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Abstract

Vector fields arise in many problems of computer vision, particularly in non-rigid registration. In this paper, we

develop coupled partial differential equations (PDEs) to estimate vector fields that define the deformation between

objects, and the contour or surface that defines the segmentation of the objects as well. We also explore the utility of

inequality constraints applied to variational problems in vision such as estimation of deformation fields in non-rigid

registration and tracking. To solve inequality constrained vector field estimation problems, we apply tools from

the Kuhn-Tucker theorem in optimization theory. Our technique differs from recently popular joint segmentation

and registration algorithms, particularly in its coupled set of PDEs derived from the same set of energy terms for

registration and segmentation. We present both the theory and results that demonstrate our approach.

Index Terms

variational problems, equality constraints, inequality constraints, vector fields, nonrigid registration, joint reg-

istration and segmentation, tracking
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I. INTRODUCTION

Many problems in computer vision and image processing can be posed as variational problems. Exam-

ples are image filtering, segmentation, registration, and tracking, which have been extensively solved with

variational methods and nonlinear partial differential equations (PDEs). The solutions of such problems

generally take the form of images, curves, surfaces, and vector fields, and are sought through an evolution

equation defined by a PDE. Usually, an initial estimate of the solution is deformed through a given PDE,

which in most cases is derived from optimization (typically minimization) of an energy functional, and

occasionally from local heuristics.

Deformation or displacement fields arise in registration, segmentation, and tracking problems, partic-

ularly in the case of multiple image data when a general coordinate transformation is defined between

the two image domains. This mapping is usually described through a vector field that transforms one

of the image domains to another one. A particular application occurs when a target structure deforms

differently in various image volumes, and a joint registration and segmentation approach would be useful

if we would like to utilize all the information coming from the multiple images that may be available.

In this case, the segmentation and registration processes operate in a coupled way to help each other for

an accurate content extraction goal. For instance, in the simplest case, two image volumes consisting of

binary regions are shown in Figure 1 and the goal is to segment the 3D shape from the given multiple

image volumes and simultaneously capture the deformation among these volumes as shown in (c).

In many medical imaging applications multiple image volumes in which a structure of interest resides

are available. Different modality images of the same region may also be available in some applications.

The challenge is then to make use of and relate the existing extra information of a particular organ or

structure from several given image volumes. An intuitive idea is to define a vector field that describes the

deformation of the object in different image volumes acquired in different scenarios such as intra-patient

(from the same patient at different times and or with different image modalities), and inter-patient image

data. Similarly, in dynamic image processing, the velocity of objects are estimated through vector fields
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(a) (b) (c)

Fig. 1. (a)-(b) Two binary image volumes which have a non-rigid correspondence (visualized by their zero level sets in 3D and a 2D

cross-section shown at the top). (c) The estimated surfaces with the vector field on the green surface correctly pointing toward the red surface.

that are computed from a sequence of images using temporal and spatial object brightness constraints

such as the optical flow equation [17].

As a variational framework is utilized to find solutions to such problems, in some cases, the subset of

solutions may be defined by a set of implicit constraints, for example by nonlinear equality or inequality

relations. This brings up the question as how to solve variational problems that have constraints. In the

case of differential equation constraints, for instance, the solution space has to be confined locally over

the domain of the problem, and this turns out to be a non-trivial task.

The popularity and usefulness of variational methods support the efforts for bringing new mathematical

tools to the attention of the computer vision community. A general tool that we believe will be useful

in variational problems in computer vision and related fields is constrained variational calculus tools for

problems such as estimation of a deformation or displacement vector field with inequality constraints.

Motivating examples of inequality constrained problems arise in medical image analysis, for instance the

extraction of the left ventricular myocardium from the magnetic resonance (MR) images (see Figures 11(a)

and 12(a)). The object of interest in this case has an annular structure with a change in its thickness

during systole and diastole. Normally, the myocardium is segmented with two contours, one inside and

one outside, however the problem can be turned into an inequality constrained scenario by utilizing a
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single contour and its deformation field with certain inequality constraints.

For solving variational problems that have constraints, the method of direct substitution is the most

straightforward procedure, where the constraint equation, if possible, is substituted into the integrand; then

the problem is converted into an unconstrained problem. However, this is not possible for the majority of

the constrained problems.

Generally, a popular tool that arises is Lagrange multipliers, which always simplify a difficult constrained

problem. It should be noted that in a more sophisticated approach, Lagrange multipliers take the form

of functions, not the form of constant numbers [19]. When the Lagrange multiplier is a function of

the independent variables, this brings an added complication that was not encountered in the types of

constraints previously used in the computer vision community.

Constrained problems that are well studied in history of mathematics are: geometrically constrained

problems such as the isoperimetric problem, geodesic problems, like the brachistochrone problem, and

control theory [10]. Differential forms arise in many constraints, such as the divergence constraint for

incompressibility of fluids, or divergence and curl operators in electromagnetism.

A. Related Work

As a concrete example to variational problems with and without inequalities, we choose to work with

two examples from vision problems: segmentation and registration. Recently, there has been an interest

in combining segmentation and registration problems due to a strong interdependence between these

two challenging problems of medical image analysis. The joint segmentation and registration idea first

introduced by Yezzi et al. [37], [38], estimates rigid registration parameters between two images and

a segmentation in a coupled way. An overall energy functional depending on two image regions and

registration parameters is minimized resulting in PDEs of both the contour and the registrations through

a level set representation [23]. Many of the methods developed in this context used shape prior models

in an energy minimization framework [9]. For instance, in [25], a shape model based on a level set

representation is constructed and used in an energy to force the evolving interface to align rigidly with
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the prior shape. The segmentation energy is separately involved as a boundary and region based energy

model. In [33], similarly, a boundary based energy or a Mumford-Shah energy is utilized in conjunction

with a distance to a shape prior to which the evolving contour is transformed by a rigid motion. In the

same work, the authors also presented an intensity-based PDE which evolves a source image towards a

target image, and a coupling PDE to solve for the coordinate transformation from source to the target.

This approach however involves a pre-segmentation step, hence is not a joint segmentation and registration

approach. Using different criteria for segmentation and rigid registration, an iterative/sequential manner

has been carried out in a Bayesian framework in [36]. The same idea of simultaneous segmentation and

rigid registration with a prior shape model has been applied to time-varying data for motion estimation

and segmentation of moving structures, particularly in cardiac imaging [14]. An active region model based

on classical snake nodal constraints with a displacement field defined over the nodes is utilized for again

a combined segmentation and motion tracking goal in heart imaging. Almost all of the methods listed

above involve only rigid registration as the transformation between two shapes or images.

Wang and Vemuri in [34], also proposed a joint non-rigid registration and segmentation, however, this

technique is different from ours in that the registration and segmentation terms in the energy are separate

but the coupling between these two operations is only introduced by a third term that checks the distance

between the evolved curve and the curve transformed with the deformation field.

Nonetheless, our work is also distantly related to a multitude of tracking techniques, such as [2], [4] that

used a region matching through an optical flow constraint, [12], [24] that used a parametric motion model,

[39] that matched the distribution of a region with a prior model distribution, or [28] that performed region

matching through segmented contours as boundary constraints for registration. On the other hand, it is

worth mentioning approaches developed solely for the purpose of nonrigid registration, a popular class of

which are variational as well, and solve PDEs for the purpose of non-rigid matching between two image

volumes [2], [3], [7]. These techniques are aimed at globally registering image volumes and therefore

estimate the deformation field over the whole image. Our technique also solves for a deformation field,
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however the field is only over the surface. In addition, we also solve for the segmentation in multiple

images jointly with the registration.

Analysis and decomposition of vector fields, which are useful functions in many applications, have

been studied extensively. For smooth vector fields, Helmholtz-Hodge decomposition [1] provides an

intuitive decomposition of a vector field into its components: a rotation-free component, a divergence-free

component, and the residuals that are sometimes called the harmonic component. Projection operators were

introduced to restore vector field properties such as divergence, curl, and hyperbolic components in [30].

A variational approach was taken in [27] where vector fields on triangulated surfaces were decomposed

into a rotation-free, divergence-free and a harmonic component. A multi-scale extension for discrete vector

fields was done in [31]. A discrete exterior calculus theory specifically to work with discrete vector fields

and operations such as a discrete Hodge decomposition was developed in [13].

Related recent work on constrained variational problems include widely used constraints on vector fields

that are referred to as smoothness constraints [2], [7], which only serve the purpose of regularization of

the flow. Chefd’hotel et al. utilized matrix constraints such as unit-normness, orthogonality and positive-

definiteness in their work that extends and generalizes the variational framework in computer vision

from scalar-valued functions to matrix-valued functions [8]. A global constraint on the magnitude of the

vector field is utilized in [26] to prevent the vector field from having unnecessarily large amplitudes.

In [18], optical flow fields were estimated with a penalty of departure from rigidity, however, without

any local inequality constraints like we present here. For myocardium segmentation, image edge and

velocity measurements from MR intensity and MR phase contrast images are used to constrain the curve

propagation in [35], however this method does not involve a variational constraint approach. An excellent

text on image registration, regularization and its numerical solutions can be found in [21].

B. Our Contributions

We present and examine some important mathematical concepts in local equality and inequality con-

strained variational problems that can be used in problems of computer vision. One contribution of this
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paper is that we utilize the Kuhn-Tucker theorem to solve for inequality constrained problems in computer

vision. Specifically, the solutions to these problems involve locally constrained minimizations with a

Lagrange multiplier function that varies with respect to the independent variables. We investigate new

avenues with inequality constrained problems that may lead to improved solutions for the estimation of

vector fields in problems such as segmentation, registration, and tracking.

A second contribution is the generalization of the joint segmentation and registration work of Yezzi et

al. [38], which involved only finite dimensional registrations, but had not foreseen an extension to infinite

dimensions. However, a best rigid fit among image volumes will not result in a correct registration in

various imaging applications. Therefore, we start with the same joint segmentation and registration idea

however improve it to account for more general problems of registration among anatomical structures

defined by a deformation field between target regions. The applications are vast such as structures in

different MR image sequences (for instance T1 and T2 weighted) or pre and post contrast agent MR

images or images of a patient at different time points or images of different patients as well as images

of different modalities.

The organization of the paper is as follows. In Section II, we give the fundamentals of the constrained

problems in optimization. Section III presents the application of constrained calculus of variations problems

in computer vision and derives the specific PDEs in Section IV. Section V presents the experimental results

and conclusions.

II. CONSTRAINED PROBLEMS IN THE CALCULUS OF VARIATIONS

A. Fundamentals

Given a bounded region Ω of R
n, we search for a vector function u : X = Ω −→ R

n assigning to each

point x in Ω a displacement vector u (x ) ∈ R
n. The set U on which an extremum problem is defined is

called the admissible set. Generally, the set U is assumed to be a linear subspace of a Hilbert space H ,

the inner product of which is denoted by 〈·, ·〉H .
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The vector field u ∈ Y = C2(Ω, Rn) is searched in a set U of admissible functions such that it

minimizes an energy functional I : U −→ R of the form:

F (u ) =

∫
Ω

f(x , u , Du )dx (1)

subject to the functional constraints Ψ(x , u , Du ) = 0 , (2)

Φ(x , u , Du ) ≤ 0 . (3)

where D denotes the Jacobian of u .

Definition A function u that satisfies all the functional constraints is said to be feasible.

Definition A point at which the Gateaux differential of a functional F vanishes, i.e., δF (u ∗; h ) = 0 for

all the admissible variations h , is called a stationary point 1.

From the above definition, it is clear that the extrema of a functional F occur at stationary points.

When the vector space X is normed, a more satisfactory definition of a differential is given by the

Fréchet differential.

Definition If for each variation h ∈ X there exists F ′(h ) such that lim||h ||→0
||F (u + h ) − F (u ) −

F ′(h )h ||/||h || = 0, then F is said to be Fréchet differentiable and F ′ is said to be the Fréchet

differential of F (see [19] for more details). In the special case, which corresponds to our case, where

the transformation F is simply a functional on the space X , F ′ is called the gradient of F , also denoted

by ∇F .

B. Equality Constrained Problems

Theorem 1: (Lagrange Multiplier) If the continuously Fréchet differentiable functional F in Eq. (1)

has a local extremum under the equality constraint (2), Ψ(x , u , Du ) = 0 , at the regular point u ∗, then

1If F is a functional on a vector space X , the Gateaux differential of F , if it exists, is δF (x ; h ) = d
dt

F (x + th )|t=0, and for each

fixed x ∈ X , δF (x ; h ) is a functional with respect to the variable h ∈ X . The Gateaux differential generalizes the concept of directional

derivative familiar in finite-dimensional space [19].
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there exists a function μ ∈ C2(Ω, Rn) such that the Lagrangian functional

F (x , u , Du ) + μ(x )Ψ(x , u , Du ) (4)

is stationary at u ∗, i.e., F ′(u ∗) + μΨ′(u ∗) = 0 .

The intuition with this result is that F ′(u ∗), the gradient of F , must be orthogonal to the null space of

Ψ′(u ∗), that is orthogonal to the tangent space.

C. Inequality Constrained Problem

A fundamental concept that provides much insight and simplifies the required theoretical development

for inequality constrained problems is that of an active constraint. An inequality constraint Φ(x , u , Du )

is said to be active at a feasible solution u if Φ(u ) = 0 and inactive at u if Φ(u ) < 0. By convention,

any equality constraint Ψ(u ) = 0 is active at any feasible point. The constraints active at a feasible

point u in the set of admissible functions restrict the domain of feasibility in neighborhoods of u . On

the other hand, inactive constraints, have no influence in neighborhoods of u . Inequalities are treated by

determining which of them are active at a solution. An active inequality then acts just like an equality

except that its associated Lagrange multiplier can never be negative.

Definition A point u ∗ is a regular point if the gradients of the active constraints are linearly independent.

Theorem 2: (Kuhn-Tucker) Let u ∗ be a relative minimum point for the problem of minimizing Eq.

(1) subject to the constraint (3), and suppose u ∗ is a regular point for the constraints. Then, there is a

function λ ∈ C2(Ω, Rn) with λ(x ) ≥ 0 such that the Lagrangian

F (x , u , Du ) + 〈λ(x ), Φ(x , u , Du )〉 (5)

is stationary at u ∗. Furthermore,

〈λ(x ), Φ(x , u ∗, Du ∗)〉 = 0 . (6)
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Note that now there are two unknown functions to be estimated: the function u (x ) and the Lagrange

multiplier λ(x ) that both vary over the domain Ω. The second necessary condition (6) in the Kuhn-Tucker

theorem in addition to the first necessary condition (5) are enough to solve for the two unknowns.

Kuhn-Tucker reformulations for converting the constrained problems into unconstrained problems are

presented in [5], [15]. In addition, an interesting approach is presented in [16] with new numerical solutions

to the integral forms of the Euler-Lagrange equations for constrained problems.

Types of Constraints: There are multitude of different constraint functions that can be used in

constraining a cost functional. There is no clear classification, but the ones we came across are as follows.

Local constraints are also called as “algebraic constraints”, i.e. G(x) = 0 (in mechanics called “holonomic

constraints”). There are “differential equation constraints”, which we are interested in, G(x, u, u′) = 0 are

local constraints (in mechanics called “non-holonomic constraints”), and result in a Lagrange multiplier,

which is a function of the independent variable, like λ(x ). On the other hand, the “integral constraints”

are global constraints, and result in a single constant Lagrange multiplier number λ.

III. APPLICATIONS

For specific applications of the above theorems, we will show in the framework of the calculus of

variations, specific examples that will be useful in various computer vision scenarios. Because the case of

equality constraints is a special case for the inequality constraints, we opted to study inequality constrained

problems as applied to problems in segmentation, registration, and tracking.

In the framework of calculus of variations with inequality constraints, our problem is to minimize

F (u ) =

∫
Ω

f(x , u , Du )dx (7)

subject to Φ(x , u , Du ) ≤ 0 (8)

where both f and Φ are real-valued, and are assumed to have continuous partial derivatives of second order.

Directly from the Kuhn-Tucker Theorem 2, we will derive the necessary conditions for the minimizer.
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The first necessary condition is obtained as follows:

∂

∂t
{F (x , u + th , D(u + th )) + 〈 λ(x ), Φ(x , u + th , D(u + th )) 〉} |t=0 = 0 . (9)

Hence, we look for the differential of the new Lagrangian J = F+ < λ, Φ >:

δJ(u ; h ) =
∂

∂t

∫
Ω

f(x , u + th , D(u + th ))dx

+
∂

∂t

∫
Ω

Φ(x , u + th , D(u + th ))λ(x )dx . (10)

By the chain rule, the differential δJ(u ; h ) can be obtained as the first necessary condition when equated

to zero:

δJ(u ; h ) =

∫
Ω

fu (x , u , Du )h dx +

∫
Ω

fDu (x , u , Du )Dh dx

+

∫
Ω

Φu (x , u , Du )hλ(x )dx +

∫
Ω

ΦDu (x , u , Du )Dhλ(x )dx . (11)

In this equation, u and Du in the subscripts denote the variation of a functional, e.g. of f and Φ with

respect to the functions u and Du . Integrating (11) by parts,

∫
Ω

{∫
Ω

fu dx − fDu +

∫
Ω

Φu dλ(x ) − ΦDu dλ

}
Dh dx = 0 (12)

for all variations h vanishing at the boundary of the bounded domain Ω. The resulting Euler-Lagrange

equation in its integral form is thus

∫
Ω

fu dx −fDu +

∫
Ω

Φu dλ(x )−ΦDu dλ=0 . (13)

In its more familiar differential form, the Euler-Lagrange equations reduce to:

fu −∇fDu +Φuλ(x )−ΦDu∇λ(x )=0 . (14)

The second necessary condition from the Kuhn-Tucker theorem (6) is given by the equation:

∫
Ω

Φ(x , u , Du )λ(x )dx = 0 , (15)

where λ(x ) is continuous and of bounded variation over the domain Ω. The intuition behind this condition

comes from the idea of active and inactive constraints. The Lagrange multiplier function λ(x ) becomes
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active over the domain Ω only when the equality is satisfied, and vanishes when the strict inequality is

satisfied, that is:

Φ(x , u , Du ) < 0 (inactive constraint)→ λ(x ) = 0 (16)

Φ(x , u , Du ) = 0 (active constraint)→λ(x ) > 0 . (17)

A. Algorithm

We summarize the proposed algorithm for clarity. The coupled equations consisting of (14) with the

auxiliary equation (15) forms a complete set of equations to solve for the unknowns u (x ) and λ(x )

over the domain Ω. The specifics of the cost functional f will be given in the next subsections. To set up

the iterations for the PDEs, an artificial time variable t is introduced, and the PDE from Eq. (14) to be

solved is:

∂u (x , t)

∂t
= −fu +∇fDu −Φuλ(x , t)+ΦDu∇λ(x , t) . (18)

Using the time as a new variable, the auxiliary equation in (15) becomes

∫
Ω

Φ(x , u (x , t), Du (x , t))λ(x , t)dx = 0 . (19)

Without the specifics of the functionals f and Φ, the general algorithm proceeds as follows:

1) At time t0 = 0, start with a fixed initial value u 0 = u (t0) that satisfies

Φ(x , u (x , t0), Du (x , t0)) < 0 . Then initial value of λ(x , t) is automatically fixed λ0 = λ(x , t0) =

0 .

2) At time step, tk = kΔt, solve for u k = u (x , tk) from Eq. (18) using u k−1 and λk−1.

3) Solve for λk from Eq. (19) using u k.

4) Repeat the steps 2-3 until convergence.

B. Solving Equation (19)

To solve for λ(x ) from (19), we chose to work with the most straightforward case when this equation

is satisfied, that is when λ(x ) is a delta function, which is nonzero only when the constraint function
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Φ(x ) is non-zero. Of course, we require the gradient of λ over the space in our PDE (18), and the delta

function is differentiable only when it is viewed as a generalized function. For simplifying the problem,

we replace the delta function by a regularized delta function

λ(x ) = Kδ(Φ(x ) ≥ 0(x )) ≈ Kξ(r), (20)

where K is a strength factor, and the above yields a well-defined and differentiable Lagrange multiplier

function λ(x ) as we require. The ξ(·) is a regularized distribution that is supported by a finite cross-

sectional area in R
n. It can also be thought as n − dim blobs around each point x in space, where

r = |x − x 0|, is the distance from the center of the blob x 0. The distribution function ξ(x ) = π
σ2 g( r

σ
)

is a regularization of the delta function, normalized so that its integral over the space is equal to unity.

Here, σ is the radius of the blob, which is a measure of the extent of the spread of the blob, and g is

a dimensionless distribution that vanishes at ∞. Note that in the limit as σ → 0, ξ reduces to the delta

function.

A choice for the g function is given by g(w) = 1
π2 e

−w2
. For n = 2, for instance, the 2D delta function

is separable, and will be computed from δ(x, y) = δ(x)δ(y). In addition, we smooth the final λ(x )

function by a Gaussian filter to ensure that its gradient is regular.

IV. SPECIFICS OF THE CONSTRAINED PDE (18)

Generally speaking, the functional f in (18) consists of two types of terms:

f = f i + f r (21)

where f i is an image- and data-driven term, and f r is a regularizing term on the unknown function, here

u .

In the next subsections, we explain the specifics of the three functionals: the regularizers f r, inequality

constraints Φ, and the image-dependent functionals f i .
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A. Regularizer

The simplest choice of a regularizer functional f r is the Dirichlet integral:

f r =

∫
Ω

||Trace(Du Du T )||dx (22)

that yields a pure diffusion operator in the PDE, i.e., div (Du ), and hence assumes a smoothly varying

vector field over the whole Ω domain. More sophisticated regularizing integrals that respect the discon-

tinuity over the high image gradients are proposed such as the anisotropic diffusion term in [2]. Other

forms of regularizers and more general matrix-valued functions can be found in [7], [11]. We will utilize

the regularization operator:

div (Du ) (23)

in our specific PDEs.

B. Image-Dependent Functionals

The data-driven term of the cost functional is chosen depending on the vision application.

1) A joint non-rigid registration and segmentation approach: For segmentation of a structure appearing

in multiple domains, Unal et al. [32] presented a joint non-rigid registration and segmentation technique

that utilized an infinite-dimensional transform x̂ = T (x ) where each point in domain Ω can move freely

to a point in domain Ω̂ as depicted in Figure 2.

Fig. 2. Non-rigid mapping between two images defined through the coordinate transformation: T (x ) = x + u .

We briefly summarize this technique as follows. Given two image volumes, I : Ω ∈ R
n −→ R and

Î : Ω̂ ∈ R
n −→ R, we denote the transformation that deforms one of the images to the other one by:

x̂ = T (x ) = x + u (x ), where u (x ) is the displacement vector field defined as u : Ω −→ R
n (n = 2
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or 3). The goal is to find a surface S ∈ Ω that deforms on the first image I whereas a surface Ŝ ∈ Ω̂

corresponding to the mapping Ŝ = T (S ) deforms on the second image Î . Both surfaces move according

to a generic image region-based energy functional defined over both image domains depending on region

descriptors for the unknown foreground region, f i,f , and the background region, f i,b:

E(u , S )=

∫
Ω

f i,f (x )χf (x )dx +

∫
Ω

f i,b(x )(1 − χf (x ))dx

+

∫
Ω̂

f̂ i,f (x̂ )χf (x̂ )dx̂ +

∫
Ω̂

f̂ i,b(x̂ )(1 − χf (x̂ ))dx̂ (24)

where χf denotes an indicator function for the foreground region over an image domain, f̂ i,f and f̂ i,b

are the region descriptors for the foreground and the background in the transformed domain Ω̂. Note that

in this case there is an additional unknown, the boundaries between the foreground and the background

regions, i.e. the surface S for segmentation, and a proper regularizer on S is also introduced through the

surface area integral
∫
S dA that induces a curvature term in the resulting segmentation PDE.

The solutions to the minimization problems are given by:

S̃ = arg min
S

E(S , u ), and ũ = arg min
u

E(S , u ) (25)

The surface evolution is given by:

∂S

∂t
= f i(x )N + f̂ i(x + u (x ))N̂ + κN . (26)

Note that f i = f i,f − f i,b, and f̂ i = f̂ i,f − f̂ i,b, N is the normal vector to the surface S , and N̂ is the

normal vector to the transformed surface Ŝ , and κ is the curvature function for the surface S .

For registration evolution, the only part of the energy functional in Eq. (24) that is taken into account

is:

E(u )=

∫
Ω

f̂ i,f (x + u (x ))χf (x + u (x ))︸ ︷︷ ︸
F f (x+u (x ))

dx +

∫
Ω

f̂ i,b(x + u (x ))(1 − χf (x + u (x )))︸ ︷︷ ︸
F b(x+u (x ))

dx (27)

The gradient of E w.r.t. u is ∂E
∂u = ∇uF f (u ) + ∇uF b(u ), where ∇u denotes the functional

gradient w.r.t. u . We derive the PDE (over domain Ω) whose steady state solution gives the minimizer
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displacement field u which varies over space. The contributing term to our constrained PDE (18) from

the image functional is then:

∂u (x , t)

∂t
= ∇u f̂ i,f (x + u (x ))χf (x + u (x ))+∇u f̂ i,b(x + u (x ))(1 − χf (x + u (x )))

+ f̂ i(x + u (x ))∇u (χf (x + u (x ))) (28)

u (x , 0) = u o(x ).

For the third term above, the derivative of the indicator function χ with respect to u is intuitively a delta

function over the boundaries between the foreground and the background region, and is defined in the

sense of distributions. In practice regularized versions of a heaviside function H and a delta function δ

are used, particularly within a level set implementation φ : Ω −→ R which represents S as its zero level

set [6]:

∂u (x , t)

∂t
= ∇u f̂ i,f (x + u (x ))H(φ̂(x + u (x )))+ ∇u f̂ i,b(x + u (x ))(1 − H (φ̂(x + u (x ))))

+ f̂ i(x + u (x )) δ (φ̂(x + u (x )))∇φ̂(x + u (x )) (29)

u (x , 0) = u o(x ).

A special case for the image dependent functional f i can be chosen as a simplified Mumford-Shah

model [22], that is the piecewise constant model by Chan-Vese [6] that approximates the target regions

in a given image I by the mean statistics. For instance, for a foreground region with a statistic mf , and

a background region with a statistic mb, the specific form of f i becomes

f i(x , u ) =(I(x + u ) − mf )
2χf (x ) +(I(x + u ) − mb)

2(1 − χf )(x ).

With the piecewise (p-w) constant model for the target regions that are to be segmented and registered

in images I and Î , the region-based term in the energy, and the gradient terms are given by:

f̂= f̂ i,f − f̂ i,b = 2(m̂f − m̂b)(
m̂f + m̂b

2
− Î(x + u(x ))),

∇u f̂ i,f = 2(Î(x + u (x )) − m̂f )∇Î(x + u (x ))

∇u f̂ i,b = 2(Î(x + u (x )) − m̂b)∇Î(x + u (x )),
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where m̂f and m̂b are the mean of the image intensities inside and outside the surface mapped onto the

second image volume domain respectively. These expressions can be inserted into (28) to obtain the PDE,

which flows in the gradient descent direction, for evolution of non-rigid registration field for the p-w

constant region model:

∂u (x , t)

∂t
= −(m̂f − m̂b)[

(m̂f + m̂b)

2
− Î(x + u (x ))] δ(φ̂(x + u (x )))∇φ̂(x + u (x ))

− (Î(x + u (x )) − m̂f )∇Î(x + u (x )) H (φ̂(x + u (x )))

− (Î(x + u (x )) − m̂b)∇Î(x + u (x ))(1 − H (φ̂(x + u (x )))) (30)

u (x , 0) = u o(x ) = 0 ,

where a zero vector field initialization is adequate in solving the PDE without any prior knowledge of

the true vector field u .

In Figure 3, two different slices of an MR image sequence depict a dark structure in the middle, and

which is jointly registered and segmented by the PDEs (30), (26), and (23). The result of deforming the

second image region of interest (that is around and inside the contour) with the estimated vector field

towards the first image particularly shows the success of the estimation.

(a) (b) (c) (c) (e)

Fig. 3. A 2D MR image pair at different slice levels (a,b). The structure’s deformation is recovered by the Eqns. (30),(26)) depicted with

the vector field whose direction goes from red to blue(c,d), i.e., green contour to yellow contour. The second image is deformed by the

estimated vector field (e).

In some segmentation applications, the basic approach of thresholding has proven to be useful. Instead

of using means inside and outside the surface, one can convert such a basic “Chan-Vese” flow to a

“thresholding” flow. This is also equivalent to region growing to separate the intensity inside the growing
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surface from the outside by the given threshold. For this purpose we use the following speed function:

f̂ = (m̂f − m̂b)(T − Î(x + u (x ))) (31)

where the
m̂f+m̂b

2
quantity in “Chan-Vese” flow is replaced by an arbitrary threshold T . For this speed

function we use the image terms on right hand side of the following PDE for updating the vector field:

∂u (x , t)
∂t

= −(m̂f − m̂b)(T − Î(x + u (x ))) δ(φ̂(x + u (x )))∇φ̂(x + u (x ))

u (x , 0) = u o(x ) = 0 , (32)

applied to the boundary term only.

For a tracking application, the image-based functional term can also be chosen as an image matching

penalty
∫

(I(x ) − Î(x + u (x )))2dx , as in the popular optical flow equation. Then the image matching

term becomes:

∂u (x , t)

∂t
= −(I(x ) − Î(x + u (x ))) ∇(Î(x + u (x ))). (33)

One can note that although the flows are presented for between two image domains, this idea can be

extended to multiple coordinate spaces to non-rigidly register a single common contour with multiple

target objects.

C. Divergence Inequality Constraints

A natural constraint on the displacement vector field u is a constraint on the its divergence div u . The

divergence of a 2-dimensional vector field u = (ux, uy) is defined as the trace of its Jacobian matrix

Du =

⎡
⎢⎢⎣

∂ux

∂x
∂ux

∂y

∂uy

∂x
∂uy

∂y

⎤
⎥⎥⎦ . (34)

Let us suppose we want to constrain the divergence of a vector field by a constant, say c, then the

constraint function becomes

Φ(x, u , Du ) = Trace(Du ) − c (35)



19

where c is a constant scalar function. To obtain the constrained PDE in this specific case, we write the

differentials of Φ to find

ΦDu =
∂

∂Du
(Trace(Du ) − c) = Id (36)

where Id denotes the identity matrix. Therefore, for the goal of constraining divergence of the vector field

from below, say by a given constant c1, and from above, say by a given constant c2 in a given variational

vision problem, we set up two constraint functions:

Φ1(x , Du ) = c1 − div u (x ) ≤ 0 (37)

Φ2(x , Du ) = div u (x ) − c2 ≤ 0 . (38)

Then we define two Lagrange multiplier functions, λ1(x ) and λ2(x ), which contribute to the specific

form of our constrained PDE (18) as the operators

Φ1
Du∇λ1(x ) + Φ2

Du∇λ2(x ) = −∇λ1(x ) + ∇λ2(x ). (39)

Figure 4 depicts an application of the divergence constraints (37-38) on a vector field estimation. Here,

as compared to joint registration and segmentation application, the idea is to use one contour and a vector

field on the same image I . The vector field that defines the mapping between the inner boundary around

the black circular region and the outer boundary can be easily estimated using the PDE terms in Eq. (30)

and regularizer term in (23). The resulting segmentation (contour) and the vector field are shown in (b).

To demonstrate the effect of the inequality constraints on the divergence of the vector field, we apply

the constraints c1 ≤ divu ≤ c2, with c1 = 0.1 and c2 = 0.3. The initialized vector field that satisfies the

constraint divu = c1 is shown in (c). Figure 4-(d) shows the result of the evolution of the PDE (39) with

the auxiliary equation (19) to solve for the Lagrange multiplier functions λ1 and λ2.

We will show applications of the divergence inequality constraints to a segmentation problem in Section

V.
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(a) (b) (c) (d)

Fig. 4. The divergence inequality constraint on the vector field that maps the inner boundary towards the outer boundary demonstrated on

the image in (a) (negative of the vector field is depicted). (b) Evolution without any constraint. (c) Initialized vector field with a divergence

inequality constraint. (d) Resulting vector field with divergence constrained evolution.

D. Curl Inequality Constraints

A complementary idea to the divergence constraint is the usage of a curl constraint on a vector field. In

fluid dynamics, curl of a vector field is defined as the vorticity. The intuition then in a tracking application

is to put vorticity constraints on the vector field.

The curl constraint function can be written as

Φ(x, u , Du ) = Trace J (Du ) − v ≤ 0 (40)

where J denotes a 90 degree rotation on the Jacobian matrix, and v denotes a given vorticity of the

vector field. Taking derivative of Φ w.r.t. u in this case yields:

ΦDu =
∂

∂Du
(Trace J (Du ) − v) = J . (41)

Similar to the divergence constraints in the previous section, vorticity of a vector field can be limited

from both below and above with two values of vorticity v1 and v2

Φ1(x , Du ) = v1 − curl u (x ) ≤ 0 (42)

Φ2(x , Du ) = curl u (x ) − v2 ≤ 0 . (43)

Then we define two Lagrange multiplier functions, λ1(x ) and λ2(x ), which contribute to our constrained

PDE (18) in the specific form of the operators

Φ1
Du∇λ1(x ) + Φ2

Du∇λ2(x ) = −J ∇λ1(x ) + J ∇λ2(x ). (44)
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Figure 5 shows two synthetically created spirals and estimation of the vector field mapping the gray

spiral to the white spiral correctly estimated in presence of the constrained PDEs with the terms (44).

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Two synthetically generated spirals, where the white spiral is deformed by a vector field with only vorticity (=0.3) to form the

gray spiral in (a). Without any vector field constraints, the estimated vector field through PDEs (30) and (23) produce incorrect results in

(c)(zoomed section shown in (d) and (b) shows the two contours only. The estimated vector field is correct when the vorticity constraint

terms (44) are added to the PDEs with v1 = 0.13 and v2 = 0.33, shown in (f) (zoomed section in (g)) and the two contours in (e).

E. Translational Inequality Constraints

In case of translational constraints on a vector field, one intuitive idea is to constrain the amount of

change on the first variation of the vector field, that is its Jacobian matrix. We limit the amount of

change in the direction of the vector field by limiting the change in the norm of the Jacobian matrix,

hence penalizing too much directional change. This can be done, for instance, by devising an inequality

constraint involving the Frobenius norm of the Jacobian matrix of the vector field:

Φ(x, u , Du ) = ||(D u )||2F ≤ ε , (45)



22

where ||A ||F =
√

Trace(A T A ), and ε is a given small number that determines the amount of change

allowed on the first variation of the vector field u . This again leads to two constraint functions:

Φ1(x , Du ) = ε − Trace(D u T D u ) ≤ 0 (46)

Φ2(x , Du ) = Trace(D u T D u ) − ε ≤ 0 . (47)

In this case, the differential of Φ is obtained using

ΦDu =
∂

∂Du
(Trace(D u T D u ) − ε) = D u T , (48)

and the two Lagrange multiplier functions, λ1(x ) and λ2(x ), contribute to the specific form of our

constrained PDE (18) as the operators

Φ1
Du∇λ1(x ) + Φ2

Du∇λ2(x ) = −D u T ∇λ1(x ) + D u T ∇λ2(x ). (49)

F. Magnitude of Vector Field Inequality Constraints

Another idea in constrained problems of vector fields is to restrict the amount of change on the magnitude

of the vector field. This would be required if one wants to keep the vector field magnitude more or less

within some bounds. As done in previous subsections, we write the corresponding inequality constraint

involving the pointwise L2 norm squared of the vector field:

Φ(x, u , Du ) = ||u ||22 ≤ ε , (50)

where ||u ||22 = u T u , and ε is a given small number that determines the amount of change allowed on

the norm of the vector field u . In this case the two constraint functions:

Φ1(x , u ) = ε − u T u ≤ 0 (51)

Φ2(x , u ) = u T u − ε ≤ 0 . (52)

with the differential of Φ simply:

Φu =
∂

∂u
(u T u ) − ε) = 2u T , (53)
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lead to the constrained PDEs

∂u (x )

∂t
= Φ1

u λ1(x ) − Φ2
u λ2(x ) = 2u T (x )λ1(x ) − 2u T (x ) λ2(x ). (54)

V. EXPERIMENTS AND CONCLUSIONS

For the numerical implementation of the contours, we utilized a level set representation [23], [29] for

convenience. Due to a narrowband level set implementation, we will most effectively be solving for u (x )

on a band around the surface. We present the application of the technique in both 2D and 3D spaces.

For the volumetric images, such as in brain MRI and the abdomen CT examples, the implementation is

in 3D space, and the resulting surfaces along with the 3D vector field and contours from each slice are

shown in 2D. For the remaining 2D images presented below, the method is applied in 2D space.

A. Experiments in Coupled Non-Rigid Registration and Segmentation Without Constraints

We simulated a non-rigid deformation on real input data, in Fig. 6, showing an image segment with a

lymph node in an MR image sequence. The comparison is done using the angle between the ground truth

deformation field and the estimated deformation field obtained with Eq. 30. The results displayed in the

Table. I show an average angle difference of 13o with a standard deviation of 7o. The mean squared error

between these two vector fields is found to be 1.65.

Fig. 6. Left: MR image segment including a lymph node without (top) and with the converged contour (bottom) ; Middle: Deformed image

with a known vector field without (top) and with the converged contour (bottom). Right : Zoomed section showing the ground truth (GT)

vector field (blue) and the estimated vector field (red).
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Distortion Measure Error

Average Angle(u GT − u EST ) 0.07 π (13o)

Standard Deviation Angle(u GT − u EST ) 0.04 π (7o)

MSE (u GT − u EST ) 1.65

TABLE I

THE AVERAGE AND STANDARD DEVIATION OF THE ANGLE BETWEEN GT AND THE ESTIMATED VECTOR FIELD, AND THE

MEAN-SQUARED ERROR.

The computational complexity of the algorithm in 3D is as follows. Since we are computing the PDEs

in Eqs. (26) and (30) over a narrow-band around the zero level set of the surface in R
3 (usually radius

of the band is chosen as 5), the general complexity is O(N2). For the computation of the means inside

and outside the image volume for Eq. (26), the complexity is O(N2) except at initialization it is O(N3)

(going through all the image volume). For the computation of the means inside and outside the second

image volume for Eq. (30) or (32), the second band (surface) is initialized after the first band (surface) is

updated every time, therefore with the current implementation the complexity is O(N3), but it is possible

to compute it at O(N2).

When the target structures in the two image domains do not overlap, either automated pre-processing

using Dicom header information for physical coordinates to initialize the vector field, or first jointly

executing a rigid registration flow, or an interactive registration to roughly align the two volumes are

possible solutions.

Next we show an example for segmentation and registration of corpus callosum from MR brain image

volumes. In neurology and neurocognitive science, the size and shape of the corpus callosum in human

brain has shown to be correlated to different factors of humans and the human brain [20]. Therefore, inter-

patient studies of corpus callosum(cc) characteristics is an important problem and requires estimation of

transformations among cc shapes in a population of patients. We jointly segment and estimate a vector

field between two different patients cc shapes as demonstrated in Figure 7 which shows evolution of
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the surface and the final estimated deformation field between the cc of the two patients. For inter-patient

studies, such a vector field may be used to obtain a measure of shape and size differences between surfaces

of cc’s of two patients and thus proves to be useful.

Fig. 7. Evolution of the surface over the corpus callosum (top row and bottom left) along with the estimated vector field from the first

patient’s corpus callosum (shown in green) towards the second one (shown in red).

Figure 8 shows the T1 MRI volumes of the same brain example from two patients (only one slice

from the MRI volume is shown). In this experiment, the “Chan-Vese” flow easily leaks to surrounding

regions during the evolutions, therefore does not perform successfully. Instead the “thresholding” flow in

Eq. (32) along with the corresponding surface evolution flow Eq. (26) are used with a threshold of T = 60

whereas the image volumes has the intensity range (0,255). Therefore, with a simple modification to the

simplest piecewise constant model and with a quickly obtained prior information from the intensity in the

initialized seed surface, we could obtain a reasonable segmentation and registration result as the initial

and final contours can be observed in Figure 8.

In the example in Figure 9, two CT image volumes of the same patient taken at different time points

are segmented and registered using Eqs. (26)-(30) for delineating the bladder volume at different time

periods.

For a multi-modality application, for instance, a post-contrast T2-weighted MR image and a T2* echo

weighted MR image, are shown in Fig. 10, where the regions and boundaries of a target structure, a
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(a) (b)

(c) (d)

Fig. 8. Two sagittal T1 MRI volumes from a patient (a slice shown in a-b) with in-plane resolution 0.44mm and another patient (a slice

shown in c-d) with in-plane resolution 0.97mm: here note the mis-alignment between the corpus callosum of the two patients; after the

non-rigid registration and segmentation has been applied, the resulting corpus callosum surfaces are shown in (b) and (d).

Fig. 9. CT image slices of a patient at different times shown on rows 1 and2. A seed is given in the bladder (left) and the resulting

segmentation and registration on the bladder (middle). The surface shows the deformation of the first surface towards the second (right).

malignant node, exhibit different characteristics. We utilize the piecewise constant model with a non-unit

variance term f i =
(Î(x+u )−m̂f )2

σ̂2
f

χf + (Î(x+u )−m̂b)
2

σ̂2
b

(1−χf ) to obtain the deformation field between the

nodes in T2 and T2* echo images. However, in multi-modality applications like this one, it is expected

that utilizing more features to explain and account for a variety of region and boundary characteristics is

desirable. One possible extension of our work includes incorporation of boundary-based information in

deriving the non-rigid registration PDE or using piecewise-smooth region models.
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Fig. 10. Using a non-unit variance flow, the node on the T2 image (green) is morphed onto the node on the T2* echo image (yellow) on

the right.

B. Experiments in Constrained Problems

The divergence inequality constraints are applied to segmentation of myocardium in MR images.

Figure 11 shows an end-systole phase of the heart beat in (a). Without the divergence constraint terms

(39) in our vector field evolution PDE, the image terms can not guarantee a vector field evolution that

would keep the solution away from the trivial one, that is a zero vector field as shown in (b) with which

the energy of the contour is minimized. Instead, the PDE with divergence constraints leads to the correct

solution as shown initially in (d) and result in (e) (zoomed in (f)). In this experiment, the divergence

constraint from below (divu ≥ c) helps the flow correctly propagate to the solution.

In the next experiment, for the myocardium image at end-diastole in Figure 12(a), the divergence

constraint from above (divu ≤ c) steps up to drive the vector field evolution to a better solution in (d)

in contrast to the unconstrained PDE result in (c), where both evolutions were initialized with the vector

field in (b).

We show the effect of translation and norm constraints on the vector fields in Figure 13 for the taxi

sequence. The optical flow is estimated between the two frames of the taxi sequence shown in (a) and

(e). When the vector field is estimated without any inequality constraints, the resulting registration was

not successful as depicted in (b)-segmentations, i.e. the contours, and (c)-(d)-the vector field estimate.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Myocardium image shown at end-systole phase in (a). When there are no constraints on the vector field estimation, the result of

segmentation of the myocardium through the estimated vector field fails because it converges to the trivial solution of zero vector field (b)

(zoomed in (c)). The vector field estimation is successful in case the inequality constraints in (39) are activated initially in (d) and finally in

(e) (zoomed in (f)).

The vector field estimation was successful in case the inequality constraints (54) are activated as shown

in (f)-(h).

We show the effect of curl constraint on the vector fields in Figure 14 for the hurricane Katrina

sequence (downloaded from National Oceanic and Atmospheric Administration www.noaa.gov). The

hurricane is winding outwards from the center in this sequence. The constrained solution is better than

the unconstrained solution, as expected. However, the data terms, which we use, do not exactly model

this difficult image scenario. If in addition to the constrained PDE terms, one can incorporate good image

features that model the image better than piecewise constant mean image, to the data term of the PDEs,

the results can be expected to improve.

C. Conclusions

In this paper, we described utilization of local inequality constraints via Kuhn-Tucker theorem in

interesting variational problems of computer vision, which require estimation of vector fields that model
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(a) (b) (c) (d)

Fig. 12. Myocardium image shown at end-diastole phase in (a). The initial vector field shown in (b) is evolved without any divergence

inequality constraints in (c), and fails. A better estimation is obtained when the divergence inequality constraints (39) are activated, and

results in a better segmentation of the myocardium through the estimated vector field in (d).

deformations between objects in multiple images. We showed applications in coupled registration and

segmentation problems in medical imaging and tracking problems in vision. We believe that our work

will stir up new questions and lead to developments in the utilization of inequality constrained variational

problems in the computer vision community.
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