IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Bishop, P. G. & Strigini, L. (2014). Estimating worst case failure dependency with
partial knowledge of the difficulty function. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8666,
pp. 186-201. doi: 10.1007/978-3-319-10506-2_13

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4162/

Link to published version: https://doi.org/10.1007/978-3-319-10506-2_13

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Estimating wor st case failure dependency with partial
knowledge of the difficulty function

Peter Bishop? and Lorenzo Strigini

ICentre for Software Reliability, City University, Lo, UK
{pgb, strigini}@sr.city.ac. uk
2Adelard LLP, London, Exmouth House, London, UK
pgb@del ar d. com

Abstract—For systems using software diversity, well-essti®d theories
show that the expected probability of failure onrmded pfd) for two diverse
program versions failing together will generallyfeii from what it would be if
they failed independently. This is explained inme of a “difficulty function”
that varies between demands on the system. Thisytiggves insight, but no
specific prediction unless we have some means &ntify the difficulty func-
tion. This paper presents a theory leading to astvoaise measure of “average
failure dependency” between diverse software, gimely partial knowledge of
the difficulty function. It also discusses the pbay of estimating the model
parameters, with one approach based on an empamedysis of previous sys-
tems implemented as logic networks, to supportdeneslopment estimates of
expected gain from diversity. The approach is itated using a realistic safety
system example.

Keywords. safety, software reliability, fault tolerance, Ifme dependency,
software diversity, difficulty function.

1 I ntroduction

Software diversity has been advocated as a meangpodving the reliability of safe-
ty related software and in particular safety systeéhat react to a demand, where a 1
out of 2 or a 2 out of 3 voting scheme can be wsexhsure that some safety action is
performed. This approach is used in industry (Bagrailway interlocking), but de-
velopment and maintenance is costlier than forradiverse system and it is not easy
to predict in advance the likely safety improvemtiatt can be achieved.

Theory as well as experimental studies indicaté fdibures of diverse implemen-
tations (“versions”) are not necessarily independ8n 7, 15]. The challenge is to
determinehow much improvement should be expected with diversity.l¥etlreoreti-
cal work by Eckhardt and Lee [4] showed that vaiet in the degree of “difficulty”
for different inputs (or “demands”) will result the expectegfd for a pair of diverse
programs being greater than the product of theagdefds of the two programs and
thus limit the effectiveness of diversity. Littlead and Miller [8] later showed that, if
diversity in development results in different “diffilty functions” for the two diverse

programs, the expectgdid for common failures of a diverse pair can alsdesgthan
the product of the expect@fs of the single versions.

To quantify via these theories the improvementxipeetedpfd for a diverse safety
system, one would need to specify both the difficfbr every demand, and the de-
mand profile Difficulty functions will normally be impossible testimate for real
projects (althougha posteriori difficulty estimates have been obtained [1, 15] fo
some “toy” applications where many different versiavere developed [12]). In addi-
tion, if the safety system is used in different r@ienal contexts, the demand profile
might also be different and this can change theetgolpfds.

In this paper we examine an approach for a moreestodut still useful, goal of
estimating the worst case improvement in avergdeby deriving a worst case de-
mand profile that only requires knowledge about peints on the difficulty function
rather that characterizing the whole function.

The paper will first summarize the theory undenlyihe difficulty function, then
identify the worst demand profile that maximizes #xpectecpfd for a pair of di-
verse programs, relative to the expeqgwédiof a single version for a given difficulty
function. We then consider what estimates for tkgeetedpfd can be derived given
different types of knowledge about the difficultynttion. We also discuss means,
and difficulties, for estimating the model paramgetand tentatively suggest an ap-
proach for systems implemented as logic networks.

2 Thedifficulty function

In these models, the process that delivers a pmogvath its unknown faults (if
any), is modelled as the random sampling of a @mogirom a “population of all pos-
sible programs”. The (unknown) probability of “driany” each specific possible pro-
gram depends on the specification, the developmpmtess, the development team,
etc. Given these factors, the “difficulty functio&X) is defined as the probability that
such a “randomly drawn” program will fail on a givdemand.

The mearpfds of a single progranpfd;) and of common failure for a pair of di-
verse programsp{d,) depend on the difficulty functiof(x) and the demand profile
p(x). For a difficulty function&dx), the expectegfd of a single program version is:

pfdy =2 &X) p(x) (1)

We consider the case in which the two versionsaf@rout-of-2 system are devel-
oped from the same process for the same spedificatie two developments have
the same “difficulty function” (Eckhardt and Lee d® [4]). Thuspfd; is the same for
both programs; among all the scenarios where tbidsh this scenario, of identical
difficulty functions, yields the highest (i.e., therst) value opfd,.

Assuming conditional independence between failofethe versions for each de-
mand [4] (i.e., the two developments are indepenflet]), the expectegfd for a
randomly drawn pair of programs is then:

pfdz = 2 8x) &%) p(x) ()

pfd, increases with the variance of the difficulty ftion &X). Intuitively, if the
difficulty function is very “spiky”, there is a higprobability that the diverse pro-
grams will fail on the same, “difficult” demandset average benefit from diverse
programs will be lower than otherwise. Converséltheé difficulty function is “flat”
(the same value for all demands), there is nottiag forces the diverse programs to
fail on similar inputs, so the gain in averageaigility is higher. In this casefd, does
equal the product between the expegifetivalues for the two versions. For brevity,
when this equality holds we will say there is “ipdadence on averade”

Clearly the meampfd depends upon the demand profi{&) as well as the demand
difficulty &x). In the next section we use this dependencéermémand profile to
derive the worst case value tl, for a given value opfd;.

3 Estimating the wor st case expected pfd

We compare the expectgafid for this system with that of a single-version .(i.e
non-diverse) system used in the same function éheuiih the same demand profile).

To determine the worst-case impact of the profilettee expectegfd, we choose
the family of the most extreme profiles possible bnes in which the only demand
values with non-zero probabilities arehi andx=lo that have the highest and lowest
values of the difficulty functiondhi) and&l0). For this profile, we can write:

pfd; =z&hi) + (1-2) &lo) Q)
pfd, = z&hi)? + (1-2) &lo)? (4)

wherez=p(lo) and (12 =p(hi). Sopfd; and pfd, can vary between their mini-
mum and maximum values depending pnez:

min(pfd,) = &lo)?, z=0 (5)
max@fd,) =&hi)?, z=1 (6)

No other profile can achieve this range, as non-peobabilities for demands with
intermediated values would reduce the maximum and increase tmémam value
achievable. There is also another sense in whiesetprofiles are “extreme”. Given a
certain difficulty function, a given value @fd; can in general be the result of many
different profiles, only one of which is “extrenfeThis “extreme” profile is the one

! We underscore that “independence on average” gsoperty of expected values, not of

individual program pairs. If independence of fadlsirheld for every pair of diverse pro-
grams, “independence on average” would also hotvever, “independence on average”
could hold even if independence does not hold wittsich pair; and we can have, >pfd;?
even in a population of pairs in which pairs witkgative or zero correlation between fail-
ures of their component versions are more comman fiairs with positive correlation [10].
To be precise, we should consider the cases inhwhore than one demand values have
values ofd equal todhi) (or equal to4lo)). The reasoning presented here remains valid: we
can treat all the demands with an identical vafu@ as one demand.

wherepfd, is largest, i.e., the advantage of diversity iskast. Under this profile, the
expectedpfd of a diverse pairpfd,, is a linear combination di(lo)®> and &hi)? and
hence a linear combination of (mpfd,)? and (maxpfd;)2. This can be compared with
the “best case” profile that only selects demaxdgth exactly the same difficulty,
i.e. where@x)=pfd,, so from (2) thapfd,=pfd;> which represents “independence on
average”.The expectegfds for the best and worst profiles are shown in Eigelow
for the case wherf(hi)=0.04, anddlo) takes different values from zero to 0.02.

0.002 : :
——pfd, 6(l0) = 0 N
—— pfd, 6(10)=0.01 6(hi)=0.04
——— pfd., 8(10)=0.02
pfd » —oe— pfd ;2
0.001 %
0 001 002 003 004

pfd,

Fig. 1. Variation inpfd,, given the extreme profile aréhi)=0.04

To understand this graph, we consider that forvergivalue offlo), the lowest
possible value opfd, is &lo), given by settingz=0 in equation (3), and the corre-
sponding value opfd, equals&lo)® (equation 4). This is why the straight lines for
&10)=0.01 and &10)=0.02 do not continue to the left of these poiritsie maximum
values ofpfd; andpfd, are given by setting=1, and correspond to the rightmost point
in the graphpfd,= &hi), pfd,= &hi)%. All the intermediate “extreme” profiles for the
same values of{lo) and &hi) give the pfd,, pfd,} pairs represented by the points of
the straight line joining these maximum and minimpoints on thefd,” curve.

We now study the effects of various levels of kredige abou&hi) and &10).

3.1 Casewhere6(hi) and 6(lo) are known

When B(hi) and 6(lo) are known, the endpoints of the linear combination are
known and changingchanges the ratio g@fd, to pfd;, since from equation (3):

,_ Bh)-pfd, o _ pid,~6(0)
6(hi)-6(lo) 8(hi) - 8(10)

From equation (4) we can calculafiel, as a linear function gifd, i.e.:

o1d, = (o + (ECh)" = 600")(pfd, - 6(10)

6(hi) - 6(10) "

We note that ifpfd,;=&lo) or pfd;=&hi), thenpfd, = pfdi>. This is not surprising:
these cases select profiles where all points Haesame difficulty value: effectively
a flat difficulty function, which is known to impl§independence on average”. It also
follows that the reduction factgfd,/pfd, will vary between&lo) and &hi).

3.2 Casewhereonly B(hi) isknown

If &lo) is unknown, then the worst case assumption it a) = 0, and hence
equation (7) reduces to the following, known boongfd,:

pfd, < 6(hi) pfd, ®)

3.3 Casewhere6(hi) and 8(lo) are not known

The worst case assumption is n&lo) = 0, &hi) = 1 and hence equation (8) re-
duces to the extreme case where the bound is:

pfd, < pfd, 9)

In this case, the meanfd of a diverse pair could be no better than thaifgingle
version. The worst case — the equality in (9) Beldvould mean that the programs
developed have fail on some specific demands andtiners (with probability 1).
Comparison with the previous cases highlights homvwkedge about the difficulty
function allows us to reduce the mean valupfdf as a proportion gffd;.

3.4 Casewheretheratio between B(hi) and 6(lo) isknown

In this case we only know the maximum “roughnedsthe difficulty function,k,
the ratio ofdhi) to &l0), but not the absolute difficulty values. Hence

k:@

(10)
6(lo)

In this model, there is no constraint on thaxis endpointg&hi) and &lo) apart
from the ratiok (and the fact that=0&|o)<pfd;<&hi)<1). The worst case value pfid,
lies on the chord between the two endpoints: astithted in Fig. 2 below.

— it
—— pfd12

0.8 — pfdy /q/
0.6
pfd fixed valu/ /
0.4 / /
) /

pfdl

Fig. 2. Worst case given a known difficulty ratio

To get the worst case for a givpfd,, we effectively slide the linear combination
chord forpfd, along thepfd,? curve, while keeping the ratio between the endgaiit
the chord(on thepfd; axis) equal to k. Then we choose the chord thatsgmaximum
(worst) possible value gifd, for a given value opfd;. Sincepfd, is held constant,
maximizing the ratiopfd,/pfd;, also maximizespfd,/pfd,® (the worst case increase
relative to independence on average). The analysigpendix A shows thagbfd,is
bounded by:

(k+D°

pfd, < pfd,” (11)

So the worst case reduction factor fifd, relative topfd, is pfd,{k+1)%4k, rather
than the factor opfd, that would result from “independence on average”.

This worst case bound equation is only applicapléouthe point wheréhi)=1 (as
we cannot slide thpfd, chord any further to the right). From the analysi#\ppen-
dix A, it can be shown that this limit is reacheden:

pfd, >—— (12)

If pfd; exceeds this constraint, a variant of equationh@y to be used instead
where&hi)=1 and&lo)=1k, i.e.:

(L-k™)(pfd, —k™)
1-k™

pfd, =k + ., pfd, = ki+1 (13)

The difficulty “roughness” parameter, could be a very large value or even infin-
ity if &lo)=0. Thus to forecast good (low) worst-casepfd, we needdhi) to be not
too high; counter-intuitively, we also neé&lo) not to be todow: we need evidence
that the probability of faults affecting any onerdand will be “bad enough”.

4 Numerical illustration

For some non-realistic programs, we have empidifficulty data derived from an
analysis of program versions from an archive ofheatatical problems and solutions
[12]. Analysis of a population of around 3000 ialtieleases of program versions for
a relatively simple problem [1] yielded the diffiou surface (taking the observed
frequencies as estimates of probabilities) showFign3 below.

{0580 -60 -40

Fig. 3. Empirical difficulty function from around 3000 gyram versions [1]. These programs
receive two inputs, t and v, hence the difficulipdtion is plotted as a surface.

Analysis showed tha#(hi)=0.2282 and&l0)=0.1012. That is, in this cade=
0.2282/0.1012 = 2.25.

Inserting these values into equations 7, 8 anch®,relationship between these
bounding equations is illustrated in Fig. 4.

The bound based on knowledge of bé&hi) and &lo) (equation 7) represents the
least pessimistic worst case boundpfa. It can be seen that the curve based on an
estimate ok (equation 9) touches the least conservative bdinedat the maximum
dependency point whepid; = 0.140 (see Appendix A for details). Unlike etioa 7,
equation 9 allows the maximum dependency point diefinespfd, to be shifted if a
new estimate opfd; is made. This is equivalent to defining new valfes&hi) and
&lo) which retain the same ratio

The pfd, bound based o&hi) alone (equation 8) tends to be the most pessanist
although it does intersect with the least consergabound whenpfd, = &hi)

(0.2282) when equations 7 and 8 agree with theefwtdence on average” result
whenpfd, = pfd,? = &hi)>.

0.06

N J%/
0.04 /././/

pfd> 0.03 .//

0.01 —2—k =96 (hi)/6 (lo)| |

—4— 6(hi), 6(lo)
0 T T T T T
0.1 0.12 0.14 0.16 0.180.2 0.22 0.24

pfdy

Fig. 4. Comparison of worst case bound equations. Thdddtiethe three plots indicate which
parameters are assumed known, with the valuesadkiposteriori for the study irFig. 3.

5 Parameter estimation

In the analysis above we have identified altermatisays of deriving a worst case
value forpfd, givenpfd; by using different kinds of information about ttficulty
function. To apply these models for prediction, oggposed to generic insight, we
require realistic model parameters. At the curtate of knowledge, there are no
means for deriving credible difficulty values topport prediction (estimation of ex-
pectedpfd) for a specific safety application. In the followgi subsections we examine
some potential directions for deriving model partar®e and difficulties to be over-
come for them to become applicable in the future.

51 Estimating k

Estimation ofk could be based on relative complexity, if one as=tithe demand
difficulty for demandx proportional to some measure of demand logic coxitpfe

6(x) O c(x) (14)

3 We accept that this could only be a first-cutuagstion. One of the possible objections is

that higher complexity may lead to more effort tmid or remove faults, so that the diffi-
culty function might not be a linear function (oayhe not even a monotonic function) of a
measure of complexity [5].

wherec(x) is a measure of the logic complexity requiregrocess a given demand
x. For example, the complexity measure could basethe number of lines of code
or number of decision points in the code involvadai particular type of demand.
Program analysis (such as code pruning) could bd tesidentify the relevant subset
of code involved with each demand. Assuming sucimpiexity measures can be
derived,k would be estimated as:

= Maxg, 60x) _ max, ¢(x)
min,., 8(x) min g, c(x)

(15)

This approach need not be restricted to conventionde. Many safety systems
are represented as logic networks with a set eféonnected logic gates. Each type
of demand requires different logic and sensor ispatrespond to different safety-
related incidents on the associated plant. The @dtp of the logic network could
be used to estimatgx).

5.2 Estimating 6(hi) and 6(lo)
One means of estimatirghi) is to make use of the fact that, by definition:

&hi) <Prauy (16)

where prury is the probability that a program selected from population of all
possible program versions is faulty. The valugfy could be estimated via a range
of methods including an analysis of the developnpeatess [2] and the level of test
coverage achieved [9], however they are not manethods and confidence in their
predictions will be especially low when few faulie expected to be present.

Alternatively, estimates of(x) could be made directly based on some expected
fault densityf [13] and an estimate of the amount of code or logi} needed to re-
spond to a particular demand. There can be manyd@sx that exercise the same
logic, but if we make a (strong) assumption thatlamands are equally likely to fall
if the logic is faulty (on average over the whotgplation), then:

&x) =n(x)f (17)

So the maximum and minimum valuesrgk) over all types of demanxican be
used to obtairhi) and4lo).

5.3 Empirical data analysis

Data sets that can be used for empirical paranestamation are quite limited, but
there is survey of programmable logic controlldc @ logic faults undertaken for the
UK Health and Safety Executive [14]. Such PLCsraseprogrammed using conven-
tional code but as an interconnected set of logiments (like AND, OR, NOT) or
relay “coils” (that simulate the behavior of harde/aelays). Field reliability data was
collected from a range of industrial applicationsni the nuclear, chemical, oil and

10

gas and electrical industrial sectors (but predamiy nuclear). A full set of data was
collected for 125 PLCs which included the number of

* inputs

» outputs

» coils

+ failures

» years of use

No PLC “platform” failures were recorded in over06@LC-years of operation,
suggesting that PLC platforms are fairly reliablée should also note that “coils”
were used as the measure of the number of logmeglts, but we cannot be sure the
actual logic network contained coils or whether“aquivalent coils” estimate was
calculated for alternative types of logic. In aduit the term “failures” in this data set
might actually be a misnomer for “number of faulta% the failure counts are typi-
cally zero or one. We assumed “failures” indicéte humber of different faults. This
is conservative from the viewpoint of estimatingxmaum difficulty as it can only
over-estimate the number of network logic faultsrtRermore, if over-estimation of
faults were consistent, it would not affect theatio derived in Section 3.4.

On further analysis, we found that some of the Pt@sained identical logic net-
work metrics and identical fault counts. This wateipreted to mean that the same
logic network was installed on multiple PLCs, whiduld bias the result by counting
the same logic network several times over. Thepdichies were eliminated from the
analysis, leaving size and fault data for 96 déferPLC programs. The results are
presented in Fig. 5 below.

20
15 -
Sum 10 r{?' : '
faults
5 4
0 T T T
0 10000 20000 30000 4000(
Sum coils (ordered by size)

Fig. 5. Logic faults vs. network coils (cumulative)

As the fault data are relatively sparse, the gramsents a cumulative count of
faults versus the number of “coils”. The summatisrperformed in program size
order, as this will reveal a non-linear relatiomsletween PLC program size and
faults by an increasing or decreasing gradientc#s be seen in Fig. 5, the relation-

11

ship does appear to be roughly linear (to 95% @hissquared test). Perhaps surpris-
ingly, the slope seems to be slightly less for ldmger PLC programs (at the right
hand side of the graph).

A very similar graph was obtained when we usedstin® of inputs and outputs
(io) as the network size measure. Again, the corogla better than 95% in a chi-
squared test.

Given the evidence of a linear relationship betweetwork size and logic faults, it
may be legitimate to use an average fault densigstimate the number of faults in a
logic network. The logic density estimates deritn the linear regression analysis
of faults against the coil and measures are shown in Table 1 below.

Table 1. Logic fault density estimates

Logic fault density measure Value
fo (faultsfio) 3.0 10*
fui (faults/coil) 5.0 10*

Some caveats need to be placed on these faultylestimates, notably:

* The fault density is based on the number of fdidtovered which could be an
underestimate if some of the faults have yet téobed. The data in [14] shows the
mean operating time is 5.9 years. It is not certhaat all defects would have been
detected over that period of time.

» Given the sparseness of failure data it cannotdmeodistrated that linearity applies
over the whole range of complexity. If the densityower for small logic subsys-
tems,k would be larger than predicted under the lineaggumption.

* We do not know which of the PLC faults were caubgderrors in user require-
ments or implementation. Common user requirememtsicannot be mitigated by
diverse logic implementations. Section 6 providaseaample where we assume
the fault density estimates relate to diverse imgletation faults.

» Fault density figures will differ depending on thgplication type and safety criti-
cality.

So the empirically derived figures might be viewsslindicative “ball-park” fig-
ures, but should not be viewed as being applicabtespecific diverse system.

6 Example application

The application of the fault density quantificatiapproach outlined in Section 5 is
illustrated on an actual industrial safety systeith o independent safety trains that
control functionally diverse plant shutdown meclsamd. The A and B train subsys-
tems and logic element counts (taken from the Ispecification sheets) are shown in
Table 2 below.

4 The details have been anonymised at the requéisé sfystem operators

12

Table2. A and B Train subsystem network complexity measures

A Train subsystem 1/0 Gates
Al 24 16
A2 22 9
A3 49 28
Ad 31 23
Total 126 76
B Train subsystem 1/10 Gates
B1 17 9
B2 28 16
B3 15 7
Total 60 32

We will use the data to illustrate the mgadd estimation approach, using arbitrary
(and quite extreme) assumptions about the variatidogic use with demands. Let us
assume some logic subsystems are unnecessarynf@ demands. For example a
standby electrical supply subsystem might be esdéhtonnection to the grid power
supply is lost but not otherwise.

So the extreme level of variation in number of sisbsms with demand might be:

* One (the smallest) logic subsystem in A and B
» All logic subsystems in A and B

Using theio complexity measure we set an upper bound on ffieuly for a log-
ic sub-networkk containingn;o(x) io elementsas:

AX) = fio Nig(X)

Based on then,(x) numbers assumed for the assumed maximum anohomm
logic networks needed for a demand we derive thmting values fod andk shown
in Table 3 belowNote that, in this particular example, the spedifiogic differs be-
tween trains A and B, so we are assuming that thezeno common specification
flaws and the difficulty values estimate the likelod of implementation flaws only.

Table 3. A and B Train difficulty and difficulty variationstimates

Subsystem A Train B Train Worst case
Demandx requires: #io 0(x) #io B(x) 8(x)
Smallest single subsystem 22 6.6°10 15 4.51¢ 6.6 10°
All subsystems 126 37870 60 1.81F 3.781C°

k 5.7 4 5.7

For the A and B trains, different logic is involyesb the values are not identical, but
we conservatively assume the worst case valueespiboth trains. In the following
calculation, we assume that the expected vpldds 10%for each train. This is com-
bined with the bound formulae f@fd, from Section 3 and the worst case values in

13

Table 3 above to yield the bounds on the expecttdevofpfd, shown in Table 4
below.

Table 4. Worst case A and B Trapfd estimates

Bound equation pfd, bound
a) pfdy < PrauiyPld; 3.810°
b) pfd, < &hi) pfd, 3.810
c) pfd, < (&hi)+&l0)) pfd, — &hi)&lo) 2510
d) pfd, < ((k+1)%/4k) pfd,> 2.6 10

It can be seen that in this example the resultsvarg similar. The results for a)
and b) are identical because (i) estimate is based on all the logic in the traid a
hence is identical tpr,, for the train. The results for ¢) and d) are asvilar since
thepfd; value chosen is close to the maximum dependenicy. po

7 Discussion

It should be noted that the analysis in this papéates toexpected values. The
analysis seeks to estimate the improvement we n@gpéct between thaverages
pfd; andpfd, by using diversity, under worst case assumptidimsiithe operational
profile. It does not predict the improvement ratio that will actuallg bchieved by a
specific pair of program versions under a specific operationafilg—clearly the
actual reduction achieved could be better or wthe@ a model based on averages
[10].

It is also important to note that this analysisadiees the effects of those parts of
development that are indeed diverse. For exanfpleeiie is a common specification,
the possibility of a specification flaw would ini@dte the conditional independence
assumption required in the Eckhardt and Lee mafelccounting for such common
factors requires more complex models [11] and weehsot checked how the ap-
proach would extend to those models.

The paper also explores possible directions fontifyang the model parameters.
The analysis of PLC failure data in Section 5 tilates how one might attempt to
estimate ranges of difficulty. However the methadcdssed should be viewed as
“work in progress”, as it has not been validatedudrstantiated. In particular:

» It assumes that difficulty can be estimated fromdmted fault density. This is not
supported by deduction and could only be validatquerimentally.

» There is an assumption of linearity between logimplexity and logic faults. This
is not contradicted by the available empirical dat# it would require far more
empirical data to validate the assumption ovewnthele range of complexity.

» There are no fault density and complexity datasfmtems of higher criticality, so
we have no support for an assumption of lineaotystich systems, and we cannot
derive “typical” fault density figures for such sgms.

14

Clearly further empirical studies are needed tockhtee underlying assumptions
and to derive realistic faults density values befthre models can be applied to high
criticality systems. For validating this approachesstimating the difficulty function,
the main obstacle is that direct empirical assessmt difficulty functions means
counting faults affecting each demand in a largpupstion of programs developed
independently for the same specification. Theyaritsuch populations, outside labo-
ratory experiments on toy problems, is the usuablem in empirical software engi-
neering. Given instead sets of realistic, but pcatly unique programs, a feasible
form of weaker validation would be to select setpmgrams that are assessed to
have the same parameters for the estimation metved, and then, within such a set
of programs, measure fault frequencies over setdeafands estimated to have the
same difficulty.

More generally, the current models assume a comlifioulty function and fur-
ther work is needed to generalize this approadhdacase where the difficulty func-
tions differ for the two versions (the LittlewooddaMiller model [8]).

We also note that these bounding methods also appghe models by Hughes [6]
that explain correlation between random failuresddundant hardware in terms of
variation of failure rates with environmental swge¥ariation of failure rates with
environmental factors will typically be easier tesass than variation of difficulty
between demands.

8 Conclusions

We have developed models for estimating the waase aeduction in meapfd
achievable by diverse program pairs that requitg armpartial knowledge of the diffi-
culty function. These models can give qualitatimsight, e.g. about the effects of
development decisions thought to increase or tageadnaximum or minimum diffi-
culty. We have also discussed ways for estimatimgparameters required for these
models, and their difficulties; in particular, appaoach for estimating difficulty val-
ues and difficulty variation for applications defthin terms of a logic diagram.

We note that the methods discussed for derivinglifiieulty parameters are very
preliminary. Much more empirical support, espegiddir the high criticality systems
where diversity is likely to be employed, would heeded before they could be ap-
plied for quantitative prediction (e.g. for pre-ééapment decisions about diversity).
Further work is also needed to generalize the thémrcases where the difficulty
functions differ for the diverse program versions.

References

1. Bentley, J.G.W., Bishop, P.G., van der Meulen, M:JAa. Empirical Exploration of the
Difficulty Function. In: Computer Safety, Reliabilitand Security (SAFECOMP) 2004,
pp. 60-71, Springer (2004)

2. Bloomfield, R.E., Guerra, A.S.L.: Process Modellirg $upport Dependability Argu-
ments. In: Dependable Systems and Networks (DSR2 ,26p. 113-122, IEEE (2002)

10.

11.

12.

13.

14.

15.

15

. Eckhardt, D.E. and Caglayan, A.K., et al.: An expemtal evaluation of software redun-

dancy as a strategy for improving reliability. |IEHEans Software Eng 17(7), 692-702
(1991)

. Eckhardt, D.E., Lee, L.D.: A theoretical basis fthe analysis of multiversion software

subject to coincident errors. IEEE TransactionsSmiftware Engineering 11(12), 1511-
1517 (1985)

. Hatton, L.: Reexamining the fault density-componsize connection. |IEEE Software,

14(2), 89-97 (1997)

. Hughes, R.P.: A New Approach to Common Cause FaiRe&ability Engineering 17(3),

211-236 (1987).

. Knight. J.C., Leveson, N.G.: Experimental evaluatifrthe assumption of independence

in multiversion software. IEEE Trans Software Emgiring 12(1), 96-109 (1986)

. Littlewood, B., Miller, D. R.: Conceptual Modellingf Coincident Failures in Multiver-

sion Software. IEEE Transactions on Software Ergging 15(2) 1596-1614 (1989)

. Malaiya Y.K., Denton, J.: Estimating the number@gidual defects in software. In: Third

IEEE International High-Assurance Systems Engimge8ymposium, pp. 98-105, IEEE
(1998)

Popov, P., et al.: Software diversity as a meafureeducing development risk. In: Tenth
European Dependable Computing Conference (EDCC 2004)06-117, IEEE (2014).
Salako, K., Strigini, L.: When does ‘Diversity’ Development Reduce Common Failures?
IEEE Transactions on Dependable and Secure Congpiti(2), 193-206 (2014)

Skiena, S., Revilla, M.: Programming Challenges. 1SB387001638, Springer (2003)
Sherriff M., Williams, L.: Defect Density Estimatiorhrough Verification and Validation.
In: The 6th Annual High Confidence Software andtSys Conference, Lithicum Heights,
MD, pp. 111-117 (2006)

Wright, R.I., Pilkington, A.F.: An Investigationtm PLC Reliability. HSE Software Reli-
ability Study, GNSR/CI/21. Risk Management ConsultgRi8IC), Report R94-1(N), Is-
sue B (1995)

van der Meulen, M.J.P., Revilla, M.A.: The Effectiess of Software Diversity in a Large
Population of Programs. IEEE Transactions on So#wangineering 34(6), 753-764
(2008)

Appendix A Worst Case Pfd Modd Details

This analysis compares the maaid of a pair,pfd,, with the “independence on av-

erage” valuefd, by defining a dependency fac®raspfd,/ pfd,

An extreme profile is assumed where op(}i) andp(lo) can be non-zero. From

the expressions @fd, in (3) andpfd, in (4), the ratio opfd, to pfd,? is:

(6(hi)z+ (6x10)f - 2)
(6(hi)z+ 6(l0)(L- 2))?

(18)

By definition &hi) = k&lo), so the dependency equation can be re-written as:

D :M (19)
(k-1)z+1)?

16

Differentiating with respect tawe obtain

dD _ —(k-1)*(z(k +1) -)
dz (z2(k-D)+1)°

(20)

Hence the differential is zero when eitlkerl or z=1/(k+1). Whenk=1, the diffi-
culty function is flat,&hi)= &lo)=pfd;=D: the best case ("independence on average").
Thez=1/(k+1) case is the situation where the dependencyrfécts highest. Sub-

stitutingz=1/(k+1) into (18), the maximum dependency valuean be shown to be:

_(k+1)?
4k

D

(21)

This can be used the set the worst case valpilgfelative topfd,? i.e.

2
pfd, = % pfd; (22)

Substitutingz=1/(k+1) into (3), this occurs when:
2k
fd, =——6(lo 23
pfd, =- =~ 6(lo) @3)

Or expressed in entirely terms éfhi) and &lo), it can be shown that the maxi-
mum dependency occurs when:

= 29.(hi)6(l0) ”
8(hi) + 6(10)
So that:
pfd, =8 (hi)&(l0) (25)

Hence at the maximum dependency point, the rattheofnearpfds is:

pfd, _ & (hi) +6(lo)
pfd, 2

(26)

