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Abstract

Point sets obtained from computer vision techniques are
often noisy and non-uniform. We present a new method of
surface reconstruction that can handle such data sets us-
ing anisotropic basis functions. Our reconstruction algo-
rithm draws upon the work in variational implicit surfaces
for constructing smooth and seamless 3D surfaces.

Implicit functions are often formulated as a sum of
weighted basis functions that are radially symmetric. Us-
ing radially symmetric basis functions inherently assumes,
however, that the surface to be reconstructed is, everywhere,
locally symmetric. Such an assumption is true only at pla-
nar regions, and hence, reconstruction using isotropic basis
is insufficient to recover objects that exhibit sharp features.
We preserve sharp features using anisotropic basis that al-
low the surface to vary locally. The reconstructed surface is
sharper along edges and at corner points. We determine the
direction of anisotropy at a point by performing principal
component analysis of the data points in a small neighbor-
hood. The resulting field of principle directions across the
surface is smoothed through tensor filtering.

We have applied the anisotropic basis functions to recon-
struct surfaces from noisy synthetic 3D data and from real
range data obtained from space carving.

1 Introduction
The challenge in reconstructing a smooth and continuous

surface from range data is that such data is often noisy, has
non-uniform density, contains holes due to occlusion, and is
low in resolution when compared to optical and laser range
scanners. Simply connecting the points to generate a con-
tinuous surface is insufficient because the noise in the data
becomes embedded in the reconstruction. Several existing
surface reconstruction techniques, including Alpha Shapes
[10], the Crust algorithm [1], and the Ball-Pivoting algo-
rithm [3], take exactly this approach. Other techniques, in-
cluding those of Taubin [27], and Gotsman and Keren [15],
attempt to fit a global algebraic function to the data with
minimal error. The primary limitation of global algebraic

methods is their inability to reconstruct complex models be-
cause very high order polynomials would be required for
such surfaces. Increasing the degree of the polynomial in-
creases the search space and the computational complexity
required to find the best fit polynomial. Methods that per-
form reconstruction by deforming an initial model to fit the
data points are topologically limited by the initial model.
Consequently, reconstruction of complex models often re-
quires the use of multiple primitives. Such approaches in-
clude the works of Pentland and Sclaroff [21,23] and Ter-
zopoulos and Metaxas [29].

Variational implicit surfaces solve the problem of surface
reconstruction through volumetric regularization [9,30].
This approach is akin to surface regularization, which has
been used by many for reconstructing height fields and
parametric curves, including Terzopoulos [28], Boult and
Kender [5], and Fang and Gossard [11]. Similar to level set
approaches [12,19], variational implicit reconstruction can
handle complex shapes of arbitrary topology. In addition,
through volumetric regularization, the implicit surface can
approximate, rather than interpolate, surface points, result-
ing in a surface that is globally smooth.

Typically, an implicit function is formulated as a sum
of weighted basis functions that are radially symmetric. In
this respect, variational implicit surfaces are closely related
to Blinn’s blobby model which uses Gaussian functions
[4]. The success of using radially symmetric basis func-
tions, such as Gaussians, to fit dense and precise Cyberware
range data has been proven by Muraki [20] and Yngve and
Turk [31]. The primary advantages of the variational im-
plicit surface technique are that it uses energy-minimizing
basis functions instead of Gaussians to construct a smooth
surface, does not assume that the topology of the shape to
be reconstructed is known a priori, produces a continuous
surface that is inherently seamless and manifold due to the
nature of implicit functions, smoothly interpolates the sur-
face where there is little or no data, and can either approx-
imate or interpolate the data. The last two aspects are es-
pecially important with regard to vision-based data sets that
are noisy and often have holes due to occlusion. Note that



this method should not be confused with smoothing opera-
tors as applied to meshes or images because those methods
require an initial mesh to be reconstructed from the data
set. The variational implicit approach constructs a smooth
model in one step.

Previous work in implicit reconstruction using basis
functions use radially symmetric bases which force the im-
plicit function to be locally similar everywhere. Such be-
havior is, however, erroneous at non-planar regions of the
surface. For example, in the neighborhood around a point
on an edge, the surface is smooth along the edge but not
across it. The local behavior of the surface at such points
is distinctly different from a point in a planar region. The
variational implicit surface algorithm used in [9] and [30],
which uses isotropic basis functions, fails to model the
asymmetric nature of surface points near sharp features.

Our new approach introduces sharp features such as
edges and corners into the smooth surface using anisotropic
basis functions that enforce less smoothness across edges
than along them. Our basis functions are radial basis func-
tions that have been scaled non-uniformly, so their iso-
contours are ellipsoids rather than spheres. The orientation
of the anisotropy is determined by categorizing points as be-
ing embedded in a planar region, on an edge, or at a corner.
The categorization of the data points is obtained through
principle component analysis, which is also used in region
growing and propagation methods such as Lee, Tang and
Medioni’s work on tensor voting [17, 26] and Hoppe’s work
on surface reconstruction [14]. These principle directions
form a tensor field across the surface. We low-pass filter
this tensor field to combat the noise inherent in the data.
We then use the principle direction at each surface point
to orient the anisotropic basis functions. The reconstructed
surface is obtained by solving for the weights of the basis
functions in a closed form solution, unlike region growing
methods which must iterate to form a complete surface.

We have verified our approach using synthetic 3D data
that has been injected with uniform noise and on real range
data obtained from generalized voxel coloring [7], an exten-
sion of the voxel coloring method of Seitz and Dyer [24].

2 Variational Implicit Surfaces

Our new approach to surface reconstruction draws upon
the work in variational implicit surfaces, which uses volu-
metric regularization to construct a three dimensional sur-
face that is smooth and seamless [9,30]. A similar approach
was developed by Savchenko [22] to reconstruct contours
and solids. In the next section, we discuss the framework
behind the variational implicit approach using isotropic ba-
sis as presented by Turk and O’Brien. In Section 2.2, we
describe the radial basis function for multiple orders of
smoothness that was used in [9]. We present our new ap-
proach using anisotropic basis functions in Section 3, dis-
cuss our method of determining the direction for anisotropy
in Section 4, and show reconstruction results in Section 5.

2.1 Volumetric Regularization

In [30], Turk and O’Brien present variational implicit
surfaces as a solution to the problem of shape interpolation
by minimizing a desired energy functional while interpo-
lating data constraints. The variational implicit approach is
based on the calculus of variation and is similar to surface
regularization in that it defines an energy functional to be
minimized. Unlike surface regularization, the energy func-
tional is defined inR3 rather thanR2. Hence, the energy
functional doesnot act on the space of surfaces, but rather,
on the space of 3D functions. Turk and O’Brien argue that
the iso-surface of a function that minimizes such an energy
is also smoothly varying. A typical cost functional for reg-
ularization includes a data fitness term and a prior term:

H [f ] =

nX
j=1

1

�i
(yi � f(~xi))

2 + �[f ] (1)

In the above equation,f is the unknown surface function,
n is the number of constraints, or observed data points;yi
are the observed values of the data points at locations~xi;
�[f ] is the prior; and�i is a parameter to weigh between
fitness to each data point and smoothness of the surface.
The term�i is often called theregularization parameter,
and is used to specify how closely to approximate the data
set. The surface more closely fits a constraint point~xi as�i
approaches zero, and more loosely approximates~xi when
�i > 0. The�i value for each constraint may be determined
according to the noise distribution of the data acquisition
technique. The ability to pass close to, but not necessarily
through, data points is especially applicable for imprecise
data, such as that from voxel coloring. A derivation is pre-
sented in [13] which shows that the cost functional,H , is
minimized by a function consisting of a sum of weighted
basis functions:

f(~x) =

nX
i=1

wi�(~x� ~ci) + P (~x) (2)

In the above equation,�(~x � ~ci) is the basis function
centered at~ci; n is the number of constraint points (each
constraint corresponds to a basis);wi are the weights for
the basis functions; andP (~x) is a polynomial term. Con-
straints are placed at surface points, points in the interior of
the object, and exterior points surrounding the object. The
polynomial term in Equation 2 spans the null space of the
basis function. The unknowns,wi and the coefficients of
P (~x), are found by solving the following linear system:
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The function value,f(~ci), at each constraint point is
known since we have defined the constraint points to be on
the surface, or internal or external to the object. In the case
of an implicit function that evaluates to zero on the surface,
the known function value for each surface constraint is zero.
We place all exterior constraints at the same distance away
from the surface and assign them a function value of -1.0.
All interior constraints are assigned a function value of 1.0.
The matrix consists of the evaluation of the basis function
at the Euclidean distance between each pair of constraints.
For surfaces, constraints are specified by 3D coordinates,
~c = (cx; cy; cz). Once the solution to the unknown weights
is found, the 3D implicit function is completely defined by
Equation 2. The implicit surface is a level-set of the 3D
implicit function where it evaluates to zero.

2.2 A Radial Basis Function for Multiple Orders
of Smoothness

The prior in Equation 1 may take on a variety of forms,
such as a thin-plate term. In [9], the authors use a prior that
is a combination of first, second and third order energies.
The associated functional is similar to Laplace’s equation,
��f = 0, but also has higher order terms:

�Æ�f +�2f � ��3f = 0 (5)

In the above equation the Laplacian operator in 3D is:

�f =
@2f

@x2
+
@2f

@y2
+
@2f

@z2
(6)

In equation 5, the amount of first order smoothness is
specified byÆ, and � controls the amount of third order
smoothness. The balance betweenÆ and � controls the
amount of second order smoothness. The radial basis that
inherently minimizes the above prior is derived in [6] and is
given below:
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2�2
(8)

In the above equations,r is the distance from an arbitrary
point to the center of the radial basis function. The basis is
isotropic due to the directionally unbiased energy functional
defined in Equation 5.

The only free parameters in defining the basis function
areÆ and� . By plotting the basis for various values ofÆ
and� , one finds that although the basis has infinite support,
it quickly falls off towards zero. The basis function falls off
more rapidly asÆ is increased. As� is increased, the center
of the basis becomes increasingly smooth. In [9], the au-
thors show through measures of fitness and curvature that
values of� between 0.001 to 0.003,Æ values between 10.0

to 40.0 and� values between 0.005 to 0.01 are appropriate
for a variety of vision-based data sets. Note that although
the appropriate values forÆ and� depend on the distance
between the constraint points (or, basis centers), the param-
eters are quite robust and require little tuning as discussed
in [9].

In this work, we apply the variational implicit surface
approach using the multi-order basis to more challenging
vision-based data sets that include sharp edges and corners.
The results shown in [9] are reconstructions of organic data
sets that exhibit smooth features and contain less local de-
tail. Our new approach modifies the isotropic radial basis
function described earlier to create an anisotropic basis that
treats edges and corners differently than planar, smooth re-
gions. In addition, we adaptively set the regularization pa-
rameter,�, to force the surface to tightly fit the data near
edges and corners and more loosely approximate the data in
planar regions.

3 Anisotropic Basis Functions

Surface points can be characterized as embedded in a
planar region, at an edge, or at a corner. The surface is
radially symmetric around planar points. For a point on
the edge, the surface is smooth along the edge but falls
off sharply across the edge. At a corner, the surface falls
off sharply in many directions. Sharp changes in the sur-
face are associated with discontinuous derivatives which are
minimized by the prior described in Section 2.2. Adap-
tively specifyingÆ and� to be smoother at planar points and
sharper at edges and corners does not appropriately model
the asymmetric nature of the surfaces, however, because the
basis remains radially symmetric. We had found, in prac-
tice, that spatially varying the smoothing parameters,Æ and
� , failed to maintain smoothness along edges while reduc-
ing continuity across them.

Our new approach is to model the asymmetric nature of
surface points by making the multi-order basis function fall
off to zero anisotropically. This is analogous to anisotropic
support for basis that have finite support (the basis of Equa-
tions 7 and 8 have infinite support). Ideally, the support
should be reduced across edges and at corners where gradi-
ent and curvature is discontinuous, while it should be main-
tained at planar regions and along edges where the continu-
ity must be preserved. This is achieved by an anisotropic ba-
sis function that falls off more rapidly in one direction than
another. We construct such a basisB(~x) by non-uniformly
scaling the distance from the center~c of the basis to a point
~x along the direction of anisotropy:

B(~x) = �(jM(~x � ~c)j) (9)

In the above equation,M is the scaling function. In prac-
tice, the direction of anisotropy is along the principle axes
of a corner or edge point, which we later describe in Section
4 . Note that�(r) remains unchanged, and Equations 7 and
8 are directly applied to the scaled distance to obtain the
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anisotropic basis,B(~x). The non-uniform scaling allows
the basis to approach zero more rapidly in some directions
than others. As a result, for surface constraints on an edge,
the basis is oriented so that it approaches zero more rapidly
across the edge than along the edge. For corner constraints,
the basis approaches zero more rapidly in all directions to
allow a break in continuity at that point. For planar regions,
the anisotropic basis reduces to an isotropic, radially sym-
metric basis function.

Figure 1 is a synthetic example of the reconstruction
of a cube from 770 sample points. 3D surface constraints
were uniformly sampled from a cube of dimensions2:0 �
2:0 � 2:0. Values ofÆ = 5:0 and � = 0:05 were used
in the reconstruction to span the average distance of 0.19
between sample points. The reconstruction using isotropic
basis functions is shown on the left, while the reconstruction
on the right was created using anisotropic basis functions.
The isotropic function is radially symmetric and produces
a rounded surface even at corner points. In contrast, the
anisotropic basis is able to reproduce sharp edges and cor-
ners. Notice how the anisotropic basis provides more sup-
port along an edge than across it, while the basis at the cen-
ter of the cube faces behave isotropically. The reconstruc-
tion using the anisotropic basis exhibits sharper corners and
edges, and more faithfully reproduces the polygonal cube.

Figure 1. Isotropic (left) and anisotropic
(right) reconstructions of a synthetic cube
from 770 point samples using values of Æ =
5:0 and � = 0:05.

As shown in Figure 1, the direction of the anisotropy
is essential to the reconstruction. In the next section, we
discuss how we determine the direction of anisotropy using
principle component analysis.

4 Direction of Anisotropy
In order to determine whether a surface point,~p, is part

of a planar region, part of an edge, or occurs at a corner, we
look at the number of dominant principle axes spanned by
the neighborhood of points~vi within radiusr of ~p. To iden-
tify the principle axes of of the local data set, we perform
eigenvalue decomposition of the covariance matrix. The co-
variance matrix,C(~p), is a3� 3 symmetric tensor that de-
scribes the distribution of points in the neighborhood, and

is computed as the sum of the outer product between each
surface point (minus the centroid of the neighborhood) and
its transpose:

C(~p) =

nX
i=1

(~vi � ~c)(~vi � ~c)T (10)

In the above equation,n is the number of points in the
neighborhood. Each~vi is the location of a surface point
in the neighborhood, and~c is the centroid of the neigh-
borhood. Our application of principle component analysis
differs from that used by Lee, Tang and Medioni in tensor
voting [17, 26] and by Hoppe in his surface reconstruction
method [14] in thatC(~p) is not computed using the esti-
mated normal vector of the surface points. Instead, we use
the distribution of the local surface points themselves. Ro-
bust estimation of the surface normal at the sample points
requires that the data set be very precise, which we do not
assume in our approach.

The resulting eigenvectors ofC are the three principle
axes of the set of points in the neighborhood. The eigenval-
ues indicate the strength of the corresponding eigenvector
and help characterize the local point set. When all three
eigenvalues are nearly equal, then there is no one or two
dominant axes along which all the points span. In such a
case, the point set within the neighborhood is likely to be a
corner, as long as the local point set is a thin-shelled surface.
If there is one strong eigenvalue, then there is one dominant
principle axis, and all the points in the neighborhood span
that axis. Such a situation is likely to occur along edges,
and the dominant axis is the orientation of the edge. If all
the points lie on a plane, then they span the space of two
vectors (or axes). In such a case, there will be two eigenval-
ues that are nearly equal and larger than the third. The two
corresponding eigenvectors form the plane along which the
points span, and the eigenvector corresponding to the weak-
est eigenvalue is the estimated normal vector to the plane.

Once the surface points have been characterized as part
of a planar region, part of an edge, or at a corner, the non-
uniform scaling is applied to the basis function as described
in Section 3 so that it behaves anisotropically. In particu-
lar, for an edge point, the direction of anisotropy is aligned
with the dominant principle axis. The scaling function,M ,
of Equation 9 is applied to the vector between the edge point
and an arbitrary point in 3D space to be evaluated, denoted
by ~x � ~c in Equation 9. The scaling function contracts the
vector in the direction of the principle axis by a factor of
0:5� the ratio between the eigenvalues associated with the
minor axis and the major axis. This contraction causes the
basis function in Equations 7 and 8 to be evaluated at a
smaller radius than before scaling. Since the basis,�(r),
approaches zero asr increases, a smallerr evaluates to a
larger basis value. Hence, the anisotropic basis approaches
zero less rapidly in the direction of the principle axis, but
more rapidly across the edge which is orthogonal to the
principle axis.
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4.1 Filtering the Tensor Field

Each covariance matrix, defined by Equation 10 is a ten-
sor. We obtain a field of tensors over the entire surface by
performing the principle component analysis on each sur-
face point in the voxel coloring data set (not just the surface
constraints that we uniformly sample as described later in
Section 5.1). Principle component analysis is sensitive to
noise in the data. For example, if a neighborhood of points
is not a thin-shelled surface due to noise, then the catego-
rization of the surface point by the method described in the
previous section may be incorrect. In addition, the juxtapo-
sition of very different tensors will often result in a rough
or wrinkled surface. Figure 2 are reconstructions of a syn-
thetic example of a cube whose surface points have been in-
jected with uniform noise that deviates from the noise-free
surface by up to ten percent of the cube dimensions. The
left panel of Figure 2 shows the reconstruction of the noisy
cube using the anisotropic, multi-order basis without addi-
tional filtering of the tensor field. The edges and corners are
fairly sharp, but the faces are quite rough.

In order to combat the noise present in the tensor
field, we apply a low pass filtering of the tensors using a
Gaussian-like kernel. We position the kernel at each surface
point. The resulting tensor at the center of the filter is the
summation of weighted tensors of all surface points within
the support of the filter. Additionally, we modify the support
of the filter so that it is anisotropic. We align the filter so that
it has greater support along the dominant principle axis of
the original tensor at the surface point. This anisotropy has
little effect for points in planar regions since the tensors at
such points do not have one dominant principle axis, and
thus, the support is equal along both dominant axes. The
weight of a neighboring tensor is dependent on the distance
of the neighboring surface point to the center of the filter.
This distance is applied to the anisotropic Gaussian kernel
to obtain the weight for the unfiltered tensor. The filtered
tensor,C 0(~pi), at a surface point,~pi, is as follows:

C 0(~pi) =

Pn

j=1 wijC(~pj)Pn

j=1 wij

(11)

wij = e
�j~pi�~pj j

2

2r (12)

In the above equation,n is the number of surface points
within the filter radiusr; ~pj are the coordinates of the sur-
face points; andC(~pj) is the unfiltered tensor of~pj . The
right panel of Figure 2 shows the reconstruction of the noisy
cube after tensor filtering.

4.2 Basis, Neighborhood, and Filter Radii

The span of the basis function, the neighborhood ra-
dius used in calculating the unfiltered tensor at each surface
point, and the filter radius are all dependent on the sampling
density of the data set. The basis function needs to be large
enough to span the samples. For noisy data sets, the radius

Figure 2. Reconstructions of the noisy cube
without tensor filtering (left) and with tensor
filtering (right).

for calculating the tensor at each surface constraint needs to
be large in order to be insensitive to the noise. For example,
voxel coloring data sets tend to be aliased due to voxeliza-
tion. A radius of four or more voxels is required to avoid
biases due to the voxelization. The filter radius depends on
the noise level of the initial tensors at each surface point.
We have used a radius of 0.6 to calculate the initial tensors
and a filter radius of 0.4 for the synthetic data set sampled
from a2:0�2:0�2:0 cube injected with uniform noise that
deviates up to 0.2 away from the noise-free surface.

5 Results

We have applied our approach of surface reconstruction
using anisotropic basis functions to a real data set obtained
through generalized voxel coloring [7]. The data set is an
eight inch tall, souvenir model of Ghirardelli Square. Figure
4 shows actual images of the model. The thin-shelled, vol-
umetric data set consists of 72,101 surface voxels, carved
from a volume of168� 104� 256 voxels using 17 images.

5.1 Constraints from Voxel Coloring Data

The generalized voxel coloring algorithm is a space carv-
ing approach that begins with a 3D volume and a set of im-
ages from arbitrary viewpoints around the object to be re-
constructed [7]. Voxels are carved out of the initial volume
by splatting each voxel towards each camera and determin-
ing the consistency of the voxel color across the images. If
the variance in color intensity is below a specified threshold,
the voxel is kept as part of the object surface. Otherwise, it
is cast out and assigned a zero value. The resulting data is
a thin-shelled, volumetric representation of the surface, and
consists of red, green, and blue channels for each voxel.

As mentioned in Section 2.1, constraint points are speci-
fied to be on the surface, or internal or external to the object.
Surface constraints are not generated from the entire data set
because the system matrix in Equation 3 would become too
large, and the reconstructed surface would overfit the data,
resulting in overshoots. Instead, we uniformly sample the
data set to reduce it to several thousand surface points (ex-
amples in this section use only 2000 surface points). Our
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Figure 3. Voxel coloring data set of the eight
inch Ghirardelli Square model (left) and the
2000 surface points used in reconstructing
the variational implicit surface (right).

results show that this reduced data set is sufficient to gener-
ate detailed surfaces using our reconstruction algorithm. In
selecting constraints, we use the method described in [9] to
uniformly sample the surface, interior, and exterior regions
of the object. This method is based on the notion offree
spaceas introduced in [8]. Free space is the region of space
swept out by the collection of rays emanating from a camera
towards surface points visible from that camera. Using the
a priori information about the cameras used in generating
the voxel coloring data set, we can define exterior points all
around the object. Surface points are defined by the voxel
coloring data set itself. Interior points are determined by
traversing the volumetric data set along each major axis.
During the traversal, all points occurring between pairs of
surface voxels are marked as interior. Only voxels which
are marked as interior by two or more traversals are kept
as interior constraints. The left panel in Figure 3 shows the
entire voxel coloring data set, and the right panel shows the
2000 surface constraints that were uniformly sampled from
the data set and used in the anisotropic variational implicit
surface reconstruction.

5.2 Reconstructions

The voxel coloring data set, shown in Figure 3, is aliased
due to voxelization and contains floating surface points due
to noise and non-textured regions of the model. We have
extracted the largest single connected component to remove
the floating voxels. We uniformly sample the surface, inte-
rior, and exterior to obtain 2000 surface, 50 interior, and 200
exterior constraints. All constraints were centered and nor-
malized so that the reconstructed model is within a bound-
ing box spanning -1.0 to 1.0 along each axis.

Figure 4. Actual images of the Ghiradelli sou-
venir model (left), and reconstructed model
rendered at the same camera viewpoints
(right).

Figure 5 is a comparison of reconstructions using the
isotropic basis(left panel), using the anisotropic basis with-
out tensor filtering (second panel), and using the anisotropic
basis with tensor filtering (third panel). The last panel is
a textured version of the reconstruction shown in the third
panel. In all four reconstructions,� = 0:001 at sharp fea-
tures and� = 0:01 in planar regions,Æ = 10:0, � = 0:01,
the neighborhood radius for the initial tensors is 8.0, and the
filtering radius when tensor filter was used is 8.0. The av-
erage Euclidean distance error measured on all four models
from a random sampling of 10,000 surface points are 0.0137
for the isotropic reconstruction, 0.0123 for the anisotropic
reconstruction without tensor filtering, and 0.0120 for the
anisotropic reconstruction with tensor filtering.

Visually, the reconstructions using an anisotropic basis
with tensor filtering (shown in the third and fourth panels)

6



Figure 5. Comparison of reconstructions using isotropic basis (first), using anisotropic basis without
additional tensor field filtering (second), using anisotroipic basis with additional tensor filtering
(third), and the final textured reconstruction (fourth). In all four reconstructions, � = 0:001 for surface
points at an edge or corner, and � = 0:01 for planar points.

are the best at capturing sharp features while smoothing out
planar regions of the model. The differences between the
reconstructions using the isotropic (first panel) versus the
anisotropic basis is especially apparent at the edges and
corners. The isotropic reconstruction has rounded edges
and corners, while those of the anisotropic reconstruction
are sharp and well-defined. The differences between the
unfiltered (second panel) and filtered (third panel) recon-
structions using the anisotropic basis is quite subtle. It is
clear, however, that the planar regions of the unfiltered re-
construction are more wrinkled. This is also evident in the
average error measurements, which show a larger difference
between the isotropic and anisotropic reconstructions than
between the filtered and unfiltered reconstructions. The er-
ror measurements do, however, support the visual notion
that the reconstruction using the anisotropic basis with ten-
sor filtering is the best of the three, the reconstruction using
the anisotropic basis without additional filtering is a close
second best, and the reconstruction using the isotropic basis
is the worst of the three types of reconstructions.

The final step in our reconstruction is to texture the re-
constructed model. We first extract a polygonal model from
the implicit surface usingMarching Cubes[18]. The polyg-
onal model is then subdivided until all triangles of the mesh
project to less than a pixel in area for all the input images.
We assign color to each triangle of the polygonal model
by projecting each triangle to the input image whose cor-
responding camera has the best unobscured view of the tri-
angle. Typically several cameras will have an unobscured

view of any one triangle, but the one with the best view is
the one that has a view most nearly parallel to the trian-
gle normal. This is determined by taking the dot product
between the triangle normal vector and the view direction
vector of the camera. Finally to reduce aliasing, we fil-
ter the color of each triangle by taking the average of the
colors of the triangle and its neighbors. Figure 4 is a com-
parison of two of the original images used in voxel color-
ing with the textured reconstruction using anisotropic basis
functions. The last panel of Figure 5 shows the textured
reconstruction from a novel viewpoint.

6 Conclusion and Future Work

We have described a method for reconstructing surfaces
using anisotropic basis functions that are guided by a tensor
field. This method well captures sharp features such as cor-
ners and edges because the anisotropic basis more appro-
priately models the asymmetric nature of the surface near
such features than does the isotropic basis. The anisotropy
allows the surface to be sharper along different directions
across a surface point. Additionally, our method is insen-
sitive to noise that is often present in 3D data sets obtained
from images. The variational implicit surfaces are allowed
to approximate rather than interpolate the data through vol-
umetric regularization. We have also filtered the tensor field
that determines the directions of anisotropy to reduce the ef-
fects of noise in the data set. Reconstructions of synthetic
data injected with uniform noise and real voxel coloring
data show that our approach preserves sharp edges and cor-
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ners better than isotropic reconstruction, and succeeds in
smoothing planar regions.

We are currently looking at improved methods for filter-
ing the tensor field, including anisotropic diffusion. Addi-
tionally, we are looking into potential methods for incor-
porating the variational implicit surface approach into the
space carving algorithm. Currently, there is no notion of
a surface as voxels are carved away. Voxels are kept as a
surface voxel only if its color is consistent with the images
of the object. We propose that the reconstructed surface be
used as an additional guide in rejecting voxels and in refin-
ing the threshold variance above which voxels are rejected.
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