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Abstract

This study reconsiders the role of jumps for volatility forecasting by showing that jumps have

a positive and mostly significant impact on future volatility. This result becomes apparent once

volatility is separated into its continuous and discontinuous component using estimators which

are not only consistent, but also scarcely plagued by small-sample bias. To this purpose, we

introduce the concept of threshold bipower variation, which is based on the joint use of bipower

variation and threshold estimation. We show that its generalization (threshold multipower vari-

ation) admits a feasible central limit theorem in the presence of jumps and provides less biased

estimates, with respect to the standard multipower variation, of the continuous quadratic varia-

tion in finite samples. We further provide a new test for jump detection which has substantially

more power than tests based on multipower variation. Empirical analysis (on the S&P500 index,

individual stocks and US bond yields) shows that the proposed techniques improve significantly

the accuracy of volatility forecasts especially in periods following the occurrence of a jump.
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1 INTRODUCTION 1

1 Introduction

The importance of jumps in financial economics is widely recognized. A partial list of recent studies

on this topic includes test specification of Aı̈t-Sahalia (2004), Jiang and Oomen (2008), Barndorff-

Nielsen and Shephard (2006), Lee and Mykland (2008) and Aı̈t-Sahalia and Jacod (2009), as well

as the empirical studies of and Maheu and McCurdy (2004); Bollerslev et al. (2009); Andersen

et al. (2007); Cartea and Karyampas (2010); nonparametric estimation in the presence of jumps,

as in Bandi and Nguyen (2003); Johannes (2004); Mancini and Renò (2009); option pricing as in

Duffie et al. (2000); Eraker et al. (2003); Eraker (2004); applications to bond and stock market, as

in Das and Uppal (2004); Wright and Zhou (2007). Interesting references for a review are Cont and

Tankov (2004) and Barndorff-Nielsen and Shephard (2007). However, while jumps have been shown

to be relevant in economic and financial applications, previous research has not found evidence that

jumps help in forecasting volatility.

In this study we start from an apparent puzzle contained in the studies of Andersen et al. (2007)

(henceforth ABD), Forsberg and Ghysels (2007), Giot and Laurent (2007) and Busch et al. (2009):

these works find a negative (or null) impact of jumps on future volatility. We find this result

puzzling in at least two respects. First, visual inspection of realized variance time series reveals

that bursts in volatility are usually initiated by a large and unexpected movement of asset prices,

suggesting that jumps should have a forecasting power for volatility. Second, it is well known that

volatility is associated with dispersion of beliefs and heterogeneous information, see e.g. Shalen

(1993); Wang (1994) and Buraschi et al. (2007). If the occurrence of a jump increases the un-

certainty on fundamental values, it is likely to have a positive impact on future volatility. Why,

then, jumps have been found to be irrelevant? Our first contribution is to show that this puzzle is

spuriously due to the small-sample bias of bipower variation, a very popular measure of continuous

quadratic variation introduced by Barndorff-Nielsen and Shephard (2004). We show by realistic

simulations that, even if bipower variation is consistent, in finite samples it is largely upper biased

in the presence of jumps, and this implies a large underestimation of the jump component. Un-

fortunately, this problem cannot be accommodated by simply shrinking the observation interval,

since market microstructure effects would jeopardize the estimation in an unpredictable way.1

The second contribution of this paper is then to introduce an alternative estimator of integrated

powers of volatility in the presence of jumps which is less affected by small-sample bias. We intro-

duce (Section 2) the concept of threshold multipower variation, which can be viewed as combination

1Attempts to study and correct bipower variation under microstructure noise can be found in Podolskij and Vetter

(2009), and Christensen et al. (2008). ABD and Huang and Tauchen (2005) propose a staggered version of bipower

variation. Fan and Wang (2007) study jumps and microstructure noise with wavelet methods. Jacod et al. (2007)

pre-average the data to get rid of microstructure noise. The impact of microstructure noise on threshold estimation

of Mancini (2009) is instead unknown. Directly incorporating microstructure noise can improve volatility forecasting,

see e.g. Aı̈t-Sahalia and Mancini (2008).
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of multipower variation and the threshold realized variance of Mancini (2009). We show consistency

and asymptotic normality in the presence of jumps of the newly proposed estimator (a central limit

theorem for bipower variation has been recently proved by Vetter, 2010). Moreover, using realistic

simulation of asset prices (Section 4), we show that threshold bipower variation is nearly unbiased

on continuous trajectories and, importantly, also in the presence of jumps. Finally, it is robust

to the choice of the threshold function, in the sense that the impact of the threshold choice on

estimation is marginal. Thus, it is an ideal candidate to estimate models of volatility dynamics in

which we use separately the continuous and discontinuous volatility as explanatory variables.

Our third contribution is the introduction of a novel test for jump detection in time series (Section

3). Our C-Tz test is basically a correction of the z statistics of Barndorff-Nielsen and Shephard

(2006) which softens the finite-sample bias in estimating the integral of the second and fourth power

of continuous volatility in the presence of jumps. We show, by using simulated data (Section 4),

that the two tests are equally sized under the null, but that in the presence of jumps the C-Tz test

has substantially more power than the z test, especially when jumps are consecutive, a situation

which is quite frequent in high-frequency data.

Empirical results (Section 5) constitute our fourth contribution. We work with stock index futures,

individual stocks and Treasury bond data. We find that lagged jumps have a positive and highly

significant impact on realized variance, a result which cannot be observed when bipower variation

is employed because of its inherent bias. We also document, uniformly on our data sets, that it

is possible to get higher R2 (especially in days following a jump) and generally significant lower

relative root mean square error, just by using measures based on threshold multipower variation

instead of measures based on multipower variation, with no other changes in the model used for

volatility forecasting. Concluding remarks are in Section 6.

2 Threshold Multipower Variation

2.1 Introductory concepts

We work in a filtered probability space (Ω, (Ft)t∈[0,T ], F , P), satisfying the usual conditions

(Protter, 2004). We assume that an economic variable Xt, for example the logarithmic price of a

stock or an interest rate, satisfies the following assumption:

Assumption 2.1 (Xt)t∈[0,T ] is a real-valued process such that X0 is measurable with respect to F0

and

dXt = µtdt+ σtdWt + dJt (2.1)

where µt is predictable, σt is cádlág; dJt = ctdNt where Nt is a non-explosive Poisson process whose
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intensity is an adapted stochastic process λt, the times of the corresponding jumps are (τj)j=1,...,NT

and cj are i.i.d. adapted random variables measuring the size of the jump at time τj and satisfying,

∀t ∈ [0, T ], P({cj = 0}) = 0.

Typically, a time window T is fixed, e.g. one day, and we define the quantities of interest on a time

span of length T . Quadratic variation of such a process over a time window is defined as:

[X]t+Tt := X2
t+T −X2

t − 2

∫ t+T

t
Xs−dXs, (2.2)

where t indexes the day. It can be decomposed into its continuous and discontinuous component

as:

[X]t+Tt = [Xc]t+Tt + [Xd]t+Tt (2.3)

where [Xc]t+Tt =
∫ t+T
t σ2

sds and [Xd]t+Tt =
∑Nt+T

j=Nt
c2
j . To estimate these quantities, we divide the

time interval [t, t + T ] into n subintervals of length δ = T/n. On this grid, we define the evenly

sampled returns as:

∆j,tX = Xjδ+t −X(j−1)δ+t, j = 1, . . . , n (2.4)

For simplicity, in what follows we omit the subscript t and we simply write ∆jX. A popular

estimator of [X]t+Tt is realized variance, defined as:

RVδ(X)t =
n∑
j=1

(∆jX)2 , (2.5)

which converges in probability to [X]t+Tt as δ → 0. To disentangle the continuous quadratic

variation from the discontinuous one, multipower variation has been introduced by Barndorff-

Nielsen and Shephard (2004). It is defined as:

MPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2
(γ1+...+γM )

[T/δ]∑
j=M

M∏
k=1

|∆j−k+1X|γk , (2.6)

and it converges in probability, as δ → 0, to
∫ t+T
t σγ1+...+γM

s ds times a suitable constant. Asymp-

totic properties of multipower variation have been studied by Barndorff-Nielsen et al. (2006) in the

absence of jumps, and by Barndorff-Nielsen, Shephard and Winkel (2006) and Woerner (2006) in

the presence of jumps. For practical applications, multipower variation is used for the estimation

of
∫ t+T
t σ2

sds and
∫ t+T
t σ4

sds. Bipower variation is defined as:

BPVδ(X)t = µ−2
1 MPVδ(X)

[1,1]
t = µ−2

1

[T/δ]∑
j=2

|∆j−1X| · |∆jX|, (2.7)

with µ1 ' 0.7979, and it converges in probability, as δ → 0, to
∫ t+T
t σ2

sds. For estimators of∫ t+T
t σ4

sds based on multipower variation, see Appendix A.
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Based on a threshold function Θ(δ), Mancini (2009) provides alternative estimators of squared and

fourth power integrated volatility. Threshold realized variance is defined as follows:

TRVδ(X)t =

[T/δ]∑
j=1

|∆jX|2I{|∆jX|2≤Θ(δ)} (2.8)

where I{·} is the indicator function and the threshold function has to satisfy

lim
δ→0

Θ(δ) = 0, lim
δ→0

δ log 1
δ

Θ(δ)
= 0, (2.9)

that is it has to vanish slower than the modulus of continuity of the Brownian motion in order

to have convergence in probability of TRVδ(X)t, as δ → 0, to
∫ t+T
t σ2

sds. Mancini (2009) also

establishes a central limit theorem for TRV and provides a similar quarticity estimator, which is

defined in Eq. (A.3) in Appendix A.

2.2 Definition and asymptotic theory

We now introduce our family of estimators. In what follows, we use a strictly positive random

threshold function ϑs : [t, t+ T ]→ R+. For brevity, we write ϑj := ϑjδ+t.

Definition 2.2 Let γ1, . . . , γM > 0. We define the realized threshold multipower variation as:

TMPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2
(γ1+...+γM )

[T/δ]∑
j=M

M∏
k=1

|∆j−k+1X|γkI{|∆j−k+1X|2≤ϑj−k+1}
(2.10)

The intuition behind the concept of threshold multipower variation is the following. Suppose

|∆jX| contains a jump. In the case of bipower variation, it multiplies |∆j−1X| and |∆j+1X|.
Asymptotically, both these returns have to vanish and bipower variation converges to integrated

continuous volatility. However, for finite δ these returns will not vanish, causing a positive bias

which will be larger as |∆jX| increases. This consideration suggests that the bias of multipower

variation will be extremely large in case of consecutive jumps. For estimators (2.10) instead, if

|∆jX| contains a jump larger than ϑj , the corresponding indicator function vanishes, thus correcting

for the bias. This intuition is supported by the analysis in the subsequent sections.

Importantly, threshold multipower variation admits a central limit theorem in the presence of

jumps, which is stated as follows.

Theorem 2.3 Let Assumption 2.1 hold, and let ϑt = ξtΘ(δ), where Θ(δ) is a real function sat-

isfying conditions (2.9) and ξt is a stochastic process on [0, T ] which is a.s. bounded and with a
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strictly positive lower bound. Then, as δ → 0:

TMPVδ(X)
[γ1,...,γM ]
t

p−→

(
M∏
k=1

µγk

)∫ t+T

t
σγ1+...+γM
s ds (2.11)

where the above convergence is in probability, and

δ−
1
2

(
TMPVδ(X)t −

(
M∏
k=1

µγk

)∫ t+T

t
σγ1+...+γM
s ds

)
−→ cγ

∫ t+T

t
σγ1+...+γM
s dW ′s (2.12)

where W ′ is a Brownian motion independent on W , the above convergence holds stably in law and:

c2
γ =

M∏
k=1

µ2γk − 2(M − 1)
M∏
k=1

µ2
γk

+ 2
M−1∑
j=1

 j∏
k=1

µγk

M∏
k=M−j+1

µγk

M−j∏
k=1

µγk+γk+j

 (2.13)

Proof. Write

X = Y + Z

where Yt =
∫ t+T
t µsds+

∫ t+T
t σsdWs. If Z = 0, the Theorem has been proved by Barndorff-Nielsen

et al. (2006) for multipower variation. Since Z is a finite activity jump process and Y is a Brownian

semimartingale, by virtue of Theorem 1 in Mancini (2009) and Remark 3.4 in Mancini and Renò

(2009) we can write, for δ small enough:

TMPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2
(γ1+...+γM )

[T/δ]∑
j=M

M∏
k=1

|∆j−k+1Y |γk −
[T/δ]∑
j=M

I∗j,M

M∏
k=1

|∆j−k+1Y |γk


where I∗j,M is 1 if there has been a single jump between tjδ and tj+Mδ, and zero otherwise. Thus,

using the modulus of continuity of the Brownian motion,

TMPVδ(X)
[γ1,...,γM ]
t −MPVδ(Y )

[γ1,...,γM ]
t = δ1− 1

2
(γ1+...+γM )Op

(
NT (δ log |δ|)

1
2

(γ1+...+γM )
)

= Op

(
δ (log |δ|)

1
2

(γ1+...+γM )
)

which is op(δ
1
2 ), thus TMPV(X) has the same limit of MPV(Y ) both in probability and distribution.

�

In Theorem 2.3 we could also allow for infinite activity jumps under suitable conditions on the

coefficients γ1, . . . , γM , see e.g. Jacod (2008); Mancini (2009).

A simple special case of TMPV is threshold bipower variation, obtained with γ1 = γ2 = 1 and

multiplying by a suitable constant:

TBPVδ(X)t = µ−2
1 TMPVδ(X)

[1,1]
t = µ−2

1

[T/δ]∑
j=2

|∆j−1X| · |∆jX|I{|∆j−1X|2≤ϑj−1}I{|∆jX|2≤ϑj}. (2.14)
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For estimators of the integrated fourth-power of volatility using threshold multipower variation,

see Appendix A. Alternative estimators of the integrated variance, with the aim of reducing the

bias induced by jumps, have been recently proposed by Andersen et al. (2008), using the minimum

of |∆j−1X| · |∆jX| or the median value of |∆j−1X| · |∆jX| · |∆j+1X|. Their estimators also admit

a central limit theorem in the presence of jumps, and have the advantage of not needing the

specification of the threshold function, but the disadvantage of a larger asymptotic variance with

respect to TBPV. Related work can be found in Christensen et al. (2008) and Boudt et al. (2008).

For applications, it is important to note that our central limit theorem holds even with a stochastic

threshold ϑt fulfilling the assumptions of the Theorem. This can be important since it is natural

to scale the threshold function with respect to the local spot variance, which is estimated with the

data themselves. In this paper, we write

ϑt = c2
ϑ · V̂t, (2.15)

where V̂t is an auxiliary estimator of σ2
t and cϑ is a scale-free constant. The dimensionless parameter

cϑ can be used to change the threshold, and by varying it we can test the robustness of proposed

estimators with respect to the choice of the threshold. As we show below by simulations, the choice

of the auxiliary estimator V̂t, among unbiased estimators of the local variance, is immaterial for our

purposes. The estimator of the local variance used in this paper with simulated and actual data is

described in Appendix B.

In addition to provide a feasible asymptotic theory, the newly proposed threshold multipower vari-

ation is expected to perform better in finite sample. Indeed, bipower variation is largely biased by

big jumps but is less affected by small jumps. On the other hand, threshold realized variance is

problematic with small jumps while much more effective with large ones. Thus, the joint combi-

nation of bipower variation and threshold is doubly effective in disentangling diffusion from jumps

since each method tends to compensate the weakness of the other. We provide evidence of the

benefit of this “double sword” technique below, using simulated data.

3 Jump detection test

The test we propose for jump detection is a modification of the test proposed by Barndorff-Nielsen

and Shephard (2006) based on the difference between RV and BPV, which is expected to be small

in the absence of jumps (the null) and large in the presence of the jumps (the alternative): we

modify it by replacing estimators based on multipower variation with estimators based on thresh-

old multipower variation. However, when using the latter for finite δ, when |∆jX|2 > ϑj the

corresponding return is annihilated. This is a potential issue when testing for the presence of

jumps, since variations larger than the threshold exist even in the absence of jumps and anni-

hilating them is a source of negative bias for threshold multipower variation. This issue can be
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attenuated if, when |∆jX|2 > ϑj , we replace |∆jX|γ with its expected value under the assumption

that ∆jX ∼ N (0, σ2), which is given by:

E
[
|∆jX|γ

∣∣(∆jX)2 > ϑ
]

=
Γ
(
γ+1

2 , ϑ
2σ2

)
2N(−

√
ϑ
σ )
√
π

(
2σ2
) 1

2
γ
, (3.1)

where N(x) is the standard normal cumulative function and Γ(α, x) is the upper incomplete gamma

function.2 Then, writing ϑ = c2
ϑσ

2, we define the corrected realized threshold multipower estimator

as:

C-TMPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2
(γ1+...+γM )

[T/δ]∑
j=M

M∏
k=1

Zγk(∆j−k+1X,ϑj−k+1) (3.2)

where the function Zγ(x, y) is defined as:

Zγ(x, y) =


|x|γ if x2 ≤ y

1

2N(−cϑ)
√
π

(
2

c2
ϑ

y

) γ
2

Γ

(
γ + 1

2
,
c2
ϑ

2

)
if x2 > y

(3.3)

Relevant cases which will be examined in what follows are γ = 1, 2, 4/3. In these special cases we

have, with cϑ = 3 and x2 > y, Z1(x, y) ' 1.094 ·y
1
2 , Z4/3(x, y) ' 1.129 ·y

2
3 , and Z2(x, y) ' 1.207 ·y.

For example, the corrected version of (2.14) is the corrected threshold bipower variation defined as:

C-TBPVδ(X)t = µ−2
1 C-TMPVδ(X)

[1,1]
t = µ−2

1

[T/δ]∑
j=2

Z1(∆Xj , ϑj)Z1(∆Xj−1, ϑj−1) (3.4)

The test statistics we propose is based on this correction and it is defined by:

C-Tz = δ−
1
2

(RVδ (X)T − C-TBPVδ (X)T ) · RVδ (X)−1
T√(

π2

4 + π − 5
)

max

{
1,

C-TTriPVδ(X)T

(C-TBPVδ(X)T )
2

} , (3.5)

where C-TTriPVδ (X)T is a quarticity estimator which is a subcase of threshold multipower variation

and is precisely defined in Eq. (A.5) in Appendix A. It is immediate to prove the following:

Corollary 3.1 Under the assumptions of Theorem 2.3 we have that if dJt = 0 then C-Tz→ N (0, 1)

stably in law as δ → 0.

Proof. The correction, for small δ, affects only the jumps which are a finite number. Then we

use the delta-method as in Barndorff-Nielsen and Shephard (2004) and Theorem 2.3, which implies

2See Abramowitz and Stegun (1965). The funcion N(·) and Γ(·, ·) are defined by

N(x) =

∫ x

−∞

1√
2π
e−

1
2
s2ds, Γ(α, x) =

∫ +∞

x

sα−1e−sds.

When α = 1, Γ(1, x) = e−x. For large γ, it is useful the integration by parts formula Γ(α+ 1, x) = αΓ(α, x) +xα e−x.
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that the denominator converges in probability to the integrated quarticity, with thus yielding the

desired result. �

Simulations in the next section show that the C-Tz test is correctly sized in finite samples under

the null.3

4 Simulation study

To assess the small sample properties of concurrent estimators we use Monte Carlo simulations of

realistic stochastic processes which have been extensively used to model stock index prices. The

purpose of this section is to show that, in finite samples, bipower variation is a biased estimator

of integrated volatility in the presence of jumps, while threshold-based estimator are much less

sensitive to jumps and accordingly less biased. Moreover, we show that while threshold realized

variance (2.8) is particularly sensitive to the choice of the threshold, threshold bipower variation

(2.14) is instead largely robust to this choice. This latter feature is particularly important, since it

suggests that the results obtained in our empirical applications using threshold multipower variation

do not depend crucially on the threshold employed.

The model we simulate is a one-factor jump-diffusion model with stochastic volatility, described by

the couple of stochastic differential equations:

dXt = µdt+
√
vtdWx,t + ctdNt,

d log vt = (α− β log vt) dt+ ηdWv,t,
(4.1)

where Wx and Wv are standard Brownian motions with corr (dWx, dWv) = ρ, vt is a stochastic

volatility factor, ctdNt is a compound Poisson process with random jump size which is Normally

distributed with zero mean and standard deviation σJ . We use the model parameters estimated by

Andersen et al. (2002) on S&P500 prices: µ = 0.0304, α = −0.012, β = 0.0145, η = 0.1153, ρ =

−0.6127, σJ = 1.51, where the parameters are expressed in daily units and returns are in percent-

ages. Similar estimates have been obtained by Bates (2000); Pan (2002); Chernov et al. (2003). The

numerical integration of the system (4.1) is performed with the Euler scheme, using a discretization

step of ∆ = 1 second. Each day, we simulate 7 · 60 · 60 steps corresponding to seven hours. We

then use δ = 5 minutes, that is 84 returns per day. The threshold is set as in Eq. (2.15), with the

local variance estimator V̂t defined in Appendix B and cϑ = 3.

We generate samples of 1, 000 “daily” replications in the following way. In the first sample (no

jumps), we do not generate jumps at all. In the second sample (one jump), we generate a single

3Under the alternative, the corrected version of threshold multipower variation is subject to a source of upper

bias. Indeed, suppose that there is a jump J such that ∆jX = ∆jX
c + J . If (∆jX)2 > ϑj , we replace |∆jX|γ with

E
[
|∆jX

c|γ
∣∣(∆jX

c)2 > ϑ
]
, which is much larger than E [|Xc|γ ], which is our estimation target.
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Quantity Estimator Relative bias (%)

no jumps one jump two jumps two consecutive jumps

BPV -1.00 ( 0.53) 48.04 ( 1.74) 102.03 ( 3.36) 595.57 ( 21.07)

stag − BPV -1.20 ( 0.53) 47.60 ( 1.72) 114.77 ( 6.32) 97.07 ( 2.43)

TRV -5.56 ( 0.49) -5.95 ( 0.52) -7.00 ( 0.53) -6.93 ( 0.52)∫
σ2
sds C-TRV -1.39 ( 0.46) 9.40 ( 0.55) 18.69 ( 0.61) 18.94 ( 0.61)

TBPV -4.15 ( 0.56) -4.83 ( 0.60) -5.65 ( 0.58) -4.70 ( 0.58)

C-TBPV -0.58 ( 0.53) 7.87 ( 0.62) 15.26 ( 0.66) 24.57 ( 0.74)

QPV -1.53 ( 1.33) 101.90 ( 5.41) 272.32 ( 22.79) 1601.81 ( 88.71)

TQV -16.32 ( 0.91) -15.98 ( 0.94) -16.47 ( 1.00) -16.31 ( 1.00)

C-TQV -4.10 ( 1.01) 37.75 ( 1.53) 75.96 ( 2.00) 77.10 ( 2.06)∫
σ4
sds TQPV -7.39 ( 1.28) -8.92 ( 1.36) -12.04 ( 1.32) -9.10 ( 1.36)

C-TQPV -1.18 ( 1.33) 16.52 ( 1.71) 30.44 ( 1.94) 57.50 ( 2.88)

TriPV -1.66 ( 1.24) 210.32 ( 11.64) 687.56 ( 94.69) 7841.87 ( 468.15)

TTriPV -7.94 ( 1.21) -8.47 ( 1.28) -10.76 ( 1.25) -8.87 ( 1.28)

C-TTriPV -1.41 ( 1.25) 18.12 ( 1.69) 34.42 ( 1.95) 77.61 ( 3.16)

Table 1: Reports the mean percentage relative error in estimating
∫
σ2
sds and

∫
σ4
sds

in the case of no jumps, one jump, two jumps and two consecutive jumps when

simulating model (4.1). The estimators we compare are: the bipower variation used

by ABD (BPV) and its staggered version (stag − BPV); the threshold estimator of

Mancini (2009) (TRV) and its corrected version (C-TRV); threshold bipower variation

(TBPV) proposed in this paper and defined in equation (2.14), and its correction

(C-TBPV); and the corresponding estimators for quarticity, see Appendix A. For all

estimators, the usual small-sample correction N/(N − (M − 1)− k) is applied, where

N = [T/δ] and k is the number of excluded addends because of the threshold. In

parenthesis, the standard error of the mean is reported.

jump for each day which is located randomly within the day. In the third sample (two jumps),

we generate exactly two jumps per day which are located randomly within the day. In the fourth

sample (two consecutive jumps), we generate two jumps per day and we force them to be consecutive

(i.e., the first is located randomly and the second jump is forced to occur 300 seconds after the

first). This procedure allows us to compute the expected value conditional to the presence of zero,

one, two jumps and two consecutive jumps. For every simulated daily trajectory, we compute

the estimates of BPV (and its staggered version, see ABD) and their fourth-power counterparts

QPV,TriPV as well as threshold estimators TRV,TQV,TTriPV and threshold multipower estimators

TBPV, TQPV,TTriPV (precise definitions of these estimators are given in Appendix A). We compute

daily percentage estimation error and compute averages and standard deviations across the sample.

Results reported in Table 1 are compelling. Bipower variation is substantially biased if there is

one jump in the trajectory (+48.04%) and largely biased (+102.03%) if there are two jumps in the

trajectory. If the two jumps are consecutive, the bias is huge (+595.57%) and can only marginally

be softened by using staggered bipower variation (+97.07%, similar to the case of two jumps). The
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bias of multipower variation in estimating integrated quarticity is even larger.

Threshold-based estimators, instead, are much more robust to the presence of jumps. The bias

of threshold realized variance in estimating integrated squared volatility is around −5% in the

absence of jumps and ranges from −6% to −7% in the presence of one and two jumps, consecutive

or not. The same happens when estimating quarticity, the bias being around −16%. The presence

of a negative bias is due to the fact that, by their proper definitions, threshold estimators remove

completely observations larger than the threshold. When we correct for this as indicated in Section

3, the bias turns out to be positive since, when an observation is above the threshold, we replace it

with its expected value under the assumption that the observation was actually above threshold;

which is true under the null of no jumps, but needs not to be true under the alternative, see footnote

3.

The estimators based on threshold multipower variation, introduced in this study, yield equally

good results. Threshold bipower variation has a bias of −4.15% in the case of no jumps, of −4.83%

with a single jump, of −5.65% in the case of two jumps, and of −4.70% in the case of two consecutive

jumps. When estimating quarticity, these biases range between −9% and −15% according to the

number of jumps and the estimator used. Again, the corrected versions largely correct the bias

under the null of no jumps, but turn the negative bias in a positive one in the case of jumps.

However, from our simulated experiment we can conclude that threshold-based estimators perform

much better than multipower variation in the presence of jumps.

Between the two competing threshold estimators (threshold realized volatility and threshold bipower

variation), our simulation experiments highlight a substantial advantage in using the second: as

shown in Figure 1 integrated volatility measures are much more robust with respect to the pa-

rameter cϑ. Bipower variation does not depend on the value of the threshold but it is largely

biased. Threshold estimators are less biased, however we can see that threshold bipower variation

is less sensitive to the choice of the threshold than threshold power variation. This is basically

due to the fact that, even if both TBPV and TRV converge to [Xc] as δ → 0, for fixed δ we have

TBPVδ −→
cϑ→∞

BPVδ while TRVδ −→
cϑ→∞

RVδ.

We also use Monte Carlo experiments to evaluate the size and power of the z statistiscs constructed

with multipower variation methods (Barndorff-Nielsen and Shephard, 2006, see Eq. (A.7) in Ap-

pendix A for its precise definition), and the C-Tz statistics (3.5). Results with different confidence

levels are reported in Table 2 in the case of no jumps, a single jump, and two consecutive jumps.

The C-Tz (with cϑ = 3) has the largest power in detecting jumps, still preserving a size which is

virtually identical to that of the z statistics. With higher confidence level, the advantage in using

C-Tz statistics increases. Such an advantage is very large if the jumps in the simulated trajectory

are consecutive. In this case, the power of the z test at the 99.99% confidence level is just 42.4%,

while the corresponding power of the C-Tz test is 93.1%. We conclude that, on our simulations,
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Figure 1: Relative bias of the different estimators of
∫
σ2
sds in the presence of a

single jump as a function of the threshold parameter cϑ.

Panel A Panel B Panel C

No jumps Single jump Two consecutive jumps

50% 95% 99% 99.99% 50% 95% 99% 99.99% 50% 95% 99% 99.99%

z 53.0 5.7 1.4 0.1 93.4 81.2 77.6 68.6 98.1 79.1 64.4 42.4

C-Tz 54.0 6.0 1.6 0.1 93.7 83.6 80.6 74.6 99.2 97.3 96.3 93.1

Table 2: Percentage of detected jumps in the case of trajectories with a no jumps

(Panel A), a single jump per day (Panel B), and two consecutive jumps per day (Panel

C), for different significance levels. The C-Tz statistics is computed with cϑ = 3.

there is a clear advantage in using the C-Tz statistics. Again, we can check the sensitivity of C-Tz

tests with respect to the choice of the parameter cϑ. Figure 2 shows a direct comparison between

threshold estimators in the case of a single jump in every trajectory. We observe that the C-Tz test

has always more power than the z test and it is reasonably robust to the choice of cϑ.

Summarizing our results on simulated experiments, we conclude that:
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Figure 2: Jump detection power for the model (4.1) in the presence of a single jump,

as a function of the threshold parameter cϑ.

1. When measuring integrated volatility in the presence of jumps, bipower variation is largely

upward biased, while threshold-based estimators are slightly downward biased (with the cor-

rected versions being upward biased, though much less than bipower variation).

2. When measuring integrated variance, threshold bipower variation is nearly insensitive to the

choice of the threshold for cϑ ≥ 3 while threshold realized variance is more sensitive to this

choice.

3. When testing for the presence of jumps, tests based on threshold multipower variation yield

a substantial advantage with respect to those based on multipower variation.

Thus, in our empirical analysis we will use threshold bipower variation as an estimator of integrated

volatility, and C-Tz statistics as jump detection test.
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5 Empirical Analysis

Our data set covers a long time span of almost 15 years of high frequency data for the S&P

500 futures and US Treasury Bond with maturity 30 years, and nearly 5 years of six individual

stocks. The purpose of this section is mainly to analyze the impact of jumps on future volatility

when threshold bipower variation is employed as jump measure. We will focus not only on the

impact of jumps on future realized variance, but also on the performance of models which explicitly

incorporate lagged jumps in the volatility dynamics.

All the analysis presented in this section is based on measures of threshold multipower variation

with the threshold defined as in Eq. (2.15), with cϑ = 3 and V̂t defined as in Appendix B. When

not differently specified, jumps are detected using the C-Tz statistics. Our tables are built at

confidence level α = 99.9% but the most interesting quantities will be computed and plotted for

different values of α as well. Further results with cϑ = 4, 5 are qualitatively very similar and can

be provided upon request.

5.1 The forecasting model

Empirical evidence on strong temporal dependence of realized volatility has been already found

for instance in Andersen, Bollerslev, Diebold and Labys (2001) and Andersen, Bollerslev, Diebold

and Ebens (2001). This evidence, together with our empirical results reported below, suggests that

realized variance series should be described by models allowing for slowly decaying autocorrelation

and possibly long-memory, see Andersen et al. (2003); Banerjee and Urga (2005); McAleer and

Medeiros (2008). These features are displayed by the HAR model of Corsi (2009), which has been

extended by ABD to allow for the separation of quadratic variation in its continuous part and jumps.

We then borrow the model of ABD to forecast realized variance. However, when implemented in

finite sample, we use the newly proposed measures based on threshold multipower variation.

Let t = 1, . . . be the day index and write RVt = RVδ(X)t. For two days t1 and t2 ≥ t1, define:

RVt1:t2 =
1

t2 − t1 + 1

t2∑
t=t1

RVt . (5.1)

The HAR model reads:

RVt:t+h−1 = β0 + βd RVt−1 +βw RVt−5:t−1 +βm RVt−22:t−1 +εt. (5.2)
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ABD proposed the HAR-CJ model:4

RVt:t+h−1 = β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βj Ĵt−1 + εt. (5.3)

The daily jump is defined as:

Ĵt = I{zt>Φα} · (RVt−BPVt)
+ , (5.4)

with zt given by Eq. (A.7) in Appendix A and Φα being the cumulative distribution function of the

Normal distribution at confidence level α; x+ = max(x, 0). The continuous part of the quadratic

variation is defined by:

Ĉt = RVt−Ĵt. (5.5)

Finally, Ĉt−5:t−1 and Ĉt−22:t−1 are the weekly and monthly aggregation of Ĉt as in Eq. (5.1). Using

model (5.3), ABD estimate βj to be not significant and negative, and a very similar conclusion has

been reached by Forsberg and Ghysels (2007), Giot and Laurent (2007) and Busch et al. (2009);

see also the analysis of Ghysels et al. (2006).

By the light of the above sections, it is natural to define the HAR-TCJ model as:

RVt:t+h−1 = β0 + βdT̂Ct−1 + βwT̂Ct−5:t−1 + βmT̂Ct−22:t−1 + βj T̂ J t−1 + εt (5.6)

where we employ the threshold bipower variation measure to estimate the jump component

T̂ J t = I{C-Tz>Φα} · (RVt−TBPVt)
+ (5.7)

and the corresponding continuous part T̂Ct = RVt−T̂ J t.

The square-root and logarithmic counterparts of the model read:

RV
1
2
t:t+h−1 = β0 + βdT̂C

1
2
t + βwT̂C

1
2
t−5:t−1 + βmT̂C

1
2
t−22:t−1 + βj T̂ J

1
2
t−1 + εt (5.8)

and

logRVt:t+h−1 = β0 + βd log T̂Ct−1 + βw log T̂Ct−5:t−1 + βm log T̂Ct−22:t−1 + βj log
(
T̂ J t−1 + 1

)
+ εt

(5.9)

and the same transformations will be estimated for model (5.2) and (5.3). Everywhere we use

annualized volatility measures (one year = 252 days).

To evaluate the forecasting performance of the different models, we use: a) the R2 of Mincer-

Zarnowitz forecasting regressions; b) the heteroskedasticity adjusted root mean square error sug-

gested in Bollerslev and Ghysels (1996):

HRMSE =

√√√√ 1

T

T∑
t=1

(
RVt−R̂Vt

RVt

)2

(5.10)

4ABD also consider weekly and monthly aggregation of the jump component. In this paper, we focus on the daily

component only to better evaluate the impact of a single jump on future volatility. Weekly and monthly components

are considered in Corsi and Renò (2010), together with an heterogeneous leverage component.
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where RVt is the ex-post value of realized variance and R̂Vt is the forecast; c) since the HRMSE is

not a robust loss function (see Patton, 2008), we also employ the QLIKE loss function, defined as:

QLIKE =
1

T

T∑
t=1

(
logRVt +

R̂Vt
RVt

)
. (5.11)

The QLIKE loss function is robust, in the sense defined by Patton (2008). Significant difference

among competing forecasting models are evaluated through the Diebold and Mariano (1995) test

at the 5% confidence level.

5.2 Stock index futures S&P500 data

The first and most important data set we analyze is the S&P500 futures time series. We have

all high-frequency transactions from January 1990 to December 2004 (3,736 days). In order to

mitigate the impact of microstructure effects on our estimates, we choose, as in ABD, a sampling

frequency of δ = 5 minutes, corresponding to 84 returns per day.

Figure 3 is an example in which using the C-Tz statistics is effective. It displays the S&P 500

time series on one specific day, in which there is an abrupt price change. However, in this day,

the z statistics, which is based on multipower variation, is negative and does not reveal a jump at

any reasonable significance level; while the C-Tz statistics, which is based on threshold multipower

variation, does reveal a very significant jump. Our interpretation for this day is that, since the jump

appears in the form of two consecutive and very large returns, this creates a huge bias (especially

in the quarticity estimates) which makes the z statistics very noisy. This bias is instead completely

removed by the corrected threshold estimators.

Figure 4 shows the number of jumps detected in the sample by the conditions C-Tz > Φα and

z > Φα as a function of α. We see that with the statistics based on threshold multipower variation,

we detect an higher number of jumps, reflecting the greater power of the C-Tz test.

We then estimate and compare the HAR-TCJ model (5.6) and the HAR-CJ model (5.3). We also

estimate the standard HAR model (5.2) as a benchmark. Results are reported in Table 3, 4 and 5

for daily, weekly and monthly volatility forecasts respectively.

Results are unambiguous. When the jump component is measured by means of bipower variation, as

in the HAR-CJ model, its coefficient is significantly negative for the square model and insignificant

for the log and square root model in explaining future volatility. This result, although consistent

with the literature, is rather surprising in our opinion, being at odd with the economic intuition

which would suggest an increase in volatility after a jump in the price process. Moreover, this

result is even more puzzling, given that the unconditional correlations between realized variation

and jumps lagged by one day is significantly positive and around 20% for the variances, 30% for
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Figure 3: Rescaled time series (top) and 5-minutes logarithmic returns (bottom) of

the S&P500 on 4th December 1990. The solid and the dashed line are our estimated

threshold with cϑ = 3 and cϑ = 5 respectively. The jump statistics are z = −0.2545,

C-Tz = 4.5055 with cϑ = 3, C-Tz = 4.4745 with cϑ = 5.

the volatilities and 25% for the log volatilities. However, the simulated experiments in Section 4

suggest that when the jump component is estimated via Eq. (5.4) it is largely downward biased

because of the large upward bias of bipower variation in the presence of jumps. As a consequence,

the continuous component Ĉt estimated using bipower variation is still contaminated by the jump

component and hence the impact of jumps is also passing through the positive coefficients of the

other regressors.

When instead the jump component is measured by means of threshold bipower variation, the

estimated coefficients β̂j are positive and highly significant for the square root and log model.

Most importantly, the HAR-TCJ model yields an higher R2 and a significantly lower HRMSE

and QLIKE (as witnessed by the Diebold-Mariano test at the 5% confidence level), which implies a

better forecasting power. To better understand this point, we divide the sample in days immediately

following the occurrence of a jump and the remainder. On these two samples, we compute the R2,

HRMSE and QLIKE statistics separately, denoting them by J −R2, J −HRMSE, J −QLIKE
and C − R2, C − HRMSE, C − QLIKE respectively. The results in Table 3 show that the

TCJ models largely and significantly improves the forecasting power on realized variance in days
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Figure 4: Number of days which contain jumps in the S&P500 sample obtained with

the C-Tz statistics (3.5), as a function of the confidence level α. The total number of

days is 3, 736.

immediately following a jump, and it is still slightly more performing in days that do not follow a

jump. Our interpretation of this result is that, since we are better measuring the jump component,

we are also removing noise from the continuous component in the explanatory variables; and thus,

we also get slightly better results on days in which there were no jumps before.

Figure 5 displays the most important quantities as a function of the confidence interval α. It shows

that the jump component of the HAR-TCJ model, as measured by the t−statistics of the coefficient

βj , is always positive for all models and highly significant for square root and log transformations;

while the jump component of the HAR-CJ model is mainly significantly negative or not significant.

Importantly, it shows that the HAR-TCJ model provides superior forecasts when measured in terms

of R2 and the HRMSE, irrespective of the confidence level used and model employed.

When forecasting weekly and monthly volatility, the βj of the HAR-CJ model tends to be negative,

sometimes significantly. Instead, for the HAR-TCJ model, the βj are largely positive and significant

in the square root and log model, and insignificant in the square model. Again, the R2 and the

HRMSE confirm, in days following a jump, the better forecasting ability of the HAR-TCJ model,

which is not worse than HAR-CJ in days not following a jump.5

5The analysis with higher values of cϑ reveals that the βj coefficient of the TCJ specification is mildly significant

for cϑ = 4 and not significant for cϑ = 5. This is not surprising, since as we increase cϑ we get closer to the results

obtained with bipower variation. We also estimated the HAR-CJ model using the jumps detected via the z statistics

(A.7) and compare it with the HAR-TCJ model estimated with the jumps detected via the C-Tz statistics (3.5).

The results indicate that in this case the difference between the two models is even more pronounced in favor of the

HAR-TCJ.
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Figure 5: Reports the t statistics of the coefficient βj measuring the impact of jumps

on future volatility, the R2 and the HRMSE for the three models estimated on S&P

500 data for daily forecasting, for both the HAR-CJ and HAR-TCJ versions, as a

function of the confidence level used for detecting jumps with the C-Tz statistics.
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Daily (h = 1) S&P500 Regressions

HAR: RVt:t+h−1 = β0 + βd RVt−1 +βw RVt−5:t−1 +βm RVt−22:t−1 +εt

HAR-CJ: RVt:t+h−1 = β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βj Ĵt−1 + εt

HAR-TCJ: RVt:t+h−1 = β0 + βdT̂Ct−1 + βwT̂Ct−5:t−1 + βmT̂Ct−22:t−1 + βj T̂ J t−1 + εt

RVt RV
1/2
t log RVt

HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ

β0 34.266 26.823 23.312 0.986 0.906 0.771 0.254 0.274 0.286

(3.779) (3.373) (2.760) (3.973) (3.817) (3.318) (4.498) (4.906) (5.206)

βd 0.220 0.378 0.420 0.323 0.371 0.421 0.335 0.336 0.356

(2.329) (5.736) (6.171) (6.348) (8.961) (11.958) (13.143) (13.146) (14.838)

βw 0.321 0.263 0.298 0.336 0.317 0.308 0.359 0.356 0.342

(3.820) (3.156) (2.608) (6.077) (5.812) (5.427) (9.489) (9.420) (9.441)

βm 0.313 0.288 0.253 0.268 0.260 0.237 0.256 0.256 0.252

(4.814) (4.783) (3.850) (6.820) (6.704) (6.081) (8.829) (8.916) (9.028)

βj -0.581 0.045 -0.101 0.096 0.007 0.055

(-2.968) (0.925) (-1.627) (2.653) (0.680) (6.386)

R2 0.339 0.374 0.387 0.583 0.592 0.604 0.679 0.681 0.684

HRMSE 0.867 0.794* 0.749*† 0.652 0.630 0.605*† 0.555 0.552* 0.537*†

QLIKE 6.429 6.390* 6.371*† 6.228 6.223* 6.216*† 6.139 6.139 6.136

J-R2 0.320 0.363 0.386 0.573 0.596 0.626 0.685 0.691 0.707

J-HRMSE 1.137 0.955* 0.778*† 0.799 0.729* 0.624*† 0.644 0.611* 0.530*†

J-QLIKE 6.513 6.405* 6.317*† 6.265 6.214* 6.149*† 6.148 6.114* 6.054*†

C-R2 0.341 0.375 0.388 0.584 0.592 0.603 0.679 0.680 0.682

C-HRMSE 0.846 0.782* 0.747*† 0.640 0.623 0.604 0.548 0.547 0.537

C-QLIKE 6.423 6.389* 6.375*† 6.226 6.224 6.220 6.139 6.140 6.142

Table 3: OLS estimate for daily (h = 1) HAR, HAR-CJ and HAR-TCJ volatility

forecast regressions for S&P500 futures from January 1990 to December 2004 (3,736

observations). The significant daily jumps are computed using a critical value of

α = 99.9% and the C-Tz statistics computed with cϑ = 3. Reported in parenthesis are

the t-statistics based on Newey-West correction with order 5. Performance measures

are the Mincer-Zarnowitz R2, the HRMSE as in equation (5.10) and the QLIKE as in

(5.11), computed unconditionally, conditionally on having had a jump at time t − 1

(J-R2, J-HRMSE, J-QLIKE) and conditionally on no jump at time t − 1 (C-R2, C-

HRMSE, C-QLIKE). Using the Diebold-Mariano test at the 5% confidence level, a ∗
denotes significant improvement in the forecasting performance with respect to the

HAR model, and a † with respect to the HAR-CJ model.
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Weekly (h = 5) S&P500 Regressions

HAR: RVt:t+h−1 = β0 + βd RVt−1 +βw RVt−5:t−1 +βm RVt−22:t−1 +εt

HAR-CJ: RVt:t+h−1 = β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βj Ĵt−1 + εt

HAR-TCJ: RVt:t+h−1 = β0 + βdT̂Ct−1 + βwT̂Ct−5:t−1 + βmT̂Ct−22:t−1 + βj T̂ Jt−1 + εt

RVt:t+4 RV
1/2
t:t+4 log RVt:t+4

HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ

β0 47.320 41.284 37.873 1.541 1.465 1.348 0.407 0.426 0.438

(4.335) (3.987) (3.384) (4.334) (4.252) (3.966) (4.843) (5.118) (5.384)

βd 0.097 0.190 0.210 0.176 0.213 0.244 0.205 0.211 0.229

(1.892) (4.858) (4.403) (5.360) (7.927) (9.395) (11.744) (12.132) (13.821)

βw 0.367 0.351 0.393 0.369 0.356 0.353 0.360 0.353 0.333

(4.677) (4.299) (3.564) (6.157) (6.006) (5.869) (8.245) (8.148) (8.070)

βm 0.335 0.320 0.304 0.342 0.337 0.329 0.353 0.355 0.359

(4.897) (4.371) (3.702) (6.361) (6.174) (6.028) (8.548) (8.728) (9.159)

βj -0.394 0.007 -0.105 0.040 -0.005 0.031

(-2.571) (0.379) (-2.427) (2.466) (-0.693) (6.193)

R2 0.499 0.534 0.554 0.690 0.700 0.709 0.767 0.770 0.772

HRMSE 0.634 0.589* 0.566*† 0.439 0.425* 0.417*† 0.377 0.372* 0.369*

QLIKE 6.401 6.376* 6.366*† 6.194 6.190* 6.187 6.098 6.097 6.097

J-R2 0.489 0.539 0.567 0.656 0.684 0.712 0.742 0.751 0.766

J-HRMSE 0.761 0.652* 0.545*† 0.526 0.465* 0.397*† 0.415 0.391* 0.355*†

J-QLIKE 6.456 6.377* 6.300*† 6.220 6.173* 6.114*† 6.101 6.069* 6.019*†

C-R2 0.503 0.536 0.553 0.693 0.701 0.709 0.769 0.771 0.773

C-HRMSE 0.625 0.584* 0.568*† 0.432 0.423* 0.418* 0.373 0.371* 0.369*

C-QLIKE 6.397 6.376* 6.371* 6.193 6.191 6.192 6.098 6.099 6.102

Table 4: OLS estimate for weekly (h = 5) HAR, HAR-CJ and HAR-TCJ volatility

forecast regressions for S&P500 futures from January 1990 to December 2004 (3,736

observations). The significant daily jumps are computed using a critical value of α =

99.9%. Reported in parenthesis are the t-statistics based on Newey-West correction

with order 10. Performance measures are the Mincer-Zarnowitz R2, the HRMSE as in

equation (5.10) and the QLIKE as in (5.11), computed unconditionally, conditionally

on having had at jump a time t − 1 (J-R2, J-HRMSE, J-QLIKE) and conditionally

on no jump at time t− 1 (C-R2, C-HRMSE, C-QLIKE). Using the Diebold-Mariano

test at the 5% confidence level, a ∗ denotes significant improvement in the forecasting

performance with respect to the HAR model, and a † with respect to the HAR-CJ

model.
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Monthly (h = 22) S&P500 Regressions

HAR: RVt:t+h−1 = β0 + βd RVt−1 +βw RVt−5:t−1 +βm RVt−22:t−1 +εt

HAR-CJ: RVt:t+h−1 = β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βj Ĵt−1 + εt

HAR-TCJ: RVt:t+h−1 = β0 + βdT̂Ct−1 + βwT̂Ct−5:t−1 + βmT̂Ct−22:t−1 + βj T̂ Jt−1 + εt

RVt:t+21 RV
1/2
t:t+21 log RVt:t+21

HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ

β0 78.538 73.578 70.785 2.883 2.808 2.699 0.758 0.771 0.778

(5.909) (5.638) (4.962) (5.892) (5.967) (5.883) (5.292) (5.492) (5.702)

βd 0.061 0.124 0.129 0.109 0.135 0.149 0.126 0.130 0.138

(2.555) (5.292) (4.876) (5.915) (8.410) (9.183) (10.055) (10.519) (11.717)

βw 0.219 0.206 0.243 0.281 0.273 0.281 0.269 0.265 0.253

(4.279) (3.746) (4.350) (5.579) (5.385) (5.405) (6.171) (6.093) (5.927)

βm 0.385 0.385 0.385 0.399 0.397 0.395 0.454 0.456 0.462

(4.595) (4.310) (4.022) (6.358) (6.291) (6.373) (9.144) (9.246) (9.728)

βj -0.284 -0.002 -0.092 0.018 -0.010 0.016

(-2.892) (-0.114) (-3.278) (1.444) (-1.746) (3.658)

R2 0.471 0.500 0.517 0.649 0.659 0.667 0.739 0.742 0.746

HRMSE 0.680 0.649* 0.639*† 0.438 0.429* 0.425* 0.376 0.373* 0.370*

QLIKE 6.483 6.467* 6.462* 6.227 6.224 6.222 6.106 6.105 6.105

J-R2 0.438 0.476 0.513 0.651 0.672 0.692 0.746 0.755 0.761

J-HRMSE 0.753 0.690* 0.653*† 0.475 0.443* 0.420*† 0.389 0.375* 0.367*

J-QLIKE 6.520 6.465* 6.416*† 6.237 6.200* 6.156*† 6.096 6.069* 6.033*†

C-R2 0.474 0.502 0.517 0.650 0.658 0.666 0.738 0.742 0.745

C-HRMSE 0.675 0.647* 0.638* 0.435 0.428* 0.425 0.374 0.372* 0.370*

C-QLIKE 6.481 6.467* 6.465* 6.227 6.226 6.227 6.107 6.108 6.110

Table 5: OLS estimate for monthly (h = 22) HAR, HAR-CJ and HAR-TCJ volatility

forecast regressions for S&P500 futures from January 1990 to December 2004 (3,736

observations). The significant daily jumps are computed using a critical value of α =

99.9%. Reported in parenthesis are the t-statistics based on Newey-West correction

with order 44. Performance measures are the Mincer-Zarnowitz R2, the HRMSE as in

equation (5.10) and the QLIKE as in (5.11), computed unconditionally, conditionally

on having had a jump at time t − 1 (J-R2, J-HRMSE, J-QLIKE) and conditionally

on no jump at time t− 1 (C-R2, C-HRMSE, C-QLIKE). Using the Diebold-Mariano

test at the 5% confidence level, a ∗ denotes significant improvement in the forecasting

performance with respect to the HAR model, and a † with respect to the HAR-CJ

model.
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5.3 Individual stocks

We analyze a sample of six individual stocks, chosen among the most liquid stocks of S&P500. The

stocks are Alcoa (aa), Citigroup (c), Intel (intc), Microsoft (msft), Pfeizer (pfe) and Exxon-Mobil

(xom). Our sample starts on 2 January 2001 and ends on 30 December 2005, containing 1, 256

days per stock. Since these stocks are traded very actively, we still use a sampling frequency of

δ = 5 minutes, corresponding to 78 returns per day. To save space, we focus on the most important

quantities (the significance of the jump and the R2, HRMSE and QLIKE of the forecasting

model conditional to days after the occurrence of a jump), which are reported in Table 6 for the

logarithmic model. We report results for α = 99% and α = 99.9%.

Despite the smaller sample size and increased idiosyncratic noise, jumps still have a substantial

impact in determining future volatility which can be revealed by using threshold bipower variation.

The t statistics of the βj coefficient is always larger for the HAR-TCJ model than for the HAR-CJ

model, and always significant. On the whole sample, the performance of the two models is virtually

the same but, conditioned on the occurrence of a jump, there is significant advantage in using

the HAR-TCJ model, especially when significance is evaluated by the robust QLIKE. Thus, the

results obtained on the S&P500 portfolio are qualitatively replicated on its most liquid constituents,

indicating that the impact of jumps on future volatility is not peculiar to the S&P500 returns

considered in the previous Section, and suggesting that it may simply come from aggregation, at

the portfolio level, of the same effect at the individual stock level.

5.4 Bond data and the no-trade bias

Finally, we use a sample of 30-years US Treasury Bond futures from January 1990 to October 2003

for a total of 3, 231 daily data points. All the relevant volatility and jump measures are computed

again with five-minutes returns, corresponding to 84 returns per day.

The first thing we note on bond data is a surprisingly high number of jumps. At the 99.9%

confidence level, the C-Tz statistics detects 570 jumps, corresponding to the 17.6 % of our sample.

Visual inspection of time series data reveals that in most of these days there are many intervals

with zero return instead.

The problem hinges from what we could call the no-trade bias of bipower variation. This can

be explained as follows. Suppose that data are not recorded continuously but, more realistically,

that they are recorded discretely. Denote by δ̄ the minimum distance between two subsequent

observations. By construction, if δ < δ̄, then MPVδ = 0 identically! Clearly, also TMPVδ = 0.

This simple reasoning also explains why the presence of null returns caused by absence of trading

(stale price) in that interval induces a downward bias in multipower variation measures. Note that
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realized variance is immune from this bias instead. Moreover, this bias has a larger impact on the

jump detecting statistics, pointing toward rejection of the null. For example, when considering the

z statistics, this bias lowers both the BPV and TriPV measure, with the joint effect of increasing

the numerator and decreasing the denominator, thus increasing the statistics considerably.

In our paper, this problem does not affect the S&P500 index, neither the stocks considered in our

empirical analysis. However, it may affect US bond data, which are largely less liquid. Indeed, the

percentage of zero 5-minutes return in bond data is very high, nearly 30%. We accommodate this

problem as follows: for bond data, we compute the C-Tz statistics using only returns different from

zero. Clearly, this biases the test toward the null, meaning that the detected jumps are those which

have a larger impact for the statistics. With this correction the number of significant jumps with

α = 99.9% reduced to 112 representing 3.4% of the sample. Further analysis and different possible

corrections for this problem are discussed in Schulz (2010).

Relevant estimation results for bond data when forecasting daily, weekly and monthly volatility are

shown in Table 7 for α = 99.9%. We find that the HAR-TCJ model outperforms the HAR-CJ model

(significantly after a jumps) while both significantly outperform the HAR model. Also the impact

of the jump on future volatility in the HAR-TCJ model is generally insignificant, but nevertheless

not negatively significant as for the HAR-CJ estimates. An explanation for this finding might be

that jumps in the bond market are less “surprising” with respect to those in the stock markets, since

most of them are related to scheduled macroeconomic announcements. Indeed, related studies, for

example Bollerslev et al. (2000), find two intraday spikes at hours in which announcements are

released.

Summarizing, our empirical findings further corroborate the theoretical and simulation results in the

previous sections on the superior performance of the threshold method in separating and estimating

the continuous and jump components of the price process. Moreover, they show that, once the two

components are correctly measured and separated, the impact of past jumps on future realized

variance is positive and significant, and the ability to forecast volatility increases significantly.

6 Conclusions

This paper shows that dividing volatility into jumps and continuous variation yields a substantial

improvement in volatility forecasting, because of the positive impact of past jumps on future volatil-

ity. This important result has been obscured in the literature since, in finite samples, measures

based on multipower variation are largely biased in the presence of jumps. We uncover this effect

by modifying bipower variation with the help of threshold estimation techniques. We show that the

newly defined estimator is robust to the presence of jumps and quite inelastic with respect to the

choice of the threshold. The class of TMPV estimators introduced in this paper admits a central
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limit theorem in presence of jumps.

Our empirical results, obtained on US stock index, individual stocks and Treasury bond data, also

show that jumps can be effectively detected using the newly proposed C-Tz statistics, which is based

on TMPV estimators. The models we propose provide a significantly superior forecasting ability,

especially in days which follow the occurrence of a jump. Clearly, these findings can be of great

importance for risk management and other financial applications involving volatility estimation.

Moreover, the correlation between jumps and future volatility can be helpful not only for practical

applications, but also for a deeper comprehension of the asset price dynamics. We consider this

line of research as an interesting direction for future studies.
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US Bond Regressions (C-Tz statistics)

HAR: RVt:t+h−1 = β0 + βd RVt−1 +βw RVt−5:t−1 +βm RVt−22:t−1 +εt

HAR-CJ: RVt:t+h−1 = β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βj Ĵt−1 + εt

HAR-TCJ: RVt:t+h−1 = β0 + βdT̂Ct−1 + βwT̂Ct−5:t−1 + βmT̂Ct−22:t−1 + βj T̂ Jt−1 + εt

RVt:t+h−1 RV
1/2
t:t+h−1 log RVt:t+h−1

HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ HAR HAR-CJ HAR-TCJ

Daily forecasts (h = 1)

βj -0.108 0.030 -0.041 0.029 -0.012 0.016

(-2.633) (1.445) (-1.932) (1.798) (-1.393) (2.015)

R2 0.124 0.144 0.143 0.204 0.216 0.214 0.250 0.256 0.252

HRMSE 0.907 0.872* 0.866* 0.754 0.737* 0.733* 0.657 0.649* 0.645*

QLIKE 5.508 5.491* 5.492* 5.362 5.356* 5.356* 5.256 5.254 5.254

J-R2 0.096 0.119 0.108 0.160 0.169 0.161 0.200 0.201 0.192

J-HRMSE 1.326 1.053 0.890*† 1.113 0.906 0.763† 0.934 0.796 0.677*†
J-QLIKE 5.537 5.455* 5.398*† 5.355 5.294* 5.236*† 5.222 5.175* 5.125*†
C-R2 0.129 0.144 0.142 0.209 0.218 0.216 0.255 0.261 0.256

C-HRMSE 0.888 0.865* 0.866* 0.738 0.731* 0.732 0.645 0.642 0.643

C-QLIKE 5.502 5.499 5.512 5.364 5.370 5.382 5.264 5.271 5.282

Weekly forecasts (h = 5)

βj -0.063 0.028 -0.030 0.029 -0.010 0.018

(-3.119) (2.794) (-2.625) (3.582) (-2.010) (4.036)

R2 0.295 0.333 0.332 0.415 0.438 0.436 0.472 0.486 0.480

HRMSE 0.445 0.422* 0.419* 0.363 0.353* 0.351* 0.331 0.327* 0.325*

QLIKE 5.370 5.361* 5.363 5.250 5.248 5.249 5.162 5.162 5.163

J-R2 0.197 0.233 0.232 0.330 0.351 0.344 0.400 0.411 0.400

J-HRMSE 0.629 0.498* 0.417*† 0.469 0.386* 0.338*† 0.367 0.326* 0.306*

J-QLIKE 5.364 5.310* 5.270*† 5.221 5.181* 5.144*† 5.115 5.086* 5.056*†
C-R2 0.315 0.347 0.347 0.428 0.448 0.446 0.482 0.493 0.488

C-HRMSE 0.437 0.419* 0.420* 0.358 0.352* 0.352* 0.329 0.326* 0.325*

C-QLIKE 5.371 5.372 5.383 5.257 5.262 5.271 5.173 5.178 5.186

Monthly forecasts (h = 22)

βj -0.058 0.010 -0.034 0.010 -0.013 0.006

(-3.986) (1.586) (-3.871) (1.743) (-3.259) (1.875)

R2 0.333 0.387 0.395 0.433 0.473 0.481 0.488 0.514 0.519

HRMSE 0.321 0.305* 0.303* 0.264 0.258* 0.257* 0.262 0.260 0.260

QLIKE 5.351 5.344 5.345 5.233 5.231 5.231 5.144 5.143 5.144

J-R2 0.296 0.353 0.365 0.403 0.442 0.452 0.461 0.484 0.484

J-HRMSE 0.398 0.313* 0.271*† 0.281 0.240* 0.235* 0.234 0.229 0.250

J-QLIKE 5.342 5.300* 5.267*† 5.204 5.173* 5.142*† 5.100 5.077* 5.052*†
C-R2 0.339 0.387 0.393 0.436 0.471 0.478 0.489 0.513 0.517

C-HRMSE 0.318 0.305* 0.304* 0.263 0.259* 0.258* 0.262 0.260 0.260

C-QLIKE 5.353 5.354 5.361 5.240 5.243 5.250 5.153 5.158 5.164

Table 7: OLS (partial) estimates for daily (h = 1), weekly (h = 5), monthly (h = 22)

HAR, HAR-CJ and HAR-TCJ volatility forecast regressions for US Bond from Jan-

uary 1990 to December 2004 (3,736 observations). The significant daily jumps are

computed using a critical value of α = 99.9% and the C-Tz statistics. Reported in

parenthesis are the t-statistics based on Newey-West correction. Performance mea-

sures are the Mincer-Zarnowitz R2, the HRMSE as in equation (5.10) and the QLIKE

as in (5.11), computed unconditionally, conditionally on having had a jump at time

t−1 (J-R2, J-HRMSE, J-QLIKE) and conditionally on no jump at time t−1 (C-R2,

C-HRMSE, C-QLIKE). Using the Diebold-Mariano test at the 5% confidence level, a

∗ denotes significant improvement in the forecasting performance with respect to the

HAR model, and a † with respect to the HAR-CJ model.
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A Quarticity estimators and jump detection statistics

For estimation of the integrated quarticity
∫ t+T
t σ4

sds, the literature focused on the following quan-

tities:

QPVδ(X)t = µ−4
1 ·MPVδ(X)

[1,1,1,1]
t = µ−4

1

1

δ

[T/δ]∑
j=4

|∆j−3X| · |∆j−2X| · |∆j−1X| · |∆jX| (A.1)

TriPVδ(X)t = µ−3
4
3

·MPVδ(X)
[ 4
3
, 4
3
, 4
3

]
t = µ−3

4
3

1

δ

[T/δ]∑
j=3

|∆j−2X|
4
3 · |∆j−1X|

4
3 · |∆jX|

4
3 (A.2)

where µ 4
3
' 0.8309, and

TQVδ(X)t =
1

3δ

[T/δ]∑
j=1

|∆jX|4I{|∆jX|2≤Θ(δ)} (A.3)

where Θ(δ) satisfies (2.9). We propose the counterparts TQPV = µ−4
1 ·TMPVδ(X)

[1,1,1,1]
t , TTriPV =

µ−3
4
3

· TMPVδ(X)
[ 4
3
, 4
3
, 4
3

]
t , see equation (2.10), and their corrected version

C-TQVδ(X)t = µ−4
1 · C-TMPVδ(X)

[1,1,1,1]
t (A.4)

C-TTriPVδ(X)t = µ−3
4
3

· C-TMPVδ(X)
[ 4
3
, 4
3
, 4
3

]
t (A.5)

see definition (3.2). We also define a corrected version of (A.3):

C-TQVδ(X)t =
1

3δ

[T/δ]∑
j=1

Z4(∆jX,ϑj) (A.6)

A feasible jump test can be constructed using multipower estimators of the integrated quarticity

given by equations (A.1)-(A.2). In their study, ABD use the test:

z = δ−
1
2

(RVδ (X)T − BPVδ (X)T ) · RVδ (X)−1
T√

ϑ̄ max

{
1,

TriPVδ(X)T

(BPVδ(X)T )
2

} , (A.7)

with ϑ̄ = π2

4 + π − 5.
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B Auxiliary estimation of local variance

We estimate local variance with a non-parametric filter of length 2L + 1 (Fan and Yao, 2003)

adapted for the presence of jumps by iterating in Z:

V̂ Z
t =

L∑
i=−L, i 6=−1,0,1

K

(
i

L

)
(∆t+iX)2 I{(∆t+iX)2≤c2V ·V̂

Z−1
t+i }

L∑
i=−L, i 6=−1,0,1

K

(
i

L

)
I{(∆t+iX)2≤c2V ·V̂

Z−1
t+i }

, Z = 1, 2, . . . (B.1)

with the starting value V̂ 0 = +∞, which corresponds to using all observations in the first step,

and cV = 3. At each iteration, large returns are eliminated by the condition (∆tX)2 > c2V · V̂
Z−1
t ;

each estimate of the variance is multiplied by c2
V to get the threshold for the following step. For

estimation of the local variance at time t, we do not use the adjacent observations (i 6= −1, 0, 1). The

iterations stop when no further large returns are removed. With high frequency data, this typically

happens with Z = 2, 3 iterations. The bandwidth parameter L determines the number of adjacent

returns included in the estimation of the local variance around point t. In our application, its

choice is not crucial and we set L = 25. We use a Gaussian kernel K (y) =
(
1/
√

2π
)

exp
(
−y2/2

)
.

Alternatively, one may use the approach proposed by Lee and Mykland (2008) to detect and remove

individual jumps and subsequently estimate the local variance with the remaining observations.

Mancini and Renò (2009) use instead a GARCH(1,1) process.


