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QALE-FEM for modelling 3D overturning waves  

By S. Yan and Q.W. Ma* 

School of Engineering and Mathematical Sciences, City University, London, EC1V 0HB, UK 

 

SUMMARY 

A further development of the QALE-FEM (Quasi Arbitrary Lagrangian-Eulerian finite element method) 

based on a fully nonlinear potential theory is presented in this paper.  This development enables the QALE-

FEM to deal with 3D (three dimensional) overturning waves over complex seabeds, which have not been 

considered since the method was devised by the authors of this paper in their previous works [1-2].  In order 

to tackle challenges associated with 3D overturning waves, two new numerical techniques are suggested.  

They are the techniques for moving the mesh and for calculating the fluid velocity near overturning jets, 

respectively.   The developed method is validated by comparing its numerical results with experimental data 

and results from other numerical methods available in the literature.   Good agreement is achieved.  The 

computational efficiency of this method is also investigated for this kind of wave, which shows that the 

QALE-FEM can be many times faster than other methods based on the same theory.   Furthermore, 3D 

overturning waves propagating over a non-symmetrical seabed or multiple reefs are simulated using the 

method.   Some of these results have not been found elsewhere to the best of our knowledge. 

KEY WORDS: QALE-FEM; 3D overturning waves; Spring analogy method; Complex seabed; Fully 

nonlinear potential flow.  

1. INTRODUCTION 

Overturning waves are common physical phenomena in the sea, particularly in the nearshore area.   The 

destructive energy released by overturning waves may result in huge loads and cause severe damage.  For 

example, the overturning wave in the 2004 Great Sumatra Tsunami caused collapse of numerous buildings 

and death of many people [3].  In order to reduce the losses due to such events, many efforts, e.g., building 

submerged breakwaters/artificial reefs to protect the beach [4], have been and are still being made.  The 

effectiveness of these efforts depends on a good understanding of overturning waves.  Due to the strong 
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nonlinearity, the linear, second-order or higher order approximate solutions (see, for example, [5-7]) may not 

be sufficient to describe overturning waves.  This initiates an interest in fully nonlinear numerical simulation 

of these waves.  For this purpose, two classes of mathematical models have been employed, as summarised 

below.  

The first one is called the Navier-Stokes (NS) Model, in which the Navier-Stokes equation and the 

continuity equation (or equivalent pressure Poisson equation, see, [8]) together with proper boundary 

conditions are solved using numerical methods.  These numerical methods may be split into two groups: 

conventional mesh-based methods and meshless methods.  The former mainly includes the finite volume 

method [9-14], finite difference method [15] and CIP (Cubic interpolated propagation) method [16].  The 

latter covers SPH (Smoothed Particle Hydrodynamic [17-19]), MPS (Moving Particle Semi-Implicit Method 

[20-21]) and PFEM (Particle Finite Element Method [22]).  However, no matter which method is used, 

solving NS equations is always a time consuming task, particularly for 3D (three dimensional) cases.  For 

more reviews on the NS Model, readers may be referred to the above cited papers.  

The second one is called FNPT Model, in which a Laplace’s equation for velocity potential with fully 

nonlinear boundary conditions is dealt with.  Compared to the NS Model, the number of variables as well as 

complexity of the governing equations in this model is dramatically decreased.  As a result, the FNPT Model 

needs much less computational resources than the NS Model and, therefore, is computationally much more 

efficient.  Although viscosity is ignored in the FNPT Model, comparison with experimental data ([1],[8],[23-

26]) has shown that the results obtained by using this model are sufficiently accurate for strong nonlinear 

waves up to overturning.  Other comparison between the FNPT Model and the finite-volume-based NS 

Model has also revealed that the results from the former are closer to experimental data than those from the 

latter in the cases with non-breaking overturning solitary waves [27-28].  The reason may be that the finite-

volume-based NS Model suffers from numerical diffusion, leading to energy loss over a long distance of 

wave propagation, as indicated by Grilli, Guyenne & Dias [29].   Therefore, the FNPT Model is preferred 

over the NS Model in terms of both computational efficiency and accuracy, unless post-breaking waves, i.e. 

after the overturning jet hits the free surface, are of main concern.    In addition, a coupled FNPT-NS model 

has recently been developed and applied to simulate 2D breaking waves [30-31].  In this kind of model, the 

FNPT Model is used to simulate the pre-breaking wave while the NS Model continues the calculation in the 

post-breaking stage.    
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This paper aims to present a method simulating 3D overturning waves, excluding the post-breaking stage, 

thus the FNPT model is chosen.  The problems formulated by the FNPT model are usually solved by a time 

marching procedure.  In this procedure, the key task is to solve a boundary value problem (BVP) by using a 

numerical method, e.g. BEM (Boundary Element method) or FEM (Finite Element method).  A brief review 

on this model for simulating nonlinear water waves without overturning has been given by Ma & Yan [1].  

Only the references related to overturning waves are discussed here.  The application of the FNPT Model to 

numerically model overturning waves can be traced back to Longuet-Higgins & Cokelet [32].  The earlier 

researchers focused on 2D problems with a relatively simple computational domain, i.e. in deep water [33] 

and/or in a spatially periodic domain [34-35].  However, in the real sea, the seabed effects could be very 

evident and the spatially periodic problems are rare to see.   In later 2D studies, these limitations on the fluid 

domain and on the water depth were removed ([36-47]).  The waves in these applications include 

propagating oscillating waves (see, for example, [45] and [47]), solitary waves (see, for instance, [40] and 

[42]) and wave groups ([41] and [46]).  Apart from them, Zhao & Faltinsen [48] studied overturning waves 

initiated by water entry of 2D bodies and Grilli & Subramanya [23] investigated 2D overturning waves 

generated by moving boundaries.   2D overturning waves are not the focus of this paper.  Reader may be 

referred to the cited papers above for more literature about them. 

Compared to 2D overturning waves, numerical simulation of 3D overturning waves requires much more 

computational resource and sophisticated techniques.  Due to this, the applications of the FNPT Model to 3D 

overturning waves are still rare.   Xü & Yue [49-50] modelled 3D overturning Stokes waves in space-

periodic numerical tank. In their model, the waves are generated by specifying pressure distributions on the 

free surface.   This model has been extended by Xue, Xü, Liu & Yue [51] to simulate crescent waves in 

water of infinite depth, which are generated by specifying initial wave elevation and the velocity potential on 

the free surface based on a linear theory, again in a spatially periodic domain.  Grilli, Guyenne & Dias [29] 

developed another FNPT-based model for 3D overturning waves in water of finite depth.  Guyenne & Grilli 

[52] followed the work and investigated the effect of seabeds on overturning solitary waves.   By using this 

model, Grilli, Vogelmann & Watts [53] simulated 3D tsunami waves generated by underwater landslides and 

Brandini & Grilli [54] modelled 3D overturning freak waves over a flat seabed.  Although these applications 

have shown a good applicability of this model, its computational efficiency needs to be improved.  For this 

purpose, Fochesato & Dias [55] introduced a fast multipole algorithm (FMA), referred as fast BEM method.  
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The fast BEM method has successfully modelled 3D overturning solitary waves [55] and freak waves [56].  

Their numerical tests indicated that the fast BEM method can be 6 times faster than the conventional BEM 

by Grilli, Guyenne & Dias [29].  It could be considered as the fastest method at the time for modelling 3D 

overturning waves.  Although these methods show less limitation on the wave generation and seabed 

geometries than those models based on infinite water depth and periodical domain, it has not been used to 

investigate overturning of propagating oscillating waves, which are more popular than solitary waves or 

freak waves in reality.   In addition, the seabed geometry in their applications is symmetrical about the 

central longitudinal vertical plane, a special case of real seabed geometry.  More investigations on other 

types of waves and non-symmetrical seabed are interesting.  

In the studies discussed above, the BVP is solved by using the BEM, either linear/low-order BEM (see, 

for instance, [45]), higher-order BEM (see, for example, [29]) or the fast BEM ([55-56]).  On the other hand, 

the FEM has been developed by Wu & Eatock Taylor [57] and Ma, Wu & Eatock Taylor [58-59] to solve 

fully nonlinear wave problems.    As pointed out by them, the FEM requires less memory and is therefore 

computationally more efficient for fully nonlinear waves than the BEM, which will be confirmed again in 

this paper.  However, for the FEM, a good computational mesh (good element shapes and reasonable node 

distribution), covering the whole fluid domain, is required and needs to be updated at every time step in 

order to conform to the motion of the free surface.  For the problems where the free surface is always single-

valued, i.e., without wave overturning, one may use a structured mesh (for example, [58-59]), which needs a 

little CPU time to be updated or regenerated.   However, once overturning waves occur, an unstructured 

mesh (at least near the overturning jet) is necessary to achieve accurate results.  Repeatedly regenerating 

such a mesh may take a major part of CPU time and so make the overall simulation very slow.   To reduce 

the CPU time spent on regenerating a suitable mesh, one may use a hybrid structured-unstructured mesh, 

which is unstructured near the overturning jet and structured in the other region, as adopted by Turnbull, 

Borthwick & Eatock Taylor [60] and Heinze [61] for 2D wave-structure interaction problems without 

overturning.  But this technique still needs to regenerate the unstructured part and needs to know where the 

overturning occurs a priori.  Apart from the challenge associated with the mesh, it is crucial to use a robust 

method to evaluate the fluid velocities on the free surface because they are needed to update the information 

on the free surface at every time step.  Several methods for this purpose have been developed in the FEM.  

They mainly include the direct method (solving the velocity in a similar way to the velocity potential) 
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developed by Wu & Eatock Taylor [57] and followed by Wang & Wu [62] , Wang, Wu & Drake [63], the 

finite difference method [64-65], the three-point method suggested by Ma, Wu & Eatock Taylor [58] (see, 

also [66]) and the cubic spline method suggested by Sriram, Sannasiraj & Sundra [67].  Only the direct 

method and the three-point method have been employed for 3D nonlinear water waves in those papers.  The 

three-point method has been proved more robust and accurate than the former.  However, this method is 

originally developed for meshes with special structures, i.e., at least two nodes lying on the vertical line 

through each free-surface node, which is hard to satisfy when using unstructured meshes.  Perhaps due to 

these two challenges, i.e., regenerating arbitrary unstructured meshes and evaluating the fluid velocities, the 

conventional FEM has not been demonstrated to model overturning waves, even in 2D cases.   Ma and Yan 

[1] have recently devised a new method called QALE-FEM (Quasi Arbitrary Lagrangian-Eulerian Finite 

Element Method).  In this method the complex unstructured mesh is generated only once at the beginning of 

the calculation and is moved at other time steps to conform to motions of boundaries by using a novel and 

robust spring analogy method purpose-developed for water waves.  This feature allows one to use an 

unstructured mesh with any degree of complexity without the need of regenerating it.  Furthermore, a 

velocity calculation method suitable for the arbitrary moving unstructured meshes is also developed based on 

the three-point method.  The QALE-FEM has been successfully used to simulate nonlinear waves and its 

interactions with complicated seabeds ([1], [26], [68]) and free responses of floating bodies to steep waves 

([2], [69-70]).  Ma & Yan [1] compared the QALE-FEM with the conventional FEM in terms of 

computational efficiency and accuracy in the cases for periodic bars on the seabed.  They concluded that the 

QALE-FEM may require less than 15% of the CPU time than the conventional FEM to achieve the same 

level of accuracy.  

In this paper, the QALE-FEM is extended to simulate 3D overturning waves before the overturning jet 

hits the free surface ahead of the wave.  In order to tackle the challenges associated with overturning waves, 

two new numerical techniques are developed.  These include special techniques for moving mesh and for 

evaluating the fluid velocity in the cases for 3D overturning waves.  The accuracy of the QALE-FEM with 

the newly developed techniques is studied by comparing the numerical results with experimental data and 

other results available in the public domain.  Good agreement is achieved.  The convergent property and the 

computational efficiency are also investigated.  Based on these, numerical investigations on solitary waves 

over a 3D non-symmetrical sloping seabed and transient oscillating waves propagating over artificial reefs, 
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which have not been made before to the best of our knowledge, are presented.  

2. MATHEMATICAL MODEL 

 
Fig. 1.  Sketch of fluid domain 

 

In this paper, the computational domain is chosen as a rectangular tank.  Two types of methods are used to 

generate nonlinear waves.  The first one is to utilise a piston or paddle wavemaker which is mounted at the 

left end of the tank (see Fig. 1).  The second one is to specify the initial condition for the position of and the 

velocity potential on the free surface.  In this case, the wavemaker shown in Fig. 1 is treated as a fixed 

boundary.  Reflective boundary conditions are implemented on the lateral boundaries while the absorbing 

boundary condition is applied at the right end of the tank unless mentioned otherwise.  For the absorbing 

boundary condition, a damping zone with a Sommerfeld condition is applied, as sketched in Fig. 1. Details 

can be found in [58].  Arbitrary forms of seabed geometry may appear.  A Cartesian coordinate system is 

adopted with the oxy on the mean free surface, the oxz coinciding with the central longitudinal vertical plane 

of the tank and the z-axis being positive upwards.  

Similar to the usual formulation for the FNPT Model, the velocity potential ( ) satisfies Laplace’s 

equation 

02     (1) 

in the fluid domain. On the free surface  tyxz ,, , the velocity potential satisfies the kinematic and 

dynamic conditions in the following Lagrangian form, 
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where 
Dt

D
 is the substantial (or total time) derivative following fluid particles and g is the gravitational 

acceleration.  In Eq. (3), the atmospheric pressure has been taken as zero.  On all rigid boundaries, such as 

the wavemaker, the velocity potential satisfies  

)(tUn
n







 ,                                                                     (4) 

where  tU


 and n


 are the velocity and the outward unit normal vector of the rigid boundaries, respectively.   

    The problem described by Eqs. (1) to (4) is solved by using a time step marching procedure. At each time 

step, the BVP for the velocity potential is solved by the FEM.  The details about the FEM formulation have 

been described in our previous publications [1, 58] and will not be repeated here.   

3. SUMMARY OF THE QALE-FEM 

As indicated in the Introduction, the QALE-FEM devised by Ma & Yan [1] will be further developed in 

this paper to deal with 3D overturning waves.  This method for problems about waves without floating 

bodies includes two key elements in comparison with the conventional FEM method presented in [58]: (1) 

the scheme for moving mesh and (2) the method for estimating the fluid velocity on the free surface.  All the 

elements have been described in [1].  For completeness, the two elements presented in our previous related 

papers will be summarised in the next two sub-sections before presenting new developments. 

3.1. Scheme for moving mesh 

In the QALE-FEM, the computational mesh is generated only once at the beginning of the calculation 

and is moved at other time steps to conform to moving boundaries.  The initial mesh used is unstructured and 

is generated using an in-house mesh generator based on the mixed Delaunay triangulation and the advancing 

front technique (see, for instance, [71]).  To reflect the complexity of the fluid domain, one may assign a 

suitable representative mesh size (ds) on the free surface to the mesh generator, which indicates the 

characteristic distance between two connected nodes.  For example, ds would be equal to approximately one 

thirtieth of a wavelength.  It should be noted that the specified mesh sizes may be different in the x-direction 

(dx) and the y-direction (dy).  In such a case, ds = min(dx, dy).  The mesh generator also needs a number of 

element layers (Nz) in the vertical direction, which is used to evaluate the vertical representative mesh size 

using an exponential function based formulation suggested by Wu and Eatock Taylor [57].  Although ds and 
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Nz are not precisely equal to the real mesh size and the real number of layers (actually the number of layers 

may be different at different positions), it largely indicates how fine the mesh is.  It is noted that the QALE-

FEM can also accept meshes from other mesh generators. 

For moving the mesh at every time step, a novel methodology is suggested and adopted, in which interior 

nodes and boundary nodes are separately considered; and the nodes on the free surface and on rigid 

boundaries are treated differently.  Nodes on the free surface are further split into two groups: those on 

waterlines and those not on waterlines (inner-free-surface nodes).  Different methods are employed for 

moving different groups of nodes. 

To move the interior nodes which do not lie on boundaries, a spring analogy method is used.  In this 

method, nodes are considered to be connected by springs and the whole mesh is then deformed like a spring 

system.  Specifically, the nodal displacement is determined by 





ii N

j
ij

N

j
jiji krkr

11


                                                      (5) 

where ir


  is the displacement of Node I;  kij is the spring stiffness and Ni is the number of nodes that are 

connected to Node I.   As pointed out by Ma & Yan [1], the spring analogy method was originally adopted to 

cope with aerodynamic problems without the free surface.  To apply it to the problems associated with a 

large deformation of the free surface, the authors of this paper have considerably modified the method by 

proposing a robust and distinctive method for computing the spring stiffness:   

bsfs
ijij kk  0 ,                                                                (6) 

in which kij is the spring stiffness and 0
ijk  is given by 

2
0 1

ij
ij

l
k  ,                                                                       (7) 

where lij is the distance between Nodes i and j. fs  and bs are the correction functions associated with the 

free surface and the moving rigid boundaries, respectively. bs  is taken as 1 in the cases without floating 

bodies [1]. fs is defined as   

  dzzfs jife
21  

 ,                                                          (8) 



 9

where zi and zj are the vertical coordinates of Nodes I and J; d is the water depth; and f is a coefficient that 

should be assigned a larger value if the springs are required to be stiffer on the free surface.   Numerical tests 

indicate that f 1.7 is suitable.   

The positions of nodes on the free surface and waterlines are determined by physical boundary conditions, 

i.e., following the fluid particles at most time steps.  The nodes moved in this way may become too close to 

or too far from each other.  To prevent this from happening, these nodes are relocated at a certain frequency, 

e.g., once every 40 time steps.  When doing so, the nodes on the waterlines are re-distributed by adopting a 

principle for a self-adaptive mesh, i.e., the weighted arc-segment lengths satisfy 

sii Cs  ,                                                                        (9) 

where   is a weight function and can be taken as 1, is  the arc-segment length between two successive 

nodes and Cs a constant. 

In order to relocate the inner-free-surface nodes, they are first moved using the spring analogy method in 

the projected plane of the free surface, resulting in new coordinates x and y; and then the elevations of the 

free surface corresponding to the new coordinates are evaluated by an interpolating method.  In order to take 

into account of the local gradient of the free surface, however, the spring stiffness for moving the nodes in x- 

and y- directions is determined, respectively, by:  
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where  x
ijk  and  y

ijk  are the spring stiffness for moving the free surface nodes in x- and y- directions, 

respectively;  
x


 and 

y


 the local slopes of the free surface in the corresponding directions.  It is noted 

that if a floating body is involved, Eq. (10) should be changed to the one given by Ma & Yan [2]. 

3.2. Calculation of fluid velocity on the free surface 

The mesh used in the QALE-FEM is arbitrarily unstructured and moves during the calculation.  An 

effective method to calculate the fluid velocity on the free surface under this condition was developed in [1].  

In this method, the velocity at a node I with neighbours Jk (k=1,2,3, ……, m) on the free surface is split into 

normal and tangential components.  The normal component ( nv


) of the velocity is determined by a three-
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point finite difference scheme: 
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where n


 is the unit normal vector of the free surface at the node, I1 and I2 represent the two points selected 

along the normal line; hI1 and hI2 are the distances between I and I1 and between I1 and I2, respectively; and 

I , 1I  and 2I  denote the velocity potentials at the node and the two points; 1I  and 2I , are found by a 

moving least square method [26].  After the normal component of the velocity is determined, the tangential 

components of the velocity are calculated using a least square method, in which each of the equations is 

given by 

kkkykx IJnIJIJIJ lvllvlv

   ( k=1,2,3, ……, m),                               (12) 

where 
kIJl


is the unit vector from Node I  to Node Jk; 

x
v


 and 
y

v


 represent the velocity components in x


 

and y


 directions, respectively. x


 and y


 can be any two orthogonal unit vectors in the tangential plane of 

the free surface at Node I.  In this paper, they are determined by x


= ney


 and xy n 


  if 0 ney


; 

otherwise  y


= xen


 , nyx


 , where xe


and ye


 are the unit vectors in the x- and y-directions, 

respectively.  Obviously, for 2D cases, this method is the same as that described by Ma & Yan [1].  

4. NUMERICAL TECHNIQUE FOR MOVING MESH ASSOCIATED WITH 3D 

OVERTURNING WAVES 

The new developments in this paper for dealing with problems concerning 3D overturning waves will 

be presented in the next two sections.  They mainly contain the numerical techniques for moving the mesh 

and for computing the fluid velocity on the free surface when overturning occurs.  The first one is presented 

in this section. 

The basic strategy and principle to move the mesh are similar to that summarised above.  Nevertheless, 

special consideration is devoted to the mesh near overturning jets when moving interior nodes and 

redistributing nodes on the free surface, which is discussed in the following two subsections. 



 11

 
Fig. 2 Illustration of an overturning jet and Jet Nodes 

 
 

For clarity, special nodes and elements are named before moving on.  If a node is on the free surface 

and near or at the tip of an overturning jet, it is called Jet Node.  One of them is shown in Fig. 2 as a solid 

circle.  In addition, if an element has one face on the free surface, the face is called Outer Face and the 

element is called Free Surface Element. 

4.1. Moving interior nodes 

In the cases involving 3D overturning waves, the interior nodes are moved by the spring analogy 

method summarised above.  Nevertheless, the interior nodes near Jet Nodes demand special care so as to 

result in elements of good quality.  For this purpose, the stiffness of the springs in this area is assigned a 

relatively larger value.  To do so, fs  in Eq. (6) is changed to 

  
)1(

21
zyxjet

dzzfs jife   
                       (13) 

where  jet  is a coefficient which is non-zero only if the free surface near the node concerned becomes 

vertical or overturning; yx  ,  and z  are correction functions in x-, y- and z-direction, respectively.  They 

are all in a similar form and one of them is given by 









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xx
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xx

jet
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x
Dd

DdDd

0

/1
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in which subscript x can be replaced by y or z to give y and z . xd  ( yd or zd ) is the distance between the 

centre of Spring i-j and the nearest Jet Node in x- (y- or z-) direction; jet
xD , jet

yD  and jet
zD  indicate the 

maximum distance in different directions (Fig. 2).  According to the numerical tests so far, jet = 

0.5, dsDD jet
y

jet
x 10  and HD jet

z 5.0 are appropriate, where H is the wave height.  

      Obviously, the above method works only if all the Jet Nodes are known.  For 3D overturning waves, 

there may be many Jet Nodes.  To find them, the following parameter is calculated for each free surface node, 

Overturning jet 

jet
xD jet

zD  
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e.g., Node i,   

KJNEKJnnc isfKJi  ,3,2,1,)min( ,min, 


 ,              (15) 

where subscripts J and K denote the element numbers, NEsf,i are the total number of all the Free Surface 

Elements connected to Node i, Jn


 is the outward unit normal vectors of the Outer Face of a element.  In this 

paper, if ic ,min < 0.5, Node i is considered as a Jet Node.   

 
Fig. 3 Facing angle in a tetrahedron element 

 

Furthermore, when a wave is overturning, the free surface near the overturning jet may have an extremely 

large deformation (Fig. 2) which makes the elements easier to distort than in earlier applications ([1], [68-

70]).  In order to preserve the element shape during the mesh moving procedure, the ability of resisting 

torsion of elements needs to be enhanced in such an area.  To do so, one may attach torsional springs to the 

vertexes of every element (referred as the torsional spring analogy method [72]) or introduce additional 

linear springs that resist the motion of an element vertex towards its opposite face (referred as the ball-vertex 

spring analogy method [73]).  However, the force transformation and displacement conversion in the 

torsional spring analogy method and the additional springs in the ball-vertex spring analogy method consume 

extra computational resources and therefore reduce the efficiency.  Alternatively, this aim can also be 

achieved by modifying the linear spring stiffness, considering the angular or volume changes of the 

elements, which needs less computational cost.  For example, Zeng & Ethier [74] developed a 3D semi-

torsional spring analogy method where the facing angle of each spring is taken into account when calculating 

the spring stiffness. This idea is extended here by introducing coefficients related to the quality of elements, 

i.e., the 0
ijk  in Eq. (7) and bs in Eq.(6) are replaced by  





ijNE

m
ij
mij

ij
l

k
1

22
0

sin

11


 ,               (16) 

ijbs qmin1  ,                                           (17) 

i 

j ij  
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where ijNE  is the total number of elements sharing spring i-j, ij
m  is the angle between two faces of the mth 

element as shown in Fig. 3, α is an coefficient.  ijqmin  is the minimum value of the quality indexes of all the 

elements sharing Spring i-j.  The quality index for a single element e is defined as  

e
c

e
i

e
R

R
q

3
 , (18) 

where iR  and cR  are the inradius and circumradius of the element, respectively.  This quality index is based 

on the fact that the best tetrahedron element is the regular tetrahedron whose circumradius is three times of 

the inradius (see, for example, [26] and [75]).  The range of its value is from 0 to 1.  It equals to 1 for a 

regular tetrahedron and 0 for an element whose 4 nodes are located in one plane.  A similar correction to Eq. 

(17) was also made for problems associated with floating bodies by Ma & Yan [2].  

    According to our numerical investigations [26], the coefficient  is chosen by  









0min

0min

                  1

                   0

qq

qq
                                            (19) 

where 0q  is a control parameter equal to 0.02; minq  is the minimum value of the quality indexes of all 

elements in the whole computational domain.  It can be seen from Eqs. (16) and (19) that when the worst 

element has a quality index less than 0.02, the term 


ijNE

m
ij
m1

2sin

1


 becomes effective.  In addition, dividing 

ijqmin  in Eq. (17) renders springs stronger when the quality index is reduced.  All these help enhance the 

quality of elements.  

4.2. Redistributing inner free surface nodes 

       As discussed by Yan & Ma ([2] and [69]), the method to redistribute free-surface nodes outlined in 

section 3.1 can only deal with problems where the free surface can be expressed as a single-valued function 

of x and y, e.g., in cases without overturning waves.  The authors of this paper have developed an approach 

to redistribute nodes on a multi-valued body surface [2].  The same idea will be used here to redistribute the 

inner free surface nodes when overturning occurs.  This approach is based on a local coordinate system 

formed by the local tangential lines and normal line at the node concerned.  In this local coordinate system, 

the surface is always single-valued, i.e., there is only one intersecting point between the free surface and a 

line parallel to the local normal line (and, of course, perpendicular to the local tangential lines).  A node, e.g., 
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i, is firstly moved in the tangential plane formed by tangential lines by 





ii

ii

N

j
ij

N

j
jiji krkr

11
 


                                                         (20) 

where 
iir 


 represents the displacement of Node i in the tangential plane.  After that, a new position of the 

nodes on the free surface is found by interpolation in the local coordinate system.  In order to consider the 

effect of the overturning jet, the spring stiffness for moving inner-free-surface nodes is assigned as  

)1(
1

2 zyxjet

ij

ij
l

k  ,                                                         (21) 

where yxjet  ,,  and z  are the same as those in Eq. (13).   It is noted that the effect of the local gradient 

of the free surface involved in Eq. (10) are implicitly taken into account here because of the use of the local 

coordinate system. 

5. NUMERICAL TECHNIQUE FOR CALCULATING FLUID VELOCITY NEAR 

OVERTURNING JETS 

 
Fig. 4 Elements near the overturning jet (Solid circle: free surface nodes; Hollow circle: interior nodes; Solid Triangles: 
point I1 or I2; Dashed circle: influence domain of I2 for estimating the velocity potential at this point) 

 

The principle for calculating the fluid velocity on the free surface is similar to that summarised in §3.2, in 

which the fluid velocity is split into the normal and the tangential components and different schemes are used 

to calculate different velocity components.  The accuracy of the normal velocity component in Eq. (11) 

depends on the estimation of 1I  and 2I , for which a moving least square method is used.   For a node near 

the overturning jet, interior nodes around Points I1 and I2 may be only few and unevenly distributed about 

the normal line, as shown in Fig. 4(a).  This degrades the accuracy of the velocity calculation.  In order to 

I2 

rn


 
n


 

J1J2 

J3 
i 

Free surface 

           (b) 

I1 

I2 

n


 

J1 J2 

J3 
i 

Free surface 

I1 

           (a) 
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tackle the problem, a special treatment is applied in such a situation, which is similar to that for the nodes 

near the rigid boundary suggested by Ma & Yan [1].  That is, Eqs. (11) and (12) are still used, but the normal 

vector n


 is replaced by another unit vector rn


(Fig. 4b).  Accordingly, instead of tangential vectors x


and 

y


, two other vectors ( rx


and ry


) perpendicular to rn


 are employed. 

To describe how to define rn


, take Node i as an example (Fig. 4b).  It lies on the free surface and the 

interior nodes J1, J2, J3,….. JM are connected with it.  The angle iK  between n


 and each vector of 
KJi xx


  

(K =1,2,…M)  is estimated by  

)(/)(cos
kk JiJiiK xxxxn


   .                                     (22a) 

If JKmin is the interior node whose angle is },...,,min{ 21min iMiiiK   , rn


 is then chosen to pass the 

node and estimated by 

minmin
/)(

KK JiJir xxxxn


 .                                              (22b) 

After determining rn


, rx


and ry


are given in the similar way as for x


 and y


in Eq. (12), i.e., 

rx


= ry ne


 and rxrry n 


  if 0 ry ne


; otherwise  ry


= xr en


 , rryrx n


 .   To determine the two 

points along the new vector rn


, the values of hI1 and hI2 in Eq. (11) are assigned to be 0.6 times the distance 

between Node i and Node JKmin.  It can be understood that after applying the special treatment, the two points 

I1 and I2 should have more interior nodes in their influence domain for estimating the velocity potential at 

this point, more evenly distributing about the line rn


, than those in Fig. 4a and therefore the accuracy of the 

velocity is improved. 

6. VALIDATION AND CONVENGENCE INVESTIGATION 

    In this section, the QALE-FEM is validated by comparing its numerical predictions with published results 

obtained by using other numerical methods or experiments.   Due to the fact that almost all the experiments 

regarding overturning waves are two-dimensional, some 2D cases will be considered together with 3D cases.  

For a 2D case, the width of the tank is taken as 2d and all parameters do not vary along y-direction, making it 

a y-independent 3D problem in order to use the 3D QALE-FEM.  Effort is also devoted to investigations on 

the convergent properties of this method.  For all the cases presented below, the parameters with a length 

scale are nondimensionalised by the water depth d and other parameters by g and d, such as  
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gdt /  and dg / , 

where τ is the nondimensionalised form of the time.  

6.1. Selection of time steps 

    In order to achieve convergent results, the time step must be properly selected.  It can be understood that 

the required time step (  ) is a function of the characteristic minimum mesh size ( minds ) and the 

characteristic particle velocity ( cU ).  It may be determined by, 

c
t U

ds
c min   ,                                                           (23) 

which is similar to the well-known Courant condition, where tc  is a coefficient less than 1.  In the correction 

function for spring stiffness in Eq. (13),  the maximum value of the term zyxjet 1 is jet1 , occurring  

near the overturning jets, and its minimum value is 1,  occurring  in other areas away from the overturning 

jets.   In addition, minds should occur near the overturning jets.  Therefore, it may stand to reason that minds  

should be related to the representative mesh size (ds) and can be estimated by )1/(min jetdsds  .  

     For periodic waves, ds can be correlated to mN/ , where λ is the characteristic wavelength estimated by 

k

 2
  and )tanh(2 kk  for a specified wave frequency  , and mN  is the averaged number of 

elements in one wavelength.  In such a situation, cU may be chosen as TUc   (the celerity of a linear 

wave) and thus Eq. (23) becomes  

mjet

t

N

Tc







1
.  (24) 

 For solitary waves which do not have a finite wavelength, one may use 1cU  and obtain 

jet

t dsc







1
.  (25) 

The last equation is similar to that in [29] and [42] for determining the time step when simulating solitary 

waves by using the BEM.   

According to our numerical investigations [26] for regular water waves without overturning, where 
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jet =0, the maximum time step for the QALE-FEM to achieve acceptable results is 64/T  for strongly 

nonlinear waves (wave steepness up to 0.1) and T/32 for linear waves if the initial mesh size is about 30/ .  

Based on this and Eq. (24), tc  is not necessarily less than 0.45 for waves without overturning.  However, the 

value of tc  may not be suitable for the cases with overturning.  

7 8 9 10 11 12
0.5

1
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2

x-x0

z

QALE-FEM
2D BEM(Grilli et al [29])

 
Fig. 5 Comparison of the wave profiles from the QALE-FEM and the BEM for 2D solitary wave at different instants (a: 

 7.55, b:  8.16, H=0.6, slope: 1/15) 
 

To test what value of tc  is suitable for the QALE-FEM to model overturning waves, the case studied by 

Grilli, Svendsen & Subramanya [42] is considered here, which was also used to validate simulation of 3D 

overturning waves by Grilli, Guyenne & Dias [29].  In this case, the length and width of the tank are 18 and 

2, respectively.  A seabed with the slope of 1:15 in x-direction starts from x0=5.4 and truncated at xt=18.  As 

in the above two references, the solitary wave is initialized by using Tanaka’s method [76] which gives 

‘exact’ solution for the wave profile, the velocity potential and the fluid velocity on the free surface.  The 

initial wave height (H) is 0.6 and the initial crest is located at x=5.5.  ds is selected as 0.05 in both x- and y-

directions and Nz=12.  The numerical results by the QALE-FEM are firstly compared with those obtained by 

Grilli, Guyenne & Dias [29] to ensure the computation to be sufficiently accurate.  In this comparison, tc  is 

taken as 0.45 (time step is 0.015).  The free surface profiles at two different instants are plotted in Fig. 5.  

Curve (a) corresponds to the state that the tangential direction of the front face of the crest tends to become 

vertical.  Curve (b) shows the results after the overturning wave occurs.  At both instants, the QALE-FEM 

leads to almost the same results as the BEM model.  
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Fig. 6 Free surface profiles at  8.16 obtained by using different time steps (H=0.6, slope: 1/15) 
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The cases with different values of tc  are then considered.  For this purpose, they are chosen as 0.375, 0.45, 

0.5 and 0.6, respectively.  The wave profiles at  8.16 obtained by using these values of tc are plotted in 

Fig. 6.  It is found that the differences between all the cases shown in this figure are negligible.  However, the 

computation with tc =0.6 quickly ceases after this instant.  This indicates that tc should not be larger than 0.5 

and not necessarily less than 0.375 for simulating overturning waves in this case by using the QALE-FEM.   

This range of the tc value for the present method is not much different from (0.45 ~0.5) that suggested by 

Grilli, Guyenne & Dias [29] for the BEM. 

6.2. Numerical validation 

     In this sub-section, the method will be validated by using both 2D and 3D solitary waves in different 

configurations.  2D cases are first considered, for which experimental results are available.  

 

6.2.1. Overturning of 2D solitary waves over seabeds with different geometries 

A preliminary comparison with 2D results of Grilli, Guyenne & Dias [29] has been presented in the 

above sub-section to investigate the proper value of tc , which showed a good agreement.  Two other cases 

are presented here to further show the accuracy of the QALE-FEM.   

 
Fig. 7 Sketch of the configuration for the case with a submerged step 

 

In the first case, a 2D solitary wave propagating over a submerged step is considered.  The configuration 

is sketched in Fig. 7, in which P2, P3 and P4 are wave gauges.  The similar set-up has been used by Yasuda 

et al [25] in their experiment, whose results have been used by many researchers for the purpose of 

validation (e.g. Helluy, et al [27] and Devrard, et al [28]).    In our study, the parameters are the same as in 

Devrard, et al [28] but they are here nondimensionalised by the water depth, which is 0.31m in that reference.  

The left side of the tank is located at x=0.  The submerged step with a height of 0.848 starts from x0=12.9.  

step

0.424 

x

z

6.45

P2 P3 P4 

1.66 1.63 Absorbing 
boundary 

0.84
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The solitary wave is generated by specifying the initial position of and the velocity potential on the free 

surface given by using Tanaka’s method [76] with the initial crest located at x=6.45 and the wave height (H) 

being 0.424.  An absorbing boundary condition is applied at the right side of the tank.  ds is taken as 0.05 on 

the free surface and Nz is specified as 12. tc  in this case is taken as 0.5.  Fig. 8 shows the wave histories 

recorded at wave gauges P2 and P3.  For the purpose of comparison, the experimental data from Yasuda, et 

al [25] and the numerical results from the BEM by Devrard, et al [28] are plotted together.  From this figure, 

it is observed that the results from the QALE-FEM agree well with those from the BEM method, and that 

both numerical results are very close to the experimental data.   
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(a) gauge P2                                                      (b) gauge P3 

Fig. 8 Wave elevation recorded by different gauges (H=0.424, step height: 0.848) 
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Fig. 9 Free surface profiles recorded at different time steps (H=0.135) 

 

In the second case, the solitary wave is generated by a flap paddle wavemaker with the motion angle and 

angular velocities specified.  The same case in the experiment by Kimmoun, Barnger & Zucchini [77] is used 

as described by Grilli, et al [44].   In our computation, the wavemaker motion parameters are taken from 

Grilli, et al [44].  By using these parameters, the height of the generated solitary wave is about H=0.135.  In 

this case, the numerical tank has the length of 18 and the width of 2.  A composite sloping seabed starts from 
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x0=6.45.  The slope of the seabed are 1/6 from x=x0 to x=x0+2 but becomes 1/15 when x>x0+2.  ds is 0.04 and 

the time step is determined again by using tc  =0.5.  Fig. 9 shows the comparison of free surface profiles near 

the overturning jet calculated by the QALE-FEM with the experimental data from Kimmoun, Barnger & 

Zucchini [77] and the numerical results by the BEM from Grilli, et al [44].  A similar agreement with 

numerical results by the BEM and the experimental data to the case shown in Fig.8 is observed from this 

figure.  

6.2.2. Overturning of a solitary wave over a 3D symmetrical seabed  

Experiments on 3D overturning solitary waves have not been found.   The numerical results from 

Grilli, Guyenne & Dias [29] for solitary waves propagating over a 3D sloping ridge are used here to validate 

our method.  The 3D ridge is expressed as  

z = sc (x – x0) sech2(kcy) , (30) 

where x0 is the location where the sloping seabed starts, sc is the slope at y=0 and sech2(kcy) is the transverse 

modulation of the slope along y-direction depending on the coefficient kc which is constant with respect to y 

in [29].  That means that the seabed geometry in those applications is symmetrical about y=0.  In this case, 

the length and the width of the tank are 19 and 8, respectively.  The ridge starts from x0=5.225.  sc is 1/15 and 

kc   is taken as 0.25.  The solitary wave is generated by using the same method as for Fig. 8.  The wave height 

is 0.6 with the initial crest located at x=5.7.  ds is specified as 0.07 for generating the mesh and the value of 

tc is 0.5 for determining the time step.  

Figs.10 and 11 show the free surface profiles on the side walls (y= 4) and in the central plane (y=0) of 

the tank at different instants.  For this case, Grilli, Guyenne & Dias [29] gave the results up to  8.57 and 

presented the corresponding free surface profiles at  8.25 and  8.57.  Guyenne & Grilli [52] used a 

finer grid and obtained results up to  9.14.  We took the results at  8.25 and  8.57 from Grilli, 

Guyenne & Dias [29] and those at  7.89 and  8.827 from Guyenne & Grilli [52] for the comparison.  

Obviously, the results shown in Fig.10, well before overturning, are almost the same as those from the papers 

using the BEM.  For the free surface profiles at y=0 in Fig. 11, the Curve (c) and (d) show slight differences 

near the overturning jet.   In order to analyse the accuracy, the relative errors in mass (εm) and energy (εe) are 

estimated by using the same method as in Grilli, Guyenne & Dias [29].  The relative errors in mass at these 
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two time steps are 0.09% and 0.2%, respectively and the corresponding relative errors in energy are 0.16% 

and 0.43%, respectively.  All the errors can be considered as very small. 
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Fig. 10 Free surface profile at y= 4 (H=0.6; sc=1/15; kc   =0.25; ds=0.07; Curve a:  7.89; b:  8.25; c:  8.57; 
d:  8.827; thick solid line represents the seabed geometry) 
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Fig. 11 Free surface profile at y=0 (H=0.6; sc=1/15; kc   =0.25; ds=0.07; Curve a:  7.89; b:  8.25; c:  8.57; d: 
 8.827; thick solid line represents the seabed geometry) 

 

6.3. Convergence tests on initial representative mesh sizes 

In the cases shown above, the solitary waves with different heights and over different seabeds are 

modelled by using specified mesh sizes.  As discussed in our previous papers [2,69], the main factors which 

affect the convergence property of the QALE-FEM are the time step and the mesh size for the cases without 

floating bodies.  In §6.1, the effect of the time steps on the results has been investigated.  In this section, 

discussions are devoted on the effect of the representative mesh size (ds) to ensure the numerical results 

given are convergent.  Although convergence investigations have been made for all the cases shown in this 

paper, only the analysis for the 3D case shown in Fig. 11 is presented in this section.  For this purpose, the 

values of ds are selected to be 0.05, 0.07, 0.085 and 0.1.  All other parameters remain the same as for Fig.11.    

Fig.12 shows the free surface profile at y=0.  The results for all the cases corresponding to different values 

of ds agree well with each other, though there is visible difference near the overturning jet in Curve (b) and 

(c) between the results of ds=0.1 and others.  Even using the coarsest mesh (ds=0.1), the relative errors in the 

mass and energy at  8.57 are about 0.11% and 1.21%, respectively.   Therefore, ds=0.1 is acceptable for 

the purpose of predicting the occurrence of the overturning before forming a jet.  However, for studying the 
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properties of overturning with a jet, finer meshes (ds≤0.085) are preferred for this case.  
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Fig. 12 Free surface profile at y=0 in different instants  

(H=0.6, sc=1/15, kc   =0.25; a:  7.89 ; b:  8.25; c:  8.57) 
 

The investigation in this subsection demonstrates that the representative mesh sizes selected in the 

previous subsection are appropriate.  However, it is noted that the appropriate mesh size is problem-

dependent and it must be carefully selected for different cases as in all other numerical methods. 

6.4. Computational efficiency 

All comparisons of the numerical results obtained by the present method with the experimental data and 

the results by other methods may lead to one conclusion, i.e. the QALE-FEM can simulate overturning 

waves at the same level of accuracy as the BEM method based on the same FNPT Model.  One may ask how 

about its efficiency.  In this subsection, attention is concentrated on discussions about the computational 

efficiency of the QALE-FEM.  Ma & Yan [1] pointed out that the QALE-FEM might use only 15% of the 

CPU time required by the conventional FEM.   Its efficiency is now compared with the BEM using the case 

shown in Fig. 11.   

 
Tab. 1. Computational efficiency of the QALE-FEM for the case shown in Fig.11 

dx dy Nt Nb ∆τ CPU/step (s) Total (h) εm(%) εe(%) 

0.100 0.100 139,239 38,106 0.03333 9.0 0.65 0.11 1.21 

0.085 0.100 164,025 44,550 0.02833 10.2 0.91 0.10 0.26 

0.085 0.085 235,125 52,650 0.02833 14.5 1.22 0.10 0.26 

0.070 0.100 230,384 53,856 0.02333 14.0 1.41 0.09 0.17 

0.070 0.070 314,160 69,088 0.02333 18.0 1.80 0.09 0.16 

0.050 0.050 448,437 98,334 0.01667 26.6 3.81 0.03 0.09 
 

 

As mentioned before, Grilli, Guyenne & Dias [29] developed a high-order BEM model that is believed to 
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be the most efficient model for overturning waves at that time.  To obtain the results up to  8.57 for the 

case in Fig. 11, they used a coarser quadrilateral grid (50204) for the first 70 time steps and then used a 

finer grid (60304) for the next 120 time steps.   The total CPU time spent on the two stages is about 52.8 

hours on a supercomputer (CRAY-C90).  Fochesato & Dias [55] developed a fast BEM method, which may 

be 6 times faster than the conventional BEM [29] as pointed out by the authors.  Their calculations for the 

same case were also split into two stages. They used a coarser grid (40104) with 1,422 boundary nodes 

for the first stage ( 6 , about 54 time steps) and then a finer grid (60404) with 6,022 boundary nodes 

for the rest of calculation (200 time steps).   Totally, they spent about 19 hours to achieve the results up to 

 8.57 by using a PC (2.2GHz processor, 1G RAM).  Our simulations of the same case are run on a PC 

with 2.53GHz processor and 1G RAM.  The computer is largely similar to that used by Fochesato & Dias 

[55], though the processor is slightly faster.  The CPU time taken by the QALE-FEM for simulation up to 

 8.57 and the relative error in the cases with different representative mesh sizes are displayed in Table 1.  

In some of these cases, the representative mesh size is different in x- and y-directions, i.e., dx  dy, to show 

more variations.  As could be seen from the table, the QALE-FEM takes only 0.91h (or 54 minutes) to 

produce the results with acceptable errors in mass and energy (εm= 0.1% and εe= 0.26%, respectively).  Even 

to achieve higher accuracy of εm= 0.09% and εe= 0.16% , which are smaller than those errors given by 

Fochesato & Dias [55], the CPU time taken by the QALE-FEM is only 1.8h (or 108 minutes).  Therefore, for 

this particular case, the QALE-FEM can be at least 10 times faster than the fast BEM method.  

6.5. Application: 3D overturning waves over complex seabeds 

So far, all 3D results presented are symmetrical about the y=0 plane.   It is understandable that the 

overturning properties, such as when and where the overturning occurs, will be different if the seabed is non-

symmetrical about the y=0 plane.   To see how different the properties are and to show the flexibility of the 

QALE-FEM, the method is employed to model solitary waves over a non-symmetrical seabed about y=0.  In 

this investigation, the length and the width of the tank are the same as those in Fig.11.  The seabed geometry 

is also expressed by Eq.(30) with the same  x0  and sc , which are 5.225 and 1/15, respectively, but with 

different variation of kc.  In this case, the kc for y>0 (referred as 
ck ) is 0.25, the same as Fig.11; however, 

that for y<0 (referred as 
ck ) is 1.0.  The representative mesh size is taken ds=0.07.  

Fig. 13 shows the free surface profiles recorded at  8.57, the same instant as shown by Curve c in 
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Fig.12, for cases with different 
ck .  One can see from this figure, that at this instant, the overturning jet in the 

case with 
ck =1.0 (Fig.13 (b)) is not evident.  However, that in the case with 

ck = 
ck = 0.25(Fig.13 (a)), the 

same case as shown in Fig.11, seems to be well developed.  This implies that the breaking time varies as the 

change of seabed geometry.   To further show how the overturning jet develops in the case with non-

symmetrical seabed, the free surface profiles at two other instants after overturning starts are plotted in Fig. 

14.   

 
Fig. 13(a) 

ck =0.25 

 
Fig.13(b) 

ck =1.0 

Fig. 13 Free surface profiles at  8.57 in the cases with different 
ck  (H=0.6, sc=1/15; 

ck =0.25; the colour bar 

represents the speed (  ) on the free surface) 

 
Fig.14(a)  8.95 

 
Fig.14(b)  9.16 

Fig. 14 Free surface profiles at different instants after overturning over non-symmetrical seabed (H=0.6, sc=1/15, 

ck =0.25  and 

ck =1.0; the colour bar represents the speed (  ) on the free surface) 
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As can be seen, the free surface profiles in Fig.14 are non-symmetrical about y=0, as expected.  It is also 

observed that the overturning does not start to occur at y=0; instead, it occurs in the area y>0.  This is quite 

different from the above symmetrical cases in which the overturning always starts to occur at y=0.  This is 

clearer in Figure 15 that shows the free surface profiles at several longitudinal vertical planes with different 

y-coordinates.    
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Fig.15(a)  8.55 
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Fig. 15(b)  8.95                      
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Fig.15(c)  9.16 

Fig. 15 Free surface profiles at different longitudinal planes (H=0.6; sc=1/15; 
ck =0.25 and 

ck =1.0; x0 is the initial 

position of the crest of the solitary wave). 
 

Fig. 15(a) evidently shows that the wave front at y=0.8 reaches the farthest position in x-direction at 

 8.55 while those at the other two longitudinal planes, i.e., at y=0.5 and y=1.1 (which are symmetrical 

about the plane at y=0.8) are behind it and both are very close to each other.  All of them are considerably 

farther than the wave front at y=0.  Fig. 15(b) gives the results when the overturning just occurs at y=0 while 

the overturning jet has been well-developed at other three vertical planes.  It is interesting to point out that 

the wave front at y=1.1 now clearly departures from the front at y=0.5 and becomes closer to the front at 

y=0.8 and also that the jet at y=1.1 is as sharp as the jet at y=0.8 but much sharper than the jet at y=0.5.  This 

observation is confirmed by curves in Fig. 15 (c).  All these facts indicate that the overturning jet is moving 
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gradually towards the wall of y=4.    This seems to suggest that the overturning jets may be guided to occur 

in some areas by changing the seabed geometry in order to prevent them from happening at places where 

important structures sit near the shore. 

 
Fig.16  Free surface profiles at  8.70 for 

ck =0.25 and 
ck =0.1, (H=0.6, sc=1/15,the colour bar represents the speed 

(  ) on the free surface) 

 
Fig. 17  Free surface profiles in cases with three artificial reefs for  26.68.  The three reefs are centred at (xc=11, yc 
=0), (xc=11.5, yc =3) and (xc=12, yc =-3), respectively. Each reef is defined 

by   )]([sec12.0 2
2)4(7.1

c
xx yyhez c  

.  The amplitude (a) and frequency (ω) of the wavemaker to generate the 

wave are a=0.2and  =1.0, respectively.  The sloping seabed starts from x0 =7.0 with a slope of 1:15.  The profiles 
below the free surface illustrate the seabed geometry, which is shifted by z-0.5.  The colour bar represents the speed 
(  ) on the free surface) 

 

More cases with different incident waves and different seabed geometries have also been simulated, such 

as solitary waves propagating over non-symmetrical seabeds with different combinations of  
ck  and 

ck  ,  

transient oscillating waves overturning over bumps or artificial reefs on a slope.  We could not present all the 

results in one paper but more illustrations will be given in the rest of this subsection.  For this purpose, some 

snapshots of overturning waves are shown in Fig. 16 and Fig.17.    Fig.16 displays the wave profiles with 

well-developed overturning jets for the case with 
ck =0.25 and 

ck =0.1.  All other parameters for this figure 

are the same as for Fig.15, except for 
ck  that is now less than 

ck .  It can be seen that the overturning now 

takes place in the area of y<0, rather than y>0 in Fig. 14.  This confirms that wave overturning can be guided 

to avoid some area by changing seabed geometry.   Fig.17 illustrates the free surface profile for a transient 
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oscillating wave overturning over several artificial reefs on a slope, which is generated by a piston 

wavemaker subjected to a harmonic motion.   In this case, two groups of overturning jets are observed at the 

same time.  Each group embodies three jets and the jets are different from each other.    This figure also 

reveals some interesting points, i.e. overturning does not only occur above the reefs but also beyond them 

and several different overturning jets may simultaneously take place.  

 

7. CONCLUSION 

In this paper, the QALE-FEM has been further developed to model 3D overturning waves.  In this method, 

the boundary value problem for the velocity potential is solved by using a finite element method in a time 

marching procedure.  Compared with the conventional finite element method for water wave problems 

without involving floating bodies, the QALE-FEM contains two distinctive elements: 1) the scheme for 

moving the mesh by using a robust spring analogy method purpose-developed for problems associated with 

oscillating free surfaces, and 2) the method for computing velocity on the free surface, which is suitable for 

unstructured and moving mesh.  The main technical developments in this paper are the improvement in these 

two aspects required for dealing with 3D overturning waves.  These include the special techniques for 

moving the mesh and for calculating the fluid velocity near overturning jets presented in §4 and §5.  The 

main application developments, as discussed in §6, include simulations of overturning of solitary waves and 

transient oscillating waves propagating over 3D complex seabeds.  These results reveal some interesting 

points.   For example, overturning jets may be guided to occur in some areas by changing the seabed for 

engineering purposes; and several overturning jets may simultaneously take place over a complex seabed. 

 The method has been validated by comparing its numerical predictions with experimental data and 

results of other numerical methods in many cases with different configurations.  This validation leads to the 

conclusion that the QALE-FEM can yield results agreeing well with experimental data and being at the same 

level of accuracy as those produced by the BEM.  Based on comparison with a fast BEM under the same 

conditions, the QALE-FEM can be over 10 times faster.   Using this method, one can obtain the satisfactory 

results for complex 3D overturning waves within one or two hours on a normal PC.  Such efficiency has 

never been demonstrated by other numerical methods as far as the authors know. 
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