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ABSTRACT 

 

The ileocecal valve (ICV) is a common source of false-

positive (FP) detections in CT colonography (CTC) 

computer-aided detection (CAD) of polyps. In this paper, we 

propose an automatic method to identify ICV CAD regions 

to reduce FPs. The ICV is a particularly challenging 

structure to detect due to its variable, polyp-mimicking 

morphology. However, the vast majority of ICVs have a 

visible orifice, which appears as a 3D concave region. Our 

method identifies the orifice concave region using a partial 

differential equation (PDE) based on 3D curvature and 

geometric constraints. These orifice features, combined with 

intensity and shape features generated in a Bayesian 

framework, comprise a set of compact features fed into an 

Adaboost classifier to produce a final classification of a 

region being ICV or non-ICV. Experimental results on a 

multi-center tagged CTC dataset demonstrate the success of 

the method in detecting ICV regions and reducing FPs in 

CAD. 

 

Index Terms— Colon CAD, Principle curvature flow, 

Bayesian methods, Ileocecal valve (ICV) detection 

 

1. INTRODUCTION 

 

The ileocecal valve (ICV) is located at the junction between 

the large and small bowel. The valve consists of two 

segments, an upper lip and a lower lip, that are formed by an 

intrusion of the circular muscle layer of the ileum into the 

lumen of the large intestine [1]. There are three types of 

ICVs differentiated by their shape and fat content. A labial 

ICV has a slit-like appearance and lower fat content, a 

papillary ICV has a dome-shaped appearance and also lower 

fat content, while a lipomatous ICV has variable shape but 

significant fatty tissue within the lips. A normal ICV of any 

type is defined as prominent when it protrudes far into the 

lumen of the large bowel, with the lips of the valve generally 

symmetric with respect to the valve orifice shown in Fig.1.  

     The ICV is a relatively small, deformable structure. In 

CT colonography (CTC) computer-aided detection of 

polyps, the ICV is a common source of false positives (FP), 

which may be time-consuming to interpret and exclude 

clinically. As reported in the most recent study for our colon 

CAD algorithm by Lawrence et al. [2], 18.8% of FP regions 

result from ICVs. Fig. 2 shows an example of an ICV being 

mistaken for a colon lesion in our colon CAD system [3]. 

Automatic detection of the ICV is therefore of great clinical 

value for improving the CAD performance. Moreover, 

identification of ICV provides an important clinical 

landmark to visualize the colon anatomy. However, 

detection of the ICV is challenging due to the ICV’s bumpy 

polyp-like geometry and large shape and appearance 

variation.  

   
               (a)                             (b)                              (c) 

 

Fig.1. Examples of three different types of ICVs in CT images. (a) 

labial; (b) papillary; (c) lipomatous. 

 

      In the literature, there is limited work on ICV detection. 

Summers et al. [4] developed a CTC CAD approach for 

differentiating the ICV from a true polyp; however, the 

method is not fully automatic. Lu et al. [5] applied an 

incremental parameter learning (IPL) algorithm to detect the 

ICV in CTC images. Probabilistic boosting tree (PBT) and a 

large set (thousands) of point-level and box-level steerable 

features are used in a sequential search over location, pose 

and scale.  

      This paper proposes a novel and efficient concavity-

based approach for the FP reduction of ICVs in CTC CAD. 

Different with the work in [5], we explicitly take advantage 

of the concavity of the ICV orifice, computing the concave 

region using a PDE flow and producing a very compact (six) 

set of features that are specific to the problem of ICV 

detection. The extracted orifice features, combined with  

Bayesian statistical features, are used in an Adaboost 

classifier to classify regions as ICV or non-ICV. Regions 

identified as ICV are removed from the set of findings 

produced by the CAD system. Our method has been 

evaluated on multi-center tagged CTC dataset and the 

experimental results demonstrate the method’s success at FP 

reduction.  
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Fig.3 A schematic diagram of 

an ICV orifice 

     
 

Fig.2. Example of a FP region in colon CAD. (left) CT sub-image; 

(right) FP region (the ICV is mistakenly detected as a polyp).  

 

2. METHODOLOGY 

 

In this section, we first apply a 3D second principal 

curvature based PDE for computing features based on the 

ICV orifice. In addition, we map the intensity and spatial 

location into a Bayesian framework to extract statistical 

features, and feed all features into a classifier to label 

regions as ICV or non-ICV.   

 

2.1. Orifice features based on negative second principal 

curvature flow  

 

The ICV orifice has an informative surface profile and it is 

considered a useful landmark [1] for the ICV identification. 

Our approach to extract orifice features is comprised of two 

stages. A negative second principal curvature flow is applied 

to extract 3D concave regions, which are subsequently 

refined using local geometry features. 

      Fig. 4(a) shows a typical ICV orifice in CTC. Note that 

the orifice is a round concave object embedded in the 

protruding ICV surface, which means its first and second 

principal curvatures are negative. In contrast, colonic folds 

are elongated structures, convex only in one direction and 

correspondingly exhibit a positive first principal curvature 

and a close to zero second principal curvature. Colonic 

polyps are convex and have positive values for both 

principal curvatures. van Wijk et al. [6] applied a positive 

second principal curvature PDE for polyp detection. In this 

paper, to extract ICV orifice feature, we instead propose a 

negative second principle curvature flow designed to detect 

concave regions. Repeated application of the PDE to the 

image will gradually flatten the surface and fill in the local 

concavities. In particular, the PDE is defined as 
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 is the second principal curvature at voxel ix , 

and I  is the gradient magnitude of the 3D image. 

      Based on Equation 1, the image intensities exhibit small 

(if any) change for colonic folds/polyps, and large change 

for concavities (such as the ICV orifice). During each 

iteration, only at locations of concave objects where the 

second principal curvature is negative, the image intensity is 

increased by an amount proportional to the local second 

principle curvature 2k . After the PDE reaches steady state, 

the difference image D between the deformed and the 

original 3D image indicates the concave region.  

      Fig. 4(b) shows result of the PDE described in Equation 

1. We note that the ICV orifice is successfully detected. 

However, as shown in Fig. 4(b), there are also other detected 

concave regions, which can be filtered out in a post-

processing step, described next. 

      As mentioned previously, for normal ICVs, the lips of 

the valve are generally symmetric with respect to the valve 

orifice. Fig. 3 shows a schematic diagram of an ICV. 

Assume colonN  is the normal to the local protruding colon 

surface, orificeN  is the normal to the ICV orifice, and 

orifice  is an angle between the two normals. 

       To remove obvious non-ICV concave regions, the 

following geometric features are calculated:  

1) We extract the protruding colon wall surface Sp (shown 

in Fig.3, Fig.4e) by subtracting the protruding object, 

which is obtained from the critical points based method 

applied to the segmented colon [3]. 

2) We calculate the average protruding surface 

normal colonN (see Figure 3). 

3) For each concave region obtained from Eq. 1, we 

calculate the average concave surface normal orificeN . 

4) Next, we calculate the orifice angle ( orifice ) between 

the two normals. 

5) A 3D distance transform is calculated from Sp. A 

maximum distance orificefDisMax  is then determined for 

each concave region. 

      In CTC, it is known 

that the ICV orifice is 

located on the side of 

the protruding object 

and between the two 

lips of the valve as 

shown in Fig. 1 and 

Fig. 4(a).  Therefore, a 

concave region can be 

eliminated from the 

potential ICV orifice 

candidates if the 

maximum distance of the concave region is too close to the 

colon wall surface, namely, disorificefDisMax  , or if the 

local concave surface direction is too close to the protruding 

surface normal, namely, min orifice , where 
dis  and 

min  

are pre-defined thresholds. In this study, 
dis is set to be 

3mm, and 
min  is chosen to be 5 , which are determined 

experimentally.   

      For the remaining orifice candidates, three features 

including the number of concave regions, size, and orifice 

direction of the maximum concave region are calculated.  



      Fig. 4 shows an example of ICV orifice detection based 

on the above two steps. Fig. 5 is an example of a non-ICV 

concave region removed by the post-refinement step, due to 

the small concave angle orifice . 

 

    
          (a)                              (b)                          (c) 

    
             (d)                              (e)                           (f) 
 
Fig. 4 Two-step ICV orifice detection example. (a) CT sub-image; 

(b) the difference image based on negative k2 PDE; (c) the 

protruding object extracted based on critical points [3]; (d) the 

local colon wall without the protruding object; (e) the protruding 

colon wall surface Sp; (f) the final detected ICV orifice after the 

post-refinement step. 

 

     
 (a)                     (b)                    (c)                     (d) 

   
                  (e)                    (f)                     (g) 
 
Fig. 5 Post-refinement step to remove a non-ICV concave region. 

(a-f) are the same as described in Fig.4; (g) is the final result 

indicating no ICV orifice detected. 

 

2.2. Bayesian probability map for intensity and location 

features 

 

Based on the clinical observation that most ICVs are 

positioned along the medial aspect of the cecum and have 

relatively low CT attenuation (often resulting from fat), 

image intensity and anatomic location provide additional 

features to discriminate ICVs from other protruding objects 

(e.g. colonic polyps). In this section, both intensity and 

location features are combined and then mapped into a 

probability calculation using a unified Bayesian framework.  

      A Gaussian function models the ICV intensity 

likelihood, defined as: 
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where I is the image intensity at voxel X in 3D image, I  

and I  are the mean and standard deviation (std), 

respectively. In our experiment, the mean I  is set to be 

20 HU, automatically determined using a training dataset.  

      ICVs are typically located near cecum (anatomically, the 

first part of the colon), far from the rectum (the last part). 

We employ this fact in a spatial location feature. First, a 

centerline through the colon is computed based on distance 

transforms [7]. For each potential region (protruding object), 

the distance to the rectum ( GL ) is determined based on the 

centerline. A truncated Gaussian function models the ICV 

distance likelihood: 
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where DSGL  ,   1XLP G . Here, DS  and DS  are 

the mean and std, respectively, which are automatically 

determined from a training dataset. 

      Assuming both intensity and location features being 

conditionally independent, based on Bayes’ law, the 

combined ICV probability map can be calculated as: 
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where  XP  is a prior probability. In this paper, a uniform 

prior is used. 
 

2.3. ICV Classification using Adaboost 
 

Given the regions from the CAD system and the 

corresponding feature vectors  
NiiF

,...,2,1  calculated from 

the second principal curvature flow (Section 2.1) and the 

Bayesian probability map (Section 2.2), an AdaBoost 

classifier [8], which is a serial ensemble approach that forms 

a strong classifier with a linear combination of weak 

learners, is employed to distinguish ICV regions from the 

non-ICV regions. The ICV regions are then removed from 

the list of CAD findings. In this paper, six features (N=6) are 

computed, among which, three features are extracted from 

the PDE, namely, the orifice direction orifice , orifice size, 

and the number of the concave regions; and three statistical 

features from Bayesian probability map (mean, maximum 

and std of the probability within the region). 

       

3. EXPERIMENTAL RESULTS 

 

The proposed method has been trained and evaluated on 

multi-center tagged CTC images. In our previous work, we 

have developed a complete and automatic colon CAD 

system [3]. The aim of this experiment is to use the proposed 

method to remove ICV-type false regions.        



      The entire dataset is divided into a training set and an 

independent testing set. In the training set, there are 38 

annotated CTC volumes from three different hospitals. Each 

ICV boundary was manually delineated by a qualified 

radiologist. The colon CAD system produces 316 potential 

lesion regions in total, among which, 29 regions correspond 

to the ICV. For each candidate region from CAD, the six 

features mentioned in Section 2 are calculated and fed into 

the Adaboost classifier. Table 1 shows the ICV detection 

performance on the training dataset. Note that 26 out of 29 

ICVs are successfully detected based on the proposed 

method, resulting in an ICV detection sensitivity of 90%, 

with 25 FP regions.  

     In the independent testing dataset, there are 36 multi-

center CTC volumes. To produce the ground truth, each 

polyp and ICV boundaries were manually delineated by 

qualified radiologists. In total, there are 202 potential lesion 

regions automatically detected by the CAD system, with 47 

true positives and 155 false positive regions, resulting in FP 

ratio at 4.3/vol. Among those 155 FP regions, 30 regions 

correspond to the ICV, which means 19.4% FP regions are 

ICV regions.    

 
Table 1. ICV detection performance of the proposed method on 

the training dataset  
 

Number of ICV Detected ICV FP regions 

29 26  (90%) 25 

 
Table 2. The ICV detection performance of the proposed method 

on the independent testing dataset  
 

Number of ICV Detected ICV FP regions 

30 25 (83%) 24 

 

Table 3. The comparative colon CAD performance before and 

after the proposed method on the testing dataset  
 

Previous colon CAD Colon CAD followed by the proposed 

method 
Number of 

polyps 

detected 

FP 

(/vol) 

Number 

of polyps 

detected 

FP 

(/vol) 

FP 

reduction 

 

47 4.3 46 2.97 31% 

 

  
 

Fig. 6 Example of the two detected ICVs in 3D. 
 
      The above trained model has been applied to the 

independent set. Table 2 shows ICV detection performance 

on the testing dataset. 25 of the 30 ICVs are successfully 

detected based on the proposed method, resulting in an ICV 

detection sensitivity of 83%. Of 24 non-ICV regions 

resulting from the classifier, only 1 of the 47 polyps is 

missing. This is a very encouraging result, as the CAD FP 

rate is thusly reduced from 4.3/vol down to 2.97/vol, which 

is about 31% FP reduction, as shown in Table 3. Thus, the 

proposed method is highly effective at removing FPs 

produced by the colon CAD system. Fig. 6 presents 

examples of detected ICVs 

 

4. CONCLUSION 

 

We have presented an automated, orifice-based detection 

method to identify ICV regions for FP reduction in CTC 

CAD. A second principal curvature based PDE is calculated 

to extract the ICV orifice feature. Then intensity and spatial 

features are combined and mapped into a probability 

calculation using a Bayesian framework.  

       The method has been applied to a multi-center tagged 

CTC dataset and shows the ICV detection rate of 90% for 

the training dataset and 83% for the independent testing 

data, with the FP reduction of 31% by using the proposed 

method. Tagged CT data are generally much more 

challenging. Both qualitative and quantitative experiment 

results demonstrate the clinical promise of the proposed 

method for removing a common source of false positive 

detections and improving colon CAD system performance. 
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