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Abstract. This paper considers the problem of classification of Mag-
netic Resonance Images using 2D and 3D texture measures. Joint statis-
tics such as co-occurrence matrices are common for analysing texture
in 2D since they are simple and effective to implement. However, the
computational complexity can be prohibitive especially in 3D. In this
work, we develop a texture classification strategy by a sub-band filter-
ing technique that can be extended to 3D. We further propose a feature
selection technique based on the Bhattacharyya distance measure that
reduces the number of features required for the classification by select-
ing a set of discriminant features conditioned on a set training texture
samples. We describe and illustrate the methodology by quantitatively
analysing a series of images: 2D synthetic phantom, 2D natural textures,
and MRI of human knees.

Keywords: Image Segmentation, Texture classification, Sub-band fil-
tering, Feature selection, Co-occurrence.

1 Introduction

There has been extensive research in texture analysis in 2D and even if the
concept of texture is intuitively obvious it can been difficult to give a satisfac-
tory definition. Haralick [7] is a basic reference for statistical and structural ap-
proaches for texture description, contextual methods like Markov Random Fields
are used by Cross and Jain [3], and fractal geometry methods by Keller [9]. The
dependence of texture on resolution or scale has been recognised and exploited
by workers in the past decade.

Texture description and analysis using a frequency approach is not as com-
mon as the spatial-domain method of co-occurrence [4] but there has been re-
newed interest in the use of filtering methods akin to Gabor decomposition [10]
and joint spatial/spatial-frequency representations like Wavelet transforms [17].
Although easy to implement, co-occurrence measures are outperformed by such
filtering techniques (see [13]) and have prohibitive costs when extended to 3D.

The importance of Texture in MRI has been the focus of some researchers,
notably Lerksi [5] and Schad [16], and a COST European group has been estab-
lished for this purpose [2]. Texture analysis has been used with mixed success
in MRI, such as for detection of microcalcification in breast imaging [4] and for
knee segmentation [8], and in Central Nervous System (CNS) imaging to detect



macroscopic lesions and microscopic abnormalities such as for quantifying con-
tralateral differences in epilepsy subjects [15], to aid the automatic delineation
of cerebellar volumes [12] and to characterise spinal cord pathology in Multiple
Sclerosis [11]. Most of this reported work, however, has employed solely 2D mea-
sures, usually co-occurrence matrices that are limited by computational cost.
Furthermore, feature selection is often performed in an empirical way with little
regard to training data which are usually available.

Our contribution in this work is to implement a fully 3D texture description
scheme using a multiresolution sub-band filtering (based on the Wilson and
Spann [18] FPSS) and to develop a strategy for selecting the most discriminant
texture features conditioned on a set of training images containing examples of
the tissue types of interest (a 2D version of the method was presented in [14]
without the 3D extension nor the feature selection). The ultimate goal is to select
a compact and appropriate set of features thus reducing the computationally
burden in both feature extraction and subsequent classification. We describe
the 2D and 3D frequency domain texture feature representation and the feature
selection method, by illustrating and quantitatively comparing results on 2D
images and 3D MRI.

2 Materials and Methods

For this work three textured data sets were used:

1. 2D Synthetic phantom of artificial textures; random noise and oriented
patterns with different frequencies and orientation,

2. 2D 16 natural textures from the Brodatz album arranged by Randen and
Husgy [13]. This is a difficult image, the individual images have been his-
togram equalised, even to the human eye, some boundaries are not evident,

3. 3D MRI of a human knee. The set is a sagittal T1 weighted with dimensions
512 x 512 x 87, each pixel is 0.25 mm and the slice separation is 1.4 mm.

Figure 1 presents the data sets, in the case of the MRI only one slice (54) is
shown. Throughout this work we will consider that an image, 7, has dimensions
for rows and columns N, x N, and is quantised to N, grey levels. Let L. =
{1,2,...,N.} and L, = {1,2,...,N,} be the horizontal and vertical spatial
domains of the image, and G = {1,2,..., N,} the set of grey tones. The image
T can be represented then as a function that assigns a grey tone to each pair of
coordinates:

L, xL;ZT:Ly xLe—G (1)

2.1 Multiresolution Sub-band Filtering: The Second Orientation
Pyramid (SOP)

Textures can vary in their spectral distribution in the frequency domain, and
therefore a set of sub-band filters can help in their discrimination: if the image
contains textures that vary in orientation and frequency, then certain filter sub-
bands will be more energetic than others, and ‘roughness’ will be characterised by
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Fig. 1. Materials used for this work: three sets of images (a) Synthetic Phantom (2D),
(b) Natural Textures (2D), (c) MRI of human knee (3D).

more or less energy in broadly circular band-pass regions. Wilson and Spann [18]
proposed a set of operations that subdivide the frequency domain of an image
into smaller regions by the use of compact and optimal (in spatial versus spatial-
frequency energy) filter functions based on finite prolate spheroidal sequences
(FPSS). The FPSS are real, band-limited functions which cover the Fourier
half-plane. In our case we have approximated these functions with truncated
Gaussians for an ease of implementation with satisfactory results (figure 3).
These filter functions can be regarded as a band-limited Gabor basis which
provides for frequency localisation.

Any given image Z whose centred Fourier transform is Z,, = F{Z} can be
subdivided into a set of regions L% x Li: Ll = {r,r +1,...,r + Ni}, 1 <r <
N, =N} Lt ={c,c+1,...,c+N!}, 1 < ¢ < N.—N¢, that follow the conditions:
LiCL,, LLC L, Y>;N:=N,, >, N: = N, (LixL)N(Lix L%) = {$},i # j.
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Fig. 2. 2D and 3D Second Orientation Pyramid (SOP) tessellation. Solid lines indicate
the filters added at the present order while dotted lines indicate filters added in lower
orders. (a) 2D order 1, (b) 2D order 2, (c) 2D order 3, and (d) 3D order 1.

For this work, the Second Orientation Pyramid (SOP) tessellation presented
in figure 2 was selected for the tessellation of the frequency domain. The SOP
tessellation involves a set of 7 filters, one for the low-pass region and six for the



high-pass, and they are related to the ¢ subdivisions of the frequency domain as:

i JLEx LY = N@LEYD) .
Lr XLC,F : {(L;XL;)C—)O VZESOP (2)
where p! is the centre of the region i and X is the variance of the Gaussian

that will provide a cut-off of 0.5 at the limit of the band (figure 3).

(2) (b)

Fig. 3. Band-limited Gaussian Filter F* (a) Frequency domain, (b) Spatial Domain.

The Feature Space S in its frequency and spatial domains will be defined as:
8%, (k1) = F'(k, )L, (k, 1) Y(k,1) € (L, x L), St =F1{S.} (3)

Every order of the SOP Pyramid will consist of 7 filters. The same method-
ology for the first order can be extended to the next orders. At ever step, one of
the filters will contain the low-pass (i.e. the centre) of the region analysed, Z,
for the first order, and the six remaining will subdivide the high-pass bands or
the surround of the region. This is detailed in the following co-ordinate systems:
Centre : F':L! = {8 +1. .30} Ll = (& 4+1...3%} Surround :
F2=7 L3456 = (1. 5y 127 = (B 1. B} 028 = (1. 5} 1t =
(Do b1 B} L8 ={fe 1. 2k} 187 = {2 41, N}

For a pyramid of order 2, the region to be subdivided will be the first central
region described by (LL(1) x L1(1)) which will become (L,(2) x L.(2)) with
dimensions N,.(2) = NTT(I),NC(Z) = N°T(1), (or in general N, .(o+ 1) = N”+(o),
for any order o). It is assumed that N,.(1) = 2%, N.(1) = 2° so that the results
of the divisions are always integer values. The horizontal and vertical frequency
domains are expressed by: L.(2) = {NTT(D +1 ...3]\2&}, L.(2) = {NCT(I) +
1...38:M1 4nd the next filters can be calculated recursively: L8(1) = L1(2),
L3(1) = Lg(2), L2(1) = L7(2), ete.

Figure 4 shows the feature space S* of the 2D synthetic phantom shown in
figure 1(a). Figure 4(a) contains the features of orders 1 and 2, and figure 4(b)
shows the features of orders 2 and 3. Note how in 527, the features that are
from high pass bands, only the central region, which is composed of noise, is
present. The oriented patterns have been filtered out. S'© and S?° show the
activation due to the oriented patterns. S® is a low pass filter and still keeps a
trace of one of the oriented patterns.
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Fig. 4. Two sets of features S’ from the phantom image (a) Features 2 to 14 (Note S*°
which describes one oriented pattern) (b) Features 9 to 21 (Note S?° which describes
one oriented pattern). In each set, the feature S is placed in the position corresponding
to the filter F* in the frequency domain.

2.2 3D Multiresolution Sub-band Filtering

In order to filter a three dimensional set, a 3D tessellation (figure 2(d)) is
required. The filters will again be formed by truncated 3D Gaussians in a octave-
wise tessellation that resemble a regular oct-tree configuration. In the case of MR
data, these filters can be applied directly to the K-space. As in the 2D case, the
low pass region will be covered by one filter, and for the high pass there are 28
filters. This tessellation yields 29 features per order. As in the two dimensional
case, half of the space is not used because of the symmetric properties of the
Fourier transform. The definitions of the filters follows the extension of the space
of rows and columns to L, x L, x L; with the new dimension [ - levels.

2.3 Discriminant Feature Selection: Bhattacharyya Space and
Order statistics

Feature selection is a critical step in classification since not all features derived
from sub-band filtering, co-occurrence matrix, wavelets, wavelet packet or any
other methodology have the same discrimination power. In many cases, a large
number of features are included into classifiers or reduced by principal compo-
nents analysis (PCA) or other methods without considering that some of those
features will not help to improve classification but will consume computational
efforts. As well as making each feature linearly independent, PCA allows the
ranking of features according to the size of the global covariance in each prin-
cipal axis from which a ‘subspace’ of features can be presented to a classifier.
Fisher linear discriminant analysis (LDA) diagonalises the features space con-
strained by maximising the ratio between-class to within-class variance and can
be used together with PCA to rank the features by their ‘spread’ and select a
discriminant subspace [6]. However, while these eigenspace methods are optimal
and effective, they still require the computation of all the features for given data.



We propose a feature selection methodology based on the discrimination
power of the individual features taken independently, the ultimate goal is select
a reduced number m of features or bands (in the 2D case m < 70, and in 3D
m < 290, where o is the order of the SOP tessellation). It is sub-optimal in the
sense that there is no guarantee that the selected feature sub-space is the best,
but our method does not exclude the use of PCA or LDA to diagonalise the
result to aid the classification.

A set of training classes are required, which make this a supervised method.
Four training classes of the human knee MRI have been manually segmented
and each class has been sub-band filtered in 3D. Figure 5 shows the scatter plot
of three bad and three good features arbitrarily chosen.

47

(a)

Fig. 5. Scatter plots of three features S° from human knee MRI (3D, order 2) (a)
bad discriminating features $*?**7 (b) good discriminating features $°:3%%*, Note that
each feature corresponds to a filtered version of the data, therefore the axis values
correspond to the grey levels of each feature.

In order to obtain a quantitative measure of how separable two classes are,
a distance measure is required. We have studied a number measures (Bhat-
tacharyya, Euclidean, Kullback-Leibler, Fisher [1]) and concluded that the Bhat-
tacharyya distance [6] is the most convenient. The variance and mean of each
class are computed to calculate a distance in the following way:

2 2 2
B(a,b):iln{%(g—‘é+g—§+2)}+i{%} (4)
where: B(a,b) is the Bhattacharyya distance between a —th and b — th classes,
0, is the variance of the a — th class, u, is the mean of the a — th class, and a, b
are two different training classes.

The Mahalanobis distance used in Fisher LDA is a particular case of the
Bhattacharyya, when the variances of the two classes are equal, this would elim-
inate the first term of the distance. The second term, on the other hand will
be zero if the means are equal and is inversely proportional to the variances.
B(a,b) was calculated for the four training classes (background, muscle, bone
and tissue) of the human knee MRI (figure 1(c)) with the following results:



p| o||Background|Muscle| Bone|Tissue
Background| 91| 49 0| 4.36| 12.51| 11.70
Muscle 696|140 4.36 0| 3.25| 3.26
Bone 1605(212 12.51 3.25 0{0.0064
Tissue 1650|227 11.70|  3.26(0.0064 0

It should be noted the small Bhattacharyya distance between the tissue and
the bone classes. These two classes have low discrimination power.

For n classes with S? features, each class pairs (p) at feature ¢ will have a
Bhattacharyya distance Bf(a, b), and that will produce a Bhattacharyya Space of
dimensions N, = (%) and N; = 70: N, x N;. The domains are L; = {1,2,...70}
and L, = {(1,2),(1,3),...(a,b),...(n — 1,n)} where o is the order of the pyra-
mid. The Bhattacharyya Space, BS, is defined then as:

L, x Li; BS : L, x L; — B*(S.,, Si) ()

whose marginal BS¢ = Z;)V:”l B(Si, S}) is of particular interest since it sums the
Bhattacharyya distance of every pair of a certain feature and thus will indicate
how discriminant a certain filter is over the whole combination of class pairs.
Figure 6(a) Shows the Bhattacharyya Space for the 2D image of Natural Textures
shown in figure 1(b), and figure 6(b) shows the marginal BS®.

The selection process of the most discriminant features that we propose uses
the marginal of the Bhattacharyya space BS? that indicates which filtered fea-
ture is the most discriminant. The marginal is a set

BS' = {BS',BS?,...BS™}, (6)
which can be sorted in a decreasing order, its order statistic will be:

BS®W ={BSW BS® .. . Bs"™}, BSY >BS® >. . >Bs), (7)

This new set can be used in two different ways, first, it provides a particular
order in which the feature space can be fed into a classifier, and with a mask
provided, the error rate can be measured to see the contribution of each feature
into the final classification of the data. Second, it can provide a reduced set or
sub-space; a group of training classes of reduced dimensions can show which
filters are adequate for discrimination and thus use only those filters.

3 Classification of the feature space

For every data set the feature space was classified with a K-means classifier,
which was selected for simplicity and speed. The feature space was introduced
to the classifier by the order statistic BS(®), one at the time (that is, the feature
and the mean from the training data; k¥ = 1,2,3,...) and for each additional
feature included, the misclassification error was calculated. Figures 9 (c) and
10 (c) show the misclassification as the features are included and k increased.
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Fig. 6. Natural textures (a) Bhattacharyya Space BS (2D, order 5 = 35 features),
((3%) = 120 pairs), (b) Corresponding marginal of the Bhattacharyya Space BS®.
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Fig. 7. Human knee MRI (a) Bhattacharyya Space BS (3D, order 2) (3) = 6 pairs (b)
Bhattacharyya Space(BS*(bone, tissue)).

Fig. 8. Two sets of features S* from different images: (a) Features 2 to 14 of the Natural
Textures image (b) Features 2 to 14 from one slice of the human knee MRI.



Figures 4 and 8 show the features spaces S? of the sub-band filtering process
(for the MRI only one slice, 54 is shown). For the synthetic phantom two features
S510:20 highlight the oriented patterns. For the natural textures the S’ is more
complexbut still some of the textures are highlighted in certain features. For
instance, S highlight one of the upper central textures that is of high frequency.
Note also that the S3~6, the upper row have a low value for the circular regions,
i.e. they have been filtered since their nature is of lower frequencies.

For the human knee S the first observation is the high pass nature of the
background in $%%%7 which could be expected for the noise nature of the
background, but S%5, do not describe the background but rather the bone of
the knee. S® is a low pass filtered version of the original slice.

The Bhattacharyya Spaces in figures 6, 7 present very interesting information
towards the selection of the features for classification. In the natural textures
case, a certain periodicity can be found; the BS*>7:14:21:28 haye the lowest values.
This implies that the low-pass features provide no discrimination at all.

The human knee MRI Bhattacharyya Space (Figure 7)(a) was formed with
four 32 x 32 x 32 training regions of background, muscle, bone. These train-
ing regions, which are small relative to the size of the data set, were manually
segmented, and they will remain as part of the data to classify. It can be imme-
diately noticed that two bands (522-%4, low-pass) dominate the discrimination
while the distance of the pair bone-tissue is practically zero compared with the
rest of the space. If the marginal were calculated like in the previous cases, the
low-pass would dominate and the discrimination of the bone and tissue classes,
which are difficult to segment would be lost. Figure 7 (b) zooms into the Bhat-
tacharyya space of this pair. Here we can see that some features: 12, 5, 8, 38, .. .,
could provide discrimination between bone and tissue, and the low pass bands
could help discriminate the rest of the classes.

4 Discussion

Figure 9 (a) shows the classification of the 2D synthetic phantom at 4.3% mis-
classification with 7 features (out of 35). Of particular importance were features
10 and 20 which can be seen in the marginal of the Bhattacharyya space in
figure 9 (b). The low-pass features 1 and 8 also have high values but should not
be included in this case since they contain the frequency energy that will be
disclosed in features 10 and 20 giving more discrimination power.

The misclassification plot in figure 9 (c) shows how the first two features
manage to classify correctly more than 90% of the pixels and then the next 5,
which describe the central circular region, decrease the misclassification. If more
features are added, the classification would not improve.

The natural textures image present a more difficult challenge. Randen and
Husgy [13] used 9 techniques to classify this image, interestingly, they did not
used FPSS filtering. Some of their misclassification results were Dyadic Gabor
filter banks (60.1%), Gabor filters (54.8%), co-occurrence (49.6%), Laws filters
(48.3%), Wavelets (38.2%), quadrature mirror filters (36.4%). The misclassifica-
tion of SOP filtering is 37.2%, placing this in second place. Figure 10(a) shows



the final classification and figure 10(b) show the pixels that were correctly clas-
sified. The misclassification decreases while adding features and requires almost
all of them in contrast with the synthetic phantom previously described.

The most important figure of the materials is the Human knee MRI. The
original data set consisted of 87 slices of 512 x 512 pixels each. The classification
was performed with the low-pass feature, 54, and the ordered statistics of the
bone-tissue feature space: S12:5:8:39:9,51,42,62 This reduced significantly the com-
putational burden since only these features were filtered. The misclassification
obtained was 8.1%. Several slices in axial, coronal and sagittal planes with their
respective classifications are presented in figure 11.

To compare the discrimination power of the sub-band filtering technique with
the co-occurrence matrix, one slice of the human knee MRI set was selected and
classified with both methods. The major disadvantage of the co-occurrence ma-
trix is that its dimensions will depend on the number of grey levels. In many
cases, the grey levels are quantised to reduce the computational cost and infor-
mation is lost inevitably. Otherwise, the computational burden just to obtain
the original matrix is huge.

Bhatiacharyya Distance
L/n
—_
Misclassification

(a) (b)

Fig. 9. Classification of the figure 1(a), (a) Classified 2D Phantom at misclassification
4.13% (b) Marginal Distribution of the Bhattacharyya Space BS*'. (Note the high
values for features 10 and 20) (c) Misclassification per features included.

The Bhattacharyya Space was calculated with the same methodology and
the 10 most discriminant features were Contrast: f,(6 = 0, Z, 27), Inverse differ-
ence moment: f5(f = 3T), Variance f1o(6 =0, 3, 2T), Entropy f11(6 =0, %, 2T).
The misclassification obtained with these 10 features was 40.5%. To improve the
classification, the gray-level original data was included as another feature and in
this case, with the first 6 features the misclassification reached 17.0%. With the

SOP, this slice had a misclassification of 7%.

5 Conclusions

Three data sets were classified with our methodology. The first was a simple
combination of artificial textures mainly for visualisation purposes. The second
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Fig. 10. Classification of the natural textures image (figure 1(b)) with 16 different
textures (a) Classification results at 37.2% misclassification (b) Pixels correctly classi-
fied,(c) misclassification error for the sequential inclusion of features to the classifier.

a combination of natural textures which are quite difficult to segment, these were
included to show the power of the method. The third and most interesting was
a 3D MRI set of a Human Knee, which was successfully segmented.

The Second Orientation Pyramid Sub-Band Filtering is a powerful and simple
technique to discriminate both natural and synthetic textures and extends well
to 3D. The number of features can be drastically reduced by feature selection
through the Bhattacharyya Space to a most discriminant subset, either from the
marginal or an individual class pair distances. This feature selection technique
can be applied with similar classification schemes like wavelets or co-occurrence
where a number of features are to be discarded before classifying. Our results
compared with the co-occurrence matrix and show the misclassification for the
sub-band filtering is almost half for the MRI, and as good as Randen’s [13] for the
natural textures. While co-occurrence is not easily extended to three dimensions,
we can employ our feature selection method for effectively selecting a compact
set of discriminant features for this scheme. This method could be linked to
contextual classification methods that can improve the misclassification rates.
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