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Abstract

We propose a simple but effective estimation procedure to extract the level and

the volatility dynamics of a latent macroeconomic factor from a panel of observable

indicators. Our approach is based on a multivariate conditionally heteroskedastic

exact factor model that can take into account the heteroskedasticity feature shown

by most macroeconomic variables and relies on an iterated Kalman filter procedure.

In simulations we show the unbiasedness of the proposed estimator and its superiority

to different approaches introduced in the literature. Simulation results are confirmed

in applications to real inflation data with the goal of forecasting long-term bond risk

premia. Moreover, we find that the extracted level and conditional variance of the

latent factor for inflation are strongly related to NBER business cycles.
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1 Introduction

In their highly influential paper, using a reduced form no–arbitrage framework with time–

varying risk premia, Ang and Piazzesi (2003) conclude that macroeconomic variables have

an important explanatory power for yields and that the inclusion of such variables in term

structure models can improve their forecasting performances significantly. More recently,

many other studies (see, among others, Ludvigson and Ng (2009b), Joslin et al. (2009),

Duffee (2009) for the U.S. or Wright (2009) in an international context) have documented

that macroeconomic variables capture significant predictive power for bond excess returns

over and above the standard financial factors. In order to avoid relying on specific macro

series, Ang and Piazzesi (2003) and Ludvigson and Ng (2009a), measure different macroe-

conomic fundamentals as the first principal components of blocks of large numbers of

macroeconomic series.

In this paper we propose considering macroeconomic variables as possible relevant fac-

tors for modeling the dynamics of the bond risk premia process (and therefore the whole

term–structure). We take into account not only the level of a macroeconomic variable, but

also its volatility. Moreover, we also propose a different method for reconstructing the level

and volatility dynamics of the latent macro–factor from a bunch of observable indicators.

Our approach is considerably simpler from a computational perspective than the classical

ones introduced in the literature and at the same time performs better in simulations as

well as in a real data applications.

In macroeconomics, it is common to have a large set of indexes that measure or are

highly dependent on a latent macroeconomic variable. Given the pervasiveness of het-
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eroskedasticity in macroeconomic variables, we model the observable set of proxies using

a multivariate conditionally heteroskedastic exact factor model, i.e. a linear factor model

where the heteroskedastic conditional variance is a function of the past values of the la-

tent factor (see for instance, Diebold and Nerlove 1989). In such a type of model, the

conditional density, depending on unobservable variables, is generally unknown. As a con-

sequence, the log-likelihood function cannot be obtained explicitly and hence standard

maximum likelihood estimators cannot be employed (Harvey et al. 1992 ). To overcome

this problem, alternative estimation procedures have been proposed in the literature: the

Bayesian Markov chain Monte Carlo (MCMC) estimation methods introduced by Fioren-

tini et al. (2004) and the indirect inference estimators introduced by Sentana et al. (2008).

However, following the direction proposed by Diebold and Nerlove (1989) and Sen-

tana (2004), in this study we introduce a (computationally) simple estimation approach

that relies on filtering the latent factor from a panel of data via an iterated Kalman fil-

ter procedure. This approach hinges on recent results about efficient estimation of the

macro-parameters in dynamic panel data models with a common factor. In particular,

Gagliardini and Gourieroux (2009) showed that substituting the true factor values by their

cross-sectional approximations does not lead to any asymptotic efficiency loss. For the

cross–sectional reconstruction of the latent factor we propose an iterated process in which

we estimate the volatility dynamics of the factor from the time series of a first (time–

invariant) Kalman filter approximation of the factor and use it in a new cross–sectional

conditional (time–varying) Kalman filter estimation. New volatility dynamics can be esti-

mated from the dynamics of the new estimated factor and the procedure can be iterated

until convergence.
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Simulation results based on different data–generating processes and the same amount of

data that are available in the empirical application show the unbiasedness of the proposed

estimator for the conditional variance parameters and its superiority to other simple al-

ternative methods, in particular, to the principal component approach used by Ludvigson

and Ng (2009a).

The superiority of our approach is also confirmed by a real data application. Using a

panel of 21 monthly inflation time series, we filter the level and the volatility of inflation via

several different techniques. We test the ability of the estimated factors in forecasting long–

term bond risk premia and find that both the level and the volatility of inflation obtained

via an iterated Kalman filter significantly outperform the other competitors. Moreover,

by analyzing the correspondence between the different factors and National Bureau of

Economic Research (NBER) business cycles, we show that our inflation estimates are not

only statistically but also economically significant.

The reminder of the paper is organized as follows. Section 2.1 describes in detail the

procedure of reconstructing the level and volatility dynamics of a latent factor. Section

2.2 shows the performance of the latent macroeconomic variable and its volatility in a

simulation study. In Section 3 we apply our estimation technique on real macroeconomic

data. Section 4 concludes.
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2 Reconstructing the dynamics and volatility of the

latent factor

Our purpose in this section is to reconstruct the underlying time series dynamics of a

latent macroeconomic variable and its volatility process from the observations of a certain

number of proxies. We propose a simple estimation approach that exploits the possibility

of filtering the latent factor from cross-sectional information via an iterated Kalman filter

procedure.

2.1 Model and estimation procedure

Wemodel the latent factor dynamics at time t through a factor model for theN -dimensional

vector of the observables rt = (rt,i)
N
i=1

rt = Bft + et, for t = 1...T (1)

with B the N × k matrix of factor loadings, et the N × 1 vector of idiosyncratic noises,

and the latent factor ft being the variable of interest. In our empirical study of Section

3 we consider a univariate factor representing the latent inflation (i.e., using the standard

notation, ft = πt) and, as observables, a number of index proxies for inflation such as

different types of Producer and Consumer price indices.

The main assumptions of the model can be expressed in the following form:








ft

et









|It−1 ∼ N

















0

0









,









∆t 0

0 Φ

















. (2)

The latent factor ft is assumed to follow a general GARCH type dynamic with ft|It−1 ∼
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N(0,∆t) with ∆t a diagonal positive definite matrix of time-varying factor variances and

(for identifiability) unconditional variance E[∆t] = ∆ = Ik the identity matrix of or-

der k.1 The information set It contains current and past values of r and f , i.e. It =

{rt, ft, rt−1, ft−1, · · · , }. As in standard factor models, the vector of idiosyncratic noises et

is conditionally orthogonal to ft and has a positive semidefinite diagonal variance matrix

Φ, then the conditional distribution of rt is rt|It−1 ∼ N(0,Σt) where Σt = B∆tB
′ + Φ has

the usual exact factor structure.

In the literature this type of model is called a multivariate conditionally heteroskedastic

exact factor model and nests several models widely used in empirical finance (for instance,

Diebold and Nerlove 1989). When the variance of the factor is a function of lagged values

of ft, as in the GARCH case, the exact form of the conditional density of rt given its

past is generally unknown and, hence, the log-likelihood function cannot be explicitly

obtained (Harvey et al. 1992). To overcome this problem, Bayesian Markov chain Monte

Carlo (MCMC) estimation methods, simulated EM algorithm (Fiorentini et al. 2004) and

indirect inference estimators (Sentana et al. 2008) have been proposed in the literature.

Here, instead, we propose a simpler approach in which we iterate between filtering the

factor with a Kalman filter in the cross–sectional dimension and estimating its variance

dynamics in the time series dimension. This approach hinges on the idea contained in the

recent literature on estimators of the macro-parameters in dynamic panel data models with

1Although possible in principle to extend the model to include dynamics in the conditional mean of the

factor, this would certainly complicate both the reconstruction of the latent factor and the estimation of

the dynamics of ∆t. Since our purpose in this paper is to propose an unbiased estimation method which

is as simple as possible, we leave this extension of the model for future research.
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a common factor where the macro-parameter is estimated by means of cross-sectional ap-

proximations (Forni and Reichlin 1998,Forni et al. 2004, Gagliardini and Gourieroux 2009

). These studies show that, under certain speed of convergence assumptions,2 estimating

the macro-parameter on the cross-sectional approximations of the factors is root–T consis-

tent, asymptotically normal and achieves the same asymptotic efficiency bound as the one

obtained with an observable factor (i.e. the Cramer-Rao bound in linear Gaussian models).

Therefore, the estimators built on the approximated factor are asymptotically equivalent

to the unfeasible estimator that uses the true factor values. These efficiency results are

obtained under certain asymptotic schemes which are not expected to necessary hold in

our setting. Therefore, whenever these asymptotic conditions are not satisfied, estimators

based on more complex simulated estimation methods (as the ones in Fiorentini et al.

2004 and Sentana et al. 2008) are expected to be asymptotically more efficient. However,

the big advantage of the proposed estimator is to be computationally much simpler. This

advantage is due to the way the proposed estimator effectively exploit the cross–sectional

dimension (to reconstruct the factor) in combination with the time–series information (used

to filter the variance of the factor).

Different approaches can be used to approximate ft: simple cross sectional averaging,

principal component analysis (PCA) or factor analysis (FA). In this study we propose a

reconstruction of the ft factor by an iterative procedure in which the factor is first estimated

with a Kalman filter using the cross-section of the observable indicators at our disposal.

From the time series of this first approximation of the factor, the variance dynamics are

2When N, T → ∞ and T/N → c > 0 the fixed effects estimator is consistent, while if N, T → ∞ such

that T b/N = O(1), b > 1 the estimator is efficient.
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estimated in a classical GARCH framework. The estimated GARCH dynamics of the factor

conditional variance are then used in a conditional Kalman filter estimation to obtain new

factor estimates. This iterative procedure is run until convergence. Although we apply

this approach to a case where a one factor model arises naturally, this procedure could be

directly extended to the case of multiple factors provided that one is not interested in the

exact identification of the different factors (because of the indeterminacy induced by factor

rotation).

Before starting the procedure, we need an estimate of the factor loading matrix B.

Given that in these types of models the factor loadings are assumed to be constant over

time, they can be conveniently estimated from unconditional quantities. Moreover, con-

ditionally heteroskedastic factor models also imply unconditional covariance matrices that

have an exact k factor structure as in the traditional factor models. Hence, recalling that

∆ = Ik, the unconditional covariance matrix Σ can be written as

Σ = BB′ + Φ. (3)

Given the different scale of the indices (which have different units of measures), it is

desirable to standardize the variable to avoid the problem of having one variable with a

large variance unduly influencing the determination of the factor loadings. Standardizing

by the individual volatility and working with the correlation matrix is then a customary

choice. Clearly, the correlation matrix R = D−1ΣD′−1 with D = diag(Σ) will also have

the same factor structure

R = B∗B∗′ + Φ∗ (4)

with B∗ = D−1B and Φ∗ = D−1ΦD′−1.
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Since in our case all the observed indexes are mainly driven by a single latent macroe-

conomic variable they are supposed to measure, we assume a factor structure with only

one common factor (i.e. k = 1). Then, the correlation matrix takes the following simple

structure.

R =

























1 b∗1b
∗
2 . . . b∗1b

∗
N

b∗2b
∗
1 1 . . . b∗2b

∗
N

...
. . .

...

b∗Nb
∗
1 b∗Nb

∗
2 . . . 1

























where [B∗]i = b∗i is the generic element of the N×1 vector B∗. This structure, together with

the fact that the factor loadings of the proxy are assumed to be all positive, suggests the

possibility to estimate the vector of standardized factor loadings B∗ by simply minimizing

the difference between any generic off diagonal element of the matrix B∗B∗′ with the

corresponding element of the sample unconditional correlation matrix [S∗]ij = s∗ij , that is

b̂∗ = argmin
b∗

N
∑

i=1

∑

j 6=i

(b∗i b
∗
j − s∗i,j)

2. s.t. 0 < b∗i < 1 ∀i (5)

The minimization algorithm in (5) projects the sample correlation matrix into the space

spanned by single factor models.

Having the estimated standardized factor loadings B̂∗’s, we can estimate the elements

of the diagonal matrix Φ∗ as [Φ̂∗]ii = 1 − (b̂∗i )
2. Then the original idiosyncratic variance

matrix and factor loadings are simply obtained as Φ̂ = D̂Φ̂∗D̂′ and B̂ = D̂B̂∗ respectively.

With B̂ and Φ̂ at hand, we can now start the Kalman filter iteration. If the joint

conditional distribution of rt and ft given It−1 is normal, the model (1) has a natural

time–series state–space representation. In fact, considering the common factor ft as state

9



variable, equation (1) could be seen as a standard measurement equation. When ∆t is

considered as a given observable, the Kalman filter would coincide with the conditional

expectation of ft given rt and ∆t, i.e. E[ft|rt,∆t], which is optimal in the conditional

mean squared error sense.3 Thus, the conditional Kalman filter estimate of the common

factor would be given by the (unfeasible) updating equation of the filter

fCK
t = ∆tB

′Σ−1
t rt = ∆tB

′(B∆tB
′ + Φ)−1rt. (6)

This estimator can be seen as a Bayesian approach for the cross–sectional estimation of

the factor. More precisely, the unfeasible estimator in (6) corresponds to the mean of the

posterior distribution of ft given the data rt in a Bayesian approach that considers ft as a

random variable with prior distribution ft ∼ N(0,∆t).
4

In order to have a feasible conditional Kalman filter, we propose to start the iterative

procedure from the following filter with time–invariant weights

f̂
(0)
t = B̂′Σ̂−1rt = B̂′(B̂B̂′ + Φ̂)−1rt (7)

using the estimates B̂ and Φ̂ obtained from the unconditional information.

Having this first reconstruction of the dynamics of the latent macro–variable, we then

get an estimate of the dynamics of its volatility by estimating a GARCH model on f̂t. In

3Actually, the optimality of the Kalman filter extraction of the factor holds under the more general

assumption that ft and rt follow a conditional joint distribution that is elliptically symmetric (Sentana

1991).
4Hence, our simplifying assumption of a zero mean prior implies that the information in the past

dynamics of the conditional mean is not considered in the forecast of the conditional mean of the factor,

but, obviously, does not prevent the posterior mean to be different from zero (as typically shown in

empirical data).
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this way we obtain a first estimate of the dynamics of the conditional variance of the factor

i.e. ∆̂
(0)
t which is then used in the conditional Kalman filter estimation of the factor

f̂
(1)
t = ∆̂

(0)
t B̂′Σ̂−1

t rt = ∆̂
(0)
t B̂′

(

B̂∆̂
(0)
t B̂′ + Φ̂

)−1

rt (8)

from which a new reconstruction of the latent factor can be computed and a new conditional

variance dynamics ∆̂
(1)
t estimated. Iterating this procedure provides our proposed estimator

for the dynamics of the latent factor and its conditional variance. Note that in practice,

only a small number of iterations is necessary to reach converge and the algorithm is very

fast.

2.2 Simulations

We first judge the performance of the proposed approach on the accuracy in the recon-

struction of the time series of the latent factor ft. The first employed data generating

process (DGP) is a one factor model with the latent factor following a GARCH type dy-

namics with zero mean and unconditional unit variance. We simulate 1000 paths and for

each path we assume 49 years of monthly observations (T = 588). Similarly to our real

data application, we assume to have 20 observable indicators for the latent macroeconomic

variable (N = 20). The true βs in the DGP are randomly chosen within a range of values

analogous to that estimated on the empirical data (see data Appendix).

For comparison purposes we also include the result obtained with a simple cross–

sectional average of the indexes, the factor score obtained with cross-sectional OLS re-

gression, the PCA and the FA with one factor. When N is large enough (so that id-

iosyncratic errors are diversified away) we have that the simple cross-sectional average is
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r̄t '
(

1
N

∑N

i=1 bi

)

ft; thus the factor values are recovered up to a scaling constant. We ac-

count for this scaling constant by simply dividing the series of the cross-sectional averages

r̄t by
1
N

∑N

i=1 b̂i. The cross–sectional OLS regression is another common method to gener-

ate factor scores. Contrary to our Kalman filter approach which consider ft as a random

variable, this approach assume the factor to be an unknown parameter and estimate it by

the cross–sectional regression fOLS
t = (B̂′B̂)−1B̂′rt. The FA is performed using the Matlab

command “factoran” which performs maximum likelihood estimate of the factor loadings

and computes factor scores using the weighted least–square (or Barlett) method (which

also treats the factor scores as fix parameters).

Given that the OLS regression approach completely discards the information contained

in ∆t and Φ, while FA neglects the information contained in the dynamics of ∆t, we expect

them to be less efficient than the Iterated Kalman filter method who optimally exploits

the information in both Φ and ∆t.

To judge the accuracy in reconstructing the ft series with the various approaches, we

compute the Root Mean Square Error (RMSE) for each simulated path between the true

path of the latent factor and the estimated one. For each simulation path we also compute

the correlation coefficient between the two series. Results are reported in the first two rows

of Table 6 Panel A.

[Table 1 about here.]

According to both metrics, our proposed procedure for the latent ft process turns out

to be the most precise; it is the one with, on average, the smallest RMSE and the highest

correlation coefficient.
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We then evaluate the ability of the different approaches to reconstruct the volatility

dynamics of the true factor by computing the RMSE and correlation coefficient between

the true series of simulated volatilities and the reconstructed ones obtained by fitting a

GARCH(1,1) process to the estimated ft series. Again, the Iterated Kalman filter provides

the reconstruction of the latent factor volatility with, on average, the lowest RMSE and

the highest correlation coefficient, as shown in the last two rows of Table 6 Panel A.

We notice that the improvements in the RMSE are typically more pronounced than

those on correlations. This can be explained by the fact that correlations only consid-

ers common directions in the movements of two variables while completely neglecting the

effective “distance” between the two while the RMSE is very sensitive to increases in

the estimation errors (over- or under-estimations). Given that both PCA and FA ignore

dynamics in ∆t they can in some periods overestimate and in other underestimate the vari-

able of interest thus increasing the overall estimation error and hence the RMSE compared

to the Kalman filter approach which, on the contrary, optimally utilizes the information

contained in both Φ and ∆t.

Finally, in Figure 1, Panel A, we plot the distributions of the estimated parameters of

the GARCH process for the volatility.

[Figure 1 about here.]

The figure clearly shows that the estimates of the true parameters α and β of the

GARCH process in the factor DGP are both unbiased and reasonably accurate. Similar

results are obtained for simulations with slightly different values of the GARCH parameters

(available from the authors upon request).
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2.3 Robustness checks

In this section we provide several robustness checks of our procedure by testing it on two

more challenging volatility processes (with a purposely misspecified DGP) and with fewer

time-series data points. In the first DGP the diagonal variance matrix of the idiosyncratic

noise Φ, which was kept constant over time in the previous standard set up, is now also

time–varying, with each idiosyncratic component following a different GARCH process.

The objective of this simulation exercise is to test the robustness of our procedure in

a misspecified set up featuring GARCH dynamics in both the factor and idiosyncratic

conditional variances, i.e. with time–varying ∆t and Φt.

The second DGP consists of a two-regime process with lagged return as the threshold

variable where the local conditional variance evolves according to a FIGARCH(1,d,1) model

(see Baillie et al. 1996) in one regime and a model that is not of a GARCH type in the

second regime. Results for the two more complex volatility DGPs are reported in Table 7.

[Table 2 about here.]

The results are qualitatively similar, although quantitatively worse, to those previously

obtained in the correctly specified set up, confirming in both cases the more accurate recon-

struction of the latent process by the proposed iterated Kalman filter method. Differences

with respect to the accuracy of the reconstructed factor volatility series are particularly

evident: This result shows the main peculiarity of the proposed approach, that is its abil-

ity to deal with the autoregressive conditional heteroscedasticity present in the data. The

alternative methods neglecting this aspect, may behave reasonably well for the reconstruc-

tion of the factor level, but completely fail in capturing the correct factor volatility. As
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expected, differences across the models become less evident, in particular in the second

DGP, given that all methods used are significantly misspecified.

As for the previous standard case, we plot in Figure 1, Panel B the distribution of the

α and β parameter estimates in the case of DGP process with time varying (GARCH type)

idiosyncratic noise Φt. GARCH parameter estimates seem to remain unbiased even in this

misspecified context.

[Figure 1 about here.]

Finally, we test the sensitiveness of our procedure to shorter datasets by performing

simulations with data samples spanning 15 and 30 years (instead of the 49 years employed

previously). For space concerns, Table 8 reports the results of these stress tests only for

the most challenging DGP i.e. the one having a GARCH dynamics with two regimes (the

similar results obtained with the others DGP are available from the authors upon request).

[Table 3 about here.]

Although some deterioration is observed in the estimation performances of the condi-

tional variances (as should be expected), the general performance in the reconstruction of

the factor and the relative ranking remain substantially unchanged.

3 Real data application: bond risk premia forecasting

Economic theory suggests that (a great portion of) bond term premia variation is driven

by macroeconomic fundamentals. Yet, the link between macroeconomic activity and risk

premia might be hard to detect. Using different modeling setups, many recent studies (see,
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among others, Ludvigson and Ng (2009b), Joslin et al. (2009), or Duffee (2009)) docu-

ment that macroeconomic variables capture significant predictive power for excess returns

over and above the standard financial factors. In this section we assess the performance

of our iterated Kalman filter technique in forecasting long–term bond excess returns in

comparison with principal components analysis and factor analysis.5 Results obtained ap-

plying a principal components analysis are not reported in Section 3.3 given that they are

qualitatively the same, but slightly worse, than those obtained using factor analysis.

3.1 Data and estimated inflation levels and variances

In our empirical study two different datasets are used.

Bond Data

We use monthly data (June 1961 onward) from the Federal Reserve Board constructed as

in Gürkaynak et al. (2006).6 Bond excess returns are calculated in the classical way as

1-year holding period returns in excess of the one–year risk–free rate.

Furthermore, we construct our tent–shape bond–return forecasting factor described in

Cochrane and Piazzesi (2005) (hereafter CP factor) as a linear combination of forward

rates. The inclusion of the CP factor is motivated simply by the fact that it has high

explanatory power for bond excess returns beyond the one that is captured by the yield

curve “level,” “slope,” and “curvature” factors.

Macroeconomic Data

5Another possible alternative procedure is the one proposed by Harvey et al. (1992). Given the dimen-

sionality of the problem, however, that approach is too computational expensive and is not implemented.
6The data are available under http://www.federalreserve.gov/econresdata/researchdata.htm.

16



The second dataset consists of monthly observations for 21 U.S. inflation time series. Exact

description of the data is given in Appendix A. The panel spans the period January 1959

– December 2007 and has already been used as a part of other studies: see, among others,

Stock and Watson (2005), Ludvigson and Ng (2009b) and Ludvigson and Ng (2009a). We

build two alternative pairs of estimates for inflation levels and variances. First, similar

to Ludvigson and Ng (2009a), we extract both the first principal component (PCA) and

the first factor (FA) as measures for inflation’s level. PCA and FA volatility are computed

from fitting a GARCH(1,1) to the estimated principal component and the estimated factor,

respectively. Our second approach for reconstructing the level and the variance of inflation

is based on the iterated Kalman filter procedure described in Section 2.1.

For our analysis we take the largest common period of the two datasets and split it

into two parts. We consider June 1961 to December 2003 as in-sample period. The rest

of the data (January 2004 - December 2008) has been left to evaluate the out-of-sample

forecasting performance of the different predictors. Summary statistics of the data are

reported in Table 1.

The adequacy of the one factor structure may be questionable. In fact, the assumption

of the one factor structure is primarily given by the economic consideration that all the

variable in the data set are all proxy of the same underlying macroeconomic variable i.e.

inflation. From a statistical point of view we can observe that the first principal component

explain about 53% of the total variance of the dataset while all the other components are

below 10%. The presence of a highly persistent heteroscedasticity in the series, which

justifies the use of a GARCH(1,1) model, is given by the highly significant results of the

Engle ARCH test with a large number of lags of 50.
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Summary Statistics of Data

rx
(5)

rx
(10)

rx
(20)

rx
(30) CP π

IK
volπ

IK
π
PCA

volπ
PCA

π
FA

volπ
FA

Panel A:

Mean 0.011 0.013 0.011 0.009 0.006 0.838 1.034 0.034 0.876 0.497 0.499

Std 0.056 0.104 0.198 0.325 0.019 0.579 2.109 1.014 0.694 0.401 0.370

AC1 0.931 0.921 0.880 0.798 0.916 0.989 0.993 0.973 0.953 0.991 0.990

Panel B:

rx
(5) 1.00

rx
(10) 0.96 1.00

rx
(20) 0.82 0.92 1.00

rx
(30) 0.62 0.72 0.90 1.00

CP 0.43 0.48 0.49 0.44 1.00

π
IK -0.22 -0.25 -0.26 -0.26 -0.06 1.00

volπ
IK -0.31 -0.36 -0.31 -0.29 -0.15 0.89 1.00

π
PCA -0.30 -0.29 -0.30 -0.29 -0.41 0.55 0.42 1.00

volπ
PCA -0.23 -0.24 -0.26 -0.26 -0.38 0.49 0.49 0.69 1.00

π
FA -0.27 -0.29 -0.30 -0.30 -0.13 0.97 0.85 0.68 0.61 1.00

volπ
FA -0.26 -0.30 -0.30 -0.30 -0.11 0.97 0.89 0.53 0.55 0.98 1.00

NBER 0.04 0.46 0.45 0.17 0.24 0.43 0.41

Table 1: Panel A reports summary statistics for the following variables: 5, 10, 20, 30 year bond excess returns (denoted by rx(5),

rx(10), rx(20), rx(30), respectively), Cochrane and Piazzesi (2005) factor (denoted by CP), inflation level and inflation volatility

factors estimated by iterated Kalman filter (denoted by πIK
t and volπIK

t ),by factor analysis (denoted by πFA
t and volπFA

t ),

and by principal components analysis (denoted by πPCA
t and volπPCA

t ). NBER is a binary variable, where one indicates month

designated as recessions by the National Bureau of Economic Research. AC1 denotes the first autocorrelation coefficient. Panel

B reports cross–correlations.
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Figure 2 illustrates the difference between the inflation’s level and the inflation’s volatil-

ity factors obtained using the three different techniques.

[Figure 2 about here.]

As Figure 2 clearly shows, the estimated inflation’s level and volatility factors obtained

from the three competing approaches are significantly different.

3.2 Financial variables, inflation measures, and business cycles

To begin with, we analyze the correspondence between the NBER business cycles and the

different financial and inflation measures. The last row of Table 1 reports the results.

The weak correlation (around 0.04) between the NBER recession and CP factor confirms

Ludvigson and Ng (2009b) finding that, without macro factors, bond risk premia appear

virtually acyclical. Yet, theory says that risk premia have a marked counter–cyclical be-

havior, compensating the investors for macroeconomic risks. The almost two times higher

correlation between the NBER business cycles indicator and the iterated Kalman filter

inflation variables as well as the ones obtained from FA in comparison to those estimated

with the PCA approach assures more pronounced cyclical fluctuations in bond risk pre-

mia. By its iterated nature, our measures for inflation seem to better capture perceptions

of risks looming on the investors horizon. Thus, they convey valid and timely informa-

tion over and above that contained in other financial and PCA inflation fundamentals.

These findings make the inflation factors obtained by the iterated Kalman filter approach

highly economically significant. No particularly significant difference in the correlations

with NBER business cycles can be seen between our procedure and a classical FA.
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3.3 Long–term bond risk premia forecasting results

3.3.1 Predictive regressions

To assess the in-sample performance of our procedure in comparison with the alternative

approaches, on a first step, we investigate the impact of the different pairs of inflation

factors (i.e. level and volatility) as predictors for bond excess returns at different maturities.

We find that among all inflation variables our inflation volatility factor explains the highest

portion of the risk premia across all maturities. Interestingly, the model with the two

inflation level factors yields the highest adjusted R2. Hence, our iterated Kalman technique

is able to uncover important piece of inflation level information, not captured by the

conventional PCA and FA techniques. Details can be found in Appendix B.

Given the fact that the impact of inflation on bond risk premia is comparatively small,

following the term structure literature, we repeat the analysis above including the Cochrane

and Piazzesi factor in the regressions. The reason for that is that the Cochrane and

Piazzesi factor summarizes all the information in individual yield spreads and forward

spreads that had been proven to contain high predictive power for bond excess returns (see

for example Ludvigson and Ng (2009b), Cochrane and Piazzesi (2005)). To this goal we

run the following regressions:
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Model M1 : rx
(n)
t+12 = γ0 + γ1CPt + ε

(n)
t+12

Model M2 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + ε

(n)
t+12

Model M3 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

IK
t + ε

(n)
t+12

Model M4 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

FA
t + ε

(n)
t+12

Model M5 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

FA
t + ε

(n)
t+12

Model M6 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + γ3volπ

IK
t + ε

(n)
t+12

Model M7 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

FA
t + γ3volπ

FA
t + ε

(n)
t+12,

Model M8 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + γ3π

FA
t + ε

(n)
t+12

Model M9 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

IK
t + γ3volπ

FA
t + ε

(n)
t+12,

where rx
(n)
t+12 are the excess returns on an n year nominal bond (n = 5, 10, 20, 30) at

time t + 12. CPt represents the CP factor, πt and volπt denote the inflation level and

inflation volatility factors, estimated by the two different approaches: iterated Kalman

filter (denoted by πIK
t and volπIK

t ) and factor analysis (denoted by πFA
t and volπFA

t ),

respectively. To this end, we estimate nine different models. First, we regress the excess

returns only on CP factor (Model M1). This regression should serve as a benchmark

model. Then, in Model M2 and Model M3 we add one more predictor, the level and the

volatility of inflation, each estimated by the iterative Kalman filter approach. We repeat

the same procedure for the next two models (Model M4 and Model M5), where we add

once again the level and the volatility of inflation, this time estimated by the FA technique.

In Model M6 and Model M7 we take into consideration all three predictors: CP factor,

level and volatility of inflation. The only difference between Model M6 and Model M7 is

in the way the inflation variables are measured. In particular, in Model M6 the inflation
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variables are derived by the iterated Kalman filter procedure, whereas in M7 FA has been

used. In contrast to the previous models, where the main idea is to assess performance, the

individual filtering techniques, the last two models (Model M8 and Model M9) provide a

direct comparison between the two level (Model M8) and the two volatility (Model M9)

factors. All coefficients are estimated with ordinary least squares, and standard errors

are corrected for autocorrelation and heteroskedasticity.7 Table 2 and Table 3 present the

results.

The estimated coefficients for the CP factor are positive and highly significant for

predicting bond risk premia at all maturities. Fully in line with the literature, the CP factor

accounts for around 28% of the excess returns variation. The strength of the predictive

power of the inflation factors changes with time to maturity of a bond, explaining up to

6% of the variation in addition to the CP factor. The estimated coefficients for level and

volatility of inflation are negative, and they are significant most of the time. The negative

correlation between the different inflation measures and excess returns is quite intuitive, as

higher inflation decreases the value of the nominal bond. Including both level and volatility

of the inflation factor (see Models M6 and M7) in the regression does not seem to improve

the accuracy, and both predictors become statistically not significant.8

7In particular, we follow Ludvigson and Ng (2009b) and Cochrane and Piazzesi (2005) and compute

t-statics using the Newey-West adjustment with 18 lags.
8This result is a consequence of the high correlation between the two variables (and both series are very

persistent) together with the necessary Newey-West correction that substantially lowers the t-statistics.
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Intercept −0.002 0.013 0.005 0.013 0.013 0.004 0.011 0.003 0.008

(−0.310) (1.168) (0.678) (−0.173) (0.185) (0.339) (1.118) ( 0.724) (0.824)

CP Factor 1.533∗∗∗ 1.474∗∗∗ 1.410∗∗∗ 1.430∗∗∗ 1.444∗∗∗ 1.408∗∗∗ 1.420∗∗∗ 1.3200∗∗∗ 1.418∗∗∗

(4.749) (4.555) (4.219) (3.982) (4.333) (3.992) (4.294) (4.016) (4.080)

Inflation Level −0.027∗ -0.060 0.068

(Iterated Kalman) (−1.756) (-1.131) (1.599)

Inflation Vol −0.028∗ −0.005 −0.003

(Iterated Kalman) (−1.650) (−0.826) (−0.474)

Inflation Level −0.009 −0.060 −0.124∗

(FA) (−1.430) (−1.312) (−2.028)

Inflation Vol 0.035 0.006 -0.012

(FA) (0.602) ( 0.615) (-0.398)

R
2 0.257 0.285 0.294 0.287 0.293 0.294 0.296 0.316 0.312

Adjusted R
2 0.256 0.283 0.292 0.285 0.290 0.290 0.291 0.296 0.292

Panel B: Predictive Regression Analysis 10 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept −0.013 0.018 0.001 0.017 0.019 0.002 0.017 0.005 0.011

(−1.164) ( 0.991) (0.088) (1.052) (1.097) (0.121) (0.983) (0.781) (0.556)

CP Factor 3.025∗∗∗ 2.899∗∗∗ 2.772∗∗∗ 2.817∗∗∗ 2.840∗∗∗ 2.778∗∗∗ 2.817∗∗∗ 2.841∗∗∗ 2.792∗∗∗

(4.649) (4.521) (4.251) (4.379) (4.457) (4.203) (4.336) (4.177) (4.243)

Inflation Level −0.035∗ −0.002 0.087

(Iterated Kalman) (−1.751) (−0.078) (1.186)

Inflation Vol −0.011∗ −0.010 −0.006

(Iterated Kalman) (−1.917) (−0.960) (−0.562)

Inflation Level −0.056∗ −0.057 −0.179∗

(FA) (−1.990) (−.581) (−1.709)

Inflation Vol −0.059∗ 0.001 −0.029

(FA) (−1.941) ( 0.011) (−0.572)

R
2 0.283 0.320 0.328 0.327 0.327 0.328 0.328 0.338 0.330

Adjusted R
2 0.282 0.317 0.325 0.324 0.325 0.324 0.324 0.334 0.326

Table 2: Results for ordinary least squares regressions for nine different models (labeled as M1, M2,. . .,M9) utilizing annual returns on 5- and

10-year Treasury bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗
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Intercept −0.042∗∗ 0.017 −0.016 0.014 0.020 −0.005 0.019 -0.005 0.013

(−1.976) (0.634) (−0.972) (0.639) (0.784) (−0.157) (0.730) (-0.159) (0.391)

CP Factor 5.901∗∗∗ 5.659∗∗∗ 5.438∗∗∗ 5.507∗∗∗ 5.540∗∗∗ 5.482∗∗∗ 5.533∗∗∗ 5.270∗∗∗ 5.498∗∗∗

(4.366) (4.439) (4.300) (4.368) (4.425) (4.298) (4.354) (4.216) (4.287)

Inflation Level −0.066∗ −0.019 0.147

(Iterated Kalman) (−1.964) (−0.362) (1.186)

Inflation Vol −0.019∗∗ −0.015 −0.005∗∗

(Iterated Kalman) (−2.348) (−1.169) (−0.378)

Inflation Level −0.106∗ −0.018 −0.314∗

(FA) (−2.268) (−0.139) (−1.841)

Inflation Vol −0.116∗ −0.097 −0.090

(FA) (−2.248) (−0.637) (−1.043)

R
2 0.299 0.336 0.340 0.341 0.342 0.342 0.343 0.351 0.346

Adjusted R
2 0.297 0.334 0.338 0.339 0.339 0.337 0.339 0.348 0.342

Panel B: Predictive Regression Analysis: 30 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

a Intercept −0.072∗∗ 0.029 −0.031 0.024 0.034 0.008 0.035 −0.007 −0.040

(−2.027) (0.798) (−1.215) (0.730) (0.792) (1.016) (0.946) (−0.193) (−0.368)

CP Factor 8.779∗∗∗ 8.372∗∗∗ 8.057∗∗∗ 8.118∗∗∗ 7.874∗∗∗ 8.213∗∗∗ 8.179∗∗∗ 7.727∗∗∗ 8.203∗∗∗

(3.830) (4.013) (3.911) (3.974) (4.023) (3.886) (3.966) (3.815) (3.928)

Inflation Level −0.112∗∗ −0.070 0.243

(Iterated Kalman) (−2.292) (−0.808) (1.370)

Inflation Vol −0.030∗∗∗ −0.013 0.004

(Iterated Kalman) (−2.602) (−0.751) (0.233)

Inflation Level −0.178∗∗∗ 0.030 −0.522

(FA) (−2.604) (0.169) (−2.059)

Inflation Vol −0.197∗∗∗ −0.023 −0.220

(FA) (−2.628) (−1.145) (−1.577)

R
2 0.246 0.285 0.283 0.289 0.287 0.286 0.290 0.298 0.296

Adjusted R
2 0.244 0.282 0.280 0.287 0.284 0.282 0.287 0.295 0.291

Table 3: Results for ordinary least squares regressions for nine different models (labeled as M1, M2,. . .,M9) utilizing annual returns on 20- and

30-year Treasury bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗
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3.3.2 Out-of-sample predictability

Although, at first glance, both filtering techniques seem to perform equally well in this

in-sample investigation, the ability of our approach to reconstruct in a more accurate way

both the level and the volatility of inflation has empirical merits out-of-sample. To support

this, we run a genuine out-of-sample experiment for the remaining period in our sample.

Forecasting results covering the period January 2004 to December 2008 are shown in Table

9.

[Table 4 about here.]

The superior predictive ability tests of Hansen (2005) (see Table 9) reveal that our

inflation’s level and volatility measures on top of the CP factor matter for forecasting

bond risk premia, significantly outperforming other alternatives. Similar conclusions can

be drawn by using the Model Confidence Set (hereafter MSC) tests of Hansen et al. (2011).

MCS results strongly support the accuracy and the better performance of our approach

over the competitors for the period 2004-2008. More precisely, in terms of mean squared

error, Model M3 and Model M6 dominate at 10%, 5 % and 5 % for the 10-, 20- and

30–year bond risk premia, respectively. The results persist in the context of mean absolute

error: Model M3 and Model M6 are superior at 10% and 5 % for the 10- and 20–year

bond excess returns, respectively. No particular model dominates for the 5–year bond risk

premia.

The stability and strength of these results is noteworthy given the out–of–sample sample

period we consider. Using data from 2004:01 to 2008:12, we capture interesting times during

which inflation tends to reverse sign and become negative. At that time the economy was
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headed for a recession and the long-term interest rates refused to follow short-term interest

rates up as the Fed tightened monetary policy. In the term structure of interest rates

literature (part of) this period is known as “conundrum” and has turned out difficult to

forecast. Thus, our iterated Kalman factors comprises important information about the

inflation looming over investor’s horizon that cannot be extracted by the FA and PCA.

As a robustness check, we repeat the analysis over different sub samples. The series

of conducted in-sample regressions show that the estimated coefficients remain stable and

significant across bond maturities.

Given the fact that inflation has different impact on bond risk premia over the business

cycle, for our robustness analysis, it is important to choose out-of-sample periods in which

inflation has high information content for bond excess returns. Specifically, we take into

consideration both – periods of quite high as well as times when inflation is particularly

low. While all inflation models perform about the same during periods of high inflation, we

find that in times when inflation is quite low, our iterated Kalman technique significantly

dominates (in terms out–of–sample predictability) over the FA and PCA. Hence,we confirm

once again that the iterated Kalman technique enables us to extract important inflation

information over and above the one that is captured by other computationally simple

approaches. At this point we want to stress that in all subsamples we looked at, our

iterated Kalman inflation volatility factor has never been significantly outperformed.9

We also test the performance of the two filtering techniques in a more challenging

framework. Without making any additional assumptions, we create a pool of predictors,

including the two different pairs of inflation measures and the CP factor, and let the data

9Results based on SPA test. Details available upon request.
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themselves choose the most informative variables. This is achieved by finding for each

possible number of predictors the subset of the corresponding size that gives the smallest

residual sum of squares.10 Then, we use the Bayesian Schwarz Information Criterion (BIC)

to select the best model. We find that regressing the excess returns on the CP factor and

the volatility of inflation obtained by the iterated Kalman filter i.e. Model M3 leads to

optimal results.

Finally, we discuss the overall impact of the individual inflation factors in forecasting

bond risk premia. Based on the in–sample fit, out–of–sample forecasting, and economic

significance, we document that the most important macroeconomic variable for bond ex-

cess returns represents the volatility of inflation estimated via the iterated Kalman filter

technique. Yet, our inflation volatility measure is no longer a statistically significant pre-

dictor of long–term bond risk premia once the level of inflation is in the same regression.

The reason for this is the high correlation between the two iterated Kalman filter factors.

However, their impact varies with the time to maturity of a bond. In general, we may

conclude that the iterated Kalman filter technique allows us to extract in a more accurate

way the investors’ perceptions of inflation risk in comparison with alternative approaches.

4 Conclusions

In this paper we propose a new, computationally simple approach for reconstructing the

level and volatility dynamics of a latent macroeconomic factor from a large panel of macroe-

10This procedure is known in the literature as best subset selection. See Hastie et al. (2001) for more

details.
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conomic indices. Our estimation procedure is based on the iterated Kalman filter technique

in which we iterate between filtering the unobservable factor with a Kalman filter in the

cross–sectional dimension and estimating its variance dynamics in the time series dimen-

sion.

We assess the performance of our iterated Kalman filter approach on a set of empirical

studies. Extensive simulation results reveal the accuracy of our latent factor volatility

estimates and its superiority in comparison with other alternative approaches. Encouraged

by those results, we test the ability of our approach to reconstruct in a more accurate way

the unobservable macroeconomic driver and its volatility on a real data application – bond

risk premia forecasting. Using a panel of a large number of inflation time series, we filter

the level and the volatility of inflation via different techniques. We find that in predicting

long–term bond risk premia, our inflation estimates significantly outperform the other

competitors. In addition, looking at the correspondence between NBER business cycles

and inflation fundamentals, we conclude that our estimates are not only statistically but

also economically significant.

Our analysis could be taken a step further by studying the performance of bond risk

premia in a term structure modeling framework. The iterated Kalman technique could also

be to used obtain more accurate estimates for other important macroeconomic predictors

such as real activity. However, those extensions are left for future research.
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A Data Appendix

This appendix presents U.S. inflation data used in our real data analysis and our estimates

for the factor loadings and the parameters of the dynamics of the factor variance.

Table 10 report our inflation data for U.S.: the first column lists the short name of the

inflation variable, followed by its mnemonic in column 2, and a brief data description in

column 4. All data series are from Global Insights Basic Economic Database. The third

column shows the transformations used to assure stationarity of the individual time series.

In particular, ∆ ln and lv denote the first difference of the logarithm and the level of the

series, respectively. These data span the period January 1959 - December 2007 for a total

of 588 monthly observations.

[Table 5 about here.]

The estimated factor loadings of the inflation indices (in percentage) are:

β̂ = [4.77, 5.36, 6.04, 4.53, 6.22, 4.80, 2.72, 5.16, 5.75, 4.38, 3.48, 5.37, 4.82, 4.58, 4.74, 4.23, 2.60, 4.37, 4.57, 4.65]′,
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while the estimated constant, ARCH and GARCH parameters of the variance equation of

the factor are respectively: 0.0160, 0.1033 and 0.8847.

B Regression Results

The aim of this Appendix is to provide additional results for assessment of the different

pairs of inflation factors (i.e. level and volatility) as predictors for bond excess returns. In

particular, we take into consideration the following eight regressions:

Model M1 : rx
(n)
t+12 = γ0 + γ1π

IK
t + ε

(n)
t+12

Model M2 : rx
(n)
t+12 = γ0 + γ1volπ

IK
t + ε

(n)
t+12

Model M3 : rx
(n)
t+12 = γ0 + γ1π

FA
t + ε

(n)
t+12

Model M4 : rx
(n)
t+12 = γ0 + γ1volπ

FA
t + ε

(n)
t+12

Model M5 : rx
(n)
t+12 = γ0 + γ1π

IK
t + γ2volπ

IK
t + ε

(n)
t+12

Model M6 : rx
(n)
t+12 = γ0 + γ1π

FA
t + γ2volπ

FA
t + ε

(n)
t+12,

Model M7 : rx
(n)
t+12 = γ0 + γ1π

IK
t + γ2π

FA
t + ε

(n)
t+12

Model M8 : rx
(n)
t+12 = γ0 + γ1volπ

IK
t + γ2volπ

FA
t + ε

(n)
t+12,

where rx
(n)
t+12 are the excess returns on nominal bond at time t+ 12 with time to maturity

n years. The inflation level πt and volatility factors volπt, estimated by the two different

approaches are named as follows: iterated Kalman filter (denoted by πIK
t and volπIK

t ) and

factor analysis (denoted by πFA
t and volπFA

t ), respectively. Table 4 and Table 5 provide

the results.
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M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.0294 0.0193 0.0305 0.0314 0.0100 0.0281 0.0167 0.0212

(2.2371) (2.3795) (2.5789) (2.5367) (0.6550) (2.3195) (1.3340) (1.5528)

Inflation Level -0.0217 0.0157 0.0904

(Iterated Kalman) (-1.4696) (0.6277) (1.7435)

Inflation Vol -0.0076 -0.0114 -0.0067

(Iterated Kalman) (-2.0533) (-1.6469) (-1.0244)

Inflation Level -0.0406 -0.0811 -0.1718

(FA) (-1.9596) (0.0438) (-2.2289)

Inflation Vol -0.0409 0.0438 -0.0058

(FA) (-1.8503) (0.0942) (-0.1698)

R
2 0.051 0.086 0.081 0.072 0.092 0.083 0.127 0.086

Adjusted R
2 0.049 0.084 0.079 0.07 0.088 0.08 0.124 0.083

Panel B: Predictive Regression Analysis 10 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.0511 0.0294 0.0515 0.0543 0.01408 0.05007 0.0301 0.0342

( 2.1400) (2.0393) (2.4165) (2.4120) (0.5314) 2.2161 (1.2913)

Inflation Level -0.0455 0.0259 0.1403

(Iterated Kalman) (-1.6964) (0.6057) (1.5030)

Inflation Vol -0.0156 -0.0218 -0.0134

(Iterated Kalman) (-2.3815) (-1.8924) (-1.2325)

Inflation Level -0.0810 -0.1063 -0.2845

(FA) (-2.1616) (-0.6660) (-2.0646)

Inflation Vol -0.0836 0.0274 -0.0142

(FA) (-2.0871) (0.1612) (-0.2410)

R
2 0.063 0.100 0.090 0.085 0.105 0.091 0.122 0.101

Adjusted R
2 0.062 0.099 0.089 0.084 0.101 0.087 0.119 0.097

Table 4: Results for ordinary least squares regressions for eight different models (labeled as M1, M2,. . .,M8) utilizing annual returns on 5- and

10-year Treasury bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗

,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively. The data span the period June 1962 to December 2003. See text
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M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.0819 0.0393 0.0827 0.0894 0.0175 0.0843 0.0421 0.0595

(1.9551) (1.5634) (2.2193) (2.2349) (0.4102) (2.0606) (1.0390) (1.3660)

Inflation Level -0.0875 0.03676 0.2660

(Iterated Kalman) (-1.7849) (0.5252) (1.6159)

Inflation Vol -0.0291 -0.0380 -0.0199

(Iterated Kalman) (-2.5615) (-2.3542) (-1.3236)

Inflation Level -0.1554 -0.1280 -0.5413

(FA) (-2.2750) (-0.5619) (-2.1927)

Inflation Vol -0.1634 -0.0296 -0.0602

(FA) (-2.2194) (-0.1190) (-0.6041)

R
2 0.065 0.097 0.092 0.090 0.100 0.093 0.124 0.100

Adjusted R
2 0.063 0.096 0.091 0.089 0.096 0.089 0.121 0.096

Panel B: Predictive Regression Analysis: 30 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.1245 0.05139 0.1255 0.1382 0.0427 0.1333 0.0598 0.1133

(1.9933) (1.3845) (2.2087) (2.2573) (0.6766) (2.1394) (1.1065) (1.6143)

Inflation Level -0.1431 0.0145 0.4303

(Iterated Kalman) (-1.9879) (0.1466) (1.8445)

Inflation Vol -0.0447 -0.0483 -0.0165

(Iterated Kalman) (-2.5900) (-2.2256) -0.8505

Inflation Level -0.2539 -0.1216 -0.8780

(FA) (-2.4453) (-0.4194) (-2.3525)

Inflation Vol -0.2701 -0.1431 -0.1844

(FA) (-2.4300) (-0.4558) (-1.2050)

R
2 0.065 0.085 0.092 0.092 0.085 0.092 0.122 0.094

Adjusted R
2 0.063 0.083 0.090 0.090 0.082 0.089 0.119 0.090

Table 5: Results for ordinary least squares regressions for eight different models (labeled as M1, M2,. . .,M8) utilizing annual returns on 20- and

30-year Treasury bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗

,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively. The data span the period June 1962 to December 2003. See text
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Performance Comparison - Simulations

Simple cross-section Factor Principal Iterated
Average OLS Analysis Component Kalman

Panel A

Avg correlation on ft 0.9640 0.9526 0.9898 0.9433 0.9899

Avg RMSE on ft 0.2742 0.3161 0.1467 0.3337 0.1391

Avg correlation on σt 0.9477 0.9379 0.9677 0.9289 0.9691

Avg RMSE on σt 0.1404 0.1456 0.1293 0.1460 0.0548

Table 6: Performance comparison of different filtering methods for the factor dynamics
and its conditional volatility over 50 years and 1000 simulation paths. The methods are:
simple cross–sectional averages, cross–sectional OLS regression, Factor Analysis, Princi-
pal Component, and Iterated Kalman filter. The performance measures are the average
correlation and the average Root Mean Square Error (RMSE).
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Performance Comparison - Simulations

Simple cross-section Factor Principal Iterated
Average OLS Analysis Component Kalman

Panel A

Avg correlation on ft 0.9636 0.9517 0.9900 0.9416 0.9902

Avg RMSE on ft 0.2756 0.3193 0.1455 0.3382 0.1381

Avg correlation on σt 0.9454 0.9340 0.9670 0.9244 0.9684

Avg RMSE on σt 0.1397 0.1449 0.1285 0.1451 0.0549

Panel B

Avg correlation on ft 0.9635 0.9521 0.9895 0.9426 0.9899

Avg RMSE on ft 0.2757 0.3181 0.1468 0.3361 0.1396

Avg correlation on σt 0.6176 0.6077 0.6397 0.5993 0.6444

Avg RMSE on σt 0.2260 0.2291 0.2195 0.2271 0.2032

Table 7: Performance comparison of different filtering methods for the factor dynamics
and its conditional volatility over 50 years and 1000 simulation paths. The methods are:
simple cross–sectional averages, cross–sectional OLS regression, Factor Analysis, Principal
Component, and Iterated Kalman filter. The performance measures are the average cor-
relation and the average Root Mean Square Error (RMSE). The different DGP in the two
panels are given by the one factor model with: GARCH dynamics in ∆t and Φt (Panel A),
GARCH dynamics with two regimes in ∆t (Panel B).
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Performance Comparison - Simulations

Simple cross-section Factor Principal Iterated
Average OLS Analysis Component Kalman

Panel A

Avg correlation on ft 0.9633 0.9513 0.9898 0.9414 0.9899

Avg RMSE on ft 0.2769 0.3205 0.1499 0.3406 0.1395

Avg correlation on σt 0.6019 0.5907 0.6255 0.5810 0.6307

Avg RMSE on σt 0.2229 0.2260 0.2166 0.2240 0.2032

Panel B

Avg correlation on ft 0.9636 0.9520 0.9897 0.9422 0.9899

Avg RMSE on ft 0.2757 0.3180 0.1579 0.3419 0.1394

Avg correlation on σt 0.5609 0.5486 0.5905 0.5393 0.5936

Avg RMSE on σt 0.2115 0.2146 0.2054 0.2125 0.1988

Table 8: Performance comparison of different filtering methods for the factor dynamics
and its conditional volatility over 30 (Panel A) and 15 years (Panel B). The methods are:
simple cross–sectional averages, cross–sectional OLS regression, Factor Analysis, Princi-
pal Component, and Iterated Kalman filter. The performance measures are the average
correlation and the average Root Mean Square Error (RMSE).
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Panel A: Out-of-Sample Mean Squared Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

Model M1 0.0033 (0.0679) 0.0091 (0.0163) 0.0320 (0.0000) 0.0873 (0.0000)

Model M2 0.0029 (0.3114) 0.0074 (0.1292) 0.0256 (0.0818) 0.0706 (0.0860)

Model M3 0.0028 (0.7174) 0.0070 (0.4381) 0.0241 (0.4289) 0.0674 (0.3816)

Model M4 0.0029 (0.1424) 0.0076 (0.0060) 0.0265 (0.0007) 0.0731 (0.0000)

Model M5 0.0029 (0.3086) 0.0075 (0.0067) 0.0259 (0.0006) 0.0709 (0.0090)

Model M6 0.0028 (0.5228) 0.0070 (0.6444) 0.0242 (0.5927) 0.0683 (0.6727)

Model M7 0.0030 (0.3163) 0.0076 (0.0265) 0.0260 (0.0007) 0.0707 (0.0186)

Panel B: Out–of–Sample Mean Absolute Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

Model M1 0.0418 (0.0954) 0.0786 (0.0000) 0.1576 (0.0000) 0.2473 (0.0000)

Model M2 0.0400 (0.4728) 0.0697 (0.1435) 0.1381 (0.0681) 0.2146 (0.1380)

Model M3 0.0391 (0.7175) 0.0676 (0.3838) 0.1349 (0.4187) 0.2120 (0.4242)

Model M4 0.0439 (0.1362) 0.0709 (0.015) 0.1412 (0.0006) 0.2200 (0.0000)

Model M5 0.0422 (0.2092) 0.0704 (0.0257) 0.1396 (0.0010) 0.2169 (0.0018)

Model M6 0.0390 (0.5643) 0.0676 (0.6722) 0.1348 (0.6992) 0.2118 (0.7385)

Model M7 0.0440 (0.4819) 0.0709 (0.0066) 0.1398 (0.0030) 0.2165 (0.0016)

Table 9: Results (mean squared errors (Panel A) and mean absolute errors (Panel B)) of
out–of–sample forecasting performance of seven different models for 5-, 10-, 20- and 30-year
Treasury Bond excess returns, as described in detail in the text. p-values of the superior
predictive ability (SPA) test of Hansen (2005) are reported in parenthesis. The results are
based on the out-of-sample period, January 2004 - December 2008.
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Short Name Mnemonic Tran Description

PPI: fin gds pwfsa ∆ ln Producer Price Index: Finished Goods (82=100,Sa)
PPI: cons gds pwfcsa ∆ ln Producer Price Index: Finished Consumer Goods (82=100,Sa)
PPI: int materials pwimsa ∆ ln Producer Price Index:Intermed Mat.Supplies & Components(82==100,Sa)
PPI: crude matls pwcmsa ∆ ln Producer Price Index: Crude Materials (82=100,Sa)
Spot market price psccom ∆ ln Spot market price index: bls & crb: all commodities(1967=100)
PPI: nonferrous materials pw102 ∆ ln Producer Price Index: Nonferrous Materials (1982=100, Nsa)
NAPM com price pmcp lv Napm Commodity Prices Index (Percent)
CPI-U: all punew ∆ ln Cpi-U: All Items (82-84=100,Sa)
CPI-U: apparel pu83 ∆ ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)
CPI-U: transp pu84 ∆ ln Cpi-U: Transportation (82-84=100,Sa)
CPI-U: medical pu85 ∆ ln Cpi-U: Medical Care (82-84=100,Sa)
CPI-U: comm. puc ∆ ln Cpi-U: Commodities (82-84=100,Sa)
CPI-U: dbles pucd ∆ ln Cpi-U: Durables (82-84=100,Sa)
CPI-U: services pus ∆ ln Cpi-U: Services (82-84=100,Sa)
CPI-U: ex food puxf ∆ ln Cpi-U: All Items Less Food (82-84=100,Sa)
CPI-U: ex shelter puxhs ∆ ln Cpi-U: All Items Less Shelter (82-84=100,Sa)
CPI-U: ex med puxm ∆ ln Cpi-U: All Items Less Medical Care (82-84=100,Sa)
PCE defl gmdc ∆ ln Pce, Impl Pr Defl:Pce (2000=100) (AC) (BEA)
PCE defl: dlbes gmdcd ∆ ln Pce, Impl Pr Defl:Pce; Durables (2000=100) (AC) (BEA)
PCE defl: nondble gmdcn ∆ ln Pce, Impl Pr Defl:Pce; Nondurables (2000=100) (AC) (BEA)
PCE defl: service gmdcs ∆ ln Pce, Impl Pr Defl:Pce; Services (2000=100) (AC) (BEA)

Table 10: U.S. inflation data. Columns: name of the inflation variable, mnemonic, type of
transformation, and data description.
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Panel A:

Estimates Pdf of α = 0.08 Estimates Pdf of β = 0.90
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Panel B:

Estimates Pdf of α = 0.08 Estimates Pdf of β = 0.90
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Figure 1: Probability distribution function of the estimation error over 1000 simulation
paths of the parameters of the GARCH(1,1) process for the factor conditional variance
σ2
t = c+αf 2

t−1+βσ2
t−1 in a DGP with constant (Panel A) and time varying (GARCH type,

Panel B) idiosyncratic noise Φt.
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Figure 2: The upper panel plots the three estimates of inflation level: iterated Kalman filter
(solid line), factor analysis (dotted line), and principal components (dashed line) based on
a panel of 21 inflation time series, as described in the text. The lower panel plots the
inflation volatility filtered by the three techniques. Once again the solid line indicates the
iterated Kalman filter estimate, the dotted line the estimate got applying factor analysis,
whereas the dashed line represents the dynamics of the principal components volatility.
The shaded bars denote months designated as recessions by NBER.
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