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and the link with continuous-time volatility modeling ∗
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Abstract

We first propose a reduced form model in discrete time for S&P500 volatility showing
that the forecasting performance can be significantly improved by introducing a persistent
leverage effect with a long-range dependence similar to that of volatility itself. We also
find a strongly significant positive impact of lagged jumps on volatility, which however is
absorbed more quickly. We then estimate continuous-time stochastic volatility models which
are able to reproduce the statistical features captured by the discrete-time model. We show
that a single-factor model driven by a fractional Brownian motion is unable to reproduce
the volatility dynamics observed in the data, while a multi-factor Markovian model fully
replicates the persistence of both volatility and leverage effect. The impact of jumps can be
associated with a common jump component in price and volatility.
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1 Introduction

The relevance of financial market volatility led to a very large literature trying to take into

account its most salient dynamic features: clustering, slowly decaying auto-correlation, asym-

metric responses. The advent of high-frequency data, allowing for specification and estimation

of models for realized volatility, elicited a considerable advancement in this field. However, a

considerable gap still exists in the literature between models devised for volatility forecasting,

which are commonly specified in discrete time, and volatility modeling in continuous time which

is used, among other things, for option pricing. This is particularly annoying for leverage effect,

whose interpretation is completely different in discrete time, where it is typically interpreted as

a negative correlation between lagged negative returns and volatility, and in continuous time,

where the negative correlation between price and volatility shocks is contemporaneous.

This paper contributes to this literature in two directions and aims at filling this apparent gap.

In the first part of the paper, we propose a new reduced-form model in discrete time, the LHAR-

CJ model, which is able to provide a remarkable forecasting performance for volatility over a

time horizon which ranges from one day to one month, along with a positive and significant

risk-return trade-off. Our specification is extremely simple to implement and it is based on the

incorporation of three effects. The first is the well know volatility persistence, which is modeled

with the HAR specification of Corsi (2009). However, we do not restrict to lagged volatilities

(at daily, weekly and monthly frequency) as possible sources of future volatility, but we also

add jumps (as in Andersen et al., 2007) and, as a novel contribution of this paper, negative

returns over the past day, week and month, thus imposing a common heterogeneous structure

to the explanatory variables.

The empirical findings in the first part of the paper are also relevant because of the impor-

tant implications they bear on the set of continuous-time models consistent with the empirical

features of financial data. In the second part of the paper, we then estimate continuous-time

models via indirect inference using the proposed discrete-time specifications as auxiliary models,
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thus reproducing the very same features captured by the discrete-time model. In particular, we

show that a single-factor model is unable to reproduce the type of integrated volatility persis-

tence which is displayed by the data, even when allowing shocks to be driven by a fractional

Brownian motion (Comte and Renault, 1998), that is by a genuine long-memory component.

This induces us to investigate multi-factor specifications. We find that a Markovian two-factor

model is able not only to replicate the persistence of integrated volatility, but also the persis-

tence in the leverage effect by correlating more than one volatility factor with the price shocks.

The analyzed multi-factor models do not need long-memory shocks to achieve their goal. While

not ruling out the possible presence of long memory in volatility, this shows that the autocorre-

lation function of realized volatility is not necessarily a signature of genuine long memory in the

data generating process, and corroborates the framework according to which market volatility

is generated by a superposition of different frequencies, as suggested in Corsi (2009) and Muller

et al. (1997).

In the literature, it is well known that volatility tends to increase more after a negative shock

than after a positive shock of the same magnitude see e.g. Christie (1982); Campbell and

Hentschel (1992); Glosten et al. (1989) and more recently Bollerslev et al. (2006), Bollerslev

et al. (2009) and Martens et al. (2009). We extend the heterogeneous structure to the stan-

dard leverage effect by including lagged negative returns at different frequencies as explanatory

variables to forecast volatility. This idea traces back to Corsi (2005) and can also be found in

concurrent work of Scharth and Medeiros (2009) and Allen and Scharth (2009) as well as in

Fernandes et al. (2009) to forecast implied volatility. However, with this paper we are able to

provide a novel and clear evidence on the fact that the impact of negative returns on future

volatility of S&P500 is also highly persistent and extends for a period of at least one month,

thus displaying a long-range dependence similar to that of volatility itself.

With respect to the literature on jumps, we follow the separation of the quadratic variation

in “continuous” volatility and jumps proposed in Andersen et al. (2007) for the explanatory
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variables and extended in Busch et al. (2011) to the dependent variable. However, contrary to

the above-mentioned studies, we do not use bipower variation (Barndorff-Nielsen and Shephard,

2004) to measure the jumps contribution to quadratic variation, but we follow Corsi et al.

(2010) using threshold bipower variation, a measure of continuous quadratic variation which is

able to crucially soften the small-sample issues of bipower variation. This provides a superior

forecasting performance, and allows to reveal that volatility does increase after a jump (both

positive or negative) but that this shock is absorbed quickly in the volatility dynamics. Jumps

are instead found to be almost unpredictable. When modeling in continuous time, the transient

jump impact is captured by co-jumps between price and a single volatility factor.

The paper is organized as follows. Section 2 presents the main reduced-form model in discrete

time. Section 3 contains the estimates and various robustness checks. In Section 4, we estimate

continuous-time models via indirect inference. Section 5 concludes.

2 The discrete-time model

This section is devoted to the specification of the reduced-form model in discrete time. We

first define the data generating process, the variables of interest and their estimators: We then

specify the LHAR-CJ model.

2.1 Construction of the variables of interest

We assume that the data generating process Xt (the log-price) is a real-valued process that can

be put, in a standard probability space, in the form of an Ito’s semimartingale:

dXt = µtdt+ σtdWt + dJt (2.1)
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where Wt is a standard Brownian motion, µt is predictable, σt is cádlág; dJt = ctdNt is a jump

process where Nt is a non-explosive Poisson process whose intensity is an adapted stochastic

process λt and ct is the adapted random variable measuring the size of the jump at time t and

satisfying, ∀t ∈ [0, T ], P({ct = 0}) = 0.

While in Section 4 we propose possible specifications of model (2.1), including the possibility

that σt is driven by a fractional Brownian motion with constant volatility (Comte and Renault,

1998), here we concentrate on reduced-form models for quadratic variation, which is defined by:

[X]t+T
t =

∫ t+T

t

σ2
sds+

Nt+T∑

j=Nt

c2τj . (2.2)

where we denote by τj the times in which jumps occurr.

These quantities are not directly observable and they have to be replaced with consistent realized

estimators, which we denote by V̂t (for [X]t+T
t ), Ĉt (for

∫ t+T

t
σ2
sds), and Ĵt (for

∑Nt+T

j=Nt
c2τj ). We

use T = 1 day and we denote the daily (close-to-close) return by rt. We remark that realized

volatility models need both the specification of the dynamics of quadratic variation and the

choice of small-sample estimators. For example, two models can share the same dynamics (e.g.

the HAR model for total quadratic variation) but be different just because quadratic variation

estimators (e.g. realized volatility versus two-scale estimator) are different.

In order to mitigate the impact of microstructure effects on our estimates, V̂t is the two-scale

estimator (TSRVt) proposed by Zhang et al. (2005), which is consistent also in the presence of

jumps. Details on the construction of the estimator are provided in a related Web Appendix.

Aı̈t-Sahalia and Mancini (2008) show that using the two-scale estimator instead of standard

realized volatility measures yields significant gains in volatility forecasting.

To define Ĉt and Ĵt we use the following approach. We first pre-test the data for jumps using

the C-Tz statistics proposed in Corsi et al. (2010) and formally defined in the Web Appendix.

The C-Tz test, which is distributed as a standard Normal in the absence of jumps, is computed
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daily. When the null is not rejected (namely, when C-Tz < 3.0902, corresponding to the 99.9%

significance level), we set Ĉt = V̂t = TSRVt and Ĵt = 0. When instead the test rejects the null,

we set Ĉt = TBPVt and Ĵt = max(TSRVt−TBPVt, 0), where TBPVt is the threshold bipower

variation estimator introduced in Corsi et al. (2010):

TBPVt =
π

2

M

M − 2

M−2∑

j=0

|∆t,jX| · |∆t,j+1X|I{|∆t,jX|2≤ϑj−1}
I{|∆t,j+1X|2≤ϑj}

(2.3)

where ∆t,jX is the j-th intraday return of day t (we use 5-minutes returns here), with j =

1, . . . ,M ; I{·} is the indicator function and ϑj is a threshold function (see the Web Appendix for

its precise definition) which is designed to remove jumps from the returns time series (Mancini,

2009). We have V̂t = Ĉt+ Ĵt provided TSRVt > TBPVt in days with jumps, which is always

the case empirically. Equation (2.3) shows that TBPVt is very similar to the bipower variation

(BPVt) of Barndorff-Nielsen and Shephard (2004), with the difference being the two indicator

functions which remove returns larger than the threshold ϑj . While this difference is irrelevant

asymptotically, it has been shown by Corsi et al. (2010) to be crucial in small samples (for

example, we often have TSRVt < BPVt in days with jumps because of the bias of BPVt).

Figure 1 shows, for the S&P 500 series studied in this paper, the lagged correlation function

between the two-scale estimator TSRVt and TSRVt−h itself, negative returns, positive returns

and Ĵt−h. The autocorrelation of TSRVt decays very slowly, as it is well known. The lagged

correlation between TSRVt and negative returns shows the leverage effect: volatility is correlated

with lagged negative returns. Figure 1 also shows that the impact of negative returns on future

volatility is slowly decaying as well. Also jumps have a positive and large impact (as large as

the negative returns when h = 1), which however decays more rapidly. Finally, positive returns

have a very small and negligible impact on future volatility.

The slowly decaying impact of negative returns might well be a by-product of the slowly decaying

auto-correlation function of volatility. However, since the same phenomenon is not observed with

the jump component, it can be also suggestive of the fact that leverage effect might be very
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Figure 1: Lagged correlation function between past values Yt−h and current, daily,
integrated variance estimates TSRVt as a function of h, with Yt−h being TSRVt−h

itself, negative returns, positive returns and jumps quadratic variation Ĵt−h for the
S&P500 futures from 28 April 1982 to 5 February 2009 (6,669 observations).

persistent, a possibility which has been seldom investigated so far.

Persistence in the leverage effect can be induced, in continuous time, by making the leverage

effect an explicit function of volatility, as in Bandi and Renò (2011b). Our reduced-form model,

which is in discrete time, explores an alternative possibility. We follow Corsi (2009) in modeling

the slowly decaying auto-correlation function by means of a heterogeneous structure induced

by a volatility cascade, and we extend this structure to negative returns and jumps.

2.2 The LHAR-CJ model

Combining heterogeneity in realized volatility, leverage, and jumps we construct the Leverage

Heterogeneous Auto-Regressive with Continuous volatility and Jumps (LHAR-CJ) model. As
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it is common in practice, we use daily, weekly and monthly frequencies. Then, using variable

specified in logs, we introduce averaged variables, which are defined over an integer number h

of days as (jumps are aggregated instead of averaged):

log V̂
(h)

t =
1

h

h∑

j=1

log V̂t−j+1, log Ĉ
(h)

t =
1

h

h∑

j=1

log Ĉt−j+1, r
(h)
t =

1

h

h∑

j=1

rt−j+1, Ĵ
(h)

t =

h∑

j=1

Ĵt−j+1 .

To model the leverage effect at different frequencies, we define r
(h)−
t = min(r

(h)
t , 0). The pro-

posed model reads:

log V̂
(h)

t+h = c + β(d) log Ĉt + β(w) log Ĉ
(5)

t + β(m) log Ĉ
(22)

t

+ α(d) log(1 + Ĵt) + α(w) log(1 + Ĵ
(5)

t ) + α(m) log(1 + Ĵ
(22)

t ) (2.4)

+ γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t+h,

with real parameters {c, β(d,w,m), α(d,w,m), γ(d,w,m)} and where ε
(h)
t is IID noise. Model (2.4)

nests other models which have been successfully used for realized volatility. When α(d,w,m) =

γ(d,w,m) = 0 and Ĉt = V̂t, the model becomes the HAR model of Corsi (2009). When γ(d,w,m) =

0, we get the HAR-CJ model proposed by Andersen et al. (2007) which separately include

continuous and discontinuous component as explanatory variables. When α(d,w,m) = 0 and

Ĉt = V̂t the model is referred to as the LHAR model. The model can also be specified directly

for V̂t and for

√
V̂t, as in Andersen et al. (2007) and Corsi et al. (2010).

We estimate model (2.4) and its variants, with h ranging from 1 to 22 to make multiperiod

predictions, by OLS with Newey-West covariance correction for serial correlation.

3 Empirical evidences

The purpose of this section is to empirically analyze the performance of the LHAR-CJ model

(2.4) and related ones, both in-sample and out-of-sample. Our data set covers a long time
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Figure 2: Percentage contribution of daily jump to total quadratic variation mea-
sured over a moving window of 3-month (dotted line) and 1-year (solid line) for the
S&P500 futures from 28 April 1982 to 5 February 2009 (6, 669 observations) excluding
the October 1987 crash. The C-Tz statistics is computed with a confidence interval
α = 99.9%.

span of almost 28 years of high frequency data for the S&P 500 futures from 28 April 1982

to 5 February 2009. We leave out from the sample the week of the 1987 October crash (when

included, results are qualitatively very similar but less clear-cut) and days with less than 500

trades. We are left with 6,669 days. All the quantities of interest are computed on an annualized

base. Figure 2 reports the relative contribution of the quadratic variation of jumps with respect

to total quadratic variation, computed on a 3-month and 1-year moving window. In line with

the results in Andersen et al. (2007) and Huang and Tauchen (2005) we find a jump contribution

varying between 2% and 30% of total variation (with an overall sample mean of about 6%).

3.1 In-sample analysis

The results of the estimation of the LHAR-CJ on the S&P500 sample with h = 1, 5, 10, 22

are reported in Table 1, together with their statistical significance evaluated with the Newey-
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S&P500 LHAR in-sample regression, period 1982–2009

Variable One day One week Two weeks One month

c 0.442* 0.549* 0.662* 0.858*
(10.699) (9.258) (8.525) (7.756)

Ĉ 0.307* 0.201* 0.154* 0.116*
(16.983) (14.158) (12.984) (10.590)

Ĉ
(5)

0.369* 0.359* 0.332* 0.286*
(13.908) (11.251) (9.166) (6.784)

Ĉ
(22)

0.222* 0.319* 0.370* 0.415*
(10.958) (10.913) (10.198) (9.344)

Ĵ 0.043* 0.020* 0.017* 0.012*
(7.057) (4.453) (4.485) (3.804)

Ĵ
(5)

0.011* 0.013* 0.011* 0.010
(3.373) (3.112) (2.256) (1.913)

Ĵ
(22)

0.005* 0.008* 0.010* 0.014*
(2.199) (2.106) (2.205) (2.336)

r− -0.007* -0.005* -0.004* -0.003*
(-9.669) (-10.435) (-8.298) (-5.518)

r(5)− -0.008* -0.006* -0.008* -0.007*
(-4.412) (-3.059) (-4.012) (-3.472)

r(22)− -0.009* -0.012* -0.009 -0.004
(-2.845) (-2.314) (-1.481) (-0.467)

R
2

0.7664 0.8137 0.8030 0.7629
HRMSE 0.2168 0.1692 0.1699 0.1796

Table 1: OLS estimates of LHAR-CJ regressions, model (2.4), for the S&P500 futures
from 28 April 1982 to 5 February 2009 (6, 669 observations). The LHAR-CJ model
is estimated with h = 1 (one day), h = 5 (one week), h = 10 (two weeks) and
h = 22 (one month). The significant jumps are computed using a critical value of
α = 99.9%. Reported in parenthesis are t-statistics based on Newey-West correction
with L = 2+2h number of lags and Bartlett kernel. A star denotes 95% significance.

West robust t-statistic. The forecasts of the different models are evaluated on the basis of

the adjusted R2 of the regressions, and the heteroskedasticity-adjusted root mean square error

(HRMSE) proposed by Bollerslev and Ghysels (1996).

As usual, all the coefficients of the three continuous volatility components are positive and, in

general, highly significant. The impact of daily and weekly volatility decreases with the forecast-

ing horizon of future volatility, while the impact of monthly volatility increases. The coefficient

which measures the impact of monthly volatility on future daily volatility is approximately
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double than that of daily volatility on future monthly volatility. This finding is consistent with

Corsi (2009).

Estimation of model (2.4) also reveals the strong significance (with an economically sound

negative sign) of the negative returns at all the daily, weekly and monthly aggregation frequency,

which unveils a heterogeneous structure in the leverage effect as well. Not only daily negative

returns affect the next day volatility (the well-know leverage effect) but, in addition, also the

negative returns of the past week and past month have an impact on forthcoming volatility.

This novel finding suggests that the market might aggregate daily, weekly and monthly memory,

observing and reacting to price declines happened in the past week and month, revealing a

persistent leverage effect.

A similar heterogeneous structure is present in the impact of jumps on future volatility. However,

while the daily and weekly jumps are highly significant and positive, their impact decreases with

the forecasting horizon at a fast rate. The monthly jump component is also slightly significant

over all forecasting horizons, with its impact increasing with the horizon.

Figure 3 shows the Mincer-Zarnowitz R2 for different models at various horizons, which obtaines

its maximum at one week. Moreover, Figure 3 shows unambiguously that the inclusion of

both the heterogeneous jumps and the heterogeneous leverage effects considerably improves the

forecasting performance of the S&P 500 volatility at any forecasting horizon. In particular,

the inclusion of heterogeneous leverage effect provides the most relevant overall benefit in the

in-sample performance. We confirm this result out-of-sample in Section 3.6.

3.2 Forecasting jumps and continuous volatility

Following Busch et al. (2011), we can use the continuous and jumps component of total quadratic

variation as dependent variables as well, and investigate the possibility of forecasting them

separately. We then specify the LHAR-C-CJ model for forecasting the continuous quadratic
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Figure 3: R2 of Mincer-Zarnowitz regressions for static in sample one-step ahead
forecasts for horizons ranging from 1 day to 1 month of the S&P500 futures from 28
April 1982 to 5 February 2009 (6,669 observations). The forecasting models are the
standard HAR with only heterogeneous volatility, the HAR-CJ with heterogeneous
jumps and the LHAR-CJ model.

variation as:

log Ĉ
(h)

t+h = c + β(d) log Ĉt + β(w) log Ĉ
(5)

t + β(m) log Ĉ
(22)

t

+ α(d) log(1 + Ĵt) + α(w) log(1 + Ĵ
(5)

t ) + α(m) log(1 + Ĵ
(22)

t ) (3.1)

+ γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t+h,

and the LHAR-J-CJ model for forecasting jumps as:

log(1 + Ĵ
(h)

t+h) = c + β(d) log Ĉt + β(w) log Ĉ
(5)

t + β(m) log Ĉ
(22)

t

+ α(d) log(1 + Ĵt) + α(w) log(1 + Ĵ
(5)

t ) + α(m) log(1 + Ĵ
(22)

t ) (3.2)

+ γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t+h,

11



Corresponding models with α(d,w,m) = 0 and Ĉt = V̂t on the right-hand side are named LHAR-

C and LHAR-J respectively. Estimation results for the daily horizon (h = 1) are presented

in Table 2. We can see that, as already recognized in the literature, the jump component

is essentially unpredictable, with an adjusted R2 of just 1.52%. We find a strong significant

impact on future jumps only for the monthly jump component, which is a clear indication of

jump clustering. Also daily and weekly volatilities are significant, but with opposite signs. The

impact of monthly jumps on Ĉt is instead not significant, confirming that the impact of jumps

on volatility is quite transitory in nature.

While the inability of forecasting jumps has been signaled also by Busch et al. (2011), they find,

contrary to our analysis, that the impact of daily jumps on the future daily continuous quadratic

variation is significantly negative, a result which would imply, on average, a volatility decrease

after a jump. Corsi et al. (2010) show that this result is induced by the small-sample bias of

bipower variation measures. Building on their work, we use threshold bipower variation and

uncover the positive (and transitory) impact of jumps on future volatility also in the presence

of a persistent leverage effect.

3.3 Risk-return trade-off

Our volatility forecasts can also be evaluated in term of the implied risk-return trade-off, since

economic theory posits that there should be a positive relation between returns and perceived

risk. The literature on the risk-return trade-off is very large. Recent research on this topic in-

cludes Ghysels et al. (2005); Christensen and Nielsen (2007); Bandi and Perron (2008); Bollerslev

et al. (2008). Here we use as a measure of risk the daily volatility forecast of i) the standard

HAR model, ii) the HAR-CJ model and iii) the LHAR-CJ model. All models are specified in the

logarithmic form. We regress the return on the variance forecasts
˜̂
Vt , that is on the exponential

of the logarithmic forecasts log
˜̂
Vt. Estimation results, obtained via OLS, are shown in Table 3.

The results are in agreement with those in Bali and Peng (2006), who analyze the same data
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LHAR-CJ, LHAR-C-CJ and LHAR-J-CJ regression

Dependent Variables

Variable V̂ Ĉ Ĵ

c 0.442* 0.440* -0.287*
(10.699) (10.995) (-2.770)

Ĉ 0.307* 0.324* -0.097*
(16.983) (17.803) (-2.388)

Ĉ
(5)

0.369* 0.354* 0.121*
(13.908) (13.406) (2.089)

Ĉ
(22)

0.222* 0.214* 0.065
(10.958) (10.822) (1.261)

Ĵ 0.043* 0.037* 0.040
(7.057) (5.941) (1.829)

Ĵ
(5)

0.011* 0.010* 0.000
(3.373) (3.051) (0.029)

Ĵ
(22)

0.005* 0.001 0.026*
(2.199) (0.461) (4.313)

r− -0.007* -0.007* -0.002
(-9.669) (-10.173) (-1.128)

r(5)− -0.008* -0.007* -0.006
(-4.412) (-4.151) (-1.241)

r(22)− -0.009* -0.010* 0.014
(-2.845) (-2.869) (1.341)

R
2

0.7664 0.7594 0.0152

Table 2: OLS estimate for the LHAR-CJ model using as dependent variable log V̂t,
log Ĉt, log(1 + Ĵt), daily forecasting horizon, for the S&P500 futures from 28 April
1982 to 5 February 2009 (6,669 observations). The significant jumps are computed
using a critical value of α = 99.9%. Reported in parenthesis are t-statistics based on
Newey-West correction with L = 2 + 2h number of lags and Bartlett kernel. A star
denotes 95% significance.

until 2002. With all models, we find a significant impact of volatility forecasts on returns which

is compatible with economic theory, even if we have a very low R2, as it is common in this

kind of applications. The inclusion of jumps is not benefitial to return forecasting. Instead,

the inclusion of the leverage component increases the slope coefficient and almost doubles the

significance of the effect. Similar results are obtained regressing rt on

√
˜̂
Vt, or replacing

˜̂
Vt with

the volatility forecasts of
˜̂
Ct obtained with the LHAR-C-CJ model discussed in Section 3.2.
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Risk-return regression:

rt = c+ β
˜̂
Vt + εt

Model slope β̂ t-stat R̄2

HAR 0.0026018 3.4257 0.16%
HAR-CJ 0.0025964 3.4113 0.16%
LHAR-CJ 0.0033497 6.7266 0.66%

Table 3: OLS estimates of the regression of daily returns on daily variance forecasts
˜̂
Vt obtained with different models

3.4 Is leverage effect induced by jumps?

An open research question is whether, and to which extent, the leverage effect is induced by

jumps, see e.g. Bandi and Renò (2011a). In our setting, we investigate this issue by separating

the daily jump contribution to quadratic variation in a positive and negative part. To this

purpose, we define:

Ĵ
+

t = Ĵt ·I{rt>0}

Ĵ
−

t = Ĵt ·I{rt<0}

and we insert Ĵ
+

t and Ĵ
−

t in the LHAR model in place of Ĵt, denoting by LHAR-CJ+ the newly

obtained model. We also estimate the HAR-CJ+ model, which is the same without leverage

terms. Results are reported in Table 4. Given the evidence provided by Todorov and Tauchen

(2011) and Bandi and Renò (2011a), with different statistical methods, of a strong negative

correlation between price and volatility jumps, we expect the coefficient on Ĵ
−

t to be larger than

that on Ĵ
+

t .

When we estimate the HAR-CJ+ model, this is exactly what we find: the coefficient on negative

jumps is almost double than that of positive jumps, and this is true for all the considered

forecasting horizons, ranging from one day to one month. However, when we estimate the full

14



HAR-CJ+ regression

1 day 1 week 2 weeks 1 month

c 0.232* 0.377* 0.505* 0.747*
(5.774) (6.217) (6.418) (6.736)

Ĉ 0.398* 0.265* 0.214* 0.165*
(21.521) (18.225) (16.084) (12.442)

Ĉ
(5)

0.366* 0.368* 0.346* 0.291*
(13.889) (11.697) (9.750) (7.327)

Ĉ
(22)

0.190* 0.291* 0.338* 0.390*
(9.470) (9.743) (9.059) (8.875)

Ĵ
+

0.044* 0.018* 0.016* 0.013*
(6.099) (3.264) (3.000) (2.538)

Ĵ
−

0.074* 0.040* 0.039* 0.027*
(6.909) (6.833) (6.658) (5.351)

Ĵ
(5)

0.009* 0.012* 0.010* 0.010
(2.645) (2.724) (2.028) (1.799)

Ĵ
(22)

0.005 0.007 0.009* 0.014*
(1.845) (1.875) (2.026) (2.242)

-

-

-

R
2

0.7543 0.8060 0.7960 0.7582
HRMSE 0.2201 0.1721 0.1722 0.1812

LHAR-CJ+ regression

1 day 1 week 2 weeks 1 month

c 0.442* 0.549* 0.661* 0.858*
(10.724) (9.277) (8.531) (7.778)

Ĉ 0.307* 0.201* 0.154* 0.116*
(16.972) (14.185) (13.007) (10.608)

Ĉ
(5)

0.369* 0.359* 0.332* 0.286*
(13.885) (11.237) (9.144) (6.777)

Ĉ
(22)

0.222* 0.319* 0.370* 0.415*
(10.914) (10.905) (10.183) (9.336)

Ĵ
+

0.044* 0.018* 0.015* 0.012*
(6.176) (3.182) (2.819) (2.395)

Ĵ
−

0.043* 0.019* 0.020* 0.011*
(4.598) (3.387) (3.633) (2.285)

Ĵ
(5)

0.011* 0.013* 0.011* 0.010
(3.372) (3.110) (2.254) (1.914)

Ĵ
(22)

0.005* 0.008* 0.010* 0.014*
(2.200) (2.104) (2.203) (2.337)

r− -0.007* -0.005* -0.004* -0.003*
(-9.772) (-10.057) (-7.804) (-5.341)

r(5)− -0.008* -0.006* -0.008* -0.007*
(-4.409) (-3.068) (-4.020) (-5.341)

r(22)− -0.009* -0.012* -0.008 -0.004
(-2.844) (-2.315) (-1.484) (-0.467)

R
2

0.7664 0.8137 0.8030 0.7629
HRMSE 0.2168 0.1692 0.1698 0.1796

Table 4: OLS estimate for the LHAR-CJ+ and HAR-CJ+ model in which we separate
daily jumps in positive and negative, for the S&P500 futures from 28 April 1982 to
5 February 2009 (6,669 observations). The models are estimated with h = 1 (one
day), h = 5 (one week), h = 10 (two weeks) and h = 22 (one month). The significant
jumps are computed using a critical value of α = 99.9%. Reported in parenthesis
are t-statistics based on Newey-West correction with L = 2 + 2h number of lags and
Bartlett kernel. A star denotes 95% significance.

LHAR-CJ+ model, which includes all the leverage terms (which are also affected by the jump

component), the impact of positive and negative jumps is estimated to be roughly the same,

again at all the considered horizons. Our interpretation of this result is that the number of

co-jumps is likely too small to allow for the joint detection of the continuous leverage effect and

the covariance part genuinely due to jumps.
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3.5 Robustness to other volatility measures

In the literature many volatility measures have been proposed as explanatory variables for the

volatility dynamics. Forsberg and Ghysels (2007) proposed the use of realized absolute variation

(RAV) which shows a more persistent dynamics than realized volatility being more robust to

microstructure noise and jumps. The range, i.e. the difference between the highest and the

lowest price within a day, has also been found to be significant by many authors, see e.g.

Brandt and Jones (2006) and Engle and Gallo (2006). Recently, Barndorff-Nielsen et al. (2010)

proposed the realized semivariance as the sum of square negative returns to capture the impact

on volatility of downward price pressures. Visser (2008) combines RAV and semivariance by

taking the sum of negative absolute squared returns.

In the spirit of Forsberg and Ghysels (2007), we compare the relative explanatory power of

different volatility measures by estimating a set of models (for space concerns we limit ourselves

to the one day horizon) obtained by adding explanatory variables to model (2.4). Estimation

results are reported in Table 5. In line with previous literature, we find that the realized absolute

variation (RAV) computed at 5-minute frequency and the range have a significant impact on

future volatility. However, they seem to be mainly substitutes for continuous volatility and

jumps, which is not totally surprising since they are estimators (though noisy) of total quadratic

variation. Indeed, for instance, when the range replaces the jumps (LHAR-Range model, not

reported), the coefficients of daily continuous volatility almost halves. The adjusted R2 of the

two competing regressions (LHAR-Range and LHAR-CJ) is practically the same. When the

range is inserted together with the jumps (LHAR-CJ-Range), both the coefficients of daily

volatility and jumps decrease, although they remain highly significant. The significance of the

heterogeneous leverage effect is instead unaffected by the presence of RAV and range. We

thus conclude that the RAV and the range, while partially proxying for both volatility and

jumps, are also able to capture some other (small) effect which is not captured by the other

variables in the model. However, the adjusted R2 of the encompassing regression increases
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only marginally. The realized semivariance (semiRV) of Barndorff-Nielsen et al. (2010) and

the downward absolute power variation of Visser (2008) (semiRAV) have a weaker impact.

Realized semivariance and semi-power-variation are significant in explaining future volatility,

and, again, they are correlated with both the daily two-scale estimator and the jumps (typically

depleting the significance of the corresponding coefficients without totally removing it), while

unrelated with the leverage. However, their contribution to the model performance is not

significant (as measured by the Diebold-Mariano test). Moreover, when they are included in

the all-encompassing model they both remain insignificant.

Summarizing, the results of this section show that when the other volatility measures proposed

in the literature are inserted in the baseline LHAR-CJ model they either do not contribute

significantly or only marginally contribute to the performance of the model. Moreover, they

mainly act as substitutes of continuous volatility and jumps. Hence, we conclude the LHAR-CJ

model seems to capture the main determinants of volatility dynamics.

3.6 Out-of-sample analysis

In this section, we evaluate the performance of the LHAR-CJ model on the basis of a genuine

out-of-sample analysis. For the out-of-sample forecast of V̂t on the [t, t + h] interval we keep

the same forecasting horizons ranging from one day to one month and re-estimate the model

at each day t on an increasing window of all the observation available up to time t − 1. The

out-of-sample forecasting performance for log V̂t in terms of Mincer-Zarnowitz R2 is reported

in Figure 4, together with the Diebold-Mariano test computed for the HRMSE loss function at

all the considered horizons.

The superiority of the LHAR-CJ model at all horizons, with respect to the HAR and the

HAR-CJ model, is statistically significant, validating the importance of including both the

heterogeneous leverage effects and jumps in the forecasting model. The out-of-sample exercise

confirms that the maximum R2 is obtained at a forecasting horizon of one week.
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S&P500 in-sample estimates, period 1982–2009

Variable
LHAR-

CJ

LHAR-

CJ-

RAV

LHAR-

CJ-

Range

LHAR-

CJ-

SemiRV

LHAR-

CJ-

SemiRAV

LHAR-

CJ-All

const 0.442* 0.593* 0.444* 0.470* 0.554* 0.616*
(10.699) (12.419) (10.860) (11.029) (9.869) (8.914)

Ĉ 0.307* 0.116* 0.207* 0.249* 0.252* 0.085*
(16.983) (3.355) (10.035) (9.588) (9.489) (2.449)

Ĉ
(5)

0.369* 0.374* 0.384* 0.372* 0.372* 0.389*
(13.908) (14.125) (14.568) (14.074) (14.032) (14.693)

Ĉ
(22)

0.222* 0.221* 0.223* 0.223* 0.222* 0.223*
(10.958) (10.943) (11.071) (11.003) (10.963) (11.035)

Ĵ 0.043* 0.018* 0.024* 0.033* 0.037* 0.010
(7.057) (2.519) (3.893) (4.850) (5.620) (1.331)

Ĵ
(5)

0.011* 0.012* 0.012* 0.011* 0.011* 0.012*
(3.373) (3.717) (3.789) (3.409) (3.413) (3.959)

Ĵ
(22)

0.005* 0.006* 0.005* 0.006* 0.006* 0.006*
(2.199) (2.334) (2.207) (2.266) (2.277) (2.329)

r− -0.007* -0.007* -0.006* -0.006* -0.006* -0.005*
(-9.669) (-10.156) (-8.193) (-8.197) (-7.792) (-5.630)

r(5)− -0.008* -0.007* -0.008* -0.008* -0.008* -0.008*
(-4.412) (-4.147) (-4.847) (-4.368) (-4.278) (-4.582)

r(22)− -0.009* -0.009* -0.009* -0.010* -0.010* -0.010*
(-2.845) (-2.687) (-2.868) (-2.980) (-2.951) (-2.853)

RAV 0.185* 0.077
(6.533) (1.867)

Range 0.088* 0.086*
(9.364) (7.911)

SemiRV 0.058* -0.011
(3.305) (-0.330)

SemiRAV 0.054* 0.056
(3.141) (1.455)

R
2

0.7664 0.7681 0.7696 0.7668 0.7668 0.7704

HRMSE 0.2168 0.2158* 0.2148* 0.2165 0.2165 0.2142*
DM (2.7060) ( 4.6323) (1.5020 ) (1.8539 ) (4.6778)

Table 5: Estimated parameters, adjusted R2 and Heteroskedasticity adjusted RMSE
(HRMSE), of alternative specifications of the baseline LHAR-CJ model for the
S&P500 futures from 28 April 1982 to 5 February 2009 (6,669 observations); t-statistic
and Diebold-Mariano (DM) test for HRMSE are in parenthesis. A star denotes 95%
significance.
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The superiority of the HAR-CJ model vs the HAR model is instead milder, but the reason

is that the improvements appear only in days which follow a jump (368 out of 6, 669), and

thus on a small subsample. However, it is important to note that the inclusion of the jump

component helps also in forecasting longer horizon volatility, see the results in the web appendix

and Andersen et al. (2007).

4 Continuous-time models

The main motivation of this section is to provide a continuous-time model which delivers the

stylized facts documented in the previous sections and captured by the newly proposed discrete-

time model. Such a continuous-time model would then, at the same time, not only provide a

more accurate statistical representation of the data, but also bridge the gap between continuous

and discrete time modelling. Since the inception of the GARCH literature, indeed, volatility

forecasting is mostly set up in discrete time, and the LHAR-CJ model is no exception. However,

models used in practice, e.g. for option pricing, are often specified in continuous time. In the

literature, the link between GARCH-like models and continuous time models is well established,

see e.g. Nelson (1990); Duan (1997); Corradi (2000). However, the link between continuous-time

models and HAR-like models is unclear.

We achieve this goal by estimating continuous-time models via indirect inference (Gourieroux

et al. 1993; see Bollerslev et al. 2006 for an application similar to ours) using the (L)HAR(-CJ)

specification as auxiliary model. The idea of the indirect inference approach is to estimate the

auxiliary model both on actual data and on data simulated from the structural model, and then

to minimize the distance (labelled by χ2), as a function of the structural model parameters,

between the estimated coefficients weighted with the inverse variance-covariance matrix of the

estimates. Details are provided in the Web Appendix.

It is usually suggested that the long-range autocorrelation function of realized volatility is
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Figure 4: Top: R2 of Mincer-Zarnowitz regressions for out-of-sample forecasts. Bot-
tom: Diebold-Mariano test for the out-of-sample HRMSE. Horizons range from 1 day
to 1 month of the S&P500 from 28 April 1982 to 5 February 2009 (6,669 observations,
the first 2,500 observations are used to initialize the models). The forecasting models
are the standard HAR with only heterogeneous volatility, the HAR-CJ with heteroge-
neous jumps and the LHAR-CJ model. The comparison of HAR-CJ and LHAR-CJ is
made employing the Clark and West (2007) adjustment to the Diebold-Mariano test
for nested models. In both cases, the test is asymptotically standard Normal under
the null.
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generated by a long-memory model. For this reason, we start by estimating the Comte and

Renault (1998) continuous-time model:

dXt = σtdWt,

d log σt = k(ω − log σt)dt+ ηdW
(d)
t ,

(4.1)

where Wt is a standard Brownian motion and dW
(d)
t is an independent fractional Brownian

motion with memory parameter d ∈ [0, 0.5] (ensuring stationarity). The value d = 0 corresponds

to the standard Brownian motion, while higher d corresponds to higher memory in the time

series. Estimation of model (4.1) has only been performed, to the best of our knowledge,

in Casas and Gao (2008) using spectral methods. For simulation studies, see Nielsen and

Frederiksen (2008) and Rossi and Spazzini (2010). A discrete time specification of model (4.1)

is instead estimated more routinely, see e.g. Comte and Renault (1996) and Christensen and

Nielsen (2007). To assess the impact on the results of the fractional difference parameter d, we

first estimate model (4.1) for different fixed values d, and then estimate the four parameters

(k, ω, η, d) jointly.

The results, reported in Table 6, show that model (4.1) is substantially unable to reproduce the

coefficients of the HAR model. The best fit is obtained with a value of d = 0.491 very close to

non-stationarity. However, even for this fit, the implied daily coefficient of the HAR model is

still too high, and the implied weekly coefficient is still too low. To understand the motivation

of this failure, it is interesting to look at the estimates obtained for fixed and increasing values

of d. When d = 0, the model is assimilable to an AR(1) specification and thus is unsurprisingly

unable to reproduce the HAR coefficients. As d increases, persistence comes from two terms:

the mean-reverting term k(ω− log σ2
t )dt and the fractional Brownian motion ηdW

(d)
t . However,

these two components can vary only in a rigid fashion. For example, when d increases, the

mean-reversion parameter k has to increase sharply because of the mean reversion observed

in the volatility series which would not be reproduced by ηdW
(d)
t alone. Notice that the ratio
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Structural model:

d log σt = k(ω − σt)dt+ ηdW
(d)
t

parameter estimates
d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.49 unconstrained d

k 0.144 0.325 0.750 1.917 7.706 145.081 144.853
ω −0.166 −0.218 −0.268 −0.290 −0.313 −0.446 −0.447
η 0.248 0.272 0.352 0.625 2.512 118.350 123.746
d 0.000 0.100 0.200 0.300 0.400 0.490 0.491

χ2 1109.4187 1137.1615 931.5612 527.4070 178.8777 43.2839 42.6094

Auxiliary model:

log Ĉt+1 = c+ β
(d) log Ĉt + β

(w) log Ĉ
(5)

t + β
(m) log Ĉ

(22)

t + εt

parameter estimated implied
d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.49 unconstrained d

c 0.208 0.661 0.875 1.019 0.966 0.688 0.440 0.436

β(d) 0.388 0.913 0.877 0.756 0.575 0.449 0.420 0.421

β(w) 0.368 −0.044 −0.083 −0.059 0.057 0.203 0.281 0.281

β(m) 0.203 0.004 0.035 0.099 0.173 0.209 0.211 0.211
σ2
ε 0.198 0.188 0.191 0.195 0.198 0.199 0.198 0.197

Table 6: Estimates (daily units) via indirect inference of the long memory model
(4.1) using the HAR model as auxiliary model, and implied HAR coefficients.

k∞ = ηd/k remains approximately constant when changing d. This rigidity makes model (4.1)

unable to reproduce the HAR model.

Given the failure of the single-factor long memory model, we get inspiration from the very

nature of the HAR model, which reproduces a slowly decaying autocorrelation function via the

aggregation of different frequencies, and estimate affine multi-factor models with jumps:

dXt =
N∑

i=1

√
V i
t dW

i
t + dJX

t

dV i
t = κi(ωi − V i

t )dt+ ηi
√
V i
t dW

i+N
t + dJ i

t i = 1, . . . , N

corr(dW i, dW i+N ) = ρi

(4.2)

where W 1, . . . ,W 2N is a multivariate (possibily correlated) Brownian motion and J = {JX , J1,

. . . , JN} is a multivariate (possibly correlated) Poisson process with constant intensities, Normal
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Structural model:

dXt =
√

V 1
t dW

1
t +

√
V 2
t dW

2
t

dV 1
t = κ1(ω − V 1

t )dt+ η1
√

V 1
t dW

3
t

dV 2
t = κ2(ω − V 2

t )dt+ η2
√

V 2
t dW

4
t

parameter estimates

κ1 2.1461
κ2 0.0042
ω 0.4497
η1 0.8513
η2 0.3110

χ2 0.0000026

Auxiliary model:

log Ĉt+1 = c+β
(d) log Ĉt+β

(w) log Ĉ
(5)

t +β
(m) log Ĉ

(22)

t +εt

parameter estimated implied

c 0.208 0.208

β(d) 0.388 0.388

β(w) 0.368 0.368

β(m) 0.203 0.203
σ2
ε 0.198 0.198

Table 7: Estimates (daily units) via indirect inference of model (4.2) with N = 2 and
ω1 = ω2 = ω, using the HAR model as auxiliary model, and implied HAR coefficients.

jump sizes in the prices and exponential jump sizes in volatility. In the case of no jumps, when

N = 1, this is the well known Heston (1993) model; Duffie et al. (2000) and Pan (2002) include

jumps as in the Eraker et al. (2003) model considered earlier. With N = 2, this model has been

used for example in Bates (2000) and, more recently, by Christoffersen et al. (2009).

When using the HAR model as auxiliary model, we set N = 2, ρi = 0, J = 0 and to achieve

identification ω1 = ω2 = ω. Corresponding estimates, together with the implied HAR coeffi-

cients, are reported in Table 7. Contrary to the single-factor model with fractional Brownian

motion, the two-factor model is perfectly able to reproduce the HAR coefficients, obtaining an

objective function χ2 close to zero. Estimates are compatible with those typically encountered

in the literature: the fit implies the presence of a fast mean-reverting factor with a half-life less

than one day, and a slowly mean-reverting factor with a half-life of nearly 200 days. The super-

position of these two frequencies produces the desired effect in terms of volatility persistence.

Lieberman and Phillips (2008) suggest that also the usage of integrated volatility measures

produces a longer memory than that implied in the dynamics of spot volatility. Our result

also explains why multi-factor model works so well in describing the dynamics of options, see

e.g. Bates (2000), since they are able to reproduce the volatility dynamics under the natural

probability. It also suggests that two factors might be redundant if the volatility dynamics
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is specified directly with a model similar to HAR: an attempt in this direction is the paper

of Corsi et al. (2011), which develops an option pricing model with HAR volatility dynamics

providing remarkable pricing performance with a single volatility factor. Finally, two volatility

factors have also been shown to be priced in the cross-section of expected returns, see Adrian

and Rosenberg (2008).

When the auxiliary model is LHAR, the natural approach is to allow for nonzero correlation

coefficients to introduce a leverage effect, again setting J = 0. We report estimates of the two-

factor model with leverage effect in Table 8. When fitting the two-factor model using the LHAR

model as auxiliary model, we find ρ1 > 0, that is a positive correlation coefficient between the

fast mean-reverting volatility factor and returns, while ρ2 is negative. This fact is not totally

surprising since it echoes the results of Chernov et al. (2003) and Bollerslev et al. (2006), who

also estimate (among other models) a two-factor affine model on S&P500 returns via efficient

method of moments (using an auxiliary GARCH model) and find the correlation coefficient

associated to the fast mean-reverting volatility factor to be positive.

In presence of two factors, the interpretation of the leverage effect is not trivial since, as also

Chernov et al. (2003) explain, the average leverage can be negative even with a positive correla-

tion coefficient. However, the reason why a positive correlation arises with the fastest volatility

factor remained unclear. Figure 5 can help to provide a possible explanation for this occurrence.

We simulate model (4.2) with the coefficients estimated in Table 7, and we vary ρ1 (with ρ2 = 0)

and ρ2 (with ρ1 = 0) to evaluate the impact of the introduced correlations on the LHAR coef-

ficients. When ρ1 (the leverage effect of the fast mean-reverting factor) is different from zero,

the impact of daily negative returns on future volatility follows the sign of ρ1, but the opposite

hold for the impact of weekly and monthly negative returns. For example, when ρ1 is negative,

we find γ(d) < 0 but γ(w), γ(m) > 0. This is due to an overshooting effect: a positive correlation

at a higher frequency becomes negative at a slower one and viceversa. However, for the slowly

mean-reverting factor, the sign of ρ2 induces a leverage effect with the same sign on the daily,
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Structural model:

dXt =
√

V 1
t dW

1
t +

√
V 2
t dW

2
t +

√
V 3
t dW

3
t + cXdNt

dV 1
t = κ1(ω1 − V 1

t )dt+ η1
√

V 1
t dW

4
t + cσdNt

dV 2
t = κ2(ω2 − V 2

t )dt+ η2
√

V 2
t dW

5
t

dV 3
t = κ3(ω3 − V 3

t )dt+ η3
√

V 3
t dW

6
t

corr(dW 1, dW 4) = ρ1
corr(dW 2, dW 5) = ρ2
corr(dW 3, dW 6) = ρ3
Nt ∼ Poisson(λt), cX ∼ N (0, σ2

J), cσ ∼ exp(µσ)

parameter two factor three factor three factor
with jumps

κ1 8.1088 6.7647 5.7233
κ2 0.0003 0.6556 0.8390
κ3 − 0.0036 0.00004
ω1 0.3030 0.2480 0.2468
ω2 0.5165 0.1348 0.1740
ω3 − 0.1894 0.1311
η1 1.6348 2.0128 1.8970
η2 0.3748 0.3880 0.4137
η3 − 0.2849 0.3412
ρ1 0.9847 0.3201 0.5040
ρ2 −0.9807 −0.9949 −0.8947
ρ3 − −0.9173 −0.9714
λ − − 0.0129
σJ − − 0.0254
µσ − − 0.1420

χ2 123.301 0.221 28.369

Auxiliary model:

log Ĉt+1 = c+β
(d) log Ĉt+β

(w) log Ĉ
(5)

t +β
(m) log Ĉ

(22)

t +

+ γ
(d)

r
−
t + γ

(w)
r
(5)−
t + γ

(m)
r
(22)−
t + εt

parameter estimated two factor three factor

c 0.421 0.561 0.428

β(d) 0.299 0.238 0.302

β(w) 0.366 0.530 0.358

β(m) 0.236 0.105 0.239

γ(d)
−0.007 −0.004 −0.007

γ(w)
−0.008 −0.014 −0.008

γ(m)
−0.009 −0.010 −0.010

σ2
ε 0.187 0.188 0.187

Auxiliary model:

log V̂t+1 = c+β
(d) log Ĉt+β

(w) log Ĉ
(5)

t +β
(m) log Ĉ

(22)

t +

α
(d) log(1 + Ĵt)+α

(w) log(1 + Ĵ
(5)

t )+α
(m) log(1 + Ĵ

(22)

t )+

+ γ
(d)

r
−
t + γ

(w)
r
(5)−
t + γ

(m)
r
(22)−
t + εt

parameter estimated three factor with jumps

c 0.446 0.384

β(d) 0.304 0.306

β(w) 0.369 0.349

β(m) 0.222 0.260

α(d) 0.042 0.017

α(w) 0.011 0.011

α(m) 0.005 −0.000

γ(d)
−0.007 −0.006

γ(w)
−0.008 −0.006

γ(m)
−0.009 −0.014

σ2
ε 0.183 0.182

Table 8: Estimates (daily units) via indirect inference of model (4.2) with two and
three factors, using the LHAR model as auxiliary model, and implied LHAR coeffi-
cients.

weekly and monthly coefficients, with the impact increasing with the horizon. The effect of

introducing correlations on volatility coefficients is instead marginal. Thus, with positive ρ1 we

get the right sign for the weekly and monthly coefficient, while the daily coefficient is adjusted
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with a negative ρ2.

Using the two-factor model, this mechanism is able to reproduce the LHAR model only partially:

the signs are correct but the coefficients estimated on the data can be reproduced only to a

limited extent. In order to get a satisfactory agreement with the LHAR model, we need to

introduce a third factor (in this case, the parameters of the structural model are not identified).

Estimates of the three-factor model are again reported in Table 8, and they show that with

ρ1 > 0 and ρ2, ρ3 < 0 we can reproduce completely the LHAR model.

Finally, we include jumps in the structural model with the aim of reproducing the results of the

LHAR-CJ model. Extensive Monte Carlo analysis, not reported here for brevity but available

in the Web Appendix, shows that a possible mechanism explaining the significant impact of

jumps on future volatility is given by the presence of contemporaneous jumps in price and

volatility, a possibility which has been recently empirically confirmed by Todorov and Tauchen

(2011) and Bandi and Renò (2011a). For this reason, in our last estimation we introduce a

single Poisson process Nt with constant intensity λ, and we set dJX = cXdNt, dJ
1 = cV dNt,

J2 = J3 = 0 with cX ∼ N (0, σ2
J) and cV ∼ exp(µσ), that is we introduce co-jumps in price and

in a single volatility factor, namely the less persistent (also in this case the structural model

is not identified). Estimation results are reported in Table 8 and indicate that introducing

co-jumps provides a reasonable fit of the LHAR-CJ model, since we are able to reproduce both

the short-range persistence of jumps and the long-range persistence of leverage.

Concluding, we have seen that the LHAR-CJ model, and some of its relevant restrictions, are

fully consistent with a multi-factor Markovian volatility model. While it is certainly outside

the scope of this paper to provide a thorough interpretation on the mechanism which generated

the stylized facts described by the estimated statistical models, both in discrete time and in

continuous time, a possible interpretation of the empirical results goes as follows. Volatility

is highly persistent, and this persistence can be generated by a superposition of factors with

different frequencies. Negative returns and jumps are correlated with volatility. However, jumps
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Figure 5: Sensitivity of the coefficients of the LHAR specification (top row: β

coefficients of volatility; bottom row: γ coefficients on negative returns) the value
of the leverage coefficients ρ1 (correlation with the fastly mean reverting factor, left
column), when ρ2 = 0, and ρ2 (correlation with the slowly mean reverting factor,
right column), when ρ1 = 0.

are only correlated to a fast-reverting volatility factor via the mechanism of co-jumps, so that

their impact can only be short-lived. On the contrary, negative returns are correlated to all

volatility factors through the correlation of the shocks. For this reason, negative returns can

have a long-span impact on volatility, thus producing a persistent leverage effect.

5 Conclusions

In this paper, we uncover new stylized facts about volatility dynamics. While it is well known

that past negative returns are correlated with current volatility (leverage effect), we show that
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the forecasting power of past negative returns remains significant even when considering them

over long horizons. The data also suggest that past jumps are (positively) correlated with

current volatility, but the forecasting power of aggregated jumps is milder when the aggregation

horizon is large. We then specify, both in discrete and in continuous time, suitable models which

are able to capture these novel stylized facts along with the well estabilished volatility features.

In the first stage, we propose a new discrete-time model for realized volatility measures, the

LHAR-CJ model, which naturally identifies three main determinants of volatility dynamics,

namely heterogeneous lagged continuous volatility, heterogeneous lagged negative returns and

heterogeneous lagged jumps. We find that each of the components in the discrete-time model

plays a different role at different forecasting horizons, but all the three are highly significant

and neglecting each one of them is detrimental to the forecasting performance.

In the second stage, we look for continuous-time models which reproduce the very same stylized

facts which are captured by the discrete-time specification. This is achieved by using the

discrete-time model as a convenient statistical metric in an indirect inference framework. A

multi-factor Markovian specification is found to be consistent with the empirical results and

compatible with the LHAR-CJ. To reproduce the long-term impact of negative returns, all the

volatility factors have to be correlated with the price shocks, while to reproduce the transient

impact of jumps it is enough to correlate price jumps with the jumps of one volatility factor

only (co-jumps).

We conclude by noting that our discrete-time model is very simple to implement, as it does

not require sophisticated computational technique. The estimation of the model parameters

can be performed through a simple OLS regression, and the computation of the explanatory

variables is trivial. We think that, for all the aforementioned reasons, the LHAR-CJ model may

be effectively used for risk management.
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