IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Reyes-Aldasoro, C. C. & Bhalerao, A. (2007). Volumetric texture segmentation by

discriminant feature selection and multiresolution classification. IEEE Transactions on
Medical Imaging, 26(1), pp. 1-14. doi: 10.1109/tmi.2006.884637

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4320/

Link to published version: https://doi.org/10.1109/tmi.2006.884637

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Volumetric Texture Segmentation by Discriminant
Feature Selection and Multiresolution Classification

Constantino Carlos Reyes-Aldasbro
and Abhir Bhalerao, Member, IEEE

Abstract

In this paper aviultiresolution Volumetric Texture Segmentatigv-VTS) algorithm is presented. The method
extracts textural measurements from the Fourier domairhefdata via sub-band filtering using an Orientation
Pyramid [1]. A novelBhattacharyya spacdased on the Bhattacharyya distance, is proposed fortisgje¢he most
discriminant measurements and producing a compact feapatee. An oct tree is built of the multivariate features
space and a chosen level at a lower spatial resolution iscfassified. The classified voxel labels are then projected
to lower levels of the tree where a boundary refinement pnaees performed with a 3D equivalent of butterfly
filters. The algorithm was tested with 3D artificial data ancee Magnetic Resonance Imaging sets of human knees
with encouraging results. The regions segmented from tleekrcorrespond to anatomical structures that can be
used as a starting point for other measurements such akgaréxtraction.

Keywords: Volumetric texture, Filtering, Multiresolution, TextiiSegmentation

. INTRODUCTION

Volumetric texture segmentation has received considgraisks attention than its spatial 2D counterpart. Many
different approaches for 2D texture feature extractioassification and segmentation have been reported, for
example: [2], [3], [4], [5]. In volumetric texture analysithe extra computational complexity that is introduced
with the third dimension may explain the lack of reported kvar this area. Yet, in many cases, a volumetric
texture analysis is highly desirable, like for medical inmagapplications such as Magnetic Resonance Imaging
(MRI) segmentation [6], [7], [8], Ultrasound [9], [10] or @gouted Tomography (CT) [11] where the data provided
by the scanners is either intrinsically 3D or a time serie2@fimages that can be treated as a data volume. Seismic
facies analysis [12], [13] or Crystallography [14] are athelevant applications where volumetric texture analysis
is of interest.

The labeling of different classes such as anatomical strestor tissues in medical imagery is an important and
challenging problem, but much of this work has concentraiedhe classification of tissues by grey level contrast
alone. For example, the problem of grey-matter white-madtieeling in central nervous system (CNS) images like
MRI head-neck studies has been addressed by supervisistiGtbtlassification methods, notably EM-MRF [15].
The success of these methods is partly as a result of inaiporMR bias-field correction into the classification
process [16], which can be regarded as extending the imagelnfftem a piece-wise constant plus noise model
to include a slowly varying additive or multiplicative imtsity bias. Another reason why first-order statistics have
been adequate in many instances is that the MR imaging seguam be adapted or tuned to increase contrast in
the tissues of interest. For example, a T2 weighted sequendeal for highlighting cartilage in MR orthopedic
images, or the use of iodinated contrast agents for tumadsvasculature. Also, multimodal image registration
enables a number of separately acquired images to be effigcfused to create a multichannel or multispectral
image as input to a classifier. Other than bias field artifdoe, ‘noise’ in the image model incorporates variation
of the voxel grey-levels due to thiextural qualities of the imaged tissues and, with the ever incrgasgsolution
of MR scanners, it seems expedient to model and use thistieariaather than subsuming it into the image noise.

We propose a sub-band filtering scheme for volumetric testuhat provides a series of measurements which
capture the different textural characteristics of the dilte filtering is performed in the frequency domain with fitte
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that are easy to generate and give powerful results. We thmpope a supervised feature selection methodology
based on the discrimination power @levanceof the individual features taken independently; the ultengoal is

to select a subset dfiscriminantfeatures. In order to obtain a quantitative measureosy separablare two classes
given a feature, a distance measure is required. We haveedtadnumber measures (Bhattacharyya, Euclidean,
Kullback-Leibler, Fisher) and have empirically shown tlia¢ Bhattacharyya distancevorks best on a range of
textures [17], [18]. This is developed into the concept o¢atfire selection space in which discrimination decisions
can be made. A multiresolution classification scheme is thereloped which operates on the joint data-feature
space within an oct-tree structure. This benefits both thelericy of the computation and ensures only the certain
labelings at a given resolution are propagated to the nextrfaces between regions (planes), where the label
decisions are uncertain, are smoothed by the use of 3D tByttiiters which focus the inter-class labels to likely
candidate labels [19].

The paper is organized as follows. We begin with a brief nevad 2D and volumetric texture analysis and
segmentation methods focussing on those applied to meidiegle analysis and interpretation in Section Il. In
Section Ill, we provide a definition of volumetric textur@. $ection IV, a measurement extraction technique based
on a multiresolution sub-band filtering is presented. $ac introduces a Bhattacharyya space for feature selection
and a multiresolution classification algorithm is desdlilie Section VI. An extension of the so-called butterfly
filters to 3D is used for boundary refinement. Experimentaliits on 2D and 3D data are presented and discussed
in Section VII, and Section VIII draws some final conclusions

Il. LITERATURE SURVEY

The machine vision community has extensively researchedd#scription and classification of 2D textures,
but even if the concept of image texture is intuitively olmsao us, it can been difficult to provide a satisfactory
definition. Texture relates to the surface or structure ablgject and depends on the relation of contiguous elements
and may be characterized by granularity or roughness, ipehorientation and periodicity (normally associated
with man-made textures such as woven cloth). Early work afilitzk [20] is a standard reference for statistical and
structural approaches for texture description. Other @gugres include contextual methods like Markov Random
Fields as used by Cross and Jain [21], and fractal geomettiyaue by Keller [22]. Texture features derived from
the grey level co-occurrence matrix (GLCM) calculate thetjgtatistics of grey-levels of pairs of pixels at varying
distances. Unfortunately, & dimensional image of siz& makes the descriptor have a complexity@fN¢M?),
where M is the number of grey levels. This will be prohibitively higbr ¢ = 3 and an image sizes af = 512
guantized to, sayM = 64 grey levels. For these reasons and to capture the spatiidncy variation of textures,
filtering methods akin to Gabor decomposition [23] and japatial/spatial-frequency representations like wavelet
transforms [24], [25] have been reported. In some cases wmadfic data isslicedinto 2D cross-sections and
then use 2D texture analysis such as Gabor filters on eactidodl slice [26] or on 2D orthogonal plates [9],
[10]. Yet high frequency oriented textures that are notradd) to the axes can be missed by these filters and
can unnecessarily increase the dimensionality of the Ideatriptors. Randen and Husgy [27] have shown that
co-occurrence measures are outperformed by such filtegitigniques.

Here, we use the Wilson-Spann sub-band filtering approa@h yehich is similar to the Gabor filtering and has
been proposed as a ‘complex’ wavelet transform [29].

Previous work on volumetric texture includes work by Koved@d Petrou [6], who have studied texture anisotropy
in 3D images. They present two algorithms for texture anslyene with gradient vectors, and a generalized co-
occurrence matrix in 3D. They also present a technique fiufe visualization through an extended Gaussian image.
Texture analysis of MRI scans of brains of subjects with &inter’'s has shown that there is some correlation with
increased anisotropy over normal subjects [8].

Randen [13] has developed a series of three-dimensiornairéeattributes such as dip, azimuth, chaotic texture
and continuity, that have been applied in seismic stratigimmapping [12]. Others have presented extensions of
common 2D texture techniques into 3D, such as Laws masks @odaurrence matrices: for example, Lang [30]
and Ip and Lam [31] (see [26] for a review).

The importance of texture in MRI has been the focus of somearebers, notably Lerksi [32] and Schad [33], and
a COST European group was established for this purpose T84fure analysis has been used with mixed success
in MRI, such as for detection of microcalcification in breastging [35] and for knee segmentation [36], and in



Fig. 1. Volumetric texture examples: (a) A cube divided ihi® regions with Gaussian noise of different variances,Aljube divided
into two regions with oriented patterns of different freqoies and orientations, (¢) A sample of muscle from MRI.

CNS imaging to detect macroscopic lesions and microscdmpiom@mnalities such as for quantifying contralateral
differences in epilepsy subjects [37], to aid the automagiineation of cerebellar volumes [38], to estimate effect
of age and gender in brain asymmetry [39], and to charaeteqiinal cord pathology in Multiple Sclerosis [40].

I1l. VOLUMETRIC TEXTURE

Volumetric Texturés considered here as the texture that can be found in volimtitta (this is sometimes called
solid texture[26]). Figure 1 shows three examples of volumetric data wetttured regions.
Our volumetric study can be regarded as volume-based; shave consider no change in the observation
conditions.
Throughout this work, we consider volumetric daktg,represented as a function that assigns a gray tone to each
triplet of co-ordinates:
V:L,xL.xLs— G, QD

where L, = {1,2,...,7,...,N,}, L. = {1,2,...,¢,...,N.} and L, = {1,2,...,d,..., Ny} are the spatial
domains of the data of dimensiaN, x N, x Ny (using subscriptgr,c,s) for row, columns and slices) and
G={1,2,...,g,... Ny} is the set ofN, gray levels.

IV. FEATURE EXTRACTION: SUB-BAND FILTERING USING AN ORIENTATION PYRAMID (OP)

Certain characteristics of signals in the spatial domaaghsas periodicity are quite distinctive in the frequency or
Fourier domain. If the data contain textures that vary irm@dtion and frequency, then certain filter sub-bands will
contain more energy than others. The principle of sub-bdtedifig can equally be applied to images or volumetric
data.

Wilson and Spann [1] proposed a set of operations that sideditie frequency domain of an image into smaller
regions by the use of two operataygadrantand center-surroundBy combining these operators, it is possible to
construct different tessellations of the space, one of wiscthe Orientation Pyramid (OP) (Figure 2). A band-
limited filter based on truncated Gaussians is used to appat& the finite prolate spheroidal sequences used
in [1]. The filters are real functions which cover the Fouheif-plane. Since the Fourier transform of a real signal
is symmetric, it is only necessary to use a half-plane or &vwdlime to measure sub-band energies. A description
of the sub-band filtering with the OP method follows.

Any given volume) whose centered Fourier transformWs = .#[V] can be subdivided into a set ofnon-
overlapping regiond.. x L: x L% of dimensionsN!, N, Nt.

In 2D, the OP tessellation involves a set of 7 filters, one far low pass region and six for the high pass
(Figure 2 (a)). In 3D, the tessellation will consist of 28€ik for the high pass region and one for the low pass
(Figure 2 (c)). Thei-th filter F in the Fourier domain K’ = .Z[F)) is related to thei-th subdivision of the
frequency domain as:

Fi { Ly x Ly x Ly — Gu(u',3"),
@\ (Lix Lix L) — 0
Vi€ OP, @)

where¥, describes a Gaussian function, with parameﬁérshe center of the regiof) and¥? is the co-variance
matrix that will provide a cut-off of 0.5 at the limit of the bd (see Figure 2 (d,e) for 2D filters). The measurement
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Fig. 2. (a-c) 2D and 3D Orientation Pyramid (OP) tesseltati@) 2D order 1, (b) 2D order 2, (c) 3D order 1. (d,e) Bandkah 2D
Gaussian filter: (d) Frequency domdifi, |, (e) Magnitude of spatial domaid™|.

Fig. 3. A graphical example of sub-band filtering. The top mresponds to the spatial domain and the bottom row theid¢rodomain.
Once slice from a knee MRI data set is filtered with a sub-bdtet fivith a particular frequency and orientation by a pradache Fourier
domain, which is equivalent to a convolution in the spatiaindin. The filtered image becomes one measurement of the,sgadin this
example.

spaces in its frequency and spatial domains is then defined as:

Su(pr,6) = FL(pi#,6) Val(p, ki)
st o= |F7SL, ®3)
where(p, x, <) are the co-ordinates in the Fourier domain. At the next |etiel coordinate$L! (1) x LL(1)x L1(1))
will become(L,(2) x L(2) x L(2)) with dimensionsV,.(2) = X8 n,(2) = X0 (2) = LW |t is assumed

that N, (1) = 2%, N.(1) = 2, N4(1) = 2¢ so that the results of the divisions are always mteger wllie illustrate
the OP on a textured image, a 2D example is presented in Fjure

V. FEATURE SELECTION USING THE BHATTACHARYYA SPACE

The sub-band filtering of the textured data produces a sefieseasurements that belong tonsasurement
spaceS. Whether this space corresponds to the results of filteaguifes of the co-occurrence matrix or wavelets,
not all the dimensions will contribute to the discriminattiof the different textures that compose the original data.
Besides the discrimination power that some measurements izere is an issue of complexity related to the
number of measurements used. Each extra texture featureme the measurement space but will also further
burden any subsequent classifier. Another advantage daftisgjex subset of the space is that it can provide a better
understanding of the underlying process that generateddte[41].

A common method of forward feature selection is tin@pper approach4?2], [43]. This approach uses the error
rate of the classifier itself as the criterion to evaluate fimtures selected, using a greedy selection, eitfiler
climbing or best-firstand treats the measurements as a search space organiaatpnesentation where each state
is a measurement. It is important to bear in mind two issues:ig that hill climbing can lead to local optima, and
the other is that the strength of the algorithm — the use ofcthssifier in the selection process instead of other
evaluation functions — is at the same time its weaknesse gime classification process can be slow.

The Bhattacharyya space [44] is presented as a method thatles a ranking for the measurements based on the
discrimination of a set of training data. This ranking pree@rovides a single evaluation route and, therefore, the



number of classifications which remain for every new featsisgnificantly reduced. In order to obtain a quantitative
measure of classeparability a distance measure is required. With the assumption albeutriderlying distributions,
a probabilistic distancecan be easily extracted from some parameters of the datéatiKdd5] compared the
Bhattacharyya distance and the Divergence (Kullbacklegiband observed that Bhattacharyya distance yields
better results in some cases while in other cases they aieatu. A recent study [18] considered a number
of measures: Bhattacharyya, Euclidean, Kullback-Lejl#esher, for texture discrimination and concluded that the
Bhattacharyya distance is the most effective texture iigcant for sub-band filtering schemes.

In its simplest formulation, the Bhattacharyya distanc6] [detween two classes can be calculated from the
variance and mean of each class in the following way:

1 1 0% o} 1 — i, )2
Dg(ky, ko) = ks <1(Ugi Ugj )) t1 <%> ) (4)
where Dg(k1, k2) is the Bhattacharyya distance between two different tngirdlasses:; and ko, and py, , o,
and g, , ok, correspond to the mean and variance of each one.

The Mahalanobis distance is a particular case of the BHadtgiga distance, when the variances of the two classes
are equal; this eliminates the first term of the distance degiends solely on the variances of the distribution. If
the variances are equal this term will be zero, and grows @s/déhiances differ. The second term, on the other
hand, will be zero if the means are equal and is inversely grtmmal to the variances.

The Bhattacharyya spac8i, p), is defined on the measurement spécas:

L, % L;j; B(i,p) : L, x L; — Dp(S,, Sk,)- (5)

where each class pajr, between classéds, ko at measuremeritwill have a Bhattacharyya distan(th(S,i1 , S}Q),
and will produce a Bhattacharyya space of dimensidps= ( y) and N; = 7o : N, x N; (2D). The domains of
the Bhattacharyya space akg = {1,2,...70} and L, = {(1, 2) (1,3),...(k1,k2),... (Nx — 1, Ni)} whereo is
the order of the OP. In the vqumetric casiep remains the same (since it depends on the classes dvily}, 290
andL; = {1,2,...290}.

The marginal distributions oB (4, p) are

N,
Zsz ZDBSkl,Skz) i=1,...,Nj, (6)
7/ Nz . .
:ZB(i,p):ZpB(s,gl,s,gz), p=1,...,N,. 7)

=1

The marginal over the class paif3; (i) sums the Bhattacharyya distances of every pair of a cegaiuife and thus
will indicate how discriminant a certain sub-band OP filterover the whole combination of class pairs. Whereas
the marginalBp(p) sums the Bhattacharyya distances for a particular pairasfsels over the whole measurement
space and reveals the discrimination potential of padicphirs of classes when multiple classes are present.

To visualize the previous distribution, the Bhattachargpace and its two marginal distributions were obtained
for a natural texture image with 16 classes (figure 4 (a))uféd! (c) shows the Bhattacharyya spaceSaf order5,
and (d) marginaBB;(i). These graphs yield useful information toward the selaabibthe features for classification.
A certain periodicity is revealed in the measurement spB¢€;'421:28 have the lowest values (this is clearer in the
marginal B;(i)). The feature measurements 1, 7, 14, 21, and 28 correspdow foass filters of the 2D OP. Since
the textures that make up this mosaic have been delibefsigglygram equalized, the low pass features provide the
lowest discrimination power. The most discriminant featufor the training data presented &®-'%11 which
correspond to the order statisti; ) (i) = {B;(1), Br(2), ... Br(70)} whereB(1) < Br(2) < .... In other words,
a re-ordering of the elements of Measurement spde performed before being introduced sequentially to the
classifier. This provides a particular route for the statecgpsearch. The classification result using these featsires i
shown in figure 4 (b) and has an average label error 16.5% vdoictpares favorably with other methods e.g. Randen
reports an error of 34.7% on this image using a quadraturesrsub-band filtering and a vector quantization for
the classifier [27]. It is important to mention two aspectstii selection process: the Bhattacharyya space is
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Fig. 4. (a) 16-class natural texture mosaic (image f from dean[27]). (b) Classification result using BS selected festu Average
classification error is 16.5%. (c) The Bhattacharyya spader a measurement spaéeof order 5 from the 16-texture image. (d) Marginal
Bi(7), the indexMeasurement Spaarresponds to space.

constructed on training data and the individual Bhattagyedistances are calculated between pairs of classes.
Therefore, there is no guarantee that the feature seledtedhmays improve the classification of the whole data
space, the features selected could be mutually redundaméaypwonly improve the classification for a pair of classes
but not the overall classification [47]. Thus the conjectirébe tested then is whether the classification can be
improved in abest-first sequential selection defined by the Bhattacharyya spales statistics. The natural textures
image was classified with several sequential selectiotesfies:

« Following the unsorted order of the measurement spates?, S° etc.

« Following the marginalB; (i) in decreasing orders'?, S18, S etc.

« Following the marginalB;(i) in increasing order:528, 52!, S5 etc. (The converse conjecture is that the

reverse order should provide the worst path for the classidio.)

« Three random permutations.
The sequential misclassification results of the previotsteggies are presented in Figure 5 where the advantage of
the route provided by th& ;) can be seen. If extra time can be afforded, then the trainatg dan be used with a
more elaborate feature selection strategy; various fahead backward optimizations are possible (see [47]). Our
experiments on 2D texture mosaics, however, have not shosigréficant benefit by these methods in the final
classification error over the sub-optimal best-first apphazsed here [44], [48], and we have demonstrated superior
performance over other techniques: Local Binary PatteBP(Land theps methods presented by Ojala [49]; and
wavelet features with the Watershed transformation pteseloy Malpica [50].

Misclassifcation
o

10 15 20 25
Number of features classified

Fig. 5. Misclassification error for the sequential inclusiaf features to the classifier for the 16-class natural testimage (figure 4 (a)).
The route provided by the ordered marginélg) (i) yields the best classification strategy.

Another solution that is provided by the order statisticthef Bhattacharyya space marginal is the option to select



a predetermined number of features asrdduced sebr sub-space used for classification. This can be partigular
useful in cases where it can be computationally expensiealimulate the entire measurement space. Then, based
on the training data, only a few measurements need to be @feddbased on the first features of thes.

VI. MULTIRESOLUTION CLASSIFICATION

This section presents a new multiresolution algoritivtyltiresolution-Volumetric Texture Segmentati@vi-
VTS). The multiresolution procedure consists of three m&amges: the process afimbing the levels or stages
of a pyramid or tree, a decision ctassificationat the highest level is performed, and the procesdesicending
from the highest level down to the original resolution. Bhge the decision-directed approach of Wilson and
Spann [1], we replace the contextual boundary-refinemeptateach scale with a steerable-filter based on butterfly
neighborhoods [19]. This is a satisfactory compromise t¢heruse of a multiresolution MRF to gain a notion of
contextual label smoothing but avoids the need to model atichate a complicated set of boundary priors over
3D neighborhoods [51].

Smoothing the measurement space can improve the clagsifigasults; many isolated elements disappear and
regions are more uniform. But a new problem arises with shingt especially at the boundaries between textures.
When the measurement values of elements that belong to the skss are averaged, it is expected that they
will tend to the class prototype, but if the elements belomglifferent classes, the smoothing can place them in
a different class altogether. It would be ideal to smootlecalely depending on the distance to the boundaries.
Of course, the class boundaries need then to be known. A comige has to be reached between the intra-class
smoothing and the class boundary estimation. A solutiorhi® problem is to apply a multiresolution procedure
of smoothing several levels with a pyramid before estingatime boundaries at the highest level and applying a
boundary refinement algorithm in the descent to the highessilution.

A. Smoothing the Measurement Space

The climbing stage represents the decrease in resolutitineoflata by means of averaging a set of neighbors
on one level ¢hildren elements or nodes) up to @arent element on the upper level. Two common climbing
methods are the Gaussian Pyramid [52] and the Quad tree (8] [55]). In our implementation we used the
guad tree structure which, in 3D, becomes an oct t@€)( The decrease in resolution correspondingly reduces
the uncertainty in the elements’ values since they tend rihvitzeir mean. In contrast, the positional uncertainty
increases at each level [1].

The measurement spadeconstitutes the lowest level of the tree. For each measureffieof the space, T
is constructed. To climb a level in theT', a REDUCE operation is performed [52]:

(8% = REDUCE(S")* !, (8)

where L is the level of the tree.
Every REDUCE step averages eight contiguous elements to produce a silegleent in the upper level. Once
a desired level is reached, the classification is performed.

B. Classification

At the highest level, the new reduced space can be classi@ditioning of the measurement space can be
considered as a mapping operator
A S —{1,2,..., N}, 9)

where the clusters or classes are!(1), A=1(2),..., and these are unknown. Then, for every elemert S, )\,
will be an estimator for\ where, for every class, there is a pofat;, as,...} € S such that these points define
hyperplanes perpendicular to the chords connecting theih,salit the space into regions?;, Rq,...}. These
regions define the mapping function, : S — {1,2..., N} by A\y(z) = K if 2 € Rg, K = 1,2,..., Ng. This
partitioning should minimize the Euclidean distance frdme tlements of the space to the pointsexpressed
by [56]:

plar,az,..)= Y min_|[S(z) — aj||. (10)

1<5<Ni,
2€(L-xL.XLy)



The measure of closeness of the estimaipto \ defines a misclassification error laj\,] = P(\.(z) # A(x)),

and P(\,(S) # A(S)) for an arbitrary pointr € S in the space. If the values of the pointg are known, or
there is a way of estimating these from training data, thesifigation procedure isupervisedotherwise it is
unsupervisedFor this work, the points in the measurement spacaevere obtained by filtering separate training
data with the OP. Once the measurement sace calculated for every training image, the average can led us
as an estimate of the mean of the clagsand equation 10 can be minimized by an iterative method seahest
neighbor (NN) clustering. In the experiments presentedvelvhere supervised classification was required we
used a NN approach.

C. Boundary Refinement

To regain full spatial resolution at the lowest level of theet the classification at the higher level has to be
propagated downward. The propagation implies that evergrpdequeaths: (a) its class value to 8 children and;
(b) the attribute of being or not being in a boundary (figure I6jeraction between neighbors can reduce the
uncertainty in spatial position that is inherited from thergnt node. This process is known as spatial restoration
and boundary refinement, which is repeated at every stagiethmtoottom of the tree or pyramid is reached.

(b)

Fig. 6. Inheritance of labels to child elements: (a) Clageeiitance; (b) Boundary inheritance.

Butterfly filters (BF') [19] are orientation-adaptive filters, that consist of tseparate sets avingswith a pivot
element between them. It is the pivot element (r,c,s) which is modified as a result of the filtering. Each
of the wings will have a roughly triangular shape , which rabkes a butterfly (figure 7 (a)) and they can be
regarded as two separate setsanfsotropic cliquesarranged in a steerable orientation. We propose the aatens
of theseBF filters into 3D, and two possible shapes can be used: pyrdmidzonic (figure 7 (b,c)), for ease of
implementation we used pyramidal. The boundary determinyeitie classification process defines the orientation of
the filter which places each of the wings of the butterfly theitside of the boundary. When dealing with volumes
and not images, the boundaries between classes are nat Bireg but planes, and therefore the orientation of the
butterflies requires two parametefsand ¢. We quantized each orientation in four stefsp = {0, 7, 5, %’T}. The
elements covered by each of the wings are included in theitfidigorocess while the values of the elements along
the boundary (which are presumed to have greater uncemtant the pivotz, are not included in the smoothing

process. TheB F' consists of two sides, with left and right wingsv/rw, each of which comprised’,, elements:

lw = l’LUl l’LUQ e le

{fwn, b, -, o} lw,rw e §. (11)
rw = {rwy,rws,...,rwn,}
Orientation Pyramidal Conic

Volumetric,,
Butterf
0 Filter

olumetric

Butterfly Boundary
Filter Region

(@) (b) (€)

Fig. 7. (a) 2D Butterfly filter, (b) Pyramidal volumetric beitfly filters, (c) Conic volumetric butterfly filters. Orietian of ¢ and 6
indicated in (c).
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Fig. 8. A feature space view of boundary refinement procesls kuitterfly filters. (a) A boundary elementwith other elements. (b}
and the two sets of neighboring elements that are comprigetiebbutterfly wings, all other elements are not relevantie tmoment. (c)
The weighted average of each wing. (d) Parametdralances between the elementind the average of the wings. (e) New positions are
compared with the prototypes (1,2,..., k) of the classes cthss that corresponds to the minimum distance is thegresbitoz.
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For each wing, an average of the values of the elements in dia@msion is calculated:

Si(x) = ZSZ (lwy),  Si,(x ZS (rwy). (12)

The actual pivot element = (r, ¢, s) value is then combined with the mean values as follows:

Sectw = (1—a)S(x) + aSp, (13)

Sorw = (1—a)S(x) + aSyr,. (14)

whereq is a scalar gain measure that depends on the dissimilaritijeoflistribution of the elements that make
up the wings:

1 D= ‘Slw_Srw|

= ——&6-p» —— (15)
L e Voh + ok

whereos? ando?, are the variances of the elements in each butterfly wing.

The parameten: acts as weighting factor of the distance between the digtoibs covered by the two sides of
the butterfly filter, and provides a balance between the puralue of the element and a new one calculated from
its neighbors. It is interesting to note that this balangimgcedure is similar to the update rule of the Kohonen
Self Organizing Maps [57].

The distance measure between the updated pivot elementarmtdtotype values of each class determines to
which class it is reassigned. Figure 8 shows the proces#$igadly. At the classification stage, the new feature values
S s Sp—rw replace the original feature values of elementnstead of looking for a class based Aan(S(x)),

the new values\, (S, 1) / Aa(Sz—rw) Will determine the class according to its closeness to @as®types (using
the mapping operatox, from equation 9).

VIlI. EXPERIMENTAL RESULTS
A. 3D Artificial Textures

There are many examples test images available for compabrigxture segmentation methods. However, up to
the best of the authors’ knowledge, there is not such a dsgafloa volumetric texture. We have therefore created a
handful of 3D data sets to demonstrate and compare the perfme of the presented algorithm and measurement
extraction techniques. First, a volumetric set that regmes a simple two-class measurement space, each with
32 x 16 x 32 elements drawn from Gaussian distributions (Clas$SAu, = 25,01 = 2, S? o = 26,09 = 4, Class
B: St gy = 27,00 =7, S? o = 28,09 = 7). The two classes together form3a x 32 x 32 x 2 space. The data
was classified unsupervised with the number of classesgedvibut not the estimates of the means. First it was
clustered with the Linde-Buzo-Gray vector quantizatiorthod (LBG) [58] in a single resolution and then using
M-VTS (OT level £ = 3). The classification results are presented in Figure 9agls of points for each class
for M-VTS. Results are presented in Table I. With M-VTS thare some incorrectly classified voxels close to the
boundary, but the general shape of the original data is predeand its overall error rate is much lower.

The second set is & x 64 x 64 volume containing two oriented patterns which have différeequency and
orientation (figure 1 (b)). The measurement space was ¢attand two measurements were manually selectéd:



and S3, and classification was again performed unsupervised fgylesiand multiresolution. Results are presented
in Table 1.

Again, some voxels near the boundary are misclassified, thess 3%, but the shape (figure 9 (c)) is well
preserved. The computational complexity was consideradaseased in 3D, for the first set the respective times
for LBG and M-VTS were 0.1s and 14.9s and for the second sat&nd 54.0s.

@ (b)

Fig. 9. Classification of 3D textures: (a,b) Class 1 and Ckagligure 1 (a)), (c) Both classes (figure 1 (b)).

Algorithm
Data LBG | M-VTS £ =3
Gaussian Datg 14.1 6.2
Oriented Data| 4.6 3.0
Knee Phantom 13.0 7.0

TABLE |
MISCLASSIFICATION (%) FORLBG AND M-VTS FOR THE SYNTHETIC3D TEST SETS

Algorithm
Data NN | M-VTS £ =3
Case 1| 8.1 6.0
Case 2| 32.8 10.5
Case 3| 36.0 12.0

TABLE I
SUMMARY OF MISCLASSIFICATION (%) FORNN (AT FULL RESOLUTION) AND M-VTS FOR THEMRI KNEE DATA.

B. 3D Synthetic Knee Phantom

To assess M-VTS with data containing objects with life-ld@ometry, we constructed a synthetic knee phantom
containing orientated and random textures arranged rgugghbones, muscle, tissue and background in a volume
of size 128 x 128 x 128 voxels, as shown in figure 10. The classification result udRYTS using 8 features
is shown as a 3D visualization in figure 10 (c). Comparing fgut0 (a) and (c), the location of the boundaries
between ‘bone’ and ‘other tissue’ is fairly poor. This candbigibuted to the difficulty differentiating the two chosen
textures. However, the ‘muscle’ regions are fairly well defi. Despite these problems, the overall classification
rate is 93%. The LBG classifier and M-VTS were used on the safen®asurement space and the classification
errors were plotted for selecting most discriminant fesgufFigure 11) from the marginal Bhattacharyya space
(shown in Figure 12 (a)). The results confirm both that theusatjal feature selection is effective and that M-VTS
consistently outperforms a single resolution classifiae €hoice of the level (i.e£) at which to begin the top-down
M-VTS will depend on the relative size of the structures ie thata and the ratio of inter to intra class variance
present. In the synthetic knee phantom the plot in figure 32sflmws a marginal improvement by initializing
M-VTS at level 4 rather than level 3 of the OP.
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Fig. 10. Synthetic knee phantom image sI28 x 128 x 128 consisting of 4 texture types arranged approximately irtckground, bones,
muscle and other. (a) 3D visualization of the original dé&d.Arrangement of principal regions in volume. (c) 3D vikzation of labeled
data.

Fig. 11. (a) Knee phantom data, saggital slice 70 (top-rawg axial slice 110 (bottom-row). (b)-(d): First three mostervant features
from OP of knee phantomSf*, S8, 55%) shown as cross-sectional views.

C. 3D MRI texture segmentation

A set of experiments was conducted with 3D MRI sets of humasekracquired under different protocols: one
set with Spin Echoand two sets withSPGR In the three cases each slice had dimension§1@fx 512 pixels
and 87, 64 and 60 slices respectively. One sample slice frach eet is presented in Figure 14 (a). The bones,
background, muscle and tissue classes were hand labeledviolgo ground-truth for evaluation.

For the first data set, Case 1, the following classificatiopreach was followed. Four training regions of size
32 x 32 x 32 elements were manually selected for the classdmokground, muscle, boradtissue These training
regions were small relative to the size of the data set, aag ttmained as part of the test data. Each training
sample was filtered with the OP sub-band filtering schemeflamdesults were used to construct the Bhattacharyya
space (figure 13 (a)).

It can be immediately noticed that two band&?>4, which correspond to the low pass bands, dominate the
discrimination while the distance of the p&ione-tissuds practically zero compared with the rest of the space. If
the marginals are calculated directly the low pass wouldidata and the discrimination of the bone and tissue
classes, which are difficult to segment, would not be possibigure 13 (b) zooms into the Bhattacharyya space
of the bone-tissue pair. Here we can see that some feattif¢%83% provide discrimination between bone and
tissue, and the low pass bands help discriminate the resteoflasses.

Feature selection was performed with the Bhattacharyyaespad 7 measurements were selectstt: and
512:5.8,39,9,51 ' This selection of features reduced significantly the catajmnal burden. The final misclassification
obtained was 8.1% with 7 features. The result for 2D clasgibo was 8.6% (figure 14 (b)). For the M-VTS
misclassification results were 6.0% (figure 14 (c)). While tlkesults from the 2D and 3D single resolution are
close, the use of multiresolution improves the results byenthan 2%. The classification with a multiresolution
algorithm improves the results and produces a much smoodigern classification. Some of the errors are due in
part to magnetic inhomogeneity artifacts across the imhgewere not handled explicitly. It should be noted that
the classification results, although not anatomically gutfillustrate the utility of the use of texture features in
MRI classification.
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Fig. 12. (a) MarginalB;(z) of knee phantom features space from OP. (b) Classificatimr eomparing LBG against M-VTS af = 3
and £ = 4 for sequential selection of features based on the BS featlextion. M-VTS is has consistently lower misclassifmaterrors

(about half of LBG with 3 or more features).
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Fig. 13. Knee MRI: (a) Bhattacharyya spaBe(3D, order 2), (b) Bhattacharyya spad@’(bone, tissue)).

(a)

Fig. 14. One slice of the three MRI sets and its correspondiagsification. Top row Casel (slice 36), middle row Caseli2g(#5),
bottom row Case 3 (slice 40). (a) Original data; (b) 3D singisolution classification; (c) M-VTS Classification. Dateoyided by Dr.
Simon Warfield from Brigham and Women’s Hospital, Boston.



TABLE 11l
CLASSIFICATION (%) OF BONE (b) ACCORDING TO THE MASK FOR BONE(b) WITH K-MEANS, AND M-VTS. FOR CASE 3, SUPERVISED
AND UNSUPERVISED CLASSIFICATION WAS PERFORMED

Knee Set| Algorithm [ beb|be® | Breb] (B)re®e|
Case 2 | LBG (UnSup) 67.2 21.0 32.8 79.0
M-VTS (Sup) | 89.5| 21.6 | 105 78.4
Case 3 | LBG (UnSup) 42.2 22.9 57.8 77.1
2 (Sup) 64.0| 11.0 | 36.0 89.0
M-VTS (UnSup)| 75.8 3.5 24.2 96.5
M-VTS (Sup) | 88.0| 7.1 12.0 92.9

The SPGR MRI data sets were classified and the bone was segingith the objective of using this as an
initial condition for extracting the cartilage of the knekhe cartilage adheres to the condyles of the bones and
appears as a bright, curvilinear structure in SPGR MRI data.

Besides the low pass?2, three high frequency bands were selected, nar§éRy®.

The performance of the classification schemes was measuaréueoability to correctly classify the bone since
this class alone will be used to segment the cartilage lateén ¢this section. The correct classification was measured
by how much bone was classified correctly inside the bone ifiasky), and how much bone was classified outside
the bone maskb(e (b)) and their complementg#)¢ € b, (b)° € (b)°). The knee was classified with LBG and
M-VTS at level 3. One slice of the classified results is présgrn the middle row of figure 14. As expected,
M-VTS presents smoother results and reduces the misctagsifi of the bone from 32.8% to 10.5%. For Case
3 (bottom row of Figure 14) the reduction was from 57.8% to224 with the unsupervised LBG method and if
training data was used, the misclassification went down f&@n0% down to 12.0% with NN (table IlI).

Figure 15 (a) presents a volume rendering of the segmenteel bbCase 1. The four boney structures present
in the MRI data set are clearly identifiableatella, fibula, femuiandtibia, and (b) shows a cloud of points of the
bone class of Case 3. Here the misclassification is notieeabthe upper part of the patella (knee-cap), which
is classified as background, and the lower part extends nmame it should do into surrounding soft tissue (the
infrapatellar pad).

|

Fig. 15. (a) Rendering of the segmented bone of Case 1 (msfitation 8.1%) and (b) the segmented bér{as clouds of points) from
Case 3 (misclassification 12.0%).

@

D. Segmentation of the cartilage

Segmentation of articular knee cartilage is important tderstand the progression of diseases such as ose-
toarthritis and it enables the monitoring of therapy an@a&f¥eness of new drug treatments [59], [60], [61]. MRI
has played an important role since it is a 3D, non-invasivagimg method which is cheaper and less traumatic
than arthroscopy, and has been the gold standard for gartidasessment [62].
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Fig. 16. Cartilage of Case 2: (a) Slice 15 of the set with thetilage in white, (b) Rendering of the cartilage and oneesl¢ the MRI
Set. Cartilage of Case 3: (c) Rendering of the cartilage,T(® cartilage and one slice of the MRI set.

In this section, we propose a simple technique to extractcHrélage without the use of deformable models.
The user has to determine a Region of Interest (ROI) and algvay threshold with the bone extracted from the
previous section being used as a starting point. In ordeegongnt the cartilage out of the MRI sets, two heuristics
were usedcartilage appears bright in the SPGR MRIsnd cartilage resides in the region between bon&kis
is translated into two corresponding rules: threshold iabove a certain gray level, and discard those not close
to the region of contact between bones. The methodology traaxhe cartilage followed these steps: extract the
boundary of the bone segmented by the M-VTS; dilate this dannby a number of elements to each side (5
voxels in our case); eliminate the elements outside the R@Ithe dilated boundary; threshold the region (gray
level ¢ = 550 for Case 2, and = 280 for Case 3); finally, eliminate isolated elements. It shdu#dnoted that the
ROI is a cuboid and not an elaborate anatomical template.

Figure 16 presents the cartilage extracted from Cases 2 .afdme false positives can be seen, but the general
shape is visually close to that of the cartilage. In thesaltgsit is clear that the general shape of the cartilage;
tibial, femoral and patellar is correctly segmented andféwve incorrectly classified voxels could be easily erased
from the result.

Figure 17 presents the segmented cartilage of Case 3 fa $fices of the set in different view: sagittal slice 18,
axial slice 212 and coronal slice 130. Figure 17 (a) prestr@segmented cartilage. Some false positives appear
as small dots in the image. The tibial cartilage also app&duis ragged but the general shape is correct, notice for
instance the separation of the patellar cartilage from ¢inecfal cartilage. As a comparison, figure 17 (b) presents
the thresholded data of the same slices. Figure 17 (c) psesien cartilage over the original image.

A last validation test was performed. The cartilage of figlBe(a) was hand segmented and compared with the
M-VTS results. Figure 18 shows the comparison as the sumeohtimber of pixels per row classified as cartilage
with both techniques. It can be seen from the shape of bo#s lihat the manual segmentation and the M-VTS
are very similar.

VIIl. CONCLUSIONS

A multiresolution algorithm based on Fourier domain filbgriwas presented for the classification of texture
volumes. Textural measurements were extracted in 3D dataubyband filtering with an Orientation Pyramid
tessellation. Some of the measurements can be selectedri@afoew feature space and their selection is based on
their discrimination powers obtained from a novel Bhattagha space. A multiresolution algorithm was shown to
improve the classification of these feature spaces: ocs tnese formed with the features. Once the classification
is performed at the a higher level of the tree, the class anohdary conditions of the elements are propagated
down. A boundary refinement method with pyramidal, voluietutterfly filters is performed to regain spatial
resolution.

The algorithm presented was tested with artificial 3D imaggshantom type artificial textured volumes and MRI
sets of human knees (SPGR and Spin Echo). Satisfactonyifedaien results were obtained in 3D at a modest
computational cost.

In the case of the MRI data, M-VTS exploits well the texturblhracteristics of the data. The resulting seg-
mentations of bone provide a good starting point for othehméjues, such as deformable models, which are
more sophisticated and require some initial condition$/4¥TS is to be used for medical applications, extensive
clinical validation is required but it is not within the sapf this paper; yet the potential of the volumetric texture
analysis has been demonstrated. In the case of MRI, thetefiéinhomogeneities artifacts should be addressed.
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Cartilage Extracted Data thresholded Cartilage over knee

Coronal Slice 13xial Slice 212 Sagittal Slice 18

(@) (b)

Fig. 17. Sagittal, coronal and axial view of the cartilag¢rasted from knee Case 3. The first column (a) shows the agetiin the three
planes, Second Column (b) shows the data thresholded aathe kevel used to extract the cartilage= 280, the third column (c) shows
the cartilage over the corresponding slice.

Fig. 18. M-VTS and manual segmentation comparison perfdrorethe cartilage of figure 16 (a). The sum of number of pixtsified
as cartilage in every row show good agreement of the M-VT8ltesvith the manual segmentation.

Furthermore, there is manual intervention in determinhmgy iumber of classes, the size of the butterfly filters, the
depth of the OP decomposition and the height of dHE used by the coarse-to-fine refinement. Further research
might be focused in these areas.
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