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Frequency specific synchronisation of neuronal firing within the gamma-band (30-70 Hz) appears to be a fun-
damental correlate of both basic sensory and higher cognitive processing. In-vitro studies suggest that the neu-
rochemical basis of gamma-band oscillatory activity is based on interactions between excitatory (i.e. glutamate)
and inhibitory (i.e. GABA) neurotransmitter concentrations. However, the nature of the relationship between ex-
citatory neurotransmitter concentration and changes in gamma band activity in humans remains undetermined.
Here, we examine the links between dynamic glutamate concentration and the formation of functional gamma-
band oscillatory networks. Using concurrently acquired event-related magnetic resonance spectroscopy and
electroencephalography, during a repetition-priming paradigm, we demonstrate an interaction between stimu-
lus type (object vs. abstract pictures) and repetition in evoked gamma-band oscillatory activity, and find that
glutamate levels within the lateral occipital cortex, differ in response to these distinct stimulus categories. Impor-
tantly, we show that dynamic glutamate levels are related to the amplitude of stimulus evoked gamma-band
(but not to beta, alpha or theta or ERP) activity. These results highlight the specific connection between excitato-
ry neurotransmitter concentration and amplitude of oscillatory response, providing a novel insight into the rela-

tionship between the neurochemical and neurophysiological processes underlying cognition.
© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Converging evidence from multiple neuroscience disciplines indi-
cates that frequency-specific temporal synchronisation of neuronal fir-
ing is critical for the co-ordination of neuronal network assemblies
underlying both basic sensory and motor processing (Singer, 1999;
Womelsdorf et al.,, 2006) as well as a variety of cognitive functions
(for a recent review see for instance:Herrmann et al.,, 2010; Jensen
et al, 2007). In both humans and animals, synchronisation in the
gamma-band frequency (30-70 Hz) is considered to play an important
role in local cortical information processing (Fries, 2009).

Abbreviations: ER-MRS, Event-related magnetic resonance spectroscopy; 'H-MRS, Pro-
ton magnetic resonance spectroscopy; fMRS, Functional magnetic resonance spectrosco-
py; EEG, electroencephalography; LOC, Lateral occipital cortex; AMPA, a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-p-aspartate; GABA,
gamma-aminobutyric acid; FID, Free induction decay.

* Corresponding author at: School of Psychology, City University, Northampton Square,
London EC1V OHB, UK. Fax: +44 207040 8580.
E-mail address: corinna.haenschel.1@city.ac.uk (C. Haenschel).

http://dx.doi.org/10.1016/j.neuroimage.2013.07.049

Gamma-band oscillatory activity can typically be observed as an
early evoked and a later induced response (Tallon-Baudry and
Bertrand, 1999). Evoked oscillatory activity is tightly time-locked to
stimulus-onset and typically occurs less than 250 ms after stimulus
onset. Evoked gamma-band activity is modulated by physical stimulus
properties and there is increasing evidence showing evoked gamma-
band oscillatory modulation also by higher cognitive processes, like
memory, attention and context processing (Busch et al., 2008;
Debener et al, 2003; Friind et al, 2008; Haenschel et al, 2000;
Herrmann et al.,, 2004; Oppermann et al., 2012; Roye et al., 2010). The
induced gamma-band response occurs after a variable time lag across
trials, and reflects the subsequent processing stages within cortical net-
works (Hassler et al., 2011; Martinovic and Busch, 2011). Both evoked
and induced gamma band activity have been linked to in-vitro mea-
sured local field potential gamma-band oscillatory activity (Haenschel
et al,, 2000; Hall et al.,, 2005; Ronnqvist et al., 2013).

As the importance of gamma-band oscillatory activity has become
increasingly appreciated (e.g. Fries, 2009) a considerable effort has
been made to reveal the neural mechanisms for its generation. In-
vitro studies of changes in neuronal assembly activity in response to
specific pharmacological agents indicate that gamma-band activity

1053-8119/© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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can be generated by local networks of chemically and electrically
coupled inhibitory gamma-aminobutyric acid (GABA)-ergic interneu-
rons, and controlled by excitatory glutamatergic receptor activation
(Fuchs et al., 2007; Whittington et al, 1995). More specifically,
gamma oscillations can be elicited by tonic activation of ionotropic
glutamate kainate, as well as cholinergic receptors (Buhl et al., 1998;
Cunningham et al., 2003; Rodriguez et al, 2004; Wespatat et al.,
2004), and transiently by activation of ionotropic (o-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid; AMPA, N-methyl-p-
aspartate; NMDA) or metabotropic glutamate receptors. Combining
both in-vitro and in-vivo techniques, research in animal models con-
firms that the balance between excitation and inhibition modulates
the gamma-band oscillatory frequency (Atallah and Scanziani, 2009).

The links between gamma-band activity and changes in neurotrans-
mitter concentrations within humans remain largely unknown. Fortu-
nately, proton magnetic resonance spectroscopy ('H-MRS) allows
in-vivo measurement of neurotransmitter concentrations (such as
GABA and glutamate) in humans, and can be combined with neuro-
physiological measures of oscillatory activity. A recent study measured
resting-state GABA concentration in the visual cortex across individuals
and correlated these levels with subsequent measures of peak induced
gamma-band oscillatory frequency during a simple visual task mea-
sured with magnetoencephalography (Muthukumaraswamy et al.,
2009). However, static measures of neurotransmitter concentration
during a resting-state period may ignore critical changes in concentra-
tions that occur during task performance. Furthermore, a direct rela-
tionship between glutamate levels and gamma-band activity, in either
peak frequency or power, has not been demonstrated.

'H-MRS is well established to provide reliable static resting-state
measures of glutamate concentration, with several optimal acquisition
schemes being suggested (Hancu, 2009; Henry et al, 2011; Jensen
et al., 2009; Mayer and Spielman, 2005; Mullins et al., 2008; Schubert
et al.,, 2004). Recently, functional changes in glutamate levels due to ex-
perimental manipulation have also been reported (Mangia et al., 2007;
Mullins et al., 2005). Nonetheless, the abovementioned 'H-MRS exper-
iments used long blocks of repetitive stimulation (5 + minutes), poten-
tially causing glutamatergic response attenuation through stimulus
adaptation. Surmounting this limitation, Gussew et al. (2010) instead
acquired time-locked spectral measures of glutamate levels post-
stimulus onset (in response to pain). Here, we wish to develop this
method further by acquiring event-related 'H-MRS (ER-MRS) measures
of glutamate levels during a cognitive task, in a similar vein to event-
related fMRI designs, while also simultaneously collecting EEG.

Glutamate, the primary excitatory neurotransmitter, is released by
approximately 80% of synapses (Magistretti et al., 1999) and is consid-
ered to play a fundamental role in learning and memory. Presynaptic glu-
tamate release activates three different glutamate gated ion channels on
postsynaptic membranes: NMDA, AMPA and kainate receptors. Both
AMPA and NMDA receptor activity have been shown to jointly modulate
learning and memory, whereas the role of kainate receptors in synaptic
plasticity is less well understood. AMPA receptors are more common
and mediate fast excitation, whereas NMDA receptors generate a much
slower and longer-lasting current, and, in addition are important for
Ca?*-dependent plasticity. The classical view is that AMPA receptors af-
fect short-term changes in synaptic strength; whereas NMDA receptors
regulate genes that are required for the long-term maintenance of these
changes (Myme et al,, 2003; Rao and Finkbeiner, 2007). Indeed, long-
term potentiation, the proposed mechanism of learning and memory,
can be abolished by blocking glutamatergic NMDA receptors (Bliss and
Collingridge, 1993), with consequent impairment in learning and memo-
ry (Morris, 1989). However, more recent evidence suggests that both
AMPA and NMDA receptors have a role in long-term plasticity (Rao and
Finkbeiner, 2007). NMDA and AMPA receptors are scaled proportionally
so that the ratio of currents through these channels is relatively fixed,
which may help to preserve the information content of synaptic trans-
mission or may play an important role in coupling synaptic activity to

long-term modification via gene expression (Myme et al., 2003; Rao
and Finkbeiner, 2007). Hence, glutamate is likely to play an important
role in the formation of learning related networks.

To assess the temporal relationship between event-related modulations
of glutamate concentration and gamma-band activity, we simultaneously
recorded stimulus-elicited changes in both 'H-MRS and electroencephalog-
raphy (EEG) during a repetition-priming task. We repeatedly presented
pictures of familiar objects and unfamiliar abstract stimuli, respectively.
The repetition of familiar stimuli usually results in a decrease in neural ac-
tivity (repetition suppression), whereas the repetition of unfamiliar stimuli
is typically accompanied by an increase in neural activity (repetition en-
hancement; see e.g. Henson et al, 2000; Martens and Gruber, 2012).
Thus, repetition-priming paradigms are especially suited to examine learn-
ing related changes within cortical networks.

We focused our analysis primarily on the early-evoked gamma
responses. The reason for this approach was threefold:

(1) "H-MRS can only be measured from one voxel, hence we had to
choose an area (2 cm?) to measure changes in glutamate concen-
tration during repetition priming. We focused on an early visual
area, specifically the lateral occipital cortex (LOC), a region
known to be object selective (Grill-Spector et al., 1999; Grill-
Spector et al., 2001) and also localized as a source of evoked
gamma-band oscillatory activity (Gruber et al., 2006).

(2) There is increasing evidence showing that evoked gamma band
activity is sensitive to mnemonic functioning (see above). Specif-
ically, evoked gamma band activity has been shown to be larger
for objects compared to abstract stimuli during speeded re-
sponses (Friind et al., 2008; Herrmann et al., 2004) and to exhibit
repetition suppression in some participants with a strong behav-
ioural repetition-priming effect again when instructed to re-
spond as quickly as possible (Busch et al.,, 2008). The prompt
appearance of evoked gamma-band activity highlights that it is
an especially good index of rapid mental processes, such as the
fast processing of incoming information (Busch et al., 2008;
Friind et al., 2008; Oppermann et al., 2012).

(3) The quantification of induced, but not evoked, gamma-band os-
cillatory activity using EEG remains controversial due to the po-
tentially confounding signal interference caused by miniature
eye movements (Yuval-Greenberg et al, 2008). Even though
there are published algorithms that can deal with such artefacts
(Hassler et al., 2011), it remains an open question how to deal
with these artefacts when recoding EEG data inside the MRI scan-
ner. This is because the removal of miniature saccade-related and
MRI-related artefacts is both based on independent component
analysis (ICA).IfICA is applied twice and an artefact-related com-
ponent is pruned in the first run of the ICA, the prerequisites for
the second run of ICA (namely independence) cannot thereafter
be guaranteed.

For these reasons, we chose to instruct participants to respond as
quickly and accurately as possible and to focus our analysis primarily
on the early-evoked responses (especially in the gamma-band, but we
also included evoked theta, alpha and beta oscillatory activity and
ERPs as control analyses for the specificity of our results).

In summary, the aim of the present study was to investigate if there
was a relationship between event-related glutamate concentrations in
the LOC and concurrently acquired task-specific evoked gamma-band
oscillatory activity during early mnemonic processing.

Materials and methods
Participants

Fourteen healthy right-handed participants (8 males; M = 23.79
years, SD = 3.9) were recruited via advertisements on the Bangor
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University Psychology research participation forum. Participants report-
ed no history of neurological disorder, had normal or corrected-to-
normal vision and were financially remunerated for their time.
Informed consent was obtained from all participants and the study
was approved by the ethics committee of the School of Psychology at
Bangor University, United Kingdom.

Experimental paradigm

The behavioural task has been described in detail elsewhere (Gruber
and Miller, 2005). In brief, participants categorised sequentially
presented line drawings as either object or abstract stimuli (scrambled
versions of unpresented objects; Fig. 1A). The stimulus set comprised
of 256 unique randomly selected stimuli, 128 familiar objects and 128
abstract forms. Each stimulus was repeated three times with between
one-to-four (randomised) intervening items, thus engaging pro-
cesses of visual repetition priming. Categorisation was performed via
(counterbalanced) button press. Participants were instructed to re-
spond as quickly and accurately as possible. Each trial consisted of a
1850-2050 ms baseline period during which a fixation cross was
shown, followed by presentation of a stimulus picture for 700 ms. The
stimulus was then replaced by the fixation cross which remained
onscreen for 250-450 ms, such that each individual trial was 3 s in
length. There were 768 trials in total, which were spread across three
same-session runs. The task was presented using E-Prime 2.0 software
(Psychology Software Tools, Pittsburgh, PA).

EEG

EEG was recorded continuously at 5 kHz using a compatible EEG
BrainAmp MR system (BrainProducts, Munich, Germany) and an MRI
compatible BrainCap electrode cap (Falk Minow Services, Herrsching-
Breitbrunn, Germany) containing 64 sintered Ag/AgCl electrodes. Each
subject's heartbeat was measured using two bipolar electrocardiogram
(ECG) electrodes placed approximately on the mid-clavicle line around
the third intercostal space of the chest and the fifth intercostal space of
the back. One additional electrode was placed below the eye to record
eye-movements. The impedance of each electrode was maintained
below 20 kQ. MRI acquisition was synced to the BrainAmp MR system
using a SyncBox (Brain Products). For the analysis, a low pass filter
was set to 250 Hz and the electrodes were referenced to Cz. An ICA
based on the Infomax (Bell and Sejnowski, 1995) optimization-
learning algorithm was applied to correct for MRI specific artefacts
(e.g. cardioballistic interference). The ICA aggregated variance associat-
ed with the ECG electrodes in a rolling averaged template, which up-
dated (every 21 intervals of 600 ms) as it proceeded throughout the
data. Subsequently, EEG data were visually inspected so that heartbeat
and other artefacts (muscle movement and eye blinks) could be re-
moved. Thereafter, data were segmented into epochs from 200 ms be-
fore, to 600 ms after, stimulus onset using Brain Vision Analyser 2
(Brain Products, Munich, Germany).

Evoked oscillatory activity

Evoked gamma-band activity was analysed by Morlet wavelet anal-
ysis, as proposed by Bertrand and Pantev (1994), using custom Matlab
(version 7.7; Mathworks, Natick, MA, USA) scripts, from 19 electrodes
around central, parietal and occipital electrode positions (mounted at
or around the following standard electrode positions: Cz-C2-CP2, CPz,
Cz-C1-CP1, CP2-CP4, P2, Pz, P1, CP1-CP3, P6-CP6, P4-PO4, POz-PO4,
P0Oz-P0O3, P3-PO3, P5-CP5, P8-PO8, 02, Oz, 01, P7-PO7). These elec-
trodes were chosen based on our a priori hypothesis that evoked oscil-
latory gamma-band activity, our focus here, would be primarily
localized to posterior regions, as they were with previous use of this
task (Gruber and Miiller, 2005) and because of our aim to correlate
evoked gamma activity with glutamate concentration measured at
LOC. This Morlet wavelet analysis technique permits the examination

of frequency band variations across the time domain. Specifically, the
evoked response was calculated per condition (stimulus type x
presentation) for each subject by averaging the EEG signal across all tri-
als. Next, the averaged signal was transformed into the time-frequency
domain via convolution with the Morlet wavelet, the absolute value of
this transformation was quantified and the post-stimulus-onset period
was baseline corrected by the averaged 200 ms period of activity prior
to stimulus-onset. Data from the different electrode channels were av-
eraged following wavelet decomposition. In order to achieve good
time and frequency resolution in the gamma frequency range the wave-
let family used was defined by a constant of 7, with an analysis frequen-
cy ranging from 0.97 to 97.66 Hz in 0.49 Hz steps; statistical analysis
was performed between 30 and 50 Hz. In addition, we analysed evoked
theta (4-7Hz), alpha (8-12 Hz), and beta (12-30 Hz) band activity in
order to examine if there was a relationship between these frequency
bands and stimulus repetitions, as well as with glutamate concentra-
tion. Only correct trials were included in the analysis following artefact
reduction. Because gamma-band activity was mainly distributed be-
tween 30 and 50 Hz, we determined the peak frequency by identifying
the highest amplitude across task conditions for each participant within
our time-frame and frequency range of interest. One participant was ex-
cluded from the oscillatory analysis and subsequent correlations be-
cause of electrical interference.

Event related potentials (ERPs)

ERP data were analysed using the Brain Vision Analyser 2 software
(Brain Products, Munich, Germany). A 30 Hz low-pass filter (0.01 Hz
high pass filter, with a 12 dB/oct slope) was applied to the data before
the event related potential (ERP) analysis, prior to segmenting into
epochs 200 ms before to 600 ms after stimulus onset. Any epoch con-
taining residual scanner, cardioballistic, movement or eye blink arte-
facts, identified through visual inspection was removed. Baseline
correction was applied using the pre-stimulus interval prior to averag-
ing and re-referencing to a global average reference. Only correct trials
were included in the averages. Four main ERP components, P1, N1, L1
and L2, were identified based on the topography, deflection and latency
characteristics of the respective grand average ERPs time-locked to
stimulus presentation. Epochs of interest for each component were de-
fined on the basis of deflection extreme in the mean global field power
(MGFP; Picton et al., 2000). Peak detection was time-locked to the
electrode of maximal amplitude (nearest 10-20 equivalent site given)
for each component; P1 (90-150 ms) maximal at Oz, N1 (151-
190 ms) maximal at PO8, L1 (210-350 ms) maximal at P8 and L2
(360-520 ms) maximal at P8.

Peak and mean amplitudes and latencies were analysed using stim-
ulus type (object, abstract) x repetition (1st, 2nd, 3rd) x laterality
(right, left) x electrode. A cluster of three electrodes were taken around
the maximal site, with a corresponding cluster in the opposite hemi-
sphere. Greenhouse-Geisser corrections were applied to all analyses of
ERP data, unless otherwise stated only significant main effects and
interactions where corrected p < .05 are reported.

MRI

MR images and single voxel 'H-MRS were acquired on a Philips 3 T
Achieva MRI System (Eindhoven, Netherlands) using an 8-channel
SENSE head coil. For each participant we obtained a high resolution
3D T1 weighted image covering the whole brain (1 x 1 x 1 mm voxel
resolution, field of view = 240 mm, number of excitations = 1, resolu-
tion = 240 x 240, 150 slices, TR (repetition time) = 8.40 ms, TE (echo
time) = 3.80 ms, flip angle = 8°) to allow anatomical localisation for
MRS voxel placement. Time-locked spectra, between 950 and
1150 ms after each stimulus presentation, were acquired in all subjects
using a single voxel PRESS acquisition (20 x 20 x 20 mm, TR =
3000 ms, TE = 40 ms) in the lateral occipital cortex (LOC), an area of
the visual cortex shown to preferentially respond to objects compared
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Fig. 1. Repetition priming task and behavioural results. (A) Example of object (0) and abstract (a) stimuli presented for the first (1stP), second (2ndP) and third (3rdP) time. Stimuli re-

peated between one and four intervening stimuli following initial presentation. (B) Percentage

across three presentations. Error bars represent SE.

to other stimuli (Grill-Spector et al., 2001) and also a localized region of
evoked gamma-band oscillatory activity with this task (Gruber et al.,
2006). The LOC was located using anatomical landmarks and confirmed
with a blood-oxygen-level-dependent functional magnetic resonance
imaging localizer (TR = 2000 ms, TE = 40 ms) in one subject using a
block design (Fig. 4A). A PRESS 'H-MRS sequence with a TE of 40 ms
was chosen as this combination has previously been shown to provide
reliable measures of glutamate at 3 T by reducing the overlapping sig-
nals from glutamine that previously hampered separation of these
two metabolites (Hancu, 2009; Hancu and Port, 2011; Mullins et al.,
2008). Shim settings were manually optimized for each participant to
achieve full-width half maximum <12 Hz. Higher order shims were
used for all cases.

As the use of an ER-MRS acquisition has only been reported twice
before (Gussew et al., 2010; Nishitani, 2003), further explanation of
TH-MRS acquisition in an event related paradigm with particular con-
sideration of temporal specificity is warranted. For each experimental
trial (N = 768) of the repetition priming paradigm, one 'H-MRS mea-
surement occurred. Each individual 'H-MRS acquisition involved

correct and (C) reaction time in milliseconds for object (black) and abstract (grey) stimuli

excitation by a train of radiofrequency pulses centered on the main res-
onance frequency of tissue water in the voxel of interest, followed by
the collection of signal from the tissue 40 ms after excitation. This signal
is a decaying waveform (the free induction decay; FID) composed of fre-
quencies corresponding to the resonance frequencies of the
neurometabolites present within the voxel. A Fourier transform of this
decaying waveform allows the spectrum of resonance frequencies cor-
responding to these metabolites to be visualized, with peak height, or
signal strength being determined by chemical concentration amongst
other factors (for a good summary of these factors see (Alger, 2010)).
Here, the FID was acquired over 1024 ms, after Fourier transformation
the spectra produced is a weighted average measure of the chemical
levels across this time period, with the first points of the FID providing
the majority of signal power. The 'H-MRS acquisition window of 950-
1150 ms post-stimulus onset in this experiment corresponds to the
time window in which "H-MRS data acquisition began, and was chosen
to provide a clear EEG signal without the overlapping magnetic gradient
artefacts. Here, stimulus presentation was triggered from the previous
'H-MRS data acquisition (synchronized with the first excitation
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phase) with the individual 'H-MRS spectra always separated by a repe-
tition time of 3000 ms. To prevent possible entrainment and anticipa-
tion, the stimulus presentation was jittered, leading to the individual
spectral collection starting between 950 and 1150 ms after stimulus
onset. This timing means that here we are sampling the metabolic con-
centrations at a time point ~1 s after stimulus onset. This time point was
based purely on practical concerns, aiming to provide the best chance of
clean EEG data with minimal '"H-MRS gradient artefact. However, very
few studies have examined glutamate related activity changes in this
fashion, and it is unclear how they may relate to EEG measures. In addi-
tion, as there are no data from 'H-MRS studies describing the time
course of the glutamatergic response, the precise temporal profile of
the glutamate response is not known. Thus, it is undetermined when
the 'H-MRS measured glutamatergic signal may peak and how long
the signal may remain elevated following a single event. Future studies
sampling at a wider spread of time points may help to address this issue.
However, this technique provides a specific snapshot of a particular
time point and not an average across a period of stimulus presentation,
which is one advantage of the time-locked ER-MRS acquisition strategy.

MRS data analysis

Spectra from incorrect trials were removed, resulting in a 21% reduc-
tion, leaving on average 303 measurements per stimulus type. Subse-
quently, spectra were frequency corrected and averaged within
conditions to produce a spectrum for object and abstract stimuli. Anal-
yses were then performed using java Based Magnetic Resonance User
Interface (JMRUI; (Naressi et al., 2001)) software version 4.0 (http://
www.mrui.uab.es/mrui). The fast time domain quantitation option
(QUEST — quantitation based on quantum estimation) within jMRUI
was used for metabolite concentration estimation. To exclude potential
blood-oxygen-level-dependent related effects on any concentration
levels reported and possible water changes during neuronal activity, re-
sults were referenced to the creatine signal, which will have experi-
enced the same blood-oxygen-level-dependent effects in signal as
glutamate. Creatine is a reliably quantifiable metabolite using '"H-MRS
and despite its known role in energy metabolism within muscle it is
thought to remain stable over time in healthy human neurons. Values
for the creatine signal here were found to be very stable for each
stimulus type presented throughout the experiment (less than 1% dif-
ference in absolute measures, t;1) = 0.279, p = 0.785, d = 0.046).
Referencing to creatine reduces the need for tissue content correction,
as like glutamate, creatine is only detected from the tissue. One partici-
pant was excluded from the 'H-MRS analyses and subsequent correla-
tions due to poor signal-to-noise and shim (FWHM > 14 Hz) in the
'H-MRS data. Statistical tests throughout the study were two-tailed.
Correlations were made using the Pearson product-moment correla-
tion coefficient.

Statistical analysis

Repeated measures of analysis of variances (ANOVA) were used to
assess the main effect of stimulus and presentation, and their interac-
tion, on behaviour, evoked oscillatory activity and ERPs. Where applica-
ble Greenhouse-Geisser corrections were utilised to adjust for violations
of the sphericity assumption. A paired t-test was used to determine the
difference between abstract and object for glutamate levels across par-
ticipants. The relationship between stimulus averaged evoked gamma-
band oscillatory activity and glutamatergic levels was examined where
a significant main effect or interaction was found. In order to examine
the specificity of our results we further explored the relationship be-
tween condition averaged evoked oscillatory activity across beta,
alpha and theta-band oscillatory activity and mean task glutamate
levels. ERP components were correlated with glutamate concentration
in cases of significant task effects only. Associations between variables
were assessed in all case using Pearson product-moment correlations.

All statistical analyses were performed using SPSS and are reported
here two tailed.

Results
Behavioural performance

One participant was excluded from the overall analyses due to re-
peated failure to respond within the response time limit and thus
their data are not included here. The pattern of behavioural results
was comparable to previous repetition priming tasks (Gruber and
Miiller, 2005). Participants responded correctly on average of 79%
(SD = 13.35%) of the time, but showed no difference in accuracy
(ta2y = 1.26, p = 0.231, d = 0.194) between stimulus types for the
initial presentation. However, overall accuracy (Fig. 1B) was significant-
ly higher (mean difference = 7.39%) for object than abstract stimuli
(Faia2) = 1345, p = 0.003, 12 = 0.529). Finally, accuracy of both
stimulus types increased with repetition (F24) = 38.45, p < 0.001,
Mg = 0.762), but there was a trend towards a larger increase in accuracy
for object compared to abstract stimuli (stimulus x repetition:
F224) = 3.63, p = 0.062, nlz, = 0.232). Analysis of reaction times
(RTs) also revealed no difference (t1) = 1.01, p = 0.333, d = 0.07)
between stimulus types for the initial presentation. There was however
an advantage for object compared to abstract stimuli (F112) = 21.43,
p = 0.001, 13 = 0.641) and a faster response speed for both stimulus
types with repetition (F.4) = 136.18, p <0.001, nf) = 0.919;
Fig. 1C). Increases in speed for repeated stimuli were significantly great-
er for object compared to abstract stimuli (stimulus type x repetition:
Fra24) = 51.88, p < 0.001, 12 = 0.812).

Evoked oscillatory activity

EEG data revealed that both object and abstract stimuli elicited
evoked gamma-band activity at posterior electrodes between 50 and
250 ms post stimulus onset (illustrated in Fig. 2A for the first, second
and third stimulus presentation). There was a trend towards a signifi-
cant difference between stimulus types following the initial presenta-
tion (tg1y) = 1.967, p = 0.075, d = 0.327), with higher evoked
gamma-band oscillator activity following object that abstract stimulus
types. There was no main effect of either stimulus type (F(111) =
0.038, p = 0.848, 3 = 0.003) or presentation (Fz22) = 0.070, p =
0.933, T]f, = 0.006). However, evoked gamma-band oscillatory activity
decreased with repeated presentations of objects, but increased for
repetitions of abstract stimuli (stimulus x repetition: F;22) = 4.578,
p = 0.042, 3 = 0.294; Fig. 2B).

Utilizing the same analytical approach as our gamma-band analysis
(ie. the same electrodes and a post stimulus onset time window
based upon data presented in Fig. 2A), we evaluated the evoked beta
(12-30 Hz, 50-200 ms), alpha (8-12 Hz, 100-300 ms) and theta
(4-7 Hz, 0-400 ms) activity within our paradigm. There was no signif-
icant main effect of stimulus type (F11) = 2.320, p = 0.156, nf, =
0.174; F111) = 4.076, p = 0.069, nf, = 0.270), repetition (F2) =
1.241, p = 0309, 13 = 0.101; Fz 20y = 0.577, 3 = 0.294, p = 0.570,
7112: = 0.050) or interaction (stimulus type x repetition: F2) =
0045, p = 0956, M3 = 0.004; F2) = 0.156, p = 0.857, M5 =
0.014) on beta or alpha, respectively. There was a main effect of stimu-
lus type (F111y = 7.393, p = 0.020, 3 = 0.402) for theta activity but
none for repetition (F22) = 0.193, p = 0.826, nﬁ = 0.017) nor an in-
teraction between these two variables (F22) = 0.132, p = 0.877,
Mp2 = 0.012). Of note, the abovementioned trend toward a significant
effect of stimulus type in the beta-band frequency analysis reflects
higher average activity to objects than abstract stimuli across presenta-
tions, while the opposite pattern is true for the main effect of stimulus
type in the theta-band analysis.
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ERPs

We found no significant effect for the P1 amplitude. N1 amplitude
was larger on the left compared to the right side (F(2) = 7.052,
p = 0.002, 3 = 0.352), but showed no other significant effects. The
late component L1 amplitude however was larger for abstract com-
pared to object stimuli (stimulus type (F,12) = 28.08, p < 0.001,
nﬁ = 0.684); see Fig. 3) and larger on the right side (laterality
(Fai12) = 7.814,p = 0.015, 13 = 0.375)). There was no significant dif-
ference between first or repeated repetitions of the stimulus. The late
component L2 was again larger on the right side (laterality F;,12) =
7.515, p = 0.017, nﬁ = 0.366) with no other significant main effect.
There were no significant effects on latency.

"H-MRS glutamate concentrations

For the analysis of glutamate, spectra were averaged separately for
object and abstract stimuli across stimulus presentations (one-to-
three). This produced spectra with sufficient signal to noise to reliably
detect glutamate in all conditions for all participants except one.
TH-MRS data quality is often determined from the Cramer Rao lower
bound (CRLB) of the data, which is essentially a ratio of the standard de-
viation of the residual signal after modelling to the amplitude of the
fitted peak. All glutamate measures used in our statistical analysis had
a CRLB of <15%, which is considered a reliable cut off for 'H-MRS data,

A

and below the common exclusion criteria of CRLB 20%. 'H-MRS data
showed that average LOC (Figs. 4B,C) glutamate was lower following
the presentation of object (M = .5222, SD = .145) than abstract
(M = 5822, SD = .128) stimuli (F;,11) = 8.06, p = 0.016, d = 0.47;
Figs. 4B, C). This result also demonstrates that ER-MRS can discriminate
between these stimulus types and that variation in glutamate concen-
trations can potentially distinguish between different conditions in a
task.

The reliability of the MRS signal is largely dependent upon the
signal-to-noise ratio, which increases with the number of FIDs used
to create an average spectrum. This has an adverse effect on the
power of any analysis that subdivides spectra per condition. Never-
theless, consistent with our behavioural and EEG results, we also un-
dertook an exploratory analysis to assess if a similar stimulus type
effect was also visible across the three presentations, despite the
substantial reduction in the number of spectral averages. Tentative
(uncorrected) paired t-tests revealed a trend towards stimulus
type differentiation at the third presentation, with abstract stimuli
eliciting higher glutamate levels than object stimuli (t11) = 1.92,
p = 0.08, d = 0.32). No trends for stimulus type differentiation
were observed for either the first or second presentation (both
t11) < 1). These results support our findings of glutamatergic differ-
entiation between stimulus types (object vs. abstract), but remain
tenuous due to the aforementioned reduction in signal reliability
and statistical power.
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Fig. 2. Stimulus-evoked gamma-band activity. (A) Evoked oscillatory activity between 1 and 70 Hz after the first (left), second (centre) and third (right) stimulus presentation is shown for
object (top row) and for abstract (bottom row) stimuli at posterior electrodes. Power is calculated as the change from baseline (—200 ms to 0 ms). Red boxes (abstract stimuli presen-
tation 2) indicate the frequency range and time window that were quantified and analysed for gamma (30-50 Hz; 50-250 ms), beta (12-30 Hz; 50-200 ms), alpha (8-12 Hz; 100-
300 ms) and theta (4-7 Hz; 0-400 ms) ranges. Note that although the evoked gamma-band power appears to be a tail of a lower frequency, this smearing commonly arises as a function
of averaging across participants for the presentation of results from evoked oscillatory analyses (Friind et al., 2008; Oppermann et al., 2012). Single subjects do not contain this visual ar-
tefact (please see S1). (B) Mean evoked gamma-band power in response to stimulus 1, 2 and 3 are shown for object (blue) and abstract (red) stimuli. We find a significant interaction
between stimulus and presentation for oscillatory activity in the gamma-band (30-50 Hz; F(322) = 4.578, p = 0.042). Error bars represent SE.
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Glutamatergic correlates of gamma-band oscillatory activity

Importantly, examining the relationship between neurochemical
and neurophysiological measures, we found a significant correlation be-
tween condition averaged (object and abstract combined) evoked
gamma-band oscillatory power and mean glutamate levels (r(11) =
.769, p = 0.006; see Fig. 4D). This strong correlation reflected a positive
relationship between both object (r(11) = .696) and abstract (r¢;1) =
.682) glutamate levels and their respective stimulus specific mean
gamma-band oscillatory evoked power. In order to ascertain the speci-
ficity of our association we assessed the relationship between baseline
gamma levels (200 ms prior to stimulus onset) and mean glutamate
levels. There was no significant correlation between baseline gamma
oscillatory activity and glutamate levels (r(11) = .231, p = 0.495).
Furthermore, to assess whether the correlation coefficient between
mean baseline and task gamma-band oscillatory power and glutamate
concentrations was significantly different we computed Steiger's
Z-test (two-tailed). We found a significant difference between the two
relationships (Zg) = 2.12, p = 0.0388), indicating that relative to the
baseline period, the stimulus period was associated with a significant
increase in gamma-band oscillatory power that was specifically associ-
ated with average glutamate levels after the stimulus.

Moreover, we found no significant relationships between condition
averaged beta (r¢;1) = .075, p = 0.826;), alpha (r(;1) = —.135, p =
0.691) or theta (r(11) = —.284, p = 0.397) band oscillatory power,
and glutamate levels, respectively. Additionally, stimulus averaged
ERP amplitude for the area under the L1 was not associated with stimu-
lus averaged glutamate concentrations (r(12) = .258, p = 0.418). Thus,
we conclude that glutamate concentration is uniquely associated with
the amplitude of dynamic stimulus-related gamma-band oscillatory
activity.

Posterior Left

UV Object —_—
Object Repeat ——
5 Abstract —

Abstract Repeat

4

100 0 100 200 300 400 500  ms
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Fig. 3. Event-related potentials across stimulus type. ERPs for the left/right posterior re-
gional means for initial presentation, and the 2nd and 3rd presentation averaged together,
for object and abstract stimuli, respectively. P1, N1, L1 and L2 components are visible. A
significant effect of stimulus type is apparent at L1 (F(y,12) = 28.08, p < 0.001).

Finally, we investigated whether glutamate concentrations across
individuals correlated with the peak gamma-band frequency (i.e. spe-
cific frequency with the highest power), which has been pre-
viously shown to be associated with baseline GABA concentration
(Muthukumaraswamy et al., 2009). A trend towards a significant corre-
lation with peak gamma-band oscillatory frequency was found (M =
34.25 Hz, r(11) = —.538, p = 0.088), with higher glutamate levels in
the LOC associated with a lower peak frequency. No significant associa-
tion between LOC glutamate concentration and peak frequency was
found for either beta (r(11) = .077, p = 0.823), alpha (r¢;1) = .061,
p = 0.858) or theta (r(11) = .307, p = 0.358) band analyses.

Discussion

Our study provides in-vivo evidence of a relationship between dy-
namic glutamatergic concentrations and synchronised neuronal oscilla-
tions within the gamma-frequency range during a cognitive task in the
human brain. We show, using a unique combination of ER-MRS and
EEG, that levels of excitatory neurotransmitter glutamate correlate
significantly with the power of neuronal oscillations within the
gamma-band. Specifically, we find a relationship between levels of
glutamatergic activity in the LOC and stimulus evoked gamma-band
amplitude during an object repetition-priming task.

Our results highlight that stimulus evoked gamma-band oscillatory
power is related to glutamatergic concentration in the human brain,
and thus provide complementary evidence to previous animal work
assessing the underlying neurobiology of gamma-band oscillatory
activity both in-vivo and in-vitro (Atallah and Scanziani, 2009;
Whittington et al.,, 1995). Additionally, our findings add to recent re-
search assessing the contribution of resting-state GABA levels to the
peak inter-individual frequency, but not power, of the induced
gamma signal (Muthukumaraswamy et al., 2009). Here, we find that
dynamic glutamatergic activity levels are associated with specific
stimulus-related changes in gamma power, and as a trend to peak
evoked gamma-band oscillatory frequency. These results are consistent
with the proposal that precise temporal tuning (frequency) of activity
being determined by the ratio of GABA and glutamate concentrations
(Atallah and Scanziani, 2009), while the gain of this neural signal
(power) is regulated by modulations in glutamate levels only. Taken to-
gether, our findings suggest both a unique and potentially complemen-
tary role for glutamate levels in modulating gamma-band cortical
networks in the human brain. Indeed, glutamate may possess a distinct
role in driving gamma-oscillatory power; meanwhile, both GABA and
glutamate might jointly modulate the peak gamma-band oscillatory
frequency, reflecting recent in-vitro research (Atallah and Scanziani,
2009).

However, the association between glutamate concentration and
oscillatory network changes here is limited to the region of "H-MRS ac-
quisition, the LOC. Without data from other areas, generalisation to the
rest of the cortex is not possible. Importantly, our results do not exclude
glutamate changes in other regions of the visual cortex; future studies
geared to investigate the generalizability of these relationships would
be beneficial. Indeed, in contrast to our association between stimulus-
related glutamate levels and evoked oscillatory activity in the gamma-
range, Gallinat et al. (2006) reported a relationship between baseline
hippocampal glutamate concentration and frontal theta oscillations
using an auditory target detection paradigm. This suggests that the rela-
tionship between measures of synchronised oscillatory activity and glu-
tamate concentration may be task specific. It would be interesting to
investigate if the correlation between theta oscillations and glutamate
concentration would still be evident if recorded simultaneously.
Furthermore, despite demonstrating that our glutamatergic concentra-
tion in the LOC and gamma-band oscillatory power correlation was
specific to the stimulus, but not the baseline period, this association
does not preclude the possibility that other tasks and stimuli or passive
viewing of the same stimuli without a task may elicit a similar
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Fig. 4. "TH-MRS and glutamate correlations with evoked gamma-band power. (A) The LOC (red box) was located using anatomical landmarks, and confirmed by a functional magnetic
resonance imaging localizer contrasting object vs. abstract stimuli. Activity maps (red/yellow) show t-statistics. (B) Representative averaged magnetic resonance spectrum (across 384
spectra) acquired in response to presentation of one stimulus type. Spectra quality permitted the estimation of glutamate and creatine (Cre) concentration for each stimulus type
(other estimates shown are NAA: N-acetyl-aspartate; Cho: Choline; Myo-Ins: myo-Inositol). The individual glutamate spectral estimation is shown in the line below. Glutamate levels
are referenced to creatine, a neuronal metabolite found to be stable across conditions, to control for tissue concentration differences. (C) Glutamate levels (mM) for object (blue) and ab-
stract (red) stimuli, showing that glutamate was significantly higher after abstract stimulus presentation (F(; 11y = 8.06, p = 0.016). (D) Positive correlation (r(;1) = .769, p = 0.006)
between mean task related gamma-band activity (1V?) and glutamate level (mM). Error bars represent SE.

relationship. Future research is needed to clarify the specificity of the re-
lationship evidenced here.

Repeated presentations of pictures of familiar objects resulted in a
decrease of evoked gamma-band activity. These effects might be linked
to a ‘sharpening’ mechanism within a cell assembly representing a
familiar object (cf. Wiggs and Martin, 1998). In contrast, the representa-
tion of repeated abstract stimuli was associated with an increase in
evoked gamma power. These findings might be a signature of the for-
mation of a new cortical network representing an object (cf. Martens
and Gruber, 2012). A similar pattern of results was reported by Gruber
and Miiller (2005) for the induced but not the evoked gamma-band
response. A possible explanation for this contradictory finding is that
memory effects can be observed in evoked and induced gamma-band
oscillatory activity, but task parameters such as instructions may modu-
late their appearance in distinct analyses (Herrmann et al., 2010). For
instance, Busch et al. (2008) and Friind et al. (2008) showed that evoked
gamma-band activity in fact is larger for objects compared to abstract
stimuli and the response to object stimuli can be suppressed with
repetition in cases when an immediate and speeded response is re-
quired. Indeed participants in the current study, but not the Gruber
and Miiller (2005) study, were instructed to respond as quickly (and ac-
curately) as possible. Comparing RTs between the two studies directly
confirmed that participants in the current study responded faster
compared to the Gruber and Miiller (2005) study.

Our 'H-MRS results provide evidence for a significantly different glu-
tamate response to stimulus type averaged object and abstract stimuli.
Tentatively, we also investigated the mean glutamate values for each
stimulus presentation, and while these means do decrease for object
images, and increase for abstract images (mirroring the changes in
gamma-band oscillatory power), they do not reach statistical signifi-
cance. The lack of significance in the interaction between stimulus
type and presentation was likely a result of decreased signal to noise
ratio, and hence increased variability in the 'H-MRS data averaged for
each stimulus presentation. Future studies, focusing on either repetition
suppression or enhancement effects, with greater acquisitions for each
presentation should help to address this issue. The degree to which
elevated glutamate concentrations, as measured by 'H-MRS, reflect in-
creases in either synaptic glutamate release or glutamatergic cycling
as part of the energy metabolism process remains to be determined
(Mullins et al., 2005). One viewpoint suggests that 'H-MRS measures
of glutamate differences reflect oxidative neuronal metabolism
(Mangia et al., 2007), as glutamate-glutamine cycling is tightly coupled
to oxidative glucose consumption (Rothman et al., 1999). However, the
timescale of glutamatergic cycling is much slower (1 h for total pool
turnover (Shen, 2013)) than the timescale of change in glutamate levels
seen here (on the order of a second) and in other studies (Gussew et al.,
2010). We therefore propose that glutamatergic synthesis cannot ac-
count for our results. The most parsimonious account for fast changes
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in glutamate levels across conditions, as shown here, is neurotransmis-
sion. It is generally accepted that 'H-MRS measures of neurotransmit-
ters reflect total chemical volume within the entire tissue. However, it
is unknown whether vesicular, extra synaptic or intra synaptic levels
of metabolites contribute equally to the 'H-MRS signal. Indeed, early
work on glutamate MR visibility suggests there is a pool of "TH-MRS in-
visible glutamate — most likely related to a subcellular neurotransmitter
pool (Kauppinen et al., 1994). Therefore, we tentatively suggest that the
rapid increases in 'H-MRS measured neurotransmitter levels in our
study, and other studies (Gussew et al., 2010), are best explained by
neurotransmitter release from a 'H-MRS invisible subcellular compart-
ment to a more 'H-MRS visible extracellular compartment, than by an
increase in glutamate synthesis. While this interpretation of our results
is speculative at present, it best fits the current data and previous
studies. However, it is likely that standard "H-MRS techniques alone
can never provide a definitive answer given the coarse spatial resolution
of typical 'H-MRS studies. Nevertheless, combining 'H-MRS with other
measures such as diffusion weighted spectroscopy (Valette et al., 2005)
may allow us to investigate intracellular versus extra cellular changes
and may provide evidence for our proposal.

In addition, with appropriate selection of varying 'H-MRS data ac-
quisition time points in future studies it might be possible to character-
ise the glutamatergic response in much the same way as the blood-
oxygenated-level-dependent (BOLD; fMRI) response has been elucidat-
ed, which would go some way to addressing which components of
glutamatergic processes are altered here. Indeed, one possible limita-
tion of the current study is, relative to the stimulus onset, the time at
which the measurement of the glutamatergic signal was acquired.

The evoked gamma-band power changes occurred between 50 and
250 ms, whereas glutamate concentration measurement started be-
tween 950 and 1150 ms post-stimulus onset. This raises the question
how glutamate concentration following stimulus onset can be related
to early-evoked gamma-band power. It also raises the issue how such
a late measurement of glutamate concentration can be related to object
recognition. One potential interpretation is that gamma-band oscillato-
ry power drives glutamatergic activity. For example, glutamate changes
in the LOC 1-2 s following stimulus onset may reflect recurrent neuro-
nal network processes that arise from earlier oscillatory responses mea-
sured across the entire visual system. However, as the glutamatergic
response profile is currently uncharted it is also possible that glutamate
levels drive oscillatory activity but that the 'H-MRS signal remains de-
tectable for 1-2 s following an event. An alternative and final sugges-
tion may be that the glutamatergic signal changes measured here in
response to distinct visual stimuli mainly reflects trait but not state-
dependent levels. As the 'H-MRS glutamate signal is derived from
total tissue glutamate concentration and only a fraction may be impli-
cated in transmission related changes, the contribution of state-
dependent changes in glutamatergic processing may primarily reflect
largely stable trait processes. However, concurrent acquisition of these
two measures likely increases the between measure signal-to-noise
ratio and improves validity of any significant relationships that may
be found. Further work is needed to characterize the profile of the glu-
tamate signal to resolve these interpretation possibilities. Nevertheless,
in all three scenarios increased glutamate in response to abstract rela-
tive to object stimuli might indicate the differential computational
cost between stimulus types.

Given the recent surge in research investigating pharmacological
manipulations to the glutamatergic system, particularly in the treat-
ment of depression (Duman and Aghajanian, 2012) and schizophrenia
(Egerton and Stone, 2012), the task-based event-related approach to
'H-MRS demonstrated here, could provide a unique evaluation of the
glutamatergic system under varied psychological conditions. The now
ubiquitous BOLD contrast imaging provides an indirect measure of
brain activity that can, in certain circumstances, produce misleading re-
sults. For instance, an increase in BOLD activity following acute drug ad-
ministration could result as a consequence of either decreased regional

blood supply or increased brain activity. Thus, the ER-MRS methodology
evidenced here could provide an adjunct to BOLD imaging, which may
be especially relevant to drug development protocols, therapeutic
assessment and intervention research.

While we have focused in the current study on functional glutamate
concentration, future research should also directly examine event-
related GABA concentrations and oscillatory activity. It is likely that the
balance between the excitatory glutamate and the inhibitory GABA at
the level of interneurons (Mann and Mody, 2010; Whittington et al.,
1995) jointly modulate synchronised oscillations, and this would be
an interesting area to investigate in future 'H-MRS studies. Moreover,
concurrent measurements of network activity and neurochemical con-
centrations offer a potential opportunity to both elucidate the basis of
cognition and its impairment in mental disorders. For example, schizo-
phrenia has been proposed to result from a deficit in forming dynamic
links between neuronal populations (the “disconnection” hypothesis;
(Friston and Frith, 1995)), and is also linked to neurochemical dysfunc-
tion (Carlsson et al.,, 1999; Lisman et al., 2008; Stephan et al., 2006).
There is considerable debate among theorists regarding the relative im-
portance of glutamate and GABA dysfunctions within this disorder
(Gonzalez-Burgos and Lewis, 2008; Kantrowitz and Javitt, 2012;
Kegeles et al., 2012; Lewis et al., 2005). Importantly, the technique
outlined here could be used to directly assess the impact of the relative
importance of changes in both transmitter concentrations upon task-
related changes in neural activity and performance.

Conclusions

In summary, the results provide in-vivo evidence that dynamic
neural network activity during stimulus presentation is associated
with glutamate levels within individuals, complementing in-vitro re-
search. Furthermore, the present study demonstrates the feasibility of
concurrently measuring stimulus and possibly cognitive task-related
changes using both 'H-MRS and synchronised oscillatory activity,
which, exemplifies a novel neuroscientific methodology for exploring
functional associations between basic biological and systems level re-
search. We establish that simultaneously recording these measures is
possible and allows critical insight into the functional relationship
between neurochemical and neurophysiological processes, deepening
our understanding of the underlying neurobiology of cognition.
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