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Abstract

We present a multivariate version of a structural default model with jumps and use

it in order to quantify the bilateral credit value adjustment and the bilateral debt value

adjustment for equity contracts, such as forwards, in a Merton-type default setting. In

particular, we explore the impact of changing correlation between names on these adjust-

ments and study the effect of wrong-way and right-way risk.

Keywords: Counterparty risk, Credit Value Adjustment, Debt Value Adjustment,

Lévy processes, Normal Inverse Gaussian, Wrong Way Risk. JEL Classification: C15,

C63, C65, G13

1 Introduction

The aim of this paper is to provide a valuation framework for counterparty credit risk based on

a structural default approach which incorporates jumps and dependence between the assets

of interest. In this model default is caused by the firm value falling below a prespecified

threshold following unforeseeable shocks, which deteriorate its liquidity and ability to meet

its liabilities. The presence of dependence between names captures wrong-way risk and right-

way risk effects.

In a post-crisis world the correct assessment and management of counterparty credit risk

has become a core concern for financial market regulators, playing a substantial contribution

in shaping the mutual behavioral pattern of banks and their counterparties. The regulatory

landscape has undergone significant changes aimed at reducing the risk of banks failures

and increasing financial stability, by strengthening the risk coverage of capital via capital
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requirements related to counterparty risk exposures. Moving away from the Basel I regime

introduced in 1988, which assigned capital requirements for banks based on prescribed risk-

weights applied to counterparty categories, the Basel II (2005) and, even more, the Basel III

(2010) regimes have pointed to the need of an enhanced sensitivity of credit risk measurement.

Capital requirements have been linked to more sophisticated measures of counterparty credit

risk such as the Credit Valuation Adjustment (CVA), Debit Value Adjustment (DVA) and

more recently the potential volatility of the same (VAR of CVA) captured via VAR models in

conjunction with stress testing under extreme market scenarios (see Basel, 2010, for example).

CVA is the loss due to the default of a counterparty to a specified transaction (possibly

involving a third entity). DVA, instead, is to be intended as the additional benefit of one’s

own default1.

These changes in regulation have a significant impact on banks behavior and on the pricing

of specific types of trades where the underlying exposure profile is significantly large from

the banks perspective. Particularly, uncollateralized long dated trades (cross currency swaps,

long dated foreign exchange forwards, interest rate swaps with significant carry) became more

expensive and banks have either shifted focus on trades that are less credit intensive or tried to

mitigate the exposure via mandatory breaks (that reduce the effective duration of the trades)

or asking for collateral protection. Among bank counterparties the most affected group has

been corporates. Corporates typically engage in derivatives transactions for hedging purposes

and traditionally do not have the ability to post high frequency cash collateral against them.

The concept of CVA presents a further angle of relevance for corporates, due to changes

in the standards around hedge accounting. Historically, corporates had not been required to

measure and record ineffectiveness of the hedges for the CVA and DVA of the derivatives that

they transact with their relationship banks. The new IAS/IFRS have called for adjustments

in the fair value of derivatives transactions for both CVA and DVA (see IASB, 2011, for

example). However, the exact valuation methodology and how to allocate CVA and DVA to

individual hedge relationships has not been clearly stated, thus fostering the necessity of a

uniform methodology.

This paper aims to provide a solid framework for the assessment of CVA and DVA in pres-

ence of right-way risk and wrong-way risk resulting from dependence between credit spreads

and underlying transaction, making an academic contribution to a discussion topic that is of

extreme relevance in the current financial landscape. Because of the interdependencies be-

tween financial assets, the joint evolution of the risk drivers is of particular relevance. In this

context, the structural approach to modelling credit risk is appealing as dependence between

entities is simple to incorporate; further, it offers an economic rationale behind default as

1Concerning the debate on the controversial meaning of DVA, which can be realized only given one’s own
default, see for example Gregory and German (2012).
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this is linked to the fundamentals of a company.

The structural model traces back to Merton (1974), who considered only the possibility of

default occurring at the maturity of the contract; first passage time models starting from the

seminal contribution of Black and Cox (1976) extend the original framework to incorporate

default events at any time during the lifetime of the contract. However, as the driving risk

process used is the Brownian motion, all these models suffers of vanishing credit spreads over

the short period - a feature not observed in reality. As a consequence, the CVA would be

underestimated for short term deals. Improvements aimed at resolving this issue include for

example random default barriers and time dependent volatilities (e.g., Brigo and Tarenghi,

2005; Brigo and Morini, 2006), and jumps (see Zhou, 2001; Sepp, 2006; Fiorani et al., 2010,

and references therein). In the context of counterparty risk valuation, structural models with

jumps have been adopted for example by Lipton and Sepp (2009) and Lipton and Savescu

(2012a,b). However, the numerical analysis carried by Lipton and Savescu (2012a,b) is for

the case of firm value processes driven by Brownian motions only (see Lipton and Savescu,

2013, as well).

The class of Lévy processes provides a mathematically and computationally tractable tool

to incorporate jumps and market shocks in the asset dynamics. Multivariate Lévy processes

have been recently explored in the literature: for example Lindskog and McNeil (2003) and

Brigo et al. (2007) propose constructions applicable to the class of jump diffusion processes,

i.e. processes composed by a Brownian motion and a compound Poisson process, whilst

Luciano and Schoutens (2006), Semeraro (2008) and Luciano and Semeraro (2010) focus on

the class of time changed Brownian motions, such as the Variance Gamma or the Normal

Inverse Gaussian process. Baxter (2007) and Moosbrucker (2006a,b) instead resort to the

factor copula approach. These models though present some limitations in that either the

proposed construction is class specific, or the range of possible dependencies and the set of

attainable values for the correlation coefficient are limited (see Wallmeir and Diethelm, 2012,

as well). These restrictions also affect the model put forward by Lipton and Sepp (2009).

Ballotta and Bonfiglioli (2014) address these issues via a two factor linear representation of

the assets log-returns, obtained as a linear combination of two independent Lévy processes

representing respectively the systematic risk factor and the idiosyncratic shock; this model

proves to be relatively more general as it can be applied to any Lévy process, and relatively

more flexible as it can accommodate the full range of dependencies.

In light of the previous discussion, we adopt the factor construction of Ballotta and

Bonfiglioli (2014) to develop a multivariate structural default model for the valuation of

bilateral CVA and DVA related to equity contracts such as forwards, via semi-closed analytical

formulas which are easily implementable. As by-product we obtain the unilateral case. We

analyse in details the case in which the driving process is a Normal Inverse Gaussian (NIG)
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process (see Barndorff-Nielsen, 1995); this choice is motivated by the fact that the NIG process

allows for skewness, excess kurtosis and a fairly rich jump dynamics although parsimonious

in terms of number of parameters involved. The focus is on the impact of correlation between

entities on the value of CVA and DVA, with particular attention to wrong-way risk and right-

way risk; this is explored via sensitivity analysis. The numerical analysis shows that, on the

one hand, the proposed model is relatively straightforward to calibrate to observable market

data like CDS quotations and option prices; on the other hand, the inclusion of jumps helps

the model to improve the fitting of credit spreads over the short period, compared to the

classical approach based on purely continuous processes such as the Brownian motion. This

in turn is reflected on the different impact of wrong-way and right-way risk on CVA and

other relevant metrics of interest between the two distribution assumptions considered in this

analysis.

The paper is structured as follows. In Section 2 we introduce the multivariate structural

default framework for the valuation of CVA and DVA, for which we obtain a general formula

of relative ease of implementation; we further obtain semi-closed analytical formulas in the

case in which the driving processes are Brownian motions and NIG processes. We discuss the

issue of model calibration in Section 3; in Section 4 we present the results from the sensitivity

analysis carried out with respect to the correlation structure as to emphasize the effect of

right-way risk and wrong-way risk. Section 5 concludes.

2 A general formula for CVA under a multivariate Lévy struc-

tural model

2.1 Lévy processes and multivariate construction via linear transformation

Lévy processes have attracted attention in the financial literature due to the fact that they

accommodate distributions with non zero higher moments (skewness and kurtosis) due to

the presence of jumps, therefore allowing a more realistic representation of stylized features

of market quantities such as assets returns.

A Lévy process L(t) on a filtered probability space (Ω,F,Ft,P) is a stochastic process with

independent and stationary increments whose distribution is infinitely divisible. Further,

these processes are fully described by their characteristic function, which in virtue of the

celebrated Lévy-Khintchine representation can be written as

φL(u; t) = E
(
eiuL(t)

)
= etϕL(u), u ∈ R,

where i is the imaginary unit and ϕX(·) represents the so-called characteristic exponent.

Examples of Lévy processes commonly used in finance are the Brownian motion and the NIG
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process. In details, a Brownian motion with diffusion coefficient σ > 0 has characteristic

exponent

ϕL(u) = −u
2σ2

2
, (1)

and therefore it is Gaussian distributed with zero mean and variance σ2t; further it is a

continuous process. On the other hand, the NIG process is a purely discontinuous process

(i.e. a pure jump process) obtained by subordinating a Brownian motion with drift by an

independent Inverse Gaussian process. Constructing Lévy processes by subordination has

particular economic appeal as, in first place, empirical evidence shows that stock log-returns

are Gaussian but only under trade time, rather than standard calendar time (see, e.g. Geman

and Ané, 1996). Further, the time-change construction recognizes that stock prices are largely

driven by news, and the time between one piece of news and the next is random as is its

impact (see Carr et al., 2007, for example). Hence, the NIG process has form

Lj(t) = θG(t) + σW (G(t)) ,

for θ ∈ R and σ ∈ R++. G(t) is an Inverse Gaussian process, i.e. a positive increasing

Lévy process following an Inverse Gaussian distribution with parameters
(
t/
√
k, 1/
√
k
)

(see

Barndorff-Nielsen, 1995; Cont and Tankov, 2004, for example), where k is the variance rate

of the process G(t). This process models the so-called business time, i.e. the arrival time

of market news. W (t) is, instead, the “base” Brownian motion capturing the impact of

the arrival of market news on the relevant financial quantities. The resulting characteristic

exponent of the NIG process is

ϕL(u) =
1−
√

1− 2iuθk + u2σ2k

k
. (2)

The corresponding probability density function is

ft(x) = CeAx
K1(B

√
x2 + t2σ2/k)√

x2 + t2σ2/k
, (3)

where Kv(x) is the modified Bessel function of the second kind with order v and

A =
θ

σ2
, B =

√
θ2 + σ2/k

σ2
, C =

t

π
et/k

√
θ2

kσ2
+

1

k2
.
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It follows by differentiation of the characteristic exponent that

E (L(t)) = θt, (4)

Var (L(t)) =
(
σ2 + θ2k

)
t, (5)

s (L(t)) =
3θk√

(σ2 + θ2k) t
, (6)

c (L(t)) =
3k
(
σ4 + 6σ2θ2k + 5θ4k2

)
(σ2 + θ2k)2 t

, (7)

where s (L(t)) and c (L(t)) denote, respectively, the index of skewness and the index of excess

kurtosis (see Cont and Tankov, 2004, for example). Hence, the NIG process is fully described

by the three parameters (θ, σ, k), which control, respectively, the (sign of the) skewness, the

variance, and the excess kurtosis of the process distribution.

For the construction of Lévy processes in Rn with dependent components, as discussed in

Section 1 we follow Ballotta and Bonfiglioli (2014). Hence, let X(t) = (X1(t), X2(t), ..., Xn(t))>

be a Lévy process in Rn with dependent components. Further, let us assume that Y(t) =

(Y1(t), Y2(t), ..., Yn(t))> are Lévy process in Rn with independent components and Z(t) is a

Lévy process in R, independent of Y(t). Finally, let aj ∈ R for j = 1, ..., n. Then, dependence

amongst the risk drivers, Xj(t) for j = 1, ..., n, is modelled via a linear structure so that

X(t) = Y(t) + aZ(t), (8)

for a = (a1, a2, ..., an). The stochastic process Z(t) represents the systematic risk compo-

nent, hence the source of dependence, whilst the processes components of Y(t) capture the

idiosyncratic part of the overall risk. Due to the adopted construction, the description of the

multivariate vector of Lévy processes X(t) only requires information on the univariate Lévy

processes Yj(t), j = 1, · · · , n and Z(t). The joint characteristic function is, in fact

φX (u; t) = φZ

 n∑
j=1

ajuj ; t

 n∏
j=1

φYj (uj ; t) , u ∈ Rn.

Consequently, for each margin process Xj(t), j = 1, ..., n, it follows that the characteristic

exponent is

ϕXj(uj) = ϕY j(uj) + ϕZ(ajuj). (9)

The resulting coefficient of pairwise linear correlation (bearing in mind the infinitely
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divisibility property of Lévy processes) is

ρXjl = Corr (Xj (1) , Xl (1)) =
ajalVar (Z (1))√

Var (Xj (1))
√
Var (Xl (1))

. (10)

Hence, under the proposed construction ρXjl correctly describes the dependence between the

components of X(t). For aj , al 6= 0, in fact, ρXjl = 0 if and only if Z(t) is degenerate, i.e. if the

margins are independent; on the other hand, |ρXjl | = 1 if and only if Y(t) is degenerate, i.e

the components of X(t) are perfectly (linear) dependent (for the proof of all the statements

above, we refer to Ballotta and Bonfiglioli, 2014). Finally, sign
(
ρXjl

)
= sign (ajal).

Multivariate constructions based on equation (8) for the Brownian motion and the NIG

process can be obtained by choosing the idiosyncratic components Yj(t), j = 1, ..., n, and the

common components Z(t) to be Lévy processes with characteristic exponents as in equations

(1) and (2) respectively.

2.2 Counterparty credit risk in the multivariate Lévy structural model

We adopt a structural approach to default and assume that the relevant value processes,

under some risk neutral martingale measure2, is defined as

Sj(t) = Sj(0)e

(
r−qj−ϕXj (−i)

)
t+Xj(t), j = 1, ..., n,

where Xj(t) is the j-th component of the multivariate vector of Lévy processes X(t) given in

equation (8), r > 0 is the risk-free rate, qj > 0 is a constant cash outflow, n is the number of

firms in the market, and ϕXj (−i) follows from equation (9).

In particular, we consider the case of three names (n = 3), so that S1(t) and S2(t) repre-

sents the firm value of the (risky) counterparties (i.e. the short and long position respectively)

of a derivative contract written on a reference name, denoted as S3(t), and expiring at T . In

this context, qj for j = 1, 2 is the constant cash flow payout ratio, whilst q3 is the dividend

yield paid on security S3. Further, at this stage we ignore default on the reference name,

thus implicitly assuming that its credit quality is stronger than the one of the counterparties.

In this paper we focus on the simple framework à la Merton, so that default can occur only

at the expiry date of the contract, T , and as soon as the firm value falls below a given level,

say Kj , i.e.

lnSj (0) +
(
r − qj − ϕXj (−i)

)
T +Xj (T ) ≤ lnKj .

Hence, default on asset j, j = 1, 2 is defined as the event {Yj (T ) + ajZ (T ) ≤ lj}, where

2We note that in general the given market is incomplete and therefore there are infinitely many risk neutral
martingale measures; the availability of market quotes for suitable derivatives instruments, though, allows us
to “complete” the market and extract the pricing measure by calibration.
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lj = hj − µ̂jT for hj = ln (Kj/Sj(0)) and µ̂j = r − qj − ϕXj (−i).
In the following, we provide expressions for the counterparty credit risk adjustments

metrics from the point of view of Firm 2. In particular, the bilateral CVA is defined as the

present value of the expected loss if Firm 2 survives, Firm 1 defaults and the contract written

on the reference name has a positive value to Firm 2, i.e.

CV A2 = (1−R1)E
(
1(Y1(T )+a1Z(T )≤l1,Y2(T )+a2Z(T )≥l2)Ψ

+ (S3(T ))
)
, (11)

where R1 is the recovery rate on Firm 1 assets, Ψ represents the discounted terminal payoff

of the derivative contract on the reference name, and Ψ+ = max (Ψ, 0) denotes the positive

part of this payoff. We can define the CVA from the point of view of Firm 1 in a similar way.

In practice this quantity corresponds to the so-called DVA from the point of view of Firm 2

(with sign changed), that is the expected gain to Firm 2 due to its own default when Firm 1

survives and the contract has a negative value to Firm 2, i.e.

DV A2 = (1−R2)E
(
1(Y1(T )+a1Z(T )≥l1,Y2(T )+a2Z(T )≤l2)Ψ

− (S3(T ))
)
,

where Ψ− = max (−Ψ, 0) denotes the negative part of the (discounted) contract payoff Ψ,

and R2 is the recovery rate on Firm 2 assets.

The bilateral counterparty value adjustment to Firm 2 is obtained as

BV A2 = CV A2 −DV A2.

We notice that according to Basel III regulation (Basel, 2010) the DVA does not reduce

counterparty exposure, whilst according to International Accounting Standard (IAS39 - see

IASB, 2011) the fair value of the contract must recognize computation of both CVA and

DVA.

Due to the factor construction in equation (8), the three events defining the CVA, i.e.

default of Firm 1, survival of Firm 2 and positive value of the contract, are mutually in-

dependent once we condition on Z(T ). Therefore, the CVA formula (11) can be written

as

CV A2

= (1−R1)E
[
EZ
(

1Y1(T )≤l1−a1z1Y2(T )≥l2−a2Z(T )Ψ
+
(
S3(0)eµ̂3T+a3z+Y3(T )

))]
= (1−R1)E [PZ (Y1 (T ) ≤ l1 − a1z)PZ (Y2 (T ) ≥ l2 − a2Z (T ))

EZ
(

Ψ+
(
S3(0)eµ̂3T+a3z+Y3(T )

))]
, (12)

where EZ (·) = E (·|Z(T )), PZ (·) = P (·|Z(T )) denote respectively the conditional expectation
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and the conditional probability with respect to Z(T ). By similar argument, the DVA to Firm

2 can be written as

DV A2

= (1−R2)E (PZ (Y1 (T ) ≥ l1 − a1z)PZ (Y2 (T ) ≤ l2 − a2Z (T ))

EZ
(

Ψ−
(
S3(0)eµ̂3T+a3z+Y3(T )

)))
. (13)

The case of a single risky counterparty, originating the unilateral CVA, in which Firm 2

will survive for sure, can be easily dealt with by letting l2 → −∞. In this case, the unilateral

CVA3 reads as

CV A2

= (1−R1)E
(
PZ (Y1 (T ) ≤ l1 − a1z)EZ

(
Ψ+

(
S3(0)eµ̂3T+a3z+Y3(T )

)))
. (14)

The explicit computation of the above expressions requires concrete assumptions on the

nature of the underlying contract and the distribution of the risk drivers. Concerning the

nature of the contract, here we consider the case of a long forward contract on S3. In

particular, the T−value of a forward contract expiring in U , U > T , with forward price K3

can be written as

S3(T )e−q3(U−T ) −K3e
−r(U−T ) = S3(0)e−q3(U−T )e(r−q3−ϕX3

(−i))T+X3(T ) −K3e
−r(U−T )

= α(Z)
(
S3(0)e(r−q3−ϕY3 (−i))T+Y3(T ) −K(Z)

)
,

where the second equality follows from the linear structure of the risk driver and

α(Z) = e−q3 (U−T )−ϕZ(−a3 i)T+a3Z(T ),

K(Z) = K3e
−r(U−T )/α(Z).

Therefore,

EZ
(

Ψ+
(
S3(0)eµ̂3T+a3z+Y3(T )

))
= α(Z)EZ

((
S3(0)e(r−q3−ϕY3 (−i))T+Y3(T ) −K(Z)

)+)
= α(Z)

(
e−q3TS3(0)EZ

(
e−ϕY3 (−i)T+Y3(T )1A

)
−K(Z)e−rTPZ (A)

)
(15)

with A = {Y3(T ) ≥ lnK(Z) − (r − q3 − ϕY3(−i))T}. Let P∗ be a probability measure

3Similar calculations leads to the unilateral DVA by letting l1 → −∞ in equation (13).
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equivalent to the chosen risk neutral one, and defined by the density process

η(t) =
dP∗

dP

∣∣∣∣
Ft

= e−ϕY3 (−i)t+Y3(t) (16)

(see Geman et al., 1995, for example); then, the Bayes formula implies that the conditional

expected exposure reported in equation (15) returns

S3(0)e−q3U−ϕZ(−a3 i)T+a3Z(T )P∗Z (A)−K3e
−rUPZ (A) . (17)

We note the similarity between the conditional expected exposure and the price of a vanilla

European call option.

We note at this stage that the pricing equations (12) and (17) also hold in the case of any

multivariate semimartingale respecting the construction (8).

Workable formulae for the CVA and the DVA of the given forward position can be obtained

once a specific assumption is made about the type of Lévy process adopted. In this work

we consider in first place the case of a Brownian motion, which is regarded as a benchmark.

However, due to its very restrictive nature as continuous process, which cannot accommodate

the non-zero credit spread observed for very short maturities, we also consider the case of

a NIG process. As discussed in Section 2.1, a NIG process is a pure jump process and

therefore is flexible enough to accommodate non-zero skewness and excess kurtosis in the

firm dynamics. This allows us to capture non-zero credit spreads as well as the simultaneous

jump to default for Firm 1 and the positive exposure on the underlying contract for Firm 2.

In addition, in the case of Lévy processes the pricing of plain vanilla options is nowadays well

established via either numerical integration of the density function, if available in closed form,

or numerical inversion of the characteristic function, which is always available in closed form,

using for example the Carr-Madan technique (Carr and Madan, 1999) or similar approaches,

such as the Fourier cosine expansion (Fang and Oosterlee, 2008). This makes the (numerical)

computation of the CVA relatively straightforward, as discussed in the next sections.

2.3 The Gaussian specification

Using the same notation introduced in Section 2.1, we assume that Yj(T ), j = 1, 2, 3 and

Z(T ) are independent Brownian motions with diffusion coefficients γ1, γ2, γ3, γZ respectively.

Consequently, Xj(T ), j = 1, 2, 3 is a Brownian motion with diffusion parameters σ1, σ2, σ3

such that σ2j = γ2j + a2jγ
2
Z , j = 1, 2, 3. It follows that the exponential compensator is

ϕXj (−i) =
σ2j
2

=
γ2j
2

+
a2jγ

2
Z

2
= ϕYj (−i) + ϕZ(−aji), j = 1, 2, 3.
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Under this assumption, it follows from equations (12) and (17) that the CVA to Firm 2

for a long position in a forward contract on the reference name is

CV A2 = (1−R1)

∫
R

Φ

(
l1 − a1z
γ1
√
T

)
Φ

(
− l2 − a2z

γ2
√
T

)
g (z) fT (z) dz, (18)

where Φ(x) denotes the cumulative distribution function of the standard Normal random

variable, fT (z) is the density function at T of the (rescaled) Brownian motion controlling the

common risk component, and

g (Z(T )) = S3(0)e−q3U−
a23γ

2
Z

2
T+a3Z(T )Φ

 ln S3(0)e(r−q3)U

K3
− σ2

3
2 T + a3Z(T )

γ3
√
T

+ γ3
√
T


−K3e

−rUΦ

 ln S3(0)e(r−q3)U

K3
− σ2

3
2 T + a3Z(T )

γ3
√
T

 .

The computation of the integral in equation (18) can be easily performed via a numerical

integration method, such as Gaussian quadrature (see Press et al., 2007, for example).

2.4 The NIG specification

Using the multivariate construction as given in equation (8), we assume that Yj (T ) and

Z (T ) follow independent NIG processes. In particular, Yj(T ) is obtained by subordinating

a Brownian motion with drift βj ∈ R and volatility γj > 0 by an unbiased IG subordinator

with variance rate νj > 0, whilst Z(T ) is obtained by subordinating a Brownian motion with

drift βZ ∈ R and volatility γZ > 0 by an unbiased IG subordinator with variance rate νZ .

Xj(T ) is then the sum of two independent NIG processes. The exponential compensator is

ϕXj (−i) = ϕYj (−i) + ϕZ(−aji)

=
1−

√
1− 2βjνj − γ2j νj

νj
+

1−
√

1− 2ajβZνZ − a2jγ2ZνZ
νZ

, j = 1, 2, 3.

By similar argument as reported in the Appendix (see equations A.1-A.3), the change of

measure defined by equation (16) implies that, under P∗, Y3(T ) is a NIG process obtained by

subordinating an arithmetic Brownian motion with drift β3+γ23 and diffusion parameter γ3 by

an Inverse Gaussian process with parameters (T/
√
ν3,
√

(1− 2β3ν3 − γ33ν3)/ν3). Therefore,

the CVA to Firm 2 of a long position in the forward contract on the reference entity (equations

11



12 and 17) is

CV A2

= (1−R1)

∫
R
F̄

(
d1,−

β1
γ1
,
T
√
ν1
,

1
√
ν1

)
F̄

(
d2,

β2
γ2
,
T
√
ν2
,

1
√
ν2

)
g (z) fT (z) dz, (19)

with

g (Z(T )) = S3(0)e
−q3U−

1−
√

1−2a3βZνZ−a23γ
2
Z
νZ

νZ
T+a3Z(T )F̄

(
d3,

β3 + γ23
γ3

,
T
√
ν3
,

√
1− s
ν3

)
−K3e

−rU F̄

(
d3,

β3
γ3
,
T
√
ν3
,

1
√
ν3

)
,

and

F̄ (ξ, χ, a, b)
.
=

a√
2π
eab
∫ ∞
0

Φ

(
ξ√
z

+ χ
√
z

)
z−3/2e

− 1
2

(
a2

z
+b2z

)
dz, (20)

d1 =
l1 − a1Z(T )

γ1
, d2 = − l2 − a2Z(T )

γ2
,

d3 =
ln S3(0)e(r−q3)U

K3
− ϕX3(−i)T + a3Z(T )

γ3
, s = ν3

(
2β3 + γ23

)
.

The integral in equation (19) can be computed via numerical quadrature. In particular,

the COS method of Fang and Oosterlee (2008) is used to numerically compute the proba-

bility and the cumulative density functions of the NIG process. In order to benchmark this

numerical solution, we have also used both the analytical expression of the probability and

the cumulative density functions, see equations (3) and (20) respectively, and Monte Carlo

simulation.

3 Model Calibration

The parameters fitting is performed in two steps; firstly, we obtain the parameters of the

margin processes Xj(T ) by direct calibration to market data. Secondly, we recover the

parameters of the processes Yj(T ), j = 1, · · · , 3, Z(T ) and the loading coefficients from the

correlation matrix.

In the calibration procedure, we at first estimate the parameters of the margins using

information from CDS and option markets and thereafter, resorting to the historically esti-

mated correlation structure and to suitable convolution restriction aimed at preserving the

distribution of the margins, we calibrate the parameters of the common factor and the id-

iosyncratic processes. This approach is reasonable from the point of view of practitioners

12



as the product we are aiming to price is illiquid, and therefore market quotes necessary to

calibrate the full correlation matrix are not available.

Full details are given in the following of this section.

3.1 Calibration to market data of the margin process

In the first step we calibrate the margin processes Xj(T ) to market data for each asset. This

is achieved by fitting the term structure of credit spreads extracted from CDS quotations for

the two counterparties (S1 and S2), and by fitting call and put option prices on the reference

entity (S3). The procedure is described in details as follows.

By a standard bootstrap procedure, see for example O’Kane and Turnbull (2003), we

extract default probabilities from market quotations of CDS. Out of the term structure of

default probabilities, we compute the term structure of credit spread4, defined as

CS(0, T ) = − 1

T
ln(1− PD (0, T ) + (1−R)PD (0, T )). (21)

Thereafter, we solve the following non linear least square fit problem

min
h,λ

n∑
i=1

(
CSmkt (0, Ti)− CSmodel (0, Ti;h, λ)

)2
,

with respect to the unknown log-leverage h = ln(K/S(0)) and the parameters of the margin

process (i.e. λ ≡ (θj , σj , kj) for j = 1, 2 if we adopt the NIG model and λ = σj if we opt

for the Gaussian one). In the above minimization problem, CSmkt(0, T ) denotes the credit

spreads computed according to fromula (21) using bootstrapped market default probability

for maturity T , whilst CSmodel (0, T ;h, λ) denotes the one computed according to either the

NIG or the Gaussian model. In particular, the model credit spreads can be computed using

the following expressions for the marginal default probability in the Gaussian case

PDgauss (0, T ;h, σ) = Φ

h−
(
r − q − σ2

2

)
T

σ
√
T

 ,

and in the NIG setting

PDnig (0, T ;h, σ) = F̄

(
h− (r − q − ϕX(−i))T

σ
,− θ

σ
,
T√
k
,

1√
k

)
4Here, the credit spread refers to the additional return paid by a defaultable zero-coupon with respect to

a default free one.
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with

ϕX(−i) =
1

k

(
1−

√
1− 2θk − σ2k

)
,

and F̄ (·) as given by equation (20).

The calibration to the option price surface is performed by solving the following mini-

mization problem

min
λ

M∑
i=1

N∑
ι=1

(
Omkt (Kj , Tι)−Omodel (Ki, Tι;λ)

)2
,

where λ ≡ (θ3, σ3, k3) in the case of the NIG model and λ = σ3 in the case of the Gaussian one;

Omkt(K,T ) are the market prices of options with strike K and time to maturity T , with the

convention that we use only out-of-the-money call and put options. Similarly, Omodel(K,T ;λ)

denote the corresponding option model prices, which are calculated using the Black-Scholes

formula in the Gaussian case and according to expression (A.4) reported in the Appendix in

the NIG case.

For both calibration procedures, the initial parameter set has been randomized 100 times

around sensible starting values; the output from the best 5 calibrations has been averaged

and used in our numerical experiment.

The market data used refer to quotation on June 26, 2014. In particular, we identify as

counterparties a corporate firm, ENI, and a financial firm, Deutsche Bank (DB). They enter

a forward contract on Brent Crude Oil. The fitting to market credit spreads is given in Table

1, where we report the ENI and DB market credit spreads (columns 2 and 5) and the corre-

sponding fitted credit spreads, using the Gaussian (column 3 for ENI and column 6 for DB)

and the NIG (column 4 for ENI and column 7 for DB) model specifications. Option quotes

refer to Brent Financial (European) Options quoted on the Chicago Mercantile Exchange,

expiring on August 11, 20145. Market prices and fitting performance of the Gaussian and

NIG specifications are given in Table 2.

The parameters resulting from the different calibrations are given in Table 3 in the Gaus-

sian case and in Table 4 in the NIG one; the corresponding quality of the calibration is

reported in Table 1 and 2 for convenience of reading. This is measured by the RMSE be-

tween market and model credit spread and option prices. In particular, we note the better fit

allowed by the NIG model as compared to the Gaussian one, especially in generating more

realistic and accurate levels of short-term credit spreads, and therefore showing the impor-

tance of including jumps in the relevant dynamics of interest. The introduction of jumps

in the underlying dynamics also helps to significantly reduce the calibration error for option

5The underlying futures contract is expiring on August 14, 2014. The Futures price is 113.76 USD per
barrel.
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prices.

3.2 Calibration of the idiosyncratic and common factors

In the second step, given the set of parameters of the margin process Xj(T ) identified as

described above and reported in Tables 3 and 4, we recover the parameters of the common

factor and of the idiosyncratic components exploiting the model assumption X = Y + aZ.

The actual fitting method depends on chosen model.

We note that, as correlation is not directly observable due to lack of liquidity of suitable

derivative instruments, in the following we use the sample correlation based on a sample

size of 2 years log-returns to estimate the correlation between the log-returns of the firm

values (ENI and DB) and contract’s underlying variable (Brent Crude Oil spot price). The

estimated correlation matrix is given in Table 5.

In the following, we discuss in details the procedure for recovering the parameters of

the idiosyncratic and common processes for the case of Gaussian and NIG models; we note

though that this procedure can be easily adapted to other Lévy specifications, like Variance

Gamma or CGMY processes.

3.2.1 Gaussian specification

If we assume that Y and Z are independent Gaussian processes, X is Gaussian as well and we

have simply to decompose its variance in two components, one originated by the idiosyncratic

factor, and the other one by the common factor. The estimated correlation matrix is used

to calibrate the free parameters, i.e. the loading factors aj , j = 1, · · · , 3. For simplicity,

but without lack of generality, we assume γZ = 1; consequently, once we have determined

the sensitivity coefficients aj according to the given correlation matrix, the variances of the

idiosyncratic components are obtained by

γ2j = σ2j − a2j , j = 1, 2, 3,

where σ2j are the estimated variances of the margin processes given in Table 3. The resulting

parameters are summarized in Table 5, columns 6 and 7.

3.2.2 NIG specification

If we assume that the idiosyncratic and the common factor are both NIG, in general X is

not NIG6. In practice, we choose the parameters of the common component such that the

distribution of the sum Y + aZ does not deviate from a NIG one, in a sense to be specified

6Indeed, we recall that the NIG distribution is closed under convolution if and only if the distribution of
Y and Z share the same parameters, a quite restrictive assumption in our framework.
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below, with the constraint of preserving the observed correlation structure, as captured by the

loading coefficients aj , j = 1, · · · , 3, and the cumulants of the margin process, by controlling

for the parameters of the idiosyncratic process. This leaves us with 3 parameters, those

referring to the common component Z. We can fix the free parameters so that the integrated

distance between the characteristic function of the margin, i.e. φXj (u), and the characteristic

function due to the factor structure, i.e. φYj (u)φZ(aju), is as small as possible for every value

of the Fourier variable u. In practice, we fix the parameters of the common component so

that the following expression

3∑
i=1

∫ ∣∣φXi (u)− φYj (u)φZ(aju)
∣∣2 du,

is minimized. This criterion refers to the econometric literature where model parameters are

estimated by fitting the theoretical characteristic function to the empirical one, see for exam-

ple Feuerverger and Mureika (1977). From a computational point of view, the minimization

of the above objective function is very fast.

The coefficients aj , j = 1, · · · , 3 are chosen so that the estimated correlation between

the different names is recovered, whilst the parameters of the idyosincratic components are

chosen by imposing equality between the first four cumulants of Xj and of Yj + ajZ. If we

let csk, k = 1, ..., 4, s = X,Y, Z to be the cumulant of order k of the random quantity s, the

factor structure and the independence of Y and Z imply

cXik = cYik + aki c
Z
k .

In practice, it is not possible to guarantee that the above equality holds whatever the order

of the cumulant. So we restrict the parameters of the idiosyncratic components in such a

way that the above equality is satisfied only for k = 1, ...4. Therefore, the implied cumulants

of Yj given the factor structure are

δ
Yj
k := c

Xj
k − a

k
j c
Z
k ,

and we impose the equality with theoretical cumulants, i.e. δ
Yj
k = c

Yj
k , k = 1, · · · , 4. This
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allows us to recover the parameters of each component Y via

β =
3δ22δ3

−4δ23 + 3δ2δ4
,

γ2 =
δ2(−5δ23 + 3δ2δ4)

−4δ23 + 3δ2δ4
,

ν =
−4δ23 + 3δ2δ4

9δ32

µ = δ1 − θ,

where we have omitted the dependence on the component index j. We recall that fitting the

cumulants amounts to fit the characteristic function and its derivatives up to the maximum

cumulant order considered but only at the origin. If the distribution to be recovered is fully

determined by its moments, this is plausible choice. A different motivation for using this

procedure is given in Eriksson et al. (2009). The resulting parameters are given in Table 5,

columns 8 to 11. The resulting cumulative distribution and probability density functions of

the linear combination Y + aZ are plotted against the ones of X in Figure 1, where we also

report the resulting error of Y + aZ in reproducing X. Results are shown for the case of

Brent Crude Oil; similar results are also obtained for the two counterparties and are available

from the Authors upon request.

4 Numerical Results

The aim of this section is to use the models developed in Section 2, and calibrated to market

data in Section 3, to study the counterparty risk adjustments originating from a forward

contract entered by DB and ENI, written on Brent Crude Oil. Particular attention is paid

to the impact of right-way risk and wrong-way risk (captured by different values of the

correlation between the counterparty and the underlying asset) on the credit adjustments of

interest.

4.1 CVA and DVA: bilateral vs unilateral adjustments

The three parties in our example are DB as the forward short position (S1), ENI as the forward

long position (S2), and Brent Crude Oil as the reference name of the forward contract (S3).

The forward price is fixed at its no-arbitrage value.

Using the calibrated parameters reported in Tables 3, 4 and 5, we obtain the corresponding

unilateral and bilateral CVA and DVA as discussed in Section 2. Results are reported in Table

6, the second column reporting the relevant figures obtained under the Gaussian model using

the closed-form solutions developed in Section 2.3; the remaining columns, instead, reporting
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the estimates obtained under the NIG model. As discussed in Section 2.4, in this case CVA

and DVA can only be approximated by choosing a suitable numerical approximation; for

this experiment, we have adopted the COS method of Fang and Oosterlee (2008) which

is benchmarked against Monte Carlo. The corresponding Monte Carlo estimates together

with the 95% confidence interval are reported in the final three column. We note that the

95% confidence interval generated by the Monte Carlo simulation always contains the price

produced by the COS algorithm (the Monte Carlo algorithm uses 107 iterations, whilst the

COS method is set with N = 210 terms in the series expansion and a truncation range

governed by L = 10 - see Section 5.1 Fang and Oosterlee, 2008).

For the case under consideration, regardless of the chosen model, the CVA to Firm 2 is

always smaller than the corresponding DVA, particularly in the unilateral case. These value

differences reflect the interdependency between the three names involved in the transaction:

the joint probability that Firm 1 defaults, Firm 2 survives and the call option defining the

CVA expires in the money is 0.27%, whilst the joint probability that Firm 1 survives, Firm 2

defaults and the put option defining the DVA expires in the money is 0.45%; in the unilateral

case, instead, these probabilities are 0.28% in the case of the joint default of Firm 1 and

non-zero call payoff against 0.60% for the joint default of Firm 2 and non-zero put payoff.

Further, we observe a reduction in the value of the CVA (DVA) as we include in the

calculation one’s own default, i.e. as we move from the unilateral case in which only the

counterparty’s default is included, to the bilateral case, in which the default of both parties

is taken into account. As it can be seen from Table 1, Firm 1 (DB) has worst credit quality

and therefore higher default probabilities when compared to Firm 2 (ENI). Consequently,

the unilateral and bilateral CVAs are at similar level, whilst unilateral and bilateral DVAs

can differ up to 30% of the adjustment value. The figures in this Table are also relevant for

regulatory and accounting purposes. Indeed, we recall that Basel III sets a capital charge de-

pending on the unilateral CVA of the contract and no compensation can be considered due to

the investor’s own default. The picture is though quite different when we consider accounting

rules. In this case, according to IAS/IFRS, balance sheets must explicitly acknowledge the

bilateral counterparty value adjustment (BVA) of the contract. In the example illustrated

by Table 6, if we believe in a NIG world, the long (short) side must post a regulatory capital

according to the unilateral exposure, i.e. 4.2039 (14.0070). For balance sheet purposes how-

ever, the relevant figure is 4.1031-9.8202 (the opposite value for the short side)7. This sets up

a clear dilemma for a bank which has to decide whether they should enter into a derivative

contract with a counterparty. Indeed, the decision can be substantially different if regulatory

or accounting rules are taken into account.

Finally, Table 6 shows the substantial price difference between bilateral and unilateral

7Similar considerations would hold in a Gaussian world.
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CVAs and DVAs obtained under the Gaussian model and the NIG model: this range between

75% and 90% of the value of the adjustment. These prices discrepancies are to be traced

back to the ability of the NIG model accommodate for non-zero (negative) skewness and

excess kurtosis in the distribution of the log-returns, as compared to the Gaussian model,

as shown in Tables 3 and 4 as well, and consequently to offer a more realistic portray of

the actual market credit spreads and default probabilities, as discussed in Section 3. These

features then result in higher probabilities of default, credit spreads and, ultimately, higher

values of the CVA (DVA) when compared to the ones obtained under the Gaussian model in

correspondence of different maturities of the forward contract. This is clearly illustrated in

Figure 2 for the case of the CVA. The price difference is particularly evident over the very

short time horizon, as expected.

A possible way to improve the performance of the Gaussian model would be to find the

value of the volatility parameters, σj , j = 1, 2, 3, such that the (marginal) default probabilities

of S1 and S2 and the price of the call option on S3 are matched under the two model

specifications. In an independent world, this would imply the equality between the CVAs

obtained under the NIG model and the Gaussian one. In presence of correlation though, the

price difference would be still quite significant, as shown in Figure 3. This is due to the fast

decay of the tail dependence typical of the Gaussian distribution (see Embrechts et al., 2001,

for example), which leads to underestimating the impact of the risk of default and “contagion”

between the entities involved, and ultimately the impact of right-way/wrong-way risk.

4.2 Right-way risk and wrong-way risk

In this section, the study of right-way risk and wrong-way risk is carried out in form of a sen-

sitivity analysis of CVA and DVA versus the correlation coefficient between the counterparty

and the underlying asset of the forward contract, ρ13. This is achieved by perturbing ρ13

about its estimated value, re-fitting the model parameters according to the new correlation

matrices as described in Section 3, and re-computing the values of CVA and DVA keeping

all other parameters unchanged. As in the previous section we have shown its ability to offer

a more realistic description of market features, in the following we work only with the NIG

model.

In Figures 4-5, we show the CVA for different levels of the default barriers (top panel)

and different levels of correlation between the forward seller and the forward underlying as-

set (bottom panels). Consistent with intuition, the value of the CVA to the forward buyer

increases with the default probability of the seller (i.e. when the default threshold K1 in-

creases) and decreases when its own probability of default increases (i.e. when the default

threshold K2 increases). In more details, Figure 4 - bottom left and right panels - shows the

CVA in the case in which the three parties are positively correlated. In this situation, when
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the correlation between the seller and the underlying asset increases, for a fixed percentage

deterioration in the seller firm value, the underlying asset value decreases more and so does

the CVA to the buyer as the call option moves out-of-the-money. In other words, the higher

the default probability of Firm 1, the lower the expected exposure for Firm 2 in case Firm

1 defaults (right-way risk), and consequently the lower the corresponding value of the CVA.

Further, the joint probability of the seller to default and the call option on the reference name

to expire in the money decreases when ρ13 increases, as illustrated in the top two panels in

Figure 6. Analogous consideration hold when there is negative correlation between the three

names. The CVA to the forward buyer, in fact, will have a higher value when the forward

seller and the underlying asset are highly “anti-correlated”, as shown in Figure 5 (bottom

right and left panels). In this case, the higher Firm 1 default probability, i.e. the worst its

credit quality, the higher Firm 2 expected exposure in case Firm 1 defaults, as the probability

that the call option of the buyer moves in-the-money increases (wrong-way risk).

A rise in the value of the correlation between the seller and the reference name, ρ13,

also causes the joint probability of the seller to survive and the put option on the reference

name to expire in the money to decrease, as shown in the bottom two panels in Figure 6.

Therefore the DVA to the forward buyer is lower for higher positive levels of ρ13, and higher

for ‘more negative’ levels of ρ13. This is depicted in Figures 7-8, which also show that the

DVA decreases when the seller default probability increases (i.e. K1 increases), whilst it

increases with the buyer default probability (i.e. in correspondence of higher levels of K2).

The corresponding bilateral counterparty value adjustment (BVA) is presented in Figures

9-10. As expected, the BVA to the buyer is negative when it is more likely that the buyer

will default (higher values of K2 - bottom left panel). The BVA becomes positive though

when the probability of default of the seller increases (top and bottom right panel).

5 Conclusions

In this paper, we have developed a multivariate structural default framework with jumps

to quantify counterparty credit risk, bilateral/unilateral credit value adjustment and bilat-

eral/unilateral debt value adjustment for equity derivatives on a given reference name. The

empirical illustration shows the effect of using a non-Gaussian process, i.e. with non-zero

skewness and excess kurtosis, in measuring CVA and DVA. The sensitivity analysis per-

formed with respect to the correlation between the contract seller and the reference name

highlights the effect of right-way risk and wrong-way risk on the value adjustments due to

counterparty credit risk. Further, the example considered illustrates the problems related to

the differences between the reporting rules of Basel III and IAS/IFRS standards, highlighting

the need for a consistent reporting framework.
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The approach presented in this paper is based on a simple framework à la Merton, in which

default is assumed to occur only at maturity. Current research is focusing on extending the

model to the case in which the firms can default at any time during the lifetime of the

reference contract, in order to gain a more realistic perspective. In this modified framework,

the quantification of CVA and DVA involves the calculation of the price of zero-strike calls

and puts of exotic nature in that they are activated and paid only in case of default of

one of the counterparties. This problem is computationally demanding as it requires in the

first place to solve the so-called ‘first-to-default’ problem; secondly, in the given multivariate

construction the barrier determining the default event is stochastic (see Ballotta et al., 2014,

for further details).
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A Pricing of the European call option in the NIG economy

Consider a European call option with strike price K and maturity at time T , written on a

non dividend paying stock S, whose dynamics under any risk neutral probability measure P̂
is described by

S(t) = S(0)e(r−ϕ(−i))t+X(t),

where ϕ(u) is the characteristic exponent of the NIG process X(t). By risk neutral valuation,

the price of this contract is

C0 (S(0),K, T ) = S(0)P(S) (S(T ) > K)− e−rTKP̂ (S(T ) > K) ,

where P(S) is the stock-risk-adjusted probability measure defined by the density process

γ
(S)
t

.
=

S(t)

ertS(0)
= e−ϕ(−i)t+X(t),

(see Geman et al., 1995). As the NIG process is a subordinated Brownian motion, let fT

denote the density function of the subordinator; then it follows that

P̂ (ST > K) =

∫ ∞
0

P̂
(
X(T ) > ln

K

S(0)
− (r − ϕ(−i))T

∣∣∣∣G(T ) = z

)
fT (z)dz

=
T√
2πk

eT/k
∫ ∞
0

Φ

(
ln S(0)

K + (r − ϕ(−i))T + θz

σ
√
z

)
z−3/2e

− 1
2

(
T2

zk
+ z
k

)
dz.

Let

F̄ (ξ, χ, a, b)
.
=

a√
2π
eab
∫ ∞
0

Φ

(
ξ√
z

+ χ
√
z

)
z−3/2e

− 1
2

(
a2

z
+b2z

)
dz,

then

P̂ (ST > K) = F̄

(
d,
θ

σ
,
T√
k
,

1√
k

)
,

d =
ln S(0)

K + (r − ϕ(−i))T
σ

.

Further, we note that, under the probability measure P(S), the characteristic function of the

NIG process X(t) is given by

φ
(S)
X (u; t) = e−ϕ(−i)tÊ

(
e(iu+1)X(t)

)
= etϕ

(S)(u)

ϕ(S)(u) =
1√
kk(S)

(
1−

√
1− 2iuθ(S)k(S) + u2σ2k(S)

)
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which implies that

X(t) = θ(S)G(t) + σW (G(t)) , (A.1)

θ(S) = θ + σ2, (A.2)

whereW (t) is a P(S)-standard Brownian motion andG(t) is a P(S)-IG process with parameters(
t/
√
k, 1/
√
k(S)

)
for

k(S) =
k

1− 2θk − σ2k
. (A.3)

These results are consistent with the application of the Girsanov theorem (see Jacod and

Shiryaev, 1987) to the NIG process. Hence, it follows that

P(S) (S(T ) > K) =
T√
2πk

eT/
√
kk(S)

∫ ∞
0

Φ

(
ln S(0)

K + (r − ϕ(−i))T + θ(S)z

σ
√
z

)

×z−3/2e−
1
2

(
T2

zk
+ z

k(S)

)
dz

= F̄

(
d,
θ + σ2

σ
,
T√
k
,

√
1− s
k

)
,

for s = k
(
2θ + σ2

)
. Therefore, the price of the given option is

C0 (S(0),K, T ) = S(0)F̄

(
d,
θ + σ2

σ
,
T√
k
,

√
1− s
k

)
− e−rTKF̄

(
d,
θ

σ
,
T√
k
,

1√
k

)
. (A.4)

The price of a European call on a dividend paying stock (with dividend yield q > 0) follows

from the transformation of the option payoff

e−qT
(
S(T )−KeqT

)+
.
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Table 1
Term Structure of credit spreads (CS) for ENI and Deutsche Bank (DB). First column: maturities.
Second (Fifth) column: ENI (DB) CS computed using default probabilities bootstrapped from CDS
quotations. Third (Sixth) column: fitted CS for ENI (DB) in the Gaussian framework. Fourth
(Seventh) column: fitted CS for ENI (DB) in the NIG framework. RMSE: root mean squared errors
between market and model credit spreads. CDS Data Source: Markit, June 26, 2014. Default
probabilities computed using Markit calculator.

Model CS Model CS

Maturity ENI CS Gaussian NIG DB CS Gaussian NIG

6M 0.2739% 0.0013% 0.2584% 0.4423% 0.0016% 0.4108%
1Y 0.4071% 0.1018% 0.4102% 0.5783% 0.1189% 0.5743%
2Y 0.7700% 0.7148% 0.7809% 0.8907% 0.8171% 0.9317%
3Y 1.0189% 1.1522% 1.0814% 1.1637% 1.3263% 1.2280%
4Y 1.2511% 1.3195% 1.2451% 1.4373% 1.5425% 1.4233%
5Y 1.4228% 1.3851% 1.3407% 1.6443% 1.6384% 1.5593%
7Y 1.4853% 1.3913% 1.4136% 1.7715% 1.6748% 1.7106%
10Y 1.5179% 1.5524% 1.6232% 1.8625% 1.8400% 1.9499%

RMSE 0.0565% 0.0206% 0.0846% 0.0200%
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Table 2
Option Quotations on Brent Crude Oil. First column: option strike. Second column: option type (1:
call, -1 put). Third column: option premium. Fourth (Fifth) column: fitted premium in the Gaussian
(NIG) framework. Data Source: Chicago Mercantile Exchange. Settlement date: August, 11 2014.
Underlying Futures quotation: 113.76 USD per barrel. RMSE: root mean squared errors between
market and model option prices. Quotations refer to June 26, 2014.

Strike Call/Put Premium G NIG Strike Call/Put Premium G NIG

98.5 1 15.32 15.28 15.32
99 1 14.84 14.79 14.84 109.5 1 5.48 5.52 5.47

99.5 1 14.35 14.30 14.35 110 1 5.13 5.17 5.12
100 1 13.87 13.81 13.86 110.5 1 4.78 4.83 4.78

100.5 1 13.39 13.33 13.38 111 1 4.45 4.51 4.45
101 1 12.9 12.84 12.90 111.5 1 4.14 4.20 4.14

101.5 1 12.43 12.36 12.42 112 1 3.83 3.90 3.84
102 1 11.95 11.89 11.94 112.5 1 3.54 3.62 3.56

102.5 1 11.48 11.42 11.47 113 1 3.27 3.35 3.29
103 1 11.01 10.95 11.00 113.5 1 3.02 3.09 3.04

103.5 1 10.54 10.48 10.53 114 1 2.85 2.85 2.81
104 1 10.03 10.03 10.07 114.5 -1 3.35 3.36 3.33

104.5 1 9.62 9.57 9.61 115 -1 3.65 3.65 3.63
105 1 9.17 9.13 9.16 115.5 -1 3.95 3.94 3.94

105.5 1 8.72 8.69 8.72 116 -1 4.27 4.25 4.26
106 1 8.28 8.26 8.28 116.5 -1 4.61 4.57 4.60

106.5 1 7.84 7.84 7.85 117 -1 4.95 4.91 4.94
107 1 7.41 7.43 7.43 117.5 -1 5.31 5.25 5.30

107.5 1 7.01 7.02 7.02 118 -1 5.67 5.61 5.68
108 1 6.61 6.63 6.61 118.5 -1 6.05 5.98 6.06

108.5 1 6.22 6.25 6.22 119 -1 6.43 6.35 6.45
109 1 5.85 5.88 5.84 119.5 -1 6.83 6.74 6.85

RMSE 0.7601% 0.2179%

Table 3
Calibrated Gaussian model parameters. DB and ENI calibrated to credit spreads data reported in
Table 1. Brent Crude Oil calibrated to option prices reported in Table 2.

Name K q σ

DB 0.3732 0.0056 0.3235
ENI 0.4285 0.0036 0.2765

BRENT n.a. 0.0018 0.1803
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Table 4
Calibrated NIG model parameters. DB and ENI calibrated to credit spreads data reported in Table
1. Brent Crude Oil calibrated to option prices reported in Table 2. Standard deviation, skewness and
excess kurtosis calculated using equations (5)-(7) and the reported parameters.

Name K q θ σ k Std. Dev Skew Exc. Kurt.

DB 0.2173 0.0060 -0.1204 0.4361 1.0630 0.4534 -0.8471 4.1456
ENI 0.3720 0.0044 -0.0101 0.3112 0.9551 0.3113 -0.0926 2.8766

BRENT n.a. 0.0016 0.0683 0.1871 0.0796 0.1881 0.0866 0.2487

Table 5
Correlation matrix and parameters of the idiosyncratic and systematic processes. Correlation matrix
estimated using historical log-returns of DB, ENI and Brent Crude Oil (spot) over a 2 years period up
to and including June 26, 2014. Source: Yahoo! Finance and U.S. Energy Information Administration.
Idiosyncratic and systematic components parameters recovered via the procedure described in Sections
3.2.1 - 3.2.2.

Idiosyncratic and systematic components
Correlation Matrix Gaussian model NIG model

Name DB ENI BRENT Process γ a β γ ν a

DB 1.0000 - - 0.2317 0.2257 -0.1113 0.2819 2.1023 0.6258
ENI 0.6468 1.0000 - Y (t) 0.1037 0.2563 0.0056 0.1163 4.0226 0.5709

BRENT 0.2151 0.2858 1.0000 0.1715 0.0556 0.0759 0.1776 0.0832 0.1147
Z(t) 1 -0.0221 0.5050 1.1763

Table 6
Bilateral and unilateral CVA and DVA - expressed in basis points - for a forward contract on Brent
Crude Oil entered by DB (contract seller) and ENI (contract buyer). Parameter set: Tables 3, 4, 5.
Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%. Correlation: ρ12 = 64.68%,
ρ23 = 28.58%, ρ13 = 21.51%. Forward price K3: 1.0027 (Gaussian model), 1.0029 (NIG model). NIG
model: COS approximation obtained setting L = 10, N = 210; Monte Carlo (MC) simulation trials:
107.

Gaussian NIG Model
Model COS MC 95% C.I.

CV A2 (bilateral) 0.4354 4.1031 4.0722 4.1739 4.2757
DV A2 (bilateral) 2.3791 9.8202 9.6910 9.8477 10.0043
CV A2 (unilateral) 0.4659 4.2039 4.1722 4.2748 4.3774
DV A2 (unilateral) 2.8438 14.0070 13.8817 14.0730 14.2643
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Figure 1
Calibration of Y and Z. Top panels: probability density function (PDF) and cumulative distribution
function (CDF) of Asset 3 obtained using the calibrated margin process X and the calibrated linear
combination Y + aZ. Bottom panels: error is calculated as difference between the corresponding
probability functions. Parameter set: Table 5. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1
year, r = 0.45%. Correlation: ρ12 = 64.68%, ρ23 = 28.58%, ρ13 = 21.51%.
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Figure 2
Probability of default, credit spread and CVA under the NIG model and the Gaussian model. Param-
eter set: Table 5. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%. Correlation:
ρ12 = 64.68%, ρ23 = 28.58%, ρ13 = 21.51%.
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σ2 = 32.28%, σ3 = 18.72%.
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CVA for forward contract on Brent Crude Oil. S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%.
Case of positive correlation: ρ12 = 64.68%, ρ23 = 28.58%.
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Figure 5
CVA for forward contract on Brent Crude Oil. S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%.
Case of negative correlation: ρ12 = 64.68%, ρ23 = −28.58%.
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Figure 6
Joint probability of S1, S2 and S3 under the NIG model. S1(0) = S2(0) = S3(0) = 1, T = 1 year,
r = 0.45%.
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Figure 7
DVA for forward contract on Brent Crude Oil. S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%.
Case of positive correlation: ρ12 = 64.68%, ρ23 = 28.58%.
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Figure 8
DVA for forward contract on Brent Crude Oil. S1(0) = S2(0) = S3(0) = 1, T = 1 year, r = 0.45%.
Case of negative correlation: ρ12 = 64.68%, ρ23 = −28.58%.
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Figure 9
Bilateral counterparty value adjustment for forward contract on Brent Crude Oil. S1(0) = S2(0) =
S3(0) = 1, T = 1 year, r = 0.45%. Case of positive correlation: ρ12 = 64.68%, ρ23 = 28.58%.
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Figure 10
Bilateral counterparty value adjustment for forward contract on Brent Crude Oil. S1(0) = S2(0) =
S3(0) = 1, T = 1 year, r = 0.45%. Case of negative correlation: ρ12 = 64.68%, ρ23 = −28.58%.
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