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We present a theory of bridge homogeneous volatility estimators for log-price stochastic pro-
cesses. Starting with the standard definition of a Brownian bridge as the conditional Wiener
process with two endpoints fixed, we introduce the concept of an incomplete bridge by breaking
the symmetry between the two endpoints. For any given time interval, this allows us to encode
the information contained in the OHLC (open, high, low and close prices) into an incomplete
bridge. The efficiency of the new proposed estimators is favorably compared with that of the
classical Garman-Klass and Parkinson estimators.
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1. Introduction

In the theory of financial markets, risks are associated with price variability. Among different
measures of variability of financial prices modeled as random walks, the volatility, defined as
the square root of the expected square of the increments of the log-price over a specific time
interval, plays an important role. With the growing availability of tick-by-tick price time series,
a number of high-frequency realized volatility estimators have been developed (see, for instance,
Ait-Sahalia et al. (2005), Andersen et al. (2003), Corsi et al. (2001), Yang and Zhang (2000),
Zhang et al. (2005)). In this article, we suggest new elements to develop better high frequency
estimators that exploit four prices, called the open-high-low-close (OHLC).

We present the general theory of volatility estimation for arbitrary stochastic process. Our
analysis is based on the parsimonious encoding of the information contained in the mentioned
OHLC prices for a given time interval in the form of diagram, associated with the joint proba-
bility density (pdf) of the OHLC values. The diagrams can be tailored to yield the most efficient
estimators associated to any statistical properties of the underlying log-price stochastic process.
When the needed joint pdf cannot be expressed analytically, the diagram can be easily con-
structed by numerical simulations. We find that our suggested OHLC spot volatility estimators
are essentially more efficient than other OHLC estimators that have been previously proposed.
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Our work also improves on the following results: Garman and Klass (1980) introduced a
quadratic variance G&K estimator, which has rather low variance in the case of the Wiener
log-price process; Parkinson (1980) proposed a simple quadratic PARK variance estimator pro-
portional to (H — L)?, which is using only a part of the information available from OHLC prices;
Rogers and Satchell (1991) and Rogers et al. (1994) introduced a quadratic R&S variance esti-
mator, unbiased for any drifts. Yang and Zhang (2000) produced an efficient quadratic variance
estimator, based on the OHLC of log-prices for n > 1 consecutive days, and taking into ac-
count the possible gaps of prices. Chan and Lien (2003) compared empirically the efficiency of
the PARK, G&K and R&S estimators. From the perspective offered by these previous works,
the present article can be viewed as providing the underpinning theory of, more general than
quadratic, most efficient and unbiased bridge homogeneous volatility and variance estimators.

The article is organized as follows. Section 2 describes the bridge homogeneous volatility es-
timators. Section 3 derives the general expressions for the most efficient bridge homogeneous
volatility OHLC estimators. Section 4 provides an exact expression of the joint distribution of
extremes of Wiener process with drift. Section 5 compares the efficiency of mentioned most
efficient bridge homogeneous estimators and the efficiency of the bridge PARK and G&K esti-
mators. Section 6 tests our results using time series generated by numerical simulations, which
mimic some aspects of the tick-by-tick nature of real log-price processes. Section 7 concludes.

2. Bridge homogeneous volatility estimators

The main goal of this article is to construct efficient volatility estimators using the OHLC of
some asset log-price process A(t). The conventional definition of the volatility V' (to,Tp) of a
stochastic process A(t) at time ¢y and time scale Tj is the square root of the expected square of
its increment

A(to, To) = Alto + Tp) — Alto)

within the time interval t € (to,to + To): V (to, To) = /Var [A(to, To)].
Since different measures of the variability of log-price processes are used in the literature, it
is convenient to define a generalized volatility of order A as follows:

Definition 2.1: The volatility of order A of the stochastic process A(t) is the power A of the
conventional volatility

Va(to, Tp) == V*(to, To) = (Var [A(to, Tp)])? .

Remark 1: For A = 1, the above volatility coincides with the conventional volatility, while, for
A =2, Va(tg, Tp) is the variance of the increment A(tg, Tp). Most known estimators, for instance
the R&S, G&K and PARK ones, are variance estimators. Introducing the volatility of order A
gives us the possibility later on to compare the differences and relations between the volatility
and variance estimators.

2.1. Wiener process model of log-price increments

The most efficient estimators, derived in section 3, are general, and valid for a wide range of
log-price processes. However, we will mostly analyze the properties of the volatility estimators
by applying them to the Wiener process with drift. This particular case is important because
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the well-known OHLC estimators, for instance the G&K and R&S ones, are adjusted specifically
to the Wiener processes. Our study of the Wiener process with drift allows us to make detailed
comparison of the efficiency of our most efficient estimators compared with the well-known G&K,
R&S and PARK estimators.

Let us pose, without loss of generality, tp = 0 and A(0) = 0. This implies that log-price process
A(t), modeled by the Wiener process with drift, is equal to

A(t) == ut + oW (1), (1)
where p is the drift of the stochastic process A(t), o is its standard deviation at ¢ = 1, while
W (t) is the Wiener process ~ N(0,t). Its self-similar properties allow us to choose the time
scale by Ty = 1 without loss of generality, so that the volatility of order A is simply equal to the
standard deviation o raised to the power A:

V)\ = V)\(to = O,T() = 1) = O'A.

Definition 2.2: The stochastic process
t t
B(t,k,T) = A(t) — /@TA(T) =u(l—r)t+o [W(t) - /{TW(T) , (2)

where k is an arbitrary constant, is called the incomplete bridge of the original stochastic process
A(t). For k = 1, the incomplete bridge becomes the (complete) bridge:

t
B(t,T):=0 [W(t) - TW(T)] .
Using the self-similarity of the Wiener process, one can rewrite (1), (2) as:

A(t) = oVTX (%’y) . Btk T) = oVTY (%,m) , 3)

where Y (¢, k,) is the incomplete bridge
Y(t,k,y) = X(t,7y) — ktX(1,7) (4)
of the Wiener process with drift
X(t,y) ==t +W(t), te(0,1), (5)
and the auxiliary parameter
7 =wVT/o. (6)

Figure 1 shows a realization of the Wiener process W (t) and its bridge. The high and low of the
Wiener process and of its bridge are drastically different.

Remark 2: In financial applications, both the drift © and the standard deviation ¢ are un-
known. Thus, the value of the parameter ~ is unknown as well. Nevertheless, for the convenience
of analysis, we suppose in the derivations that parameter v is given.
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Figure 1. A realization of the (a) Wiener process W (t) and (b) bridge W (t) — tW(1).

2.2. Discussion of the bridge OHLC and realized tick-by-tick volatility
estimators

Below, we present the construction of the incomplete bridge OHLC estimator and discuss its
efficiency, showing that the most efficient bridge estimator proposed here outperforms classical
tools such as G&K, R&S and PARK estimators.

From a practical point of view, the construction of the bridge requires the full tick-by-tick price
dataset. This might lead to question the usefulness of considering only OHLC values compared
with exploiting the realized volatility estimators based on the full tick-by-tick time series. Indeed,
in the case of the geometrical Brownian motion whose increments are statistically independent,
the increase of information (via the number of samples) does improve significantly the efficiency
of the estimator. However, in the case of real financial time series, returns are not statistically
independent, exhibiting for instance long-term correlations in their absolute values. Moreover,
with the increase of the sampling frequency, additional strong negative serial correlation due
to the bid-ask bounce effect starts playing an important role, resulting in what is called the
microstructure noise and microstructure effect (see for instance, Zhang et al. (2005) and Ait-
Sahalia et al. (2005)). In particular, the microstructure noise leads to the divergence of the
realized volatility with increasing sampling frequency (the so-called wvolatility signature plot).
For quantitative descriptions of the microstructure noise and for models explaining it, see for
instance Bacry et al. (2013) and Saichev and Sornette (2012) and references therein.

In comparison, characteristics of the stochastic price movement that are more coarse-grained
or involve cumulative or integral properties, such as its extreme values (high and low values in
the notation of this article), are much less sensitive to the existence of microstructure effects and
short-term anti-persistency. Considering microstructure noise as an additive zero mean stochastic
process (as in Zhang et al. (2005)), taking the integral of returns over time (or their cumulative
sum in the case of the discrete version of the process) amounts to an effective low-pass filter
that has the property of reducing the impact of the high-frequency microstructure noise. This
is vividly illustrated by the vanishing of negative correlations when considering aggregated time
intervals (see the empirical analysis in (Cont 2001) and the theoretical background in Saichev
and Sornette (2012)). Thus, estimating volatility with OHLC values mitigates negative effects of
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the microstructure noise while volatility measures using realized tick-by-tick data are polluted
by it.

At much longer time scales, the volatility o(¢) cannot be assumed constant anymore as assumed
in expression (1). In such cases, the time varying volatility is often modeled by conditional
or stochastic volatility models. The so-called integrated variance (IV) then provides a useful
characteristic of price movements. It is defined as the integral over time (/V = fOT o?(t)dt) of
the instantaneous variance (or spot variance), and is typically estimated using realized volatility
measures. Specifically, the interval [0,7") is split into N sub-intervals [¢;,t;+1),7=0... N —1.In
each of these N sub-intervals, equation (1) is assumed to hold with constant drift x4 and volatility
o terms. The coefficients 1 and ¢ can be different from a sub-interval to the next. In each of
these sub-intervals, the instantaneous variance is estimated using the realized measure such as the
quadratic variation (62 = (A(ti11) — A(t;))?). The integrated variance is then constructed at the
sum of these local estimates (1 V= Zf\; _01 62). Theoretically, it can be shown that such realized
estimation of the integrated variance is a consistent estimator in the sense that it converges
to the integrated variance as N — oo (see e.g. Protter (2005)). However in the presence of the
microstructure effects discussed above, the division of the interval [0, 7] into a growing number N
of sub-intervals becomes limited by the discreteness of the order arrivals and the bid-ask bounce
effect. As N must therefore remain finite and not too high to remove these deleterious effects,
the realized volatility estimator then suffers from a well-known bias problem and is generally
inconsistent with the integrated variance (see e.g. Zhang et al. (2005)). A known solution to this
problem is to replace the quadratic variation with more consistent measures.

In order to address the biases of standard realized variance estimators for ultra-high frequency
data (Zhang et al. 2005), we should mention that other theories on alternative realized variance
estimators have been developed (Zhang et al. 2005, Zhang 2006). Based on a multi-scale approach
for ultra-high frequency data, they combine multiple frequencies in a manner which corrects the
bias of the volatility estimate. Alternatively, Barndor-Nielsen et al. (2008, 2011) introduced
a class of realized sampled and sub-sampled kernel estimators of the increments of quadratic
variation in the presence of noise, which are very efficient to obtain similar unbiased volatility
estimates.

Here, we propose another perspective in terms of the most efficient bridge volatility estimator,
which becomes a very useful input to the integrated variance, as it is less subjected to the
microstructure noise than the realized volatility measures. Moreover, the method proposed in
this article allows one to construct volatility estimator tailored to the specific properties of the
real price time series such as heavy-tails, long-memory and microstructure as well as its discrete-
time nature (this idea will be illustrated with the toy model of the discrete random walk in the
section 6).

2.3. Homogeneous bridge volatility estimators

Definition 2.3: A volatility estimator V) is called an homogeneous bridge OHLC volatility
estimator of order A if it has the form

Vi = h)\(H'7I_’7 é)/TA/27 (7)

where h) is a homogeneous function of order A\, H and L, are the high and low of the incomplete
bridge B(t,x,T) (2) within the observation interval (0,7):
H:= sup B(t,k,T), L:= inf B(t,k,T),

tE(O,T) t€(07T)
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while C := A(T) = uT + oW (T) is the close value of the stochastic process A(t).

A remarkable property of homogeneous estimators defined by (7) is that, for a given ~, their
statistical properties do not depend on the duration 7" of the observation interval. Mathemati-
cally, this fact is expressed by the theorem:

Theorem 2.4: The estimator defined by (7) is equal to
V= U)\h)\(H’L’ C)a (8)
where H and L are the high and low of the incomplete bridge Y (t, k,v) (4):

H:= sup Y(t,k,y), L:= inf Y (¢t kK,7), 9)
te(0,1) t€(0,1)

while C := X (1,7) is the close value of the process X (t,), defined by (5).

Proof: Relation (8) follows from self-similarity of the Wiener process and from homogeneity of
the function h). O

Definition 2.5: We refer to the function
é)\ :h)\(H,L,C) (10)

as the canonical bridge OHLC volatility estimator of order A. Using this definition, one can
rewrite expression (8) in the form

Vy = 07éy. (11)

3. Most efficient bridge homogeneous estimators

3.1. Diagrams of bridge homogeneous estimators

It results from expressions (11), (10) that the homogeneous estimator (7) is unbiased, if the
expected value of the corresponding canonical estimator given by (10) is equal to unity:

Eléy] = Elhn(H, L, C)] = 1. (12)

Definition 3.1: The bridge homogeneous volatility estimator of order A given by (7) is called
the most efficient one, for a given value vy of the parameter v and for a fixed k, if, for v = g
and fixed k and A, the equality (12) holds while the variance of the corresponding canonical
estimator achieves the minimal value among the variances of all canonical estimators of order A
and for the same parameters v = g and k.

Below we provide the explicit expressions of the most efficient bridge homogeneous volatility
estimators. For this, it is convenient to use a change of variables from the random variables
{H,L,C} to their spherical coordinates {R, O, ®}:

H=Rcos®cos®, L=RcosOsin®, C = Rsin0O. (13)
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Inversely, we have

C L
_ 2 2 2 _ -~ — -,
R=+/H?*+ L?+(C? O = arctan ( e +L2> ,  ® = arctan <H> (14)

Putting (13) into (10) and bearing in mind the homogeneity function hy, we obtain
ex=R"15(0,9), (15)
where
(0, 0) = hy(cos b cos ¢, cos 6 sin ¢, sin 0). (16)

Definition 3.2: The function ¢, (6, ¢) (16) is called the canonical estimator diagram.

Remark 3: The spherical coordinates are intrinsic to homogeneous estimators, allowing to
split them into a power function R* and an arbitrary function of two variables © and ® (see
Eq. (15)). The spherical coordinates reduce the search of efficient OHLC estimators from 3D
functions to the appropriate 2D function (6, ¢).

3.2. Domain of possible {©,®} values

Below, we will need the domain of existence of the random variables {R,©,®} (14). Note that
R € (0,00). The domain S, of the possible values of random variables {©,®} depends on the
parameter x. It is the same for the arguments {6, ¢} of the diagram (6, ¢) (16): {0, ¢} € S;.
Since H > 0 and L < 0, in view of (13), we have

L
tanszﬁe(—oo,O] = <P <0

™
2

In turn, as seen from (4) and (5), the values {H, L, C'} satisfy the inequalities L < (1—k)C < H
or, using (13),

in ® s O
sin® < (1—k)tan© < cos® = arctan(im ) < © < arctan <$Ob )

— K — K

Thus

sin @ s O
S, = { arctan ol < O < arctan cos ,—
1—& 1—«x

3.3. Most efficient bridge OHLC homogeneous estimators

wm

<P < 0} (17)

Let us denote the joint pdf of the variables {H, L,C} by Q(h,¥,c;k,7). Then, the expectation
of the canonical estimator defined by (15) is equal to

Eléx|r,v] = Mx(k,7) / (N 0, ¢; k,v) cos BdOdg, (18)
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where
ga(0, 5 K, ) =/ P 2Q(p cos B cos ¢, pcos Osin ¢, psin 0 , ) dp. (19)
0

Accordingly, at v = 9 and given &, one can represent the diagram of any unbiased, homogeneous
estimator in the form

G(é’, 9)
0, ¢; k,70) cos 0dOde’

¢ ( (bv’% 70) ffG (20)

where G (0, ¢) is an arbitrary function. The following theorem gives the expression for the diagram
(20) of the most efficient (at any given s and v = 7p) homogeneous estimator.

Theorem 3.3: The diagram of the most efficient (for a given k and v = ) bridge homoge-
neous estimator of order X\ is equal to

. ( a R ’70)
T/Jme,A(ea ®; "ia’)’o) Wa {‘97 ¢} € Sy, (21)
where
0. o _ (0,65 k,7)  §3 K5 ) 0dodao.
a6, ¢ir7) gox (0, ¢; K, 7)’ //92)\ 0, b5 K,7) o ? (22)

The proof is given in Appendix A.

3.4. Discussion of theorem 3.3

As seen from the proof of theorem 3.3, the variances of the homogeneous estimators given by re-
lations (15), (21), (22) reach the lower bound among the variances of any unbiased homogeneous
estimators ¢y, for any statistics of OHLC values of the underlying log-price stochastic process.
Since quadratic estimators constitute special cases of homogeneous ones, the most efficient ho-
mogeneous estimators should be more efficient than known quadratic ones. Thus, theorem 3.3
provides the tools to develop novel estimators, which are most efficient for given statistics of log-
price processes associated with particular financial markets, taking into account, for instance,
the chaotic jumps and the heavy tail characteristics of the probability density functions (pdf) of
returns.

Discussing the most efficient estimators requires a detailed study of their statistics for each
financial market behavior. The present article opens the path towards such studies targeting
different processes that are now more fashionable, such as GARCH and their siblings. But before
embarking on this general program, the present article has the goal of developing the basis of
comparisons between estimators already known and our most efficient ones, so as to motivate
the future development on more realistic stochastic processes. Until now, most known volatility
estimators have been adjusted to meet some properties in the frame of Wiener processes with
drift. For instance, the seminal G&K estimator is the most efficient quadratic estimator in the
particular case of the Wiener log-price process (with zero drift). Similarly, the R&S’s quadratic
estimator is constructed in such a way that, in the frame of Wiener processes with drift, it is
unbiased for any drift (nonzero 7). It thus seems important, as a first step, to compare the
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efficiency of our most efficient estimators and the well-known G&K, R&S, and PARK estimators
in the frame of Wiener processes for log-price with drift, for which they are so-to-speak “native”.

The introduction of quadratic estimators have been in part due to the lack of sufficient knowl-
edge concerning the statistics of the extremes of the Wiener process with drift. In the present
article, we provide a significant advance in the form of an analytically exact explicit expression
for the joint pdf of the incomplete bridge OHLC values. We offer this novel mathematical result
in the hope that it fosters new developments in econometrics.

4. Statistical description of incomplete bridges

4.1. Wiener process identical in law

In order to get the most efficient bridge homogeneous OHLC estimator, we need the pdf
Q(h,?,c;k,v) of the OHLC values of the incomplete bridge Y (¢, k,v) defined by (4) and the
close value C' of the underlying process X (t,v) (5). Before giving the explicit pdf Q(h, ¢, ¢; k,7),
it is useful to discuss some properties of the stochastic process Y (¢, k,7).

Theorem 4.1:  The incomplete bridge Y (t, k,7) given by (4) is identical in law to the diffusion

process
V(t, k,y) =1 — k)t + W(t, k), (23)

where
W(t, k) =1 —t+(1—r)?*OW <1_t+§1_ﬂ)gt>. (24)

Proof: After substituting (5) into (4), we obtain
Y(t,k,y) =v(1 — k)t + Q(t, k), Qt, k) :=W(t) — ktW(1). (25)
One can verify that Q(¢, ) is a Gaussian process with zero mean and the covariance:
E[Q(t1, &)Qta, )] = (t1 Aty) — [1 — (1 — k)?Jt1te, 0 < ty,tp < 1. (26)

Direct calculations show that the Gaussian process W(t, k) defined by (24) is also of a zero mean
and the same covariance (26). Thus, the incomplete bridge Y (¢, k,7) (25) is identical in law to
the diffusion process Y(¢, k,7) defined in (23). O

Henceforth, for the analysis of the incomplete bridge Y (¢, k,7) (4) statistics, we use the equiv-
alence in law stated in theorem 4.1, which allows us to replace the incomplete bridge by the
diffusion process Y(t, k,7) (23). In turn, it is convenient to explore the properties of the diffu-
sion process Y(t, k,7y) using the change of time

(1— k)%t B o T
& t=t(r,kK) = Py . T g

= t =
T=TR) = T S

The function 7(¢, ) maps the interval ¢ € (0,1) onto the same interval 7 € (0, 1).
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Let us introduce the auxiliary stochastic process
Z(r, k7)== VU7, K), K, 7). (27)

Using relations (23), (24), and self-similar properties of the Wiener process, we rewrite Z(7, k, ")
in the form

1—k

Z(r,57) = T+ (1—-r)?(1-71)

[yr+W(r)]. (28)

Below we assume, for definiteness, k < 1.
It is seen from (27) and (28) that the following inequalities are equivalent

L<Y(tky)<H, < at+ar<W(r)<b+pr, t,7€(0,1), (29)
where
1—(1—r)? 1—(1-k)?
a:(l—m)L,b:(l—m)H,azl(iH)L—%ﬁ:%H—y. (30)
- K — K

Note also, the close value C' = X(1,~) of the process X (¢,7) (5) is tied to the close value of
the incomplete bridge Y (¢, k, ) (4) by the equality Y (1,x,7) = (1—&)C'. In turn, it follows from
the identity in law of the two stochastic processes Y (¢, k,7) and Y(t, k,v) and from relations
(27), (28) that one may replace Y'(1,k,7) by

Z(Lky) =1 =rK)y+ WA
Thus, one obtains

Wl)=C—-~ < C=W(1)+n. (31)

4.2. Diffusion equation

Let us define the probability
f(h,l,c;kyy)de :=Pr{C € (c,c+de) Nl <Y (t,k,7) < h;t € (0,1)}.

Then, the joint pdf of the high and low values {H, L} (9) of the incomplete bridge Y (¢, ,7),
and of the close value C' of the original process X (¢,7) (5), is equal to

, S (L)
Q(h,f, &) K’ry) - Ohot ) (32)

h>h,, €<£+, éécé %, h7:0\/(1—li)0, €+:0/\(1—I‘€)C

From the relations of the previous subsection, one can express the function f(h, ¢, c; x,v) via the
auxiliary function p(w; )

o(w;T)dw = Pr{W (1) € (w,w +dw) Na+ar’ <W(r')<b+ 877" € (0,7)},
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so that

f(h,t,c;k,7) = w(c—7;1,a,b,a, B). (33)

Note that ¢(w;7) is the solution of the diffusion equation

2
with initial condition
olw;T=0) =6(w) (35)
and absorbing boundary conditions
olw=a+ar;7)=0, plw=>b+pr;7)=0, 7>0, (36)

which account for the inequalities (29).

Below, we solve this initial-boundary problem (34)—(36) and determine the joint pdf of the
high and low values of the incomplete bridge Y (¢, k,~) and of the close value of the Wiener
process X (t,7) with drift, using the following relation that derives from (32) and (33):

P*o(c—v:1,a,b,a, B)

Q(h7£7c; ’%77) - - 8h6€

(37)

4.3. Solution of the initial-boundary problem

The solution of the initial-boundary problem (34), (35), (36) is stated in the theorem:

Theorem 4.2:  The solution of the diffusion equation (34), satisfying the initial-boundary
conditions (35), (36), is given by

(p(w; T) _ Z eQ(afﬁ)(bfa)m2+2(abea)mX
[g(w +2m(b—a);T) — 62a(2(ﬁ70‘)m7°‘)g(w +2m(b—a) —2a;7)|, (38)

(wim) = e ()
w;T) = exp| —— ).
g V2T P\ 72r
The proof is given in Appendixes B and C. Putting (38), (30) into (33), we get
F(ht,c;m,7y) = glc — ) Z o—2(h—0)*m?—2m(h—{)(1—r)c [1 _ A(h—0)tm—20(0—(1—k)c) . (39)

m=—00

where g(c) = g(c; 1).
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4.-4. Joint pdf of high, low and close values
Using relations (33), (37) and (39), we obtain the sought pdf Q(h, ¢, c; k,~y) (37):

Q(h,f, G K,,}/) :g(C—’)/)R(h,f;IﬂC), (40)

where
o0

R(h,l; klc) = Z m[mD(m(h —0), (1 — k)c) + (1 — m)D(m(h — £) + £, (1 — &)c)],

m=—0oQ

(41)
D(h,c) = 4[(c — 2h)? — 1]e2he=h),

Let us thus define the joint pdf limit

Q(h, £ ;) = lim Q(h, €, ¢ 5, 7).
K—

Expressions (5) and (41) show that it is equal to

Q(h,l, c;v) = gle —v)R(h, 0), —oo<c<oo, h>0, ¢ <0,
R(h,0) = i m [mD(m(h —€)) + (1 —m)D(m(h — £) + 0)], (42)

D(h) = 4(4h> — 1) 72",

Expression (42) has a clear probabilistic sense. It means that the high and low values of the
bridge Y (¢,1,7) are statistically independent from the close value C' = X(1,) of the original
Wiener process with drift. Accordingly, R(h, £) in (42) is the unconditional joint pdf of the bridge
high and low values.

4.5. Diagrams of the most efficient bridge homogeneous OHLC' estimators

Knowing the joint pdf of the random variables {H,L,C}, one can calculate the functions
ga(0, ¢; k,7y) (19) containing at the diagrams (21), (22) of the most efficient volatility estimators.
It is seen from (19) and (40), (41), that

1 ,
9 (0, ¢35, 7) = ——e /2 x

00 \/ﬂ

Z m[mIA(m(iL—ZN),E;F;,’y)+(1—m)IA(m(iL—ZN)—i-lN,@;"%’Y)L (43)
meTee e’} 02

In(hc; f;m) = /O P exp (76,0 — 5/)2) D(hp, (1 = K)ep)dp,

h = cos 6 cos ¢, [ = cosfsin g, ¢ =sind.
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All calculations done, the explicit expression of Iy (h,c; K, ) reads

9\ 3+3
I(h, ¢k, ) = <—> X

s (2w (42

1
& _a\/7 3+A M
2 2" 2a
A A3 d? A
2db T’ — | M — =, — | —dal M
et (3 3) v (3+3.5.3) <+2> (
Here,

1
M(a,b,z) := %l;)—a)/o du e uH1 —u)bet Re{b} > Re{a} >0

is the Kummer function (see Abramowitz and Stegun (1964)). We have used the following no-
tations

a=4h(h— (1 —r)c)+ %, b= (2h— (1 —kK)c)?, d = ye.
In the particular case v = 0, we obtain

In(h,c;k) == I\(h,c; 6,7 =0) = (44)
s <3 + A) (34 N)[2h — (1 — K)c]? — (2h — ¢)?® — 4kch
2 [(2h — ¢)2 + 4w 5 .

Figure 2 shows a 3D plot of the diagram obtained from (21), (22), (43), (44) of the most
efficient bridge variance estimator, for k = 0.95 and zero drift (+ = 0). On the plane (6, ¢), the
boundary of the domain S, (17) is shown.

5. Comparison of the most efficient bridge estimators with the G&K and
PARK estimators

5.1. Expectation and variance of arbitrary canonical bridge estimators

Below we compare the efficiency of the most efficient bridge homogeneous estimators with that
of the G&K and PARK estimators. We thus give the formulas for the expected value and the
variance of arbitrary canonical bridge homogeneous OHLC estimators defined by (15). First,
their expected values are M (k,y) given by (18).

In general, estimators (15) are biased. Thus, one needs a normalization procedure for a com-
parison. For definiteness, we normalize the estimators at zero drift (y = 0). Thus, for each
estimator (15), we consider its normalized version

AUA(O, @)
= f My(k)
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Figure 2. Diagram of the most efficient variance estimator, for kK = 0.95 and v = 0.

where M (k) = M(k,y = 0). The expected value of the normalized estimator is

Bleal o] =

The variance of the normalized (at v = 0) estimator is

N)\(fﬁ ’7) - Mg\(’%a 7)
M3 (r) ’

Na(k,7) = / / G20, $)gon (0, 6 v, ) cos 00,
Sk

Var[éﬂ’{a’ﬂ =

5.2. Modified GEK bridge estimator

We recall that the G&K canonical variance estimator is given by

éck = k1(Hy — Lo)? — ko(C(Ho + Lo) — 2HoLg) — k3C?, (45)
ki = 0.511, ko = 0.019, ks = 0.383.

The random variables {Hy, Lo, C'} are the high, low and close values of the Wiener process
X (t,v) with drift (5). In order to compare the efficiencies of the G&K and of most efficient
bridge estimators, we modify the G&K estimator (45) by replacing the high, low and close
values of the process X (t,7) by the high, low {H,L} (9) and close values of the incomplete
bridge Y (¢, k, ) defined by (4). This yields

éak(k) = ki(H — L)* = ko((1 — 5)C(H + L) — 2HL) — k3(1 — r)2C?. (46)
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The estimator (46) can be expressed in a form analogous to (15),
éax = R*ak (0, ®, ), (47)
with
Yok (0, ¢, k) = ki cos® f(cos ¢ — sin ¢)*

1—
+ ko |cos® 0 sin2¢ — " sin 20(cos ¢ + sin ¢) | — k(1 — k)% sin? 6.

To compare efficiencies of the modified G&K estimator and of the most efficient bridge esti-
mators of any order A\, we introduce the G&K estimator of order A:

R)\

- _ A/2 P 4
EGK A Marr(m) VG Yk (0, P, k), (48)

where Mgk x(x) is given by the following expression
N2(g
Mk (K //1/1 gr (0, ¢; k) cos OdOd .
For k =0, A = 2, the estimator (48) reduces to the regular G&K estimator (45).

5.3. Modified PARK bridge estimator

The canonical PARK variance estimator is given by

(Ho — Lo)?

VY (49)
We modify it, replacing it by the bridge estimator of order A,
_ R A/2
= o
PA= T P (©, @), o
cos? 0(1 — sin 2 50
vp(0,9) = L) () / [ 68/%(6.0)91(6,955) cos basa.

Remark 4: Below, we compare the efficiencies of the G&K, PARK and of the most efficient
estimators, and do not discuss the efficiency of the R&S estimator. Indeed, it follows from our

preliminary calculations for x ~ 1 that the R&S bridge estimator is much less efficient than even
the PARK estimator.

Remark 5: For convenience and based on the similarity with their homonyms, we are referring
to the estimators (48) and (50) as the modified G&K and PARK ones. However, these estima-
tors, based on the incomplete bridge, are novel. One can recover the regular G&K and PARK
estimators by taking x = 0 in (48), (50). It will be seen below that our modified bridge G&K
and PARK estimators are more efficient than their regular counterparts, as quantified by their
biases and variances.
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Figure 3. Dependence of the expected values of the G&K (46) and PARK (49) canonical bridge estimators
as a function of the parameter s, in the zero drift (v = 0) case.
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Figure 4. Variances of the most efficient, normalized G&K (48) and PARK (50) (a) variance and (b)
volatility bridge estimators, as functions of the parameter x, in the case of zero drift (v = 0). It is seen
that the closer parameter k£ to unity, the more efficient are all discussed estimators.

5.4. Comparison of the volatility estimators

Figure 3 shows the dependence of the expected values of the G&K (46) and PARK (49) variance
estimators as a function of the bridge parameter . One can see that, if K # 0, the regular G&K
and PARK estimators are biased, so one needs to compare their normalized versions (48), (50).

Figure 4(a) plots the dependencies on k of the variances of the most efficient canonical bridge
variance estimator, and of the modified G&K and PARK canonical variance estimators (48),
(50). For k = 0, i.e. in the case of “regular” OHLC estimators, the variances of the most efficient
and of the G&K estimators are rather close, while the PARK estimator variance is much larger
than the former ones:

Var[éme 2|k = 0] = 0.2584, Var[égk 2|x = 0] = 0.2693, Var[épz|x = 0] = 0.4073.
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In contrast, in the case of an almost complete bridge x € (0.9,1), the variance of the most
efficient variance estimator is much smaller than the variances of the modified G&K and PARK
estimators:

Var[éme 2|k = 1] = 0.1794, Var[égk 2|k = 1] ~ Var[ép 2|k = 1] ~ 0.2.

Similarly, figure 4(b) shows the dependencies on k of the variances of the most efficient canon-
ical bridge volatility (A = 1) estimator, and the modified G&K and PARK volatility estimators
(48), (50). In the case of almost complete bridges x € (0.9,1), the variance of the most effi-
cient volatility estimator is much smaller than the variances of the modified G&K and PARK
estimators:

Var[éme1|k = 1] = 0.0428, Varlégk i|x = 1] = 0.0473, Var[ép 1|x = 1] = 0.0472.

Remark 6: The fact that the OHLC bridge estimators, with x ~ 1, are more efficient than
the “regular” ones, with x = 0, can be intuitively explained as follows. It is known that the
high and low values of the Wiener process are most probably found at the edges vicinity, while,
by construction of the bridge, its high and low values are mostly distant from the edges of
the observation interval. This is illustrated by the figure 5 (borrowed from the Lapinova et al.
(2013)), where we present the pdf ¢(6,v) of the random instant of the high (low) value of the
Wiener process with drift X (¢,~) and the uniform pdf ¢(f) of the instant of the high (low)
value of the corresponding complete bridge process (k = 1). Thus, the bridge’s high and low
incorporate essentially more information about the behavior of the original stochastic process
than its own high and low values.

6. Synthetic most efficient estimators

In section 3, we have derived the most efficient bridge estimator diagrams (21), (22), defined in
terms of the function g (6, ¢; k,7) (19). It depends in turn on the pdf Q(h, ¢, ¢; k,~) (40). Notice
that it is possible to determine the function gy (6, ¢; k, ) even if the pdf is unknown. The function
ga(0, ¢; k,7y) can indeed be determined by simulating M > 1 times the stochastic process X (t)
and then estimating g, (0, ¢; k,7y) by statistical averaging. This is a convenient approach when
analytical formulas are not available, as occurs when considering stochastic log-price processes
more complex than the Wiener process with drift.

To illustrate this possibility of simulating the diagrams associated with the most efficient
estimators, consider the discrete random walk

k
X(k:):\/%z:ei, k=1,...,K, X(0) =0, (51)
i=1

where {¢;} is a sequence of iid random variables with zero expectation and unit variance. The
discrete random walk (51) mimics the discrete, tick-by-tick, nature of the log-price stochastic
process at the micro time scale.

In the limit K — oo, the random walk X (k) (51) converges (even if {¢;} are non-Gaussian
but the tails of their pdf are not heavy) to the Wiener process W (t), so that the joint pdf of
the variables {H, L, C'} is known. In contrast, if the number of ticks is finite (K < o), the joint
pdf is unknown. Then one can obtain an approximate expression for the diagram of the most
efficient estimator by numerical simulation of paths of the discrete time process (51).
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Figure 5. The pdf ¢(0,~) of the high (low) value of the Wiener process with drift X (¢,~) for v = —1,0, 1
and the uniform pdf ¢(0) of the instant of the high (low) value of the corresponding complete bridge.
The fiigure is borrowed from the Lapinova et al. (2013).

Figure 6. Synthetic diagram of the most efficient variance canonical bridge estimator for K = 10 and
k=1 v=0.

In the present case, in order to construct such a synthetic diagram for K = 10; 10? and 103,
for each K, we generated M = 10® realizations of the random walk X (k) (51) with Gaussian
summands {¢;}. We have divided the domain S, defined in (17) in 50 x 50 rectangle bins and,
then calculated the function gy (6, ¢; k) (for v = 0) using the approximate statistical relation

M
1 A
9A(0. 6; k) cos 0d0d) ~ — > | Ry 15(Om, ) - (52)

m=1

Here the set {©y,, ®p,, Ry, } of the random variables (14) obtained from the m-th realization; Is
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Figure 7. Left panel: G&K estimators for k = 0 (top axes) and x = 1 (middle axes), and most efficient
canonical bridge variance estimator for k = 1 (bottom axes), obtained for 200 realizations of a discrete
random walk X (k) (51) with K = 10.

Right panel: Empirical histograms of G&K estimators for x = 0 (dotted line) and x = 1 (dashed line), and
most efficient canonical bridge variance estimator for x = 1 (solid line), obtained using 2 - 10° realizations
of a discrete random walk X (k) (51) with K = 10.

Table 1. Variances of modified G&K and simulated most efficient variance estimators. The variances of
the G&K estimators and of the synthetic most efficient variance estimators, both for k = 0 and k = 1,
are obtained by averaging over M = 10° simulations of the discrete random walk X (k) (51).

K =10 100 1000 00

Var[égk2](k = 0) 0.5103  0.3272 0.2858 0.2693
Var[émeo](k =0) 04759  0.3130 0.2755 0.2584
Var[égko)(k = 1) 04062 0.2434 0.2125 0.1996
Var[émeo)(k =1) 03373 0.2151 0.1896 0.1794

is the indicator of the set § = (6,0+d0) x (¢, p+d¢), which is equal to 1 within for (0,,, ®,,) € ¢
and equal to 0 outside; and the summation is performed over all M realizations of the random
walk (51). The histograms of functions gy (6, ¢; ), that we obtain here, we substituted into the
expression for the diagram function (21), (22).

Figure 6 presents the 3D plot of the synthetic diagram of the most efficient bridge variance
estimator, obtained by statistical averaging for K = 10 and x = 1, v = 0. Notwithstanding
the visible fluctuations, table 1 shows that this level of numerical approximation is sufficient to
obtain much better efficient estimators than, for instance, the G&K estimator. Table 1 gives the
variances of the canonical bridge variance estimators. The values shown in Table 1 have been
obtained by statistical averaging over M = 10° simulations of the random walk (51).

As an illustration, we present results of numerical simulations. We have simulated 200 paths of
discrete Wiener process (51) for K = 10 and recorded their related bridge OHLC values. Figure 7
(left) shows the samples of the synthetic most efficient canonical bridge variance estimator, for
k = 1, and the samples of the modified G&K estimators, for k = 0 and x = 1. The figure
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shows that the synthetic most efficient bridge variance estimator is much more efficient than
the G&K estimators, having much less extreme estimates. This is vividly illustrated by figure 7
(right), which presents histograms of these 3 estimators obtained from numerical simulations
of 2-10° paths of the discrete Wiener process (51) for K = 10. Although all three estimators
after correction for bias have mean value 1, the mode (most probable value) of the most efficient
canonical bridge estimator is much closer to the value 1 than the modes of the G&K estimators
for both K = 0 and k = 1. Moreover, the right tail of the canonical bridge estimator is lower
than that of the two others, indicating a smaller probability of obtaining an “outlier” in the
estimations.

7. Conclusions

In this article, we have pursued the development of a comprehensive theory of homogeneous
volatility estimators. The main tool of our theory is the parsimonious encoding of all the in-
formation contained in the OHLC in the form of general “diagrams” associated with the joint
pdfs of the high-minus-open, low-minus-open and close-minus-open values of the original log-
price process and its bridge. The diagrams can be tailored to yield the most efficient estimators
associated to any statistical properties of the underlying log-price stochastic process.

Previous works have developed variance estimators which are quadratic functions of the OHLC.
Our main contribution is to stress that quadratic estimators are only particular cases of general
homogeneous estimators. Our theory gives the tools to find most efficient homogenous estimators
which, by construction, are always more efficient than the quadratic estimators. Another advan-
tage of homogeneous estimators is that they give the possibility to develop efficient volatility in
addition to variance estimators, while quadratic estimators are specialized to variance estimators.

Our theory opens several interesting developments. First, the determination of the key func-
tions gy (#, ¢; ) provides the most efficient bridge volatility estimators for non-Gaussian log-price
processes. For more realistic price processes for which the analytic distribution of the OHLC is
not known, the most efficient estimators can be found via the diagram obtained from general
relations (21) and (22) together with the statistical relation (52). An example of this procedure
applied to a non-Wiener process, the discrete random walk X (k) defined by (51) mimicking
the discrete nature of real tick-by-tick trading process, is presented in section 6. Our methods
should lead to the development of effective algorithms for high-frequency OHLC bridge volatility
estimators, which can be applied in practice to any kind of financial markets.
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Appendix A: Proof of Theorem 3.3

Proof: For given values of the parameters x and v = =y, the variance of the unbiased canonical
estimator, with diagram (20), is equal to

[] G2(0,8) gar (8, ¢; k, 7o) cos 6dfdep
Var[éM 5770] = S —1. (Al)

2
( [[ G, 0, ¢; Kk,Y0) cos Gdﬁdgb)

Using the Schwarz inequality

/ / $)dOde / / A%(0, $)dOde / / B2(0, ¢)d0dé,

for arbitrary locally integrable real-valued functions A(f, ¢) and B(0, ¢), we take

A(a’ Qb) = G(a’ Qb) \/92)\(9, Qb, ) 70) COS 95

cos 0

B(0,¢) = gA(0, ¢; K, 70) PN

and obtain

2

// 0, ¢; k,7y) cos 0dOde | <

/ / G(0,6)g2x(0, 3 1, 70) cos Bdfdg / / ﬂcos 0dode.
g2)\ ¢7 R, 70)

It follows from (A1) and from the above inequality that the variance of any canonical homoge-
neous volatility estimator of order A satisfies the inequality

! 1
5)\(’%77) ’

where £)(k, ) is defined by expression (22). It follows from (A1), (A2) and (22) that the variance
of the canonical volatility estimator of order A reaches its minimal value for a given v = ~y and
k, if G(0,¢) is given by the left equality of (22). O

Var[é)\; "@70] > V)\(K,VO)a V)\(’{a’Y) = (A2)

Appendix B: Useful properties of the solutions of diffusion equations

In order to solve explicitly the initial-boundary problem (34), (35), (36), it is useful to present
some general properties of its solutions. Firstly, if ¢(w;7) is some solution of the diffusion equa-
tion (34), then Ap(w + a;7), where a and A are arbitrary constants, is also a solution. Such
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relation tying together different solutions of the same diffusion equation can be written as
o(w;T) — Ap(w + a;1). (B1)

In order to solve the initial-boundary problem (34),-(36), we will need two lemmas.

Lemma B.1: If p(w,T) of the form

p(w;T) = ﬂlﬂ—T /Z ©(y) exp <—%> dy (B2)

is a solution of the diffusion equation (34), satisfying the initial condition

p(w;t) = p(w),

where p(w) is such that (w,T) is a continuous function of w for any T > 0, then it generates a
family of continuous solutions via the transformation

o(w;T) — Ap(2at — w;T) eQa(M_w), (B3)

where A and o are arbitrary constants.

Proof: Let us write the function on the right of the relation (B3) in explicit form:

00 a2
o(2at — w;T) e2elar—w) ! / o(y) exp (——QON w-y) ) dy e2elar—w)

V2T J oo 27
Since
9 _ o 2 2
2T 27

the right-hand side of relation (B3) is a continuous solution of the diffusion equation (34),
satisfying the initial condition

analogously to (B2). O

The second lemma needed to find the solution of the initial-boundary problem (34), (35), (36)
can be stated as follows.

Lemma B.2: Consider the function p(w) which verifies to symmetry relation
(W) = —p(20 — w) €2, (B4)

Then, the solution @(w;T) of the diffusion equation (B2), which is continuous with respect to w
and with initial condition equal to p(w), is vanishing on the line w = a + aT:

pla+ar;7) =0, 7> 0.
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Proof: Consider the function
G(w; T) = (207 + 2a — w; ) e2eleTHaw), (B5)

where ¢(w;7) is given by expression (B2) and p(w) obeys to symmetry relation (B4). It follows
from (B1), (B3) and from the lemma B.1 conditions, that ¢(w; ) satisfies the diffusion equation
(34) and is, for 7 > 0, a continuous function of the argument w. Expressions (B5) and (B4)
ensure that the ¢(w;7) satisfies the initial condition

e2a(a7w)

P(w; T =0) = p(2a — w) = —p(w).

This means in turn that
Glw;T) = —p(w;T) = p(w;T) = —p(207 + 2a — w;T) @7,

In particular

ola+ar;7)=—pla+ar;7) = gla+ar;7)=0, 7>0.

(|
Appendix C: Proof of Theorem 4.2
Proof: Let us replace the initial condition (35) by the more general one
plw;T=0)=9pWw), we(ab). (C1)

At the end of proof, we obtain formula (38) by taking p(w) = d(w).
The idea of the proof consists in redefining the function ¢(w) in (C1) outside the interval
w € (a,b) in such a way that the solution of equation (34), supplemented by the initial condition

Qp(w; T = 0) = SD(W)’ w e (_OO’ OO)’ (CQ)

satisfies the absorbing boundary conditions (36). In other words, it should be equal to zero on
the lines w = a4+ a7, w = b+ 7, 7 > 0. Let us define the auxiliary function

po(w) = @(w)l(a,b) (w), w € (—00,00), (C3)

where Ig(z) is the indicator of the set E.
It follows from lemma B.2 that the solution of the diffusion equation, supplemented by the
initial condition (C2), satisfies the boundary conditions (36) if ¢(w) obeys to symmetry relations
pw) = —p(2a —w) 7 p(w) = —p(2b - w) 27, (C4)
Using the first of these two equalities and definition (C3) of the function ¢g(w), let us redefine
¢(w) onto the interval w € (2a — b,b) as follows:

SD(W) = QDO(W), w € (2& — b, b), Spo(w) = SDO(W) _ @O(2a _ w) 6204((1—0.1)'
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Then, the equalities (C4) provide the “quasiperiodic” relation
(W) = p(w + 2(b — a)) 2B~ wtb=a)+2(ab=Fa)

which yields

)= 3 "), )

m=—0oQ

gpm(w) _ QDO(W + 2(b _ a)m) 62(5704)(w+m(bfa))m+2(ab75a)m‘

Putting ¢(w) given by (C5) into (B2), we obtain the sought solution of the initial-boundary
problem (34)—(36). In particular, using ¢o(w) = d(w), that is

P’ (w) = PYw) =6(w) — e §(w — 2a),

we obtain the solution (38). O



