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A Bayesian Approach for False Positive 

Reduction in CTC CAD 
 

Xujiong Ye, Gareth Beddoe and Greg Slabaugh 

Medicsight PLC, London, UK  

Abstract. This paper presents an automated detection method to identify 
colonic polyps and reduce false positives (FPs) in CT images. It formulates the 
problem of polyp detection as a probability calculation through a unified 
Bayesian statistical model. The polyp likelihood is modeled with a combination 
of shape and intensity features. A second principal curvature PDE provides a 
shape model; and partial volume effect is considered into modeling the polyp 
intensity distribution. The performance of the method is evaluated on a large 
multi-center dataset of colonic CT scans. Both qualitative and quantitative 
experimental results demonstrate the potential of the proposed method. 
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1   Introduction 

Typical approaches to computed tomography (CT) colonography (CTC) CAD can be 

classified as shape-based. Shape-based methods typically rely on various shape 

features derived from either first order differential geometric quantities [1]; or from 

second order quantities computed using Hessian matrices [2-4]. The shape features 

take advantage of the fact that polyps tend to have rounded shapes or contain at least 

local spherical elements; while colonic folds are elongated shapes. However, in 

practice, polyps are often abnormal growths that exhibit varying morphology, and 

shape-based methods may fail to detect polyps with sufficient reliability. Therefore, in 

addition to shape-based features, other features such as those based on appearance can 

also be used to improve detection performance. Appearance-based features include 

image intensity either directly or indirectly through intensity related features, which 

take advantage of the fact that polyps typically exhibit a slightly elevated intensity 

and inhomogeneous texture relative to surrounding mucosal tissue. 

  The goal of this paper is to incorporate shape features with appearance features in a 

unified Bayesian framework to reduce false positives (FPs) in colon CAD. For each 

voxel within the candidate region, our method estimates the probability that the voxel 

is contained within a polyp. The advantages of a Bayesian technique are as follows. 

First, statistical techniques are ideally suited to modeling the large uncertainty 

inherent to detection problems in medical imaging. Second, there often is useful 

medical knowledge (such as lesion density, size, shape etc.) that can be utilized to 

constrain the solution of detection problems. This prior medical knowledge can be 

easily encoded into a Bayesian model. Finally, a Bayesian technique provides a 

unified framework to incorporate various features F into one statistical model.  

  Mendonca et al. [5] form a probability distribution function for each voxel in the 

image based on simplified geometric models (ellipsoidal polyps, spherical colon wall, 



etc.), which preclude a specific training step. However, these parametric models have 

limited capability to model the complexity of actual polyps in human anatomy. Our 

approach uses more expressive shape model that has been shown to model the 

variation in polyp shapes. Also, the proposed framework includes prior medical 

knowledge through explicit learning based on labeled examples. To our knowledge, 

this is the first time such a learning-based Bayesian approach for modeling the 

likelihood of polyp voxels has been proposed in a CTC CAD system.  

  The proposed method has been applied to the candidate regions found by our 

previous CAD algorithm [6]. Quantitative evaluation on a large multi-center clinical 

dataset of colonic CT scans shows the excellent performance of the method, which 

reduces the FPs by an average 16%, while keeping the same sensitivity. 

2  Method 

We are given a set of voxels { }NixX i ,...,1, ==  in a 3D image, a set of features 

{ }M ..., 1,j  , == jFF  associated with each voxel ix , and a set of labels 

{ }10... −=Λ Kll . Here, we use K=2, where, 0l is a non-polyp label; while 1l  is a 

polyp label. This paper focuses on assigning one of the labels to individual image 

voxels within a candidate region based on a probability calculation through a unified 

Bayesian framework. Two features are considered: the intensity I and shape S;  

namely, IF =1 , SF =2 . While we focus on these two features, the framework is 

extensible to other features as well. 

Assuming each feature jF  being conditionally independent, the probability of a 

polyp label at each pixel can be calculated based on Bayes’ law:  
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The posterior, likelihood, and prior terms are ( )FXP , ( )XFP  and ( )XP . In 

this paper, a uniform prior is used. 

  The goal is to use Eq. 1 to model the probability of a polyp label existing at each 

voxel within each candidate region. A block diagram of the proposed method is 

illustrated in Fig. 1. Below each stage is described in detail. 
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Fig.1 Block diagram of the proposed Bayesian method for FP reduction 
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Fig.2 A schematic diagram of colonic polyp 

2.1 Modeling the likelihood term 

In the Bayesian framework, the likelihood term indicates the joint density distribution 

of all features for class 1l . It is noted that, to accurately calculate each feature, during 

the pre-processing step, a Gaussian filter is applied to remove noise.   

2.1.1 Intensity model  

It is well known that CT images exhibit 

partial volume effect (PVE) due to the 

limitations in scanning resolution. For tissues 

like polyps near air, the boundary of the polyp 

may appear darker than that of its central 

region as a result of the PVE. Assume a polyp 

is in hemispherical shape and it contains two 

parts: a core part ( cr ) with mean intensity Icµ  

and a PVE part ( r∆ ) with the mean 

intensity Ipµ . Fig. 2 shows the schematic diagram of the polyp. 

  For the purpose of false positive reduction, the candidate region’s size can be 

incorporated into the intensity model to address the PVE. For each candidate region, a 

sub-image is extracted. The polyp intensity model varies for each polyp region and 

can be given by a Gaussian function: 
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where Iµ  can be defined as a function of potential polyp size (e.g. radius r), 

namely )(rfI =µ . Given the whole polyp radius as rrr c ∆+= , the mean 

intensity of a polyp is adaptively determined as: 

IpIcI ff µµµ ⋅−+⋅= )1(  (3) 
 

where f is the fraction of the core part’s volume compared to the whole polyp’s 

volume, namely, ( ) 3333
rrrrrf c ∆−== .                           

When a polyp is very small, there might be no core part, namely 0=cr  and 0=f , 

so the mean intensity Iµ  depends on the mean intensity of PVE Ipµ . In contrast, 

when a polyp is very big, e.g. ∞→r , we have 1=f , so the mean 

intensity Iµ depends on the mean intensity of core part 

2.1.2 Shape model 

The second principal curvature (K2) partial differential equation (PDE, or flow) for 

polyp detection was recently introduced by van Wijk et al. [4]. The aim of this section 



is to model the K2 flow feature’s distribution and combine it into the joint statistical 

likelihood term of the Bayesian framework.  

The vast majority of polyps are raised objects protruding on the colon surface, 

which means their first and second principal curvatures have positive values.  In 

contrast, colonic folds are elongated structures, bent only in one direction, and 

correspondingly exhibit a positive first principal curvature and a close to zero second 

principal curvature. Therefore, to detect polyps, a flow based on the second principal 

curvature can be designed that affects only points with a positive second principal 

curvature in such a way that the second principal curvature decreases. Repeated 

application of the PDE on an image will gradually deform the image, reducing, and 

then removing surface protrusions.  

A PDE flow to remove protruding objects can be defined as  
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where ( )ixk
2

 is the second principal curvature at image voxel ix , and I∇  is 

the gradient magnitude of the input image. 

Based on Eq. 4, the image intensities exhibit small (if any) change for folds, and 

large change for protruding objects (such as polyps). During each iteration, only at 

locations of protruding objects the image intensity is reduced by an amount 

proportional to the local second derivative 2k . After the PDE reaches steady state, the 

difference image D between the input and the deformed images indicates the amount 

of protrusion. By design, it discriminates between polyps and folds and is robust to 

different polyp morphologies and sizes. A truncated Gaussian function is used to 

model the polyp likelihood as a function of the intensity difference DF k =2
2 . The 

truncated Gaussian function allows a larger range of voxels with high K2 flow have 

high probability of being polyp labels.  










 −
−=

2
2

2
2

2
22

2

)(
exp)(

k

k
k

k F
XFP

δ

µ
, when 2

2
2 k
k

F µ> , 1)( 2
2 =XFP
k

 

 

(5) 

where 2kµ  and 2kδ  are the mean and standard deviation (std), respectively, 

determined through a training dataset.  

  We compared this K2 flow to other second-order shape features such as shape 

index [2]. Fig.3 shows a comparison applied to two polyps (a) (with one polyp 

attached to the colonic wall, while the other polyp attached to the colonic fold). It can 

be seen that, both the intensity likelihood map (b) and the shape likelihood map (c and 

e) are highlighting the polyps. However, compared to the shape likelihood map 

calculated based on shape index (c), the proposed K2 difference map (e) shows 

superior performance with very few false regions in the entire sub-image. Fig. 3(f) is 

the final polyp probability map from the intensity and K2 flow likelihoods (Eq.1). It is 

noted that, by using the proposed Bayesian method with K2 flow shape model, both 

polyps can be detected and properly segmented from the surrounding tissues. 

 



      

 
  (a)         (b)          (c)         (d)          (e)        (f)     

Fig.3. Results of the Bayesian method comparing two different shape features on two polyps 

(a) CT sub-image; (b) Intensity probability; (c) Shape index probability; (d) Joint (Bayesian) 

probability based on intensity and shape index probability; (e) K2 flow difference image; (f) 

Joint (Bayesian) probability based on intensity and K2 probability.  

3  Experimental Results and Discussion 

The proposed Bayesian method has been trained and evaluated on CT colon images. 

The entire dataset is divided into a training set and an independent testing set. There 

are 68 scans containing 70 polyps in the training set. The training set is used to 

optimize model parameters. In this paper, each feature likelihood term in Eq. 1 is 

associated with one rule for polyp detection. The parameters for each model that 

provide good cut-off in a ROC curve are chosen. 

In our previous work, we have developed an entire automatic CT colonic polyp 

detection algorithm [6]. The aim of this experiment is to use the proposed Bayesian 

method to further remove false regions. For each candidate region, a polyp probability 

map based on Bayesian framework (Eq.1) is calculated, where, the intensity model is 

based on Eq.2 and K2 feature is used for the shape model. A hysteresis thresholding 

and 3D labeling are then applied on each probability map. If a candidate region 

contains a set of 3D connected voxels with high probabilities of “polypness”, the 

region is kept as a potential polyp region. Otherwise, the region is considered to be a 

non-polyp region and removed from the polyp candidates. 

  For a quantitative evaluation of the performance, the method has been tested on our 

latest independent dataset of 59 patients (118 CT volumes) of prone and supine 

volumes collected from 4 institutions, with in total 75 polyps. Fig. 4 shows FROC 

curves based on our previous CAD algorithm only and the further FP reduction based 

on the proposed Bayesian method. It can be seen that, with the same sensitivity, the 

Bayesian method reduces the FPs by an average of 16%. For example, with sensitivity 

of 93.3%, the FP rate can be decreased from 6.2 per-volume to 5.2 per-volume after 

applying the Bayesian method. As we keep the same sensitivity for the proposed 

method, the improved curve looks a shift compared to the previous curve. This 

demonstrates the effectiveness of the proposed algorithm on the false positive 

reduction. (It is noted that, in this experiment, the sensitivity is measured per polyp 

that is, if a polyp is detected on either or both volumes, it is considered a true positive 

and false positives are measured per volume, as is the convention in CTC). 
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Fig.4 FROC curves demonstrating the improvement of the Bayesian approach compared to our 

previous CAD algorithm. 

4  Conclusion 

We have presented a Bayesian approach to reduce false positives in CTC CAD. For 

each candidate region, the polyp likelihood is modeled using a combination of shape, 

and intensity features. The second principal curvature flow is used as a shape model; 

while PVE is considered into modeling the polyp intensity distribution. The proposed 

method has been applied on the candidate regions obtained from our previous CAD 

algorithm [6] on a multi-centre dataset of colonic CT, and it shows an average 16% 

reduction of FPs while keeping the same sensitivity. The method provides robust and 

consistent performance.  

The Bayesian framework is general and can be flexibly extended to incorporate 

other features, Indeed, one could imagine incorporating other image features 

(location, texture) as well as patient informatics (age, family history of colorectal 

disease) for robust detection. The algorithm can also be easily adapted to candidate 

generation step of CAD system. 
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