

City, University of London Institutional Repository

Citation: Kharchenko, V. S., Odarushchenko, O., Odarushchenko, V. & Popov, P. T.

(2013). Selecting Mathematical Software for Dependability Assessment of Computer
Systems Described by Stiff Markov Chains. Paper presented at the 9th International
Conference on ICT in Education, Research and Industrial Applications: Integration,
Harmonization and Knowledge Transfer, 19-06-2013 - 22-06-2013, Kherson, Ukraine.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4362/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Selecting mathematical software for dependability

assessment of computer systems described by stiff

Markov chains

Vyacheslav Kharchenko1,2,*, Oleg Odarushchenko2, Valentina Odarushchenko1,

and Peter Popov3

1 National Aerospace University “KhAI”, Kharkov, Ukraine
{v.kharchenko, v.odarushchenko}@khai.edu

2 RPC “Radiy”, Kirovograd, Ukraine
skifs2005@mail.ru

3 Centre for Software Reliability, City University London, United Kingdom
ptp@csr.city.ac.uk

Abstract. Markov and semi-Markov models are widely used in dependability

assessment of complex computer-based systems. Model stiffness poses a serious

problem both in terms of computational difficulties and in terms of accuracy of

the assessment. Selecting an appropriate method and software package for

solving stiff Markov models proved to be a non-trivial task.

In this paper we provide an empirical comparison of two approaches to dealing

with stiffness – stiffness avoidance and stiffness-tolerance. The study includes

several well known techniques and software tools used for solving Kolmogorov’s

differential equations derived from complex stiff Markov models.

In the comparison we used realistic cases studies developed by others in the past:

i) a computer system with hardware redundancy and diverse software, and ii) a

queuing system with a server break-down and repair. The results indicate that the

accuracy of the known methods is significantly affected by the stiffness of the

Markov models, which led us to developing a procedure (an algorithm) for

selecting the optimal method and tool for solving a given stiff Markov model.

The algorithm is, also included in the paper.

Keywords. Markov chins, stiffness, stiffness-avoidance, stiffness-tolerance,

computer based systems, availability, multi-fragmentation.

Key Terms. Markov chains, stiffness, availability, multi-fragmentation

1 Introduction

Dependability of computer systems is assessed using probabilistic models in which

reliability and availability are typically used as measures of interest. Markov chains

(MC) [1, 2] are often preferred to reliability block diagrams and fault trees as MC can

handle well complex situations such as failure/repair dependencies and shared repair

resources [3].

Dependability assessment of complex computer systems is an essential part of the

development process as it either allows for demonstrating that relevant regulations have

been met (e.g. as in safety critical applications) and/or for making informed decisions

about the risks due to automation (e.g. in applications when poor dependability may

lead to huge financial losses). Achieving these goals, however, requires accurate

assessment. Assessment errors may lead to wrong or suboptimal decisions.

System modellers are often interested in transient measures, which provide more

useful information than steady-state measures. The main computational difficulty when

MC are used is the size of the models (i.e. their largeness), which is known to affect the

accuracy of the transient numerical analysis.

It is not unusual for modern complex systems to have a very large state space: often

it may consist of tens of thousands of states. Additional difficulty in solving such

models is the model stiffness [5], which is the focus of this paper. In practice stiffness

in models of computer systems is caused by: i) in case of repairable systems the rates

of failure and repair differ by several orders of magnitude [4]; ii) fault-tolerant

computer systems (CS) use redundancy. The rates of simultaneous failure of redundant

components are typically significantly lower than the rates of the individual

components [4]; iii) in models of reliability of modular software the modules’ failure

rates are significantly lower than the rates of passing the control from a module to a

module [4].

In practice it is useful to detect the model stiffness as early as possible. If the model

is stiff, using a small integration step is usually a necessary step for obtaining an

accurate solution. On the other hand, models with moderate stiffness may allow for

obtaining accurate solutions without using a small integration step, thus saving

computational resources. With some numerical methods decreasing the step of

integration mat be even counterproductive as it may simply not improve the solution

accuracy.

The assessment methods and tools must provide high confidence in the assessment

results. In many cases various regulation bodies would require the tools used in the

development to be certified to meet stringent quality requirements. The stiffness of an

MC can make it difficult to meet this requirement. Careful selection of the method and

tools used to solve accurately and efficiently stiff MCs is needed.

In the last 30 years, many approaches have been developed to deal efficiently with

the MC stiffness [4, 5, 6, 7]. They can be split into two groups - “stiffness-tolerance”

(STA) and “stiffness-avoidance” approaches (SAA) [5]. The main feature of STA is

solving a stiff MC using special numerical methods that can provide highly accurate

results. The limitations of STA are: i) STA cannot deal effectively with large models,

and ii) computational efficiency is difficult to achieve when highly accurate solutions

are sought. The SAA solution, on the other hand, is based on an approximation

algorithm which converts a stiff MC to a non-stiff chain first, which typically has a

significantly smaller state space [4]. An advantage of this approach is that it can deal

effectively with large stiff MCs. Achieving high accuracy with SAA, however, may be

problematic.

A number of software tools have been developed and applied to solving models of

complex systems such as SHARP, Save [8], Reno, λPredict, Möbius, etc. Among them

is the utility developed by some of the authors of this paper (ODU) developed more

than 15 years ago which is based on EXPMETH [21] and has been validated extensively

on a range of models [18 - 20]. The utility uses the algorithm of modified exponential

method. In addition, a number of off-the-shelf mathematical software packages exist

which can be used for solving Markov models, e.g. Maple (Maplesoft), Mathematica

(Wolfram Research) and MATLAB (Mathworks) which use standard methods for

solving differential equations. These math packages enjoy high reputation among the

respective customers earned over several decades by providing a wide range of

solutions and good support with regular updates.

In this paper we present an empirical study using two systems: i) a computer system

with hardware redundancy and diverse software under the assumptions that the rate of

failure of software may vary over time, and ii) a queuing system with a server break-

down and repair [4]. The solution of the first system is based on the principle of multi-

fragmentation [9], one of the efficient methods of solving an MC in case the model

parameters change over time. The main idea of this principle is that the MC is

represented as a set of fragments with identical structure, but which differ in the values

of one or more parameters. Each of the systems included in the study is described by a

stiff MC. The main difference between the two systems is that the ratio between the

stiffness indices (to be defined below) of the first and the second system is 103. In other

words we chose them to be quite different in terms of their stiffness index so that we

could study if the stiffness index impacts the accuracy of the different methods for

solving the respective models. Both systems were solved using STA. The second

system was also solved using SAA. Thus we could compare the accuracy of STA and

SAA when applied to solving the same (the second) system and how these compare

with the exact solution, which for the second system is available in [10], [11].

We report that indeed the stiffness index impacts significantly the accuracy of the

solution methods. We also offer a selection procedure which allows one to choose

(among the many available for solving stiff MCs) the solution method that provides the

best accuracy given the value of the stiffness index of the MC to be solved. We provide

also a justification for our recommendations based on the comparison of the different

methods when applied to the chosen two systems described by stiff MCs.

The numerical transient analysis of MCs is faced with two computational

difficulties – the model stiffness and largeness, which can affect the accuracy of the

solutions obtained. Several numerical methods are widely used that address these

difficulties, among them the Rosenbrock method [13], [14], the TR-BDF2 [5], [7], [14],

the Jensen’s method (uniformization) [5], the implicit Runge-Kutta method [5], [6],

[12], and the modified Gir method [6].

The Rosenbrock method is the one-step numerical method that has the advantage

of being relatively simple to understand and implement. For moderate accuracy

(tolerances of order 10-4 – 10-5) and systems of moderate-size (N ≲ 10) the method

allows for obtaining solutions which in terms of achieved accuracy are comparable with

the more complex algorithms. If a low accuracy is acceptable, then this method is

attractive. When larger systems are solved the Rosenbrock method becomes less

accurate and reliable [13].

TR-BDF2 is a second order accurate A-stable and L-stable single step composite

method that uses one step of trapezoidal rule (TR) and one step of BDF2 (second order

backward difference formula) [7]. [14] demonstrated that TR-BDF2 deals well with

increased stiffness and only requires little extra computations as the parameter values

or the mission time are increased. TR-BDF2 is also recommended for use if low

accuracy is acceptable [5].

The Jensen method (also known as uniformization or randomization) [15] involves

the computation of Poisson probabilities. It was extensively modified [5], [14], [16] to

deal with the stiffness problem. It achieves greater accuracy than TR-BDF2 but still

deals poorly with stiffness in extreme cases. [14] recommends that the Jensen method

be used only in cases of moderately stiff models.

The implicit Runge-Kutta method is a single step numerical method that deals with

the problem of stiffness and is one of the most computationally efficient methods for

achieving high accuracy [6].

Also an aggregation/disaggregation technique for transient solution of stiff MCs

was developed by K. S. Trivedi and A. Bobbio [4]. The technique can be applied to any

MC, for which the transition rates can be grouped into two separated sets of values: one

of the sets would include the “slow” states and the second set would include the “fast”

states [4]. After aggregating the fast transition rates the MC is reduced to a smaller non

stiff MC, which can be solved efficiently using a standard numerical technique [4].

In the rest of the paper the method by Trivedi and Bobbio [4] is referred to as an

SAA while the other methods surveyed above are referred to as an STA.

The focus of this study is a comparison of the accuracy of the solution obtained with

different methods when applied to the same system. Of particular interest is how the

solutions are affected by the stiffness of the system under study.

The rest of the paper is organized as follow: in the section 2 we describe formally

the stiffness problem and the stiffness index introducing informally the idea of how

stiffness index may impact the accuracy of the numerical methods used in solving the

systems. In section 3 we present the comparison results. In section 4 we present a

procedure for selecting the optimal solution method and tool based on the stiffness

index of an MC. In section 5 we present the conclusions and the problems left for future

research.

2 Comparative Analysis of Evaluation Techniques

2.1 The Stiffness Problem

Stiffness is an undesirable property of many practical MCs that pose difficulties in

finding transient solutions. There is no commonly adopted definition of “stiffness” but

a few of the most widely used ones are summarized below.

a) The Cauchy problem
𝑑𝑢

𝑑𝑥
= 𝐹(𝑥, 𝑢) is said to be stiff on the interval [x0,X] if for

x from this interval the following condition is fulfilled:

1
|)Re(|min

|)Re(|max
)(

,1

,1






i
ni

i
ni

xs




, (1)

where the s(x) – denotes the index of stiffness (stiffness index) and λi – are the

eigenvalues of a Jacobian matrix (𝑅𝑒 λi < 0, ni ,...,2,1) [6].

Also the index of stiffness of an MC was defined in [5], [14] as the product of the

largest total exit rate from a state and the length of solution interval (=λit), where λi are

the eigenvalues of the Jacobian matrix.

b) A system of differential equations (DE) is said to be stiff on the interval [0,t) if

there exists a solution component of the system that has variation on that interval that

is large compared to 1/t. Thus, the length of the solution interval also becomes a

measure of stiffness [14], [17].

We use the index of stiffness in the empirical evaluations that follow as a measure

of discrimination between the MCs with different indices of stiffness: high-stiffness

(s(x) ≥103), moderate-stiffness (102< s(x) <103) and low-stiffness (s(x) ≤ 102).

Here we provide an illustration of how the index of stiffness can affect the accuracy

achievable by numerical methods of solving a system of the DEs, which describes a

stiff MC.

The most common type of a stiff linear system of DEs is the system in which the

eigenvalues can be divided into two groups, based on the difference in their modulus

values. The eigenvalues of the first group with large modulus values determine the

solution behaviour in the boundary layer. Their corresponding components are rapidly

decreasing. The eigenvalues of the second group with small modulus values determine

the solution behaviour out of the boundary layer. The index of stiffness (1) is the ratio

between the maximum value from the first group and the minimum value from the

second one.

To describe in detail the influence of this separation on the stability of the numerical

methods let us consider a DE matrix with constant coefficients,

MjiaAAyy ij ,...,1,),(, 
 (2)

Miyyyy i

i ,...,1),(,)0(00 
 (3)

Matrix A is a simple-structured matrix, which means that it has M linearly

independent eigenvectors and 𝜆𝑖 , 𝑒𝑖 – are the eigenvalues and the corresponding

eigenvectors of matrix A, respectively. The solution of the Cauchy problem (2) with

initial conditions (3) is presented in (4):





M

i

i

x

i eeCxy i

1

)(


 (4)

Each component 𝐶𝑖𝑒
𝜆𝑖𝑥𝑒𝑖 present in the solution (4) is proportional to one of the

eigenvectors and is integrated independently of the other components.

If matrix А has large absolute negative eigenvalues a very small step h would be

required on the whole integration interval. With a large integration interval this

limitation would cause an increase of the local round-off errors, which would become

a serious problem if high overall accuracy is sought.

As an example let’s consider a system of two differential equations. Without loss

of generality let us assume that |𝜆1| ≫ |𝜆2|.
The exact solution (4) will take the following form:

 2211
21)(eeCeeCxy
xx 

 (5)

The first component of of the solution will decrease rapidly on the interval∽ 𝜏 =
1/|𝜆1|, and after that will become extremely small. In this interval this component

influences the solution y(x). The second component changes on the interval 𝜏 ∽ 1/|𝜆2|.
The second interval is much wider than the first one. In this interval the second

component influences the solution y(x). In the first interval the rate of solution change

is high and it is dominated by the change of the first component. In the second interval,

the rate of change is small and is dominated by the change of the second component.

As we can see the values of the given coefficients affect the behaviour of the transient

solution. On the first interval, the so called boundary layer, in order to achieve an

accurate solution in the presence of rapid changes, the step-size must satisfy the

condition ℎ ≪ 1/|𝜆1|. In the second interval the same condition on the step is required,

because the corresponding component of the DE must decrease.

The example despite its simplicity provides a clear illustration of how different

eigenvalues may lead to the need for changing the step-size in different integration

intervals so that accurate results may be obtained. The value of the stiffness index (1)

clearly affects the accuracy achievable with a given solution method. The higher the

stiffness index the stricter the requirements imposed on the stability of the chosen

numerical method.

Table 1. Experiment results

Method Parameter
t1=[0,1000]

S22 M/1/M/m

Rosenbrock

NSS 93 172

FE 2141 4302

NLS 279 516

TR-BDF2

NSS 114 210

FE 269 506

NLS 361 692

Backward

differentiation

NSS 74 150

FE 111 203

NLS 89 179

We study in detail the impact of the stiffness index on the achievable accuracy with

different numerical methods using two stiff MCs with substantially different stiffness

indices, s(x). The first stiff MC is a model of a computer system with hardware

redundancy and diverse software (S22) [21]. The second system is a queuing system

with server break-down and repair (M/M/1/k) [5]. The first system is of moderate-

stiffness, with s(x)=4*102 (1), where max |Re(λi)| = 0.2 and min|Re(λi)| = 0.0005. The

MC of the second system is of high-stiffness, with s(x) = 3.0001*104, where max

|Re(λi)|= 3.0001 and min|Re(λi)|=0.0001. Both MCs are of equal size – 20 states. The

study was conducted using the functions for solving stiff DEs implemented in the

mathematical package MATLAB – ode23s, ode23tb, ode15s, which implement the

Rosenbrock method, the TR-BDF2 and the method of backward differentiation,

respectively.

Table 1 summarizes the parameters obtained with the different methods for solving

stiff DE: the number of successful steps (NSS), the function evaluations (FE) and the

number of solutions of the linear systems (NLS). The time interval is t1=[0;1000]. The

Table shows that even when the model largeness is the same the solution for a system

of high-stiffness, M/1/M/m, requires nearly twice as many steps, function evaluations

and linear system solutions.

2.2 Stiffness-tolerance and Stiffness-avoidance Approaches

Stiffness-tolerance approach. The main idea of this approach is using methods that

are stable for solving stiff models. These can be split into two broadly classes:

“classical” numerical methods for solution of stiff DEs and “modified” numerical

methods used for finding a solution in special cases.

a) The classical (non-modified) numerical methods for solving stiff DEs use special

single-step and multi-step integration methods. Examples of such methods are the

implicit Runge-Kutta, the TR-BDF2, the Rosenbrock method, the exponential method,

the implicit Gir method described in [5], [6], [7], [13], respectively. The implicit Runge-

Kutta, TR-BDF2 and Rosenbrock method are implemented by several mathematical

off-the-shelf software packages and are usually considered the most accurate methods

for solving stiff ODEs.

b) An example of the modified numerical methods is the exponential modified

method. The original algorithm was presented in [6] and is based on the evaluation of

the matrix exponent. In [6] this method is recommended as one of the most effective

algorithms for solving the class of ODE systems with a high value of the Lipchitz

constant, and as a special part of a stiff ODE. As a modification part, an automated

adaptive step of integration can be implemented [6]. As the method has a multi-step

algorithm the given modification can increase the accuracy of the solution. The amount

of computations and the machine time needed for the solution of stiff DEs can be

reduced, too, [6].

The solution provided by using any numerical method is expected to be accurate.

However, typically the result obtained with numerical method include errors coming

from different sources, such as: problem statement error - an inherent error, due to

various simplifications introduced in order to make the problem (analytically) tractable;

truncation error - the error related to truncating the infinite series after a finite number

of terms are computed; round-off error - the type of error that arises in every arithmetic

operation carried out on a computer; initial error - the error related to the presence of

approximate parameters in the mathematical formulae. Ideally we would like to control

each of these components of the computational error.

Stiffness-avoidance approach. The basic idea of this approach is a model

transformation by identifying and eliminating the stiffness from the model, which

would bring two benefits: i) a reduction of the largeness of the initial MC, and ii)

efficiency in solving a non-stiff model using standard numerical methods. The

approach was named an aggregation/disaggregation technique for transient solution of

stiff MCs. The technique, developed by K. S. Trivedi, A. Bobbio and A. Reibmann [4],

[11], can be applied to any MC with transition rates that can be grouped into two

separate sets of values – the set of slow and the set of fast states [4].

While the transformation of the initial stiff MC brings benefits in terms of

efficiency, to the best of our knowledge, no systematic study has been undertaken of

the impact of the transformation (from a stiff to a non-stiff MC on the accuracy of the

solution. In addition, since the method is not supported by standard off-the-shelf tools,

the scope for human error in applying it is non-negligible.

3 Examples and Results

3.1 Example Systems used in the studies

In this subsection we provide a brief description of the systems that were solved using

STA and SAA. The first system was solved using both approaches, while the second

one – using only the SAA. The solution of the second system using STA was presented

in [11, 12].

System 1: A Fault-Tolerant Computer System. The first system, Fig. 1, used in the

study is a fault-tolerant computer system with two hardware channels, on which diverse

control software is run.

)1()1(, pp 
PC 1: SW Server 1:

)1()1(, dd 
PC 2: SW Server 2:

)2()2(, dd )2()2(, pp 

Fig. 1. Reliability block diagram of the chosen fault-tolerant system

In this case increasing system reliability is achieved via redundant hardware-software

components with identical hardware structure that supports “hot backup” [21]. We

assume that software run of the hardware channels is diverse [18], i.e. non-identical but

functionally equivalent software copies are deployed on the hardware channels. The

architecture thus offers protection against software design faults. Two channel

configurations are very widely used in many safety-critical application, e.g. in

instrumentation of nuclear plants, for instance Quad 3000 SIS critical control and safety

application. Also similar architectures are used in many business-critical applications,

such as the fault-tolerant servers (Blade Server NS50000c, IBM z10, Sun SPARC

Enterprise M9000 [21]).

Informally, the operation of the system is as follows. Initially the system is working

correctly – both hardware and software channels deliver the service as expected. If

during operation one of the hardware channels has failed, the system operation will be

failed over to the second channel until the first channel is “repaired”. Similarly, a

software component may fail, in which case a failover will take place to the other

channel, etc. In addition, we assume that the rates of failure and repair of software will

vary over time, e.g. as a result of executing the software in partitions as discussed in

[19]. We implement this assumption based on the research work [21]. This assumption

captures a plausible phenomenon – variation of software failure rates - which is well

accepted in practice: various software ‘aging effects’ are indeed modelled by an

increased rate of software failure.

Model parameters. The model parameters are as follows: i) p(1), p(1) and p(2), p(2)
– hardware failure and repair rates of the first and second hardware channels,

respectively; ii) d(1), d(2) – the initial software failure rate of the 1st and 2nd software

versions; iii) d – the step of failure rate decrease after the software recovers from a

failure; iv) d(1) and d(2) – the initial software repair rate of the 1st and the 2nd software

versions; v)d – the step of software repair rate decrease after the software recovers

from a failure. We also assume that the values of system failure and repair rates of both

the hardware components and of the software versions are equal: p(1) = p(2), p(1) =

p(2), d(1) = d(2), d(1) = d(2) [21].

The Markov transition graph for the system presented in Fig. 1 is shown in Fig. 2.

The model is built using the principle of multi-fragmentation [9]. Using this principle

the model can be divided into N fragments that are with the same structure but may

differ in one or more parameter values [21]. The number of fragments N in the MC

depends on the number of expected undetected software faults Nd, the value of which

can be estimated using probabilistic prediction models (6) [21]:

 N=Nd+1 (6)

The sum of the failure rates of both software versions is defined as (7):

 Λd= λd (1) + λd(2) (7)

This MC of System 1 consists of the following states: SF1={S1, S4, …, Sn+1} – the

set of states when both the hardware and software on both channels are working

correctly, SF2={S2, S5, …, S3n+2} – the set of states in which one of the hardware channel

has failed, SF3={S3, S6, …, S3n+3} – the set of states in which one of the software versions

has failed.

The system’s operation is described next. At time t0 the system operates correctly

in S1. At random moment, tn, a hardware or a software component failure occurs. In

case of a hardware failure the system moves to state S2. The rate of this transition is 2λp

and recovers from this state back to S1 with rate μp. In case of software failure the

system moves to state S3 and recovers from this failure by moving to state S4 with rate

μd. The states S1, S2 and S3 form the first fragment of the model, S4, S5 and S6 – form

fragment 2, etc. We assume that the internal fragments rates μd and Λd decrease by Δμd

and Δλd, respectively, as the system moves between fragments from left to right.

From the (Fig. 2) we derive the matrix of the system transition rates, where i=(1,..,n)

is the number of system fragments:

Fig. 2. Model of the system to be studied

 

(2) 0 0 0 0 ... 0 0 0 0 0 0

2 0 0 0 0 ... 0 0 0 0 0 0

0 0 0 0 ... 0 0 0 0 0 0

0 0 2 0 ... 0 0 0 0 0 0

0 0 0 2 0 ... 0 0 0 0 0 0

0 0 0 0 () ... 0 0 0 0 0 0

...

0 0 0 0 0 0 ... () 0 0 0 0 0

p d p

p p

d d

d d d p p

p p

d d d d

d d

i

i

n

  

 

 

   

 

  

 

 





    



    

  

 0 0 0 0 0 0 ... 2 0 0 0

0 0 0 0 0 0 ... 0 2 0 0 0

0 0 0 0 0 0 ... 0 0 () 0 0

0 0 0 0 0 0 ... 0 0 0 2

0 0 0 0 0 0 ... 0 0 0 0 2

d d d d p p

p p

d d d d

d d p p

p p

n n

n n

n

    

 

  

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
       
 

 
 

     
 
   
   

System 2: A Queuing System with Server Breakdown and Repair. The second

system was described in details by K.S. Trivedi and A. Bobbio in [4, 10]. The authors

consider an M/M/1/k queuing system where m is the system capacity. The first “M”

denotes a Poisson arrival process, the second “M” – denoted an exponentially

distributed service times. The system has 1 server and k buffers to hold customers

waiting for a service. The resulting model operates in 22 states [11]. Fig. 3 shows the

Markov transition graph for the system.

0,0 2,0 m,0

1,10,1

1,0

2,1 m,1

Fig. 3. The state diagram of the M/M/1/m queuing system with a server breakdown and repair

Model parameters. The λ and μ are the arrival and the service rates, respectively, while

γ and τ denote the server failure and failure repair rates. The main assumption is that

the rates λ and μ are fast while γ and τ are slow [4]. Using the parameters presented in

[11] we computed the index of stiffness for this system to be s(x) =3·104. Under the

terms of this paper this system as classified as a high-stiffness system. The system was

solved on the same interval [0, 1000) [11].

3.2 Experimental Results

In this Subsection we present the results obtained using the approaches described in

Section 2. The solutions for the MC of high-stiffness (the queuing system) is referred

to as Experiment 1. The solution for the MC of moderate-stiffness (the fault-tolerant

computer system) with changing parameters, would be referred to as Experiment 2.

Lastly, we define an MC of low-stiffness: this is a variant of the fault-tolerant computer

system with two hardware channels in which the model parameters have been changed

so that the stiffness index has become low (s(x)=50). This solution will be referred to

as Experiment 3.

Experiment 1. A solution of the queuing system with sever breakdown and repair using

SAA was presented in [4], [11]. In [4] as a measure of interest the authors used the

expected number of customers in the queue, E[N]. In [11], in addition, the approximate

result (calculated using SAA) and the exact values of P22(t) - the probability of having

all buffers full and the server down – were plotted together.

Now we turn our attention to solve the MC of high-stiff using the STA to solve this

model. We used two methods that fall into the STA category:

- Using the EXPMETH utility

- Using the functions for solving stiff DEs implemented in the mathematical

package Mathematica.

We used EXPMETH with initial data as follows: the matrix of coefficients was set

as defined in [11]; the mission time was set to t=1000; the accuracy of the solution

sought was set to 10-6; the number of steps was set to n=20. As Table 2 illustrates we

obtained a negative result, where the probabilities were calculated for every 50 hours

of the mission time, S={S1,S2,S3,…,S20}.

Table 2. Results obtained for Experiment 1 with ODU (EXPMETH)

Sn

t
S1 … S20

50
1.76231646111739250e+0100-

4.15365304345735515e+0100

1.06048815978458797e+0095-

3.22465594380700072e+0094

…

1000
1.88981041657022775e+2054-

4.45414711917994213e+2054

1.13720867698699733e+2049-

3.45794216161554014e+2048

The results from using the functions for solving stiff DEs implemented in Mathematica

are summarised in Fig. 4 in which the exact solution for P22(t) for 𝜆1=1.0, given in [11],

is compared with the results obtained with Mathematica.

Based on the empirical evidence with the STA methods applied to Experiment 1 we

conclude that STA cannot provide highly accurate solution for MCs of high-stiffness.

Fig. 4. Results of solving Experiment 1 model using Mathematica

0

0,002

0,004

0,006

0,008

0,01

0 200 400 600 800 1000 1200

P(t)

t

Exact solution

Mathematica

Experiment 2. To solve a moderately-stiff MC (Experiment 2) using SAA we used the

algorithm described in [4] and the uniformization method. STA solutions are also

obtained using EXPMETH and the mathematical package Mathematica, respectively.

The mission time was set again to t=1000, s(x)=4*102 (1), where max |Re(λi)|= 0.2

is the value of d, the software repair rate in the initial model fragment and

min|Re(λi)|=0.0005 is the value of d for the software repair rate in the final model

fragment.

A comparison between the solutions is shown in Table 3 for values of the

probabilities that the system is working in each of the states: {S1, S4, S7, S10, S13, S16,

S19} at t=500. This set represents the states without failure (operational states, i.e. both

channels work correctly without hardware or software failure).

Table 3. Results comparison. System 1

State/

t=500
SAA

STA

EXPMETH Mathematica

S1(t) 0,536010 0,537050 0,537052

S4(t) 0,323950 0,321630 0,321634

S7(t) 0,078610 0,078540 0,078542

S10(t) 0,010180 0,009810 0,009814

S13(t) 0,000640 0,000620 0,000618

S16(t) 0,000021 0,000020 0,000023

S19(t) 0 0 0

Fig. 5 shows the results for system availability obtained with EXPMETH and

Mathematica. For this system (Experiment 2) we used the result obtained with

EXPMETH as an exact solution [18]. A discussion of the discrepancies between the

solutions obtained with various packages is available in [18].

Based on this experiment we can conclude that for MCs of moderate - stiffness both

the SAA and STA can be used. We note that the STA methods would produce an

accurate solution faster than SAA when applied to small to moderate systems.

We also note that the particular mathematical package, Mathematica, detects

automatically the stiffness of the DE’s using a built in “StiffnessTest”. In addition the

user of this package can use ”StiffnessSwitching”, the basic idea as the name suggests

being that the package will switch automatically between stiff and non-stiff solvers

depending on the outcome of the stiffness test. The non-stiff solver uses the

“ExplicitModifiedMidpoint” base method, while the stiff solver uses the

“LinearyImplicitEuler” base method [22]. Such special methods can be useful in case

of solving an MC of small to moderate size. Finally, we note that the mathematical

package offers convenience, but at same time significant effort is required to construct

the necessary functions in case of large models, which introduces scope for human

errors, e.g. while entering the initial data.

EXPMETH can be more effective in terms of usability. With Experiment 2

Mathematica required a function with 7 arguments, while EXPMETH only required 4

arguments and a matrix of coefficients of the DEs.

t

Fig. 5. Comparison of STA methods applied to Experiment 2

Experiment 3. We solved the model of a system with low-stiffness (Experiment 3)

using the STA only. Based on the justification in Subsection 2.1 we concluded that

SAA are the best for solving MCs of high-stiffness and large MCs of moderately-

stiffness. In case of MCs of low-stiffness the use of STA can take less time and still

provides an accurate solution. As in the previous experiment we consider a mission

time t=1000, the s(x)=50 (1), where max |Re(λi)|= 0.2 – the value of d software repair

rate in the initial model fragment and min|Re(λi)|=0.004 – the value of d software

repair rate in the final model fragment. Fig. 6 shows the results of the comparison of

system availability, Pa(t), obtained with EXPMETH and Mathematica. The results are

practically indistinguishable. Based on this experiment we can conclude that for MCs

of low-stiffness the STA can provide an accurate result.

Fig. 6. Comparison of results with STA methods applied to Experiment 3

4 Selection of a Solution method and of a Software Tool

Based on the results presented in the previous Subsection we propose the following

selection procedure (Fig. 7), which takes into account the index of stiffness of the MC

under consideration. The first layer of the algorithm takes the index of stiffness, s(x)

given by (1), as an initial separator. The system in question is assigned to one of the

three classes: high-stiffness, moderate-stiffness or low-stiffness.

An MC of high-stiffness. If the value of s(x) is greater or equal than 103 the system

model is defined as an MC of high-stiffness. We move to the left branch of the

algorithm. If in the system under consideration the parameters change over time, we

propose that the principle of multi-fragmentation (MFM) be used. Otherwise this step

is skipped.

0,92

0,94

0,96

0,98

1

0 2000 4000 6000 8000

EXPMETH

Mathematica

0,94

0,96

0,98

1

0 200 400 600 800 1000

P(t)

t

EXPMETH

Mathematica

P(t)

t

parameters
variation

parameters
variation

parameters
variation

Build
the

MFM

Build
the

MFM

Build
the

MFM

Yes Yes Yes

Use
the
IMC

Use
the
IMC

Use
the
IMC

No No No

Use of SAA

Special tools
use

Moderate

value

102< s(x) <103

s(x) ≥103

High value Low value

s(x) ≤ 102

Large MC
YesNo

Use of
STA

Use ODU or
special tools

Special
tools
use

YesNo

Use of
STA

Use of
math-
tools

Use ODU,
special tools
or math-tools

Begining

Solved stiff IMC

End

Large MC

Use of
STA

Use of
SAA

Initial stiff MC

Fig. 7. An algorithm of selecting an optimal method for solving MCs based on the stiffness index

and the size (largeness) of an MC

Based on the results from Experiment 1, we propose that SAA be used. In this case

using specialized software will provide the most accurate solution. The use of STA in

this case can produce a solution of low accuracy, which may be unacceptable.

An MC of moderate-stiffness. If the index of stiffness is in the interval [102, 103] we

move to the branch in the middle of the diagram. As in the previous case we propose

that MFM be used if in the system under consideration the parameters vary over time.

If the parameters do not change the procedure suggests that the initial MC (IMC) be

used. On the third layer we propose that the largeness be used as an additional separator.

As a theoretical separator the number of system states n=1000 can be used. If the

number of model states is greater than n – the model is considered large, otherwise the

model is not large. To provide effective results in case of a moderately-stiff large MC

we propose the use of SAA and specialized tools. Indeed, one of the main features of

SAA is the reduction of the system state space. For moderately-stiff MCs which are not

large, based on the results of Experiment 2, we propose that STA be used with either

EXPMETH or other specialized tools.

An MC of low-stiffness. If the index of stiffness is low, s(x) ≤ 102, we move to the

right branch of the algorithm. On the second layer we use the same separator as in

previous cases. If the system under consideration includes parameter changes then

MFM is needed, otherwise it is not needed and the initial MC can be used. In the third

layer the system largeness is used as a separator. In case of a large MC of low-stiffness

we propose that STA be used; as a tool we would recommend either EXPMETH or

another specialized tool. These specialized tools were developed for special problems

solution so they can provide more convenient data representation and satisfy the

requirements of high accuracy. In the case of an MC of low-stiffness which is “not

large” we propose the use of STA and EXPMETH or mathematical packages.

5 Conclusion

As a result of empirical studies we noticed that the value of stiffness index and the size

of the MCs can affect the accuracy of the solutions achievable using different methods.

One of the interesting results is that we can effectively use the SAA to solve a large

moderately-stiff MC when the parameters vary, which was the focus in previous

research work [18]. In our future work we intend to extend the algorithm presented in

the paper and take into account the most effective approach that can deal with large

MCs: largeness-tolerant and largeness-avoidance approaches. As a result we are hoping

to define the best combination of “largeness-stiffness” approaches that can be applied

effectively to systems with variable parameters.

6 References:

1. Volkov, L.: Managing the operation of the aircraft systems: Tutorial. Vyshaya
Shkola, Moscow (1981). “(In Russian)”

2. Ventsel', E., Ovcharov, L.: Probability theory and its applications in engineering.
Nauka, Moscow (2000). “(In Russian)”

3. Archana, S., Srinivasan, R., Trivedi, K.S.: Availability Models in Practice.
Proceedings of Int. Workshop on Fault-Tolerant Control and Computing (FTCC-
1), May 22-23, Seoul, Korea (2000).

4. Bobbio, A., Trivedi, K.S.: A aggregation technique for transient analysis of stiff
Markov chains. In: Computers, IEEE Transactions, vol. C-35, pp. 803-814
(1986)

5. Malhotra, M., Muppala, J.K., Trivedi, K.S.: Stiffness-tolerant methods for
transient analysis of stiff Markov chains. In: Microelectronic Reliability, vol. 34,
No.11, pp. 1825-1841 (1994)

6. Arushanyan, O., Zaletkin, S.: Numerical solution of ordinary differential equations
using FORTRAN. Moscow State University, Moscow (1990). “(In Russian)”

7. Bank, R.E. et al.: Transient simulation of silicon devices and circuits. In: IEEE
Transactions on Electron Devices, 32(10):1992-2007, (1985)

8. Geist, R., Trivedi, K.S.: Reliability estimation of fault-tolerant systems: tools and
techniques. In: Computer. Vol. 23, pp. 52-61, (1990)

9. Kharchenko, V., Timonkin, G., Sychev, V.: Fundamentals of design and
constructions the automated control systems for aircraft technical state control.
Study guide. KVKIU, Kharkov (1992). “(In Russian)”

10. Nicola, V.F.: Markovian models of transactional system supported by check
pointing and recovery strategies, part 1: A model with state-dependent
parameters. In: Eindhoven Univ. Technol., Eindhoven, The Netherlands, EUT
Rep. 82-E-128, (1982)

11. Reibman A., Trivedi K. S., Kumar S., Ciardo G.: Analysis of stiff Markov chains.
In: ORSA Journal on Computing, vol. 1, No.2, pp. 126-133, (1989)

12. Hayrer, E., Vanner, G.: Solution of ordinary differential equations. Stiff and
differential-algebraic problems. Mir, Moscow (1999). “(In Russian)”

13. Press, W.H, Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical recipes.
The art of scientific computing, 3rd edition. Cambridge university press. p. 1262,
(2007)

14. Reibman, A., Trivedi, K.S.: Numerical Transient Analysis of Markov models. In:
Comput. Opns. Res., vol. 15, No. 1, pp. 19-36. (1988)

15. Jensen A.: Markoff chains as an aid in the study of Markoff processes. In: Skand.
Aktuarietidskrift, vol. 36, pp. 87-91, (1953)

16. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. In: Commun, ACM
31(4), pp. 440-445, (1985)

17. Miranker, L.: Numerical Methods for stiff equations and Singular Perturbation
Problems. In: D. Reidel, p. 218, Dordrecht, Holland (1981)

18. Kharchenko, V., Popov, P., Odarushchenko, O., Zhadan, V.: Empirical evaluation
of accuracy of mathematical software used for availability assessment of fault-
tolerant computer systems. RT&A #03(26). vol. 7. pp. 85- 97 (2012)

19. Littlewood, B., Popov, P., Strigini, L.: Modelling software design diversity - a
review. In: ACM Computing Surveys. vol. 33, No1. pp. 177 - 208., (2001)

20. Popov, P., Manno, G.: The Effect of Correlated Failure Rates on Reliability of
Continuous Time 1-Out-of-2 Software. In: Computer Safety, Reliability, and
Security (SAFECOMP 2011). Naples, Italy: Springer. (2011)

21. Kharchenko, V., Odarushchenko, O., Ponochovny, Y., Zhivilo, S., Odarushchenko,
E., Kharibin, O., Odarushchenko, V. High availability systems and technologies.
Lectures. Kharchenko, V. (ed.). In: National aerospace university “KhAI”, p. 249
(2012)

22. Wolfram Mathematica 9 Documentation Center,
http://reference.wolfram.com/mathematica/tutorial/NDS

olveStiffnessSwitching.html

