gives a
relative rather than absolute measure of how close the tar-
get and output signals match, with higher values represent-
ing closer matches. LSTM2a performed the best at this task
in all metrics, however it is clear from the results that both
LSTM2a and LSTM2b perform the tasks well.

The fact that LSTM2a outperformed LSTM2b shows that
the LSTM network was able to train itself to ignore the noise
produced by the GFNN. It also shows that the GFNN data
contains useful information in the weaker resonances that
the filtering process removed. Our filtering process may have
been too aggressive in this respect. However, having noted
this, LSTM2b did not completely fail at the task, therefore a



Network MSE Precision Recall F-measure Sequence
LSTM1a 0.75836 0.12154 0.34366 0.17425 0.67107
LSTM1b 0.74115 0.18644 0.78908 0.29838 0.47756
LSTM1c 0.68866 0.22852 0.70196 0.34137 0.69459

Table 1: Results of the pitch only experiment.

Network MSE PCC Precision Recall F-measure
LSTM2a 0.01277 0.79400 0.82362 0.82769 0.82265
LSTM2b 0.01380 0.77395 0.79411 0.81157 0.79564

Table 2: Results of the onset only experiment.

more permissive filtering technique may still produce better
results than even LSTM2a.

Experiment 3: Onset and Pitch Prediction
Experiment 2 has shown us that the GFNN output can be
used to reconstruct onsets. Experiment 3 was designed to in-
vestigate if tasking the network to directly predict the onsets
could aid the prediction of pitch data. We therefore com-
bined experiments 1 and 2, resulting in LSTMs with two
outputs: one for pitch and one for onsets. We constructed

Figure 9: Network diagram for LSTM3a. There is no input
from the GFNN.

Figure 10: Network diagram for LSTM3b and LSTM3c.
LSTM3b had full connections of 128 oscillations from the
GFNN, LSTM3c had filtered connections of 8 oscillations
from the GFNN.

three LSTMs to conduct this experiment, following the same
pattern as experiment 1: no GFNN input, full GFNN input,

and filtered input. Network diagrams can be seen in Figures
?? and ??.

Results All networks were evaluated in the same way as
experiments 1 and 2. The MSE metric was calculated for
both outputs, PCC, precision, recall and F-measure were
only calculated for the onset pattern output, and sequence
was calculated only for the pitch output. Table ?? shows the
results against the validation data.

We can see from the results that LSTM3c was the best
overall network. Whilst LSTM3a did score a better MSE, it
scored very poorly on the onset prediction task. This shows
that MSE may not be the best optimisation target during
training.

In experiment 1, all LSTMs suffered from poor preci-
sion scores. Judging by the onset scores, the GFNN input
in LSTM3b and LSTM3c leads to great improvement on
this. However, an evaluation of the pitch changes compa-
rable with experiment 1 remains to be done.

In experiment 2, the fully connected LSTM2a outper-
formed the filtered LSTM2b on onset prediction, whereas
in this experiment the reverse is true. This could be due to
the increased complexity of the problem. The introduction
of pitch modelling may have prevented the LSTM learn-
ing from the GFNN data effectively, so that the filtering
process was beneficial. We can take what we have learned
from experiment 1 and hypothesise that an improved filter-
ing method may further improve results. Increasing the num-
ber of hidden LSTM blocks may also improve results for
both LSTM3b and LSTM3c.

The sequence scores for all networks are somewhat worse
in this experiment when compared to experiment 1. How-
ever, the improved onset prediction indicates that LSTM3b
and LSTM3c are more stable. More work is needed to in-
vestigate the behaviour of the pitch prediction to sequence
accuracy and stability.

LSTM3c outperformed LSTM3a on the pitch prediction
task, whilst also predicting stable onset patterns. This pro-
vides evidence that melody models can be improved by
modelling metre.

4 Conclusion
We have presented a multi-layered network consisting of a
metre perception layer (GFNN), and a temporal prediction



Network MSE PCC Precision Recall F-measure Sequence
LSTM3a 7.26251 0.23253 0.35655 0.06368 0.10233 0.64459
LSTM3b 7.34243 0.58499 0.71622 0.60717 0.65110 0.58371
LSTM3c 7.32129 0.62905 0.70480 0.76750 0.72589 0.65755

Table 3: Results of the pitch and onset experiment.

layer (LSTM). The GFNN output, with its strong and weak
nonlinear resonances at frequencies related to the pulse, can
be interpreted as a perception of metre. Our results show
that providing this data from the GFNN helped to improve
melody prediction with an LSTM. We hypothesise that this
is due to the LSTM being able to make use of the relatively
long temporal resonance in the GFNN output, and therefore
model more coherent long-term structures.

In all cases GFNNs improved the performance of pitch
and onset prediction, Given the improvements to the onset
prediction, modelling pitch and onsets can be seen to be
the best overall approach. Additionally, the best results were
achieved by filtering the GFNN output. However, experi-
ment 2 shows us that there is important information in the
full GFNN signal which is lost through the filtering method
adopted here. In addition, this filtering method may not be
a good solution when dealing with varying tempos or ex-
pressive timing, as it introduces an assumption of a metri-
cally homogeneous corpus. Thus, two tasks for future work
are to develop filtering that improves performance and sup-
ports tempo variation as well as exploring representations
and learning methods that combine stable onset prediction
with sequence accuracy.

Both Eck and Schmidhuber’s (?) and Coca et al.’s (?)
LSTMs either operate on note-by-note data, or quantised
time-series data. By inputting metrical data, our system can
be extended to work with real time data, as opposed to the
metrically quantised data we are using here. We feel these
initial experiments give some indication that better melody
models can be created by modelling metrical structures.

By using an oscillator network to track the metrical struc-
ture of a performance data, we can move towards real-time
processing of audio signals and close the loop in the GFNN-
LSTM, creating an expressive, metrically aware, generative
real-time model.
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