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Abstract

A tree-structured heterogeneous autoregressive (tree-HAR) process is proposed as a simple and parsimo-
nious model for the estimation and prediction of tick-by-tick realized correlations. The model can account
for different time and other relevant predictors’ dependent regime shifts in the conditional mean dynam-
ics of the realized correlation series. Testing the model on S&P 500 Futures and 30-year Treasury Bond
Futures realized correlations, empirical evidence that the tree-HAR model reaches a good compromise
between simplicity and flexibility is provided. The model yields accurate single- and multi-step out-of-
sample forecasts. Such forecasts are also better than those obtained from other standard approaches, in
particular when the final goal is multi-period forecasting.

Key words: High frequency data; Realized correlation; Stock–bond correlation; Tree-structured
models; HAR; Regimes.

1. Introduction

The correlation of stock and bond returns plays a pivotal role for portfolio managers, risk analysts
and financial researchers, being a key ingredient to portfolio diversification and risk management. It is
well known that the stock-bond correlation changes over time. Characterizing these time-variations has
relevant implications for understanding the economics of the joint stock-bond relation while an accurate
forecast of stock-bond correlation may have important practical applications in asset allocation and risk
management.

In the last twenty years, the increased performance of data base management systems allowed to
create huge data bases consisting of all transactions observed in the market. Recently, the use of this
kind of high frequency data has been advocated to improve the precision of asset volatility estimation,
yielding to the so-called realized volatility (RV) approach proposed in a series of breakthrough papers by
Andersen et al. (2001b, 2003), Barndorff-Nielsen and Shephard (2001, 2002a, 2002b, 2005), and Comte
and Renault (1998). Regarding the realized volatility approach, the idea of employing high frequency
data in the computation of covariances between two assets leads to the analogous concept of realized

covariance (or covariation); for more details see Barndorff-Nielsen and Shephard (2004), Martens (2004),
Hayashi and Yoshida (2005), Griffin and Oomen (2006), Palandri (2006), Sheppard (2006), and Voev and
Lunde (2007). Recently, Corsi and Audrino (2008) proposed a modified tick-by-tick realized covariance
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estimator in cases where price arrival times are made imprecise by rounding in the reported time stamps,
a typical situation for many financial data sets. Realized correlations are then constructed as quotients
between realized covariances and products of realized standard deviations. This paper investigates only
the fraction of daily realized correlations corresponding to the time when the markets are open (refer to
(Andersen et al., 2007) for a more general discussion about how the night correlation, from the overnight
returns, can be incorporated into our framework). A number of studies in the recent literature showed
that using realized second moments the accuracy and performance of trading strategies and risk measures
can be significantly improved. The idea that the whole information observed on the market is relevant for
estimation and prediction of the unobserved asset returns correlations yielded to the use of the so-called
tick-by-tick data.

Similar to the smooth transition heterogenous autoregressive technique proposed by McAleer and
Medeiros (2008) which modeled the realized volatility of sixteen US stocks with good forecasting results,
we propose a regime-dependent, tree-structured heterogeneous autoregressive (tree-HAR) model for the
estimation and prediction of the tick-by-tick realized correlation series. The conditional mean dynamics of
the realized correlation series follow local linear HAR processes and are subject to regime shifts depending
on past values of certain relevant predictor variables, such as, for example, past returns, past realized
volatilities or time. The local HAR processes are standard linear models where the explanatory variables
are past realized correlations at three different horizons: daily, weekly, and monthly (for more details, see
Corsi et al., 2006 and Corsi, 2009). This structure allows the model to take into account two important
features exhibited by most real data realized correlation series: long memory and structural changes.
Another feature of the tree-HAR model is that it belongs to the class of tree-structured threshold regime
models, and can therefore be easily estimated and regimes can be interpreted in terms of relevant predictor
variables; see for example, Audrino and Bühlmann (2001) and Audrino and Trojani (2006).

We test the accuracy of the tree-HAR model on the series of daily tick-by-tick realized correlations
between S&P 500 and 30-year Treasury Bond futures for the time period 1990–2008. We collect empirical
evidence that realized correlations constructed using tick-by-tick information show drastic regime shifts,
supporting the evidence already found in other studies on classical correlations. The presence of structural
breaks in the stock–bond correlations is already established in several works in the recent literature.
Among these, Cappiello et al. (2006) provided statistical evidence of a structural break in stock–bond
correlations due to the introduction of the Euro. Li (2002), Ilmanen (2003) and Christiansen and Ranaldo
(2007) report that US stock–bond correlations went from positive to negative after 1997. Guidolin
and Timmermann (2006) found empirical evidence that a four-state Markov regime-switching model is
needed to capture the joint dynamics of US stock and bond returns. In their empirical study, Pastor
and Stambaugh (2003) found that changes in stock–bond correlations are related to different levels of
liquidity, and, therefore, allowing for structural breaks depending on a large set of predictor variables (for
example, liquidity) may be relevant for improving forecasting accuracy.

We contribute to the literature on US stock–bond correlations by estimating local dynamics and
incorporating structural breaks in a threshold-type model. The estimated tree-HAR model for daily US
stock–bond realized correlations has four limiting regimes (endogenously estimated from the data) which
can be interpreted as follows. First of all we find a structural break during the summer 2007. This break
may be related to the US subprime financial crisis. The first three regimes refer to the time period before
the summer 2007. The first regime is in reaction to US market crashes: in particular, the first regime
is characterized by large negative past S&P 500 daily returns, the conditional mean dynamics of the
realized correlations are highly persistent, and the volatility of realized correlations is large. The second
and third regimes are both characterized by relatively positive (which, as usual in this context, means
above the estimated threshold value) past S&P 500 daily returns, but for two different time periods. We
identify a second structural break in time corresponding to the end of the year 1993. Since the common
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drivers of stock and bond prices should be the real interest rate and the expected inflation (see, for
example, Ranaldo and Reynard, 2008), this structural break may be a consequence of the inversion in
the 1993–94 period in the trend of the real interest rate and the target Fed funds rate (which affects
market expected inflation because of the perceived Fed’s superior information on future inflation) which
after a long descending trend invert their tendency upwards. After the end of 1993 the persistence of the
conditional mean dynamics and the volatility of the realized correlations increase significantly. Moreover,
we also find that past individual realized volatilities are relevant predictors for future realized correlations.

We perform a series of out-of-sample tests for the superior predictive ability (SPA; see Hansen, 2005) of
our model against a number of competitors using different goodness-of-fit statistics, to verify whether the
greater flexibility allowed by the tree-HAR model (with a corresponding higher number of parameters to
be estimated) has any value for forecasting. We empirically show that the tree-HAR model systematically
outperforms the competitors, particularly when multi-period forecasts are considered.

The remainder of the paper is organized as follows: Section 2 proposes the tree-HAR process as a model
for the estimation and forecast of realized correlations. Section 3 presents the empirical application to a
bivariate series of S&P 500 and 30-year US Treasury Bond futures tick-by-tick data. Section 4 summarizes
and concludes.

2. Modeling Realized Correlations

2.1. The Model

Empirical evidence on strong temporal dependence of realized correlations has been already shown
in Andersen et al. (2001a, 2003), and Ferland and Lalancette (2006), among others. This evidence,
together with our empirical results reported in Section 3, suggests that realized correlation series are best
described by long-memory type of models.

Corsi (2009) and Corsi et al. (2006) recently proposed a class of “pseudo-long-memory” models called
heterogeneous autoregressive (HAR) models, which, although not satisfying formally the long memory
property, are able to successfully model the empirical long-memory behavior of financial variables in a
simple and parsimonious way.

The basic idea was introduced in a study by Müller et al. (1997), where the long memory observed
in the volatility was explained as the superimposition of only a few processes operating on different
time scales. Corsi (2009) proposed a stochastic additive cascade of three different realized volatility
components corresponding to the three main different time horizons present in the market: daily, weekly,
and monthly. This stochastic volatility cascade leads to simple AR-type models in the realized volatility
which also feature a consideration of realized volatilities defined over different time horizons (the HAR-RV
models). Although the HAR models do not formally belong to the class of long-memory models, they are
able to reproduce a memory decay which is almost indistinguishable from that observed in the empirical
data.

The above-mentioned empirical evidence on the high degree of persistence of correlations suggests
that the parsimonious HAR models could also be successfully applied to model the time series of realized
correlations. Figure 1 shows the autocorrelogram of the empirical stock–bond correlations of our real
data application of Section 3 matches well the one for correlations obtained simulating data from the
HAR model with parameters similar to those estimated from real data.

A second important stylized fact which must be taken into account when building up a model for the
realized correlation dynamics is the (possible) presence of structural breaks. Various studies in the recent
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Figure 1: Comparison of autocorrelograms of correlations for the empirical US stock–bond data under investigation (solid)
and for simulated data (dotted) from an HAR model with parameters estimated on the full US stock–bond real data sample.

literature on stock–bond correlations already report that stock–bond correlations went from positive to
negative after 1997 (see, for example, Ilmanen, 2003). The reasons given to explain this pattern vary.
One relates to market uncertainty and risk, introducing the “flight-to-quality” effect, which suggests
the phenomenon of fleeing from stock to bond markets in times of worsening economic conditions (see
for example, Ilmanen, 2003; or Connolly et al., 2005). Another explanation for the change of sign in
stock–bond correlations relates to differences in inflation expectations or in the expectations of other
macroeconomic variables (see for example, Li, 2002; or Christiansen and Ranaldo, 2007). Pastor and
Stambaugh (2003) found that a kind of “flight-to-quality” effect appears in months with exceptionally
low liquidity, that is months in which liquidity drops severely tend to be months in which stocks and
fixed-income assets move in opposite directions. In two recent studies, Guidolin and Timmermann (2006)
and Audrino and Trojani (2007) incorporated the possible regime shifts in the conditional dynamics of
(realized) correlations using regime-dependent models. Guidolin and Timmermann (2006) analyzed the
joint dynamics of US stock and bond returns using a Markov regime-switching model, and found empirical
evidence of the presence of four different regimes.

Along these lines, we propose a tree-structured local HAR model for the dynamics of tick-by-tick
realized correlations which is able to take into account the above-discussed stylized facts of realized
correlation series: long-memory and structural breaks. Tree-structured models belong to the class of
threshold regimes models, where regimes are characterized by some threshold for the relevant predictor
variables. The class of tree-structured GARCH models was introduced by Audrino and Bühlmann (2001)
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in the financial volatility literature, and was generalized recently to capture simultaneous regime shifts
in the first and second conditional dynamics of returns series, with good results for different forecasting
applications (see for example, Audrino and Trojani, 2006). The constraint that conditional first and
second moment dynamics must be subject to the same regimes are introduced to reduce computational
costs and can be easily relaxed. Nevertheless, the resulting costs in the computational and model’s
complexity have not been found to be supported by a significant improvement in the accuracy of the
forecasts.

Let {RC}t≥1 be the daily tick-by-tick realized correlations computed from tick-by-tick realized covari-

ance and tick-by-tick realized volatility measures, and let {R̃C}t≥1 be the daily Fisher-transformed (FT)
series of the tick-by-tick realized correlations {RC}t≥1. By considering Fisher-transformed correlations
we do not have to impose any restriction on the parameters in the model to ensure the final estimates and
forecasts to lie in the [−1, 1] interval. Note, however, that by performing the same tree-HAR analysis on
the original correlations, we never got correlation estimates and predictions outside the [−1, 1] interval.
The results of the analysis were qualitatively the same. In particular, the estimated regime structure was
found to be exactly the same, with comparable local conditional first and second moment dynamics. The
Fisher-transformed correlations are given by:

R̃Ct =
1

2
log

(1 + RCt

1 − RCt

)
, RCt ∈ [−1, 1].

We then model the series {R̃C}t≥1 as:

R̃Ct+1 = Et[R̃Ct+1] + σt+1Ut+1, (1)

where {Ut}t≥1 is a sequence of i.i.d. innovations following the distribution pU with expected value 0 and
variance 1, and Et[·] denotes (as usual) the conditional expectation given the information up to time t.
The conditional dynamics of the FT correlations are given by:

Et[R̃Ct+1] =

k∑

j=1

(
aj + b

(d)
j R̃Ct + b

(w)
j R̃C

(w)

t + b
(m)
j R̃C

(m)

t

)
I[Xpred

t ∈Rj ]
and (2)

σ2
t+1 =

k∑

j=1

σ2
j I[Xpred

t ∈Rj ]
, σ2

j > 0, j = 1, . . . , k, (3)

where θ = (aj , b
(d)
j , b

(w)
j , b

(m)
j , σ2

j : j = 1, . . . , k) is a parameter vector which parameterizes the local HAR
dynamics in the different regimes, k is the number of regimes (endogenously estimated from the data), and

R̃C
(w)

t and R̃C
(m)

t are respectively the weekly and monthly FT-realized correlations, obtained as simple
rolling averages of 5 respectively 22 daily FT-realized correlations. The choice of weekly and monthly
averages is not restrictive. In fact, the model can be generalized to be of a AR(p)-type, where, as it has
been already done in the literature (see, for example, Hillebrand and Medeiros, 2008), the number of
past lags p is optimized using some selection criteria. Such studies found that the most relevant lags are
exactly the lags 1,5, and 22. The regimes are characterized by partition cells Rj of the relevant predictor

space G of X
pred
t :

G =

k⋃

j=1

Rj , Ri ∩Rj = ∅ (i 6= j).
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In our study, the relevant predictor variables in X
pred
t are past-lagged FT-realized correlations, and past-

lagged realized volatilities and returns of the two instruments under investigation. All such predictor
variables are considered at three different time horizons: daily, weekly, and monthly. We also consider
time as an additional predictor variable.

To completely specify the conditional dynamics given in equations (2) and (3) of the FT-realized
correlations, we determined the shape of the partition cells Rj , which are admissible in the tree-HAR
model. Similar to the standard classification and regression trees (CART) procedure (see Breiman et al.,
1994), the only restriction we impose is that regimes must be characterized by (possibly high-dimensional)
rectangular cells of the predictor space, with edges determined by thresholds on the predictor variables.
Such partition cells are practically constructed using the idea of binary trees. Introducing this restriction
has two major advantages: it allows a clear interpretation of the regimes in terms of relevant predictor
variables, and also allows us to estimate the model using large-dimensional predictor spaces G.

As an illustration, in our empirical application on US stock–bond realized correlations presented in
Section 3, the estimated partition cells for the time period before July 2007 are of the form:

R1 = {Xpred : RS&P 500 ≤ −0.935},

R2 = {Xpred : RS&P 500 > −0.935 and t ≤ December 1993} and

R3 = {Xpred : RS&P 500 > −0.935 and t > December 1993},

where RS&P 500 denotes the (annualized) daily returns of the US S&P 500 Index, and t denotes time. We
find a first regime characterized by large losses of the US market index, and second and third regimes in
reaction of positive and moderate losses of the US market, with an important structural break in time
corresponding to December 1993. Section 3.2 contains a more structured discussion and interpretation
of these results.

2.2. Estimation

The tree-HAR model introduced in equations (1) to (3) can be estimated using quasi-maximum
likelihood (QML). Conditional on some reasonable starting values, the negative quasi-log-likelihood for
model (1)-(3) is given by:

−l
(
θ; (R̃C,Xpred)n

1

)
=

n

2
log(2π) +

1

2

n∑

t=1

log
(
σ2

t

)
+

1

2

n∑

t=1

(
R̃Ct − Et;θ[R̃Ct−1]

)2

σ2
t

. (4)

Therefore, for any fixed sequence of partition cells, the tree-HAR model can be estimated by QML. The
choice of the best partition cells (that is, splitting variables and threshold values) involves a model choice
procedure for non-nested hypotheses. Similar to CART, the model selection of the splitting variables
and threshold values can be performed using the idea of binary trees. Within any data-determined tree
structure the best model is selected using the Bayesian-Schwartz information criterion (BIC). As pointed
out by Hansen (1996), the use of model selection criteria to decide if the inclusion of another regime
is relevant in threshold regression models such as the tree-HAR model has the following drawback: the
location of the split cannot be estimated consistently when an irrelevant regime is added to the model. To
overcome the problem, and also to ensure computational feasibility, we searched for threshold values over
fixed grid points that are empirical quantiles of the different predictor variables. Alternatively, McAleer
and Medeiros (2008) and Medeiros and Veiga (2009) recently proposed a sequence of tests to determine
the number of regimes for a class of smooth transition models for the dynamics of financial (realized)
volatility which circumvents the problem of identification in a way that controls the significance level of
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the tests in the sequence and computes an upper bound to the overall significance level. Such a strategy
can be easily adapted to the case of fitting tree-HAR models. When choosing the splitting variables and
threshold values using the above-mentioned sequence of tests, we obtained qualitatively the same regimes
and, consequently, forecasting accuracy. For all details about the flexible procedure used to estimate the
model, refer to Section 2.3 and Appendix A in Audrino and Trojani (2006). Proof of the consistency of the
conditional mean and volatility estimates in the tree-HAR model under a possible model misspecification
can be derived from Theorem 1 in Audrino and Bühlmann (2001).

3. Empirical application

3.1. Data and stylized facts

We considered a tick-by-tick bivariate returns series of the S&P 500 Futures and 30-year US Treasury
Bond Futures for the period from January 1990 to March 2008, for a total of 4,451 daily observations.
The data come from the Price-data.com database with time stamps rounded at the one minute frequency.
The tick-by-tick realized covariances are computed with the First-Last estimator introduced by Corsi and
Audrino (2008) as a generalization of the Hayashi and Yoshida (2005) realized covariance estimator to
overcome the problem of working with imprecise arrival time due to rounding in the price time stamps.
The First-Last covariance estimator can be seen as an average of two Hayashi and Yoshida-type of
estimators. Both Hayashi and Yoshida are computed with return series constructed only with the first
ticks in each interval of the grid induced by time stamps rounding for one asset, and the last ticks in each
interval for the other asset.

Tick-by-tick realized volatility are computed employing the Multi-Scales Discrete Sine Transform
realized volatility estimator proposed by Curci and Corsi (2003), which consists of a multi-frequency
regression-based approach made robust by a discrete sine transform filter which optimally decorrelates
the price signal from microstructure noise (we also constructed tick-by-tick realized volatilities using the
two scales estimator of Zhang et al., 2005, obtaining similar results). We then have realized correlation
measures where both the volatilities and the covariances are computed from tick-by-tick data.

The upper part of Figure 2 shows the time series of 4,451 daily tick-by-tick correlations we obtained for
the time period between 1990 and 2008, together with their autocorrelogram. In the bottom part of Figure
2 Fisher-transformed (FT) realized correlations are plotted, again together with their autocorrelogram.

Figure 2 shows that (FT) realized correlations may be subject to regime shifts (in time or other relevant
variables) and/or long-memory. It is difficult to disentangle the two features based on a descriptive
analysis, because they may be in juxtaposition of one another. The results of the forecasting analysis
performed in Section 3.3 will help us in determining the relevance of the two effects, i.e. structural breaks
and long memory.

From a preliminary visual inspection of the correlation dynamics in Figure 2, we can recognize three
important time changes of regime: the first occurring around the end of 1993 to the beginning of 1994,
the second one around the end of 1997, and the last one in July 2007. As a confirmation of our visual
inspection, the above mentioned four regimes are those we got when estimating the simple tree-AR(1)
model on the FT-correlation series (we are going to use that model as a competing model in the forecasting
analysis). The first break corresponds to a positive shock in the stock-bond correlations, whereas the
second and third ones are negative shocks. The last two structural breaks in the stock-bond correlations’
behavior with a consequent change in the sign of stock-bond correlations (from positive to negative) may
be a consequence of a flight-to-quality effect induced by the Asian financial crisis and the recent subprime
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S&P 500 – US Treasury Bond daily realized correlation from 1990 to 2008
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Figure 2: Time series of daily S&P 500 and 30-year US Treasury Bond realized correlations (upper-left panel) and Fisher-
transformed (FT) realized correlations (lower-left panel) constructed using tick-by-tick data, together with their autocor-
relograms (right panels). The time period under investigation is from January 1990 to March 2008.
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Autocorrelogram of S&P 500 – US Treasury Bond correlation
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Figure 3: Autocorrelation functions of the S&P 500 and 30-year US Treasury Bond realized correlation for the full sample
1990–2008 (solid line) and the four sub-samples (time regimes): 90-94 (dotted line), 94-98 (long-dashed line), 98- July 07
(small-dashed line), and July 07 – March 08 (dot-dashed line).

financial crisis, respectively. In our opinion, the economic explanations for the first structural break may
be twofold. First, the increase of US stock-bond correlations after the end of 1993 may be related to an
increase in the investors’ confidence in the US financial market during the long expansion cycle started in
March 1991, also related to the European Monetary System crisis of 1992–1993. Second, this structural
break may be a consequence of the inversion in the 1993–94 period in the trend of the real interest rate
and the target Fed funds rate which after a long descending trend invert their tendency upwards.

More in detail, the correlation between the two series oscillates around a positive stable value of about
20 percent until 1994, around 40 percent from 1994 to 1997, while after the end of 1997, the correlation
starts to exhibit a stronger dynamics and becomes predominantly negative. A last negative shock in the
stock-bond correlations is observed in the 2007 summer.

When taking these structural changes into account, we get a different picture for the autocorrelations
of the realized correlations. We computed the autocorrelation function in the four sub-periods: January
1990 to the end of 1993 (henceforth called the 90–94 period), from the beginning of 1994 to the end of
1997 (94–98 period), from the beginning of 1998 to July 2007 (98- July 07), and from July 2007 to the
end of the sample period (July 07 - March 08). Their behavior is illustrated in Figure 3.
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US S&P 500- T-Bond FT correlation estimated parameters

Regime structure Local parameters

Rj aj b
(d)
j b

(w)
j b

(m)
j σ2

j

RS&P 500 ≤ −0.935, −0.0499 0.3685 0.3399 0.2895 0.0638
t ≤ July 2007 (0.0140) (0.0531) (0.0913) (0.1026) (0.0060)
RS&P 500 > −0.935, 0.0649 0.1042 0.3419 0.2741 0.0219
t ≤ December 1993 (0.0164) (0.0297) (0.0477) (0.0898) (0.0020)
RS&P 500 > −0.935, 0.0069 0.2125 0.4127 0.3290 0.0407
December 1993 < t ≤ July 2007 (0.0036) (0.0199) (0.0291) (0.0303) (0.0018)

t > July 2007
−0.2432 0.3237 0.2643 −0.0416 0.1468
(0.0627) (0.0546) (0.0647) (0.1223) (0.0271)

Table 1: Tree-HAR in-sample estimated parameters and regimes for the tick-by-tick Fisher-transformed (FT) realized
correlation series of S&P 500 and US Treasury Bond returns. The sample period is from January 1990 to March 2008, for
a total of 4,451 daily observations. RS&P 500 and t denote the past-lagged daily S&P 500 return and time, respectively.
Model-based bootstrap standard errors computed using 1,000 replications are given in parentheses.

In the first period (90–94) the level of the autocorrelation is very low and quickly decaying. In the second
period (94–98) the autocorrelation level and its persistence are even smaller. After the end of 1997 the
memory of the process rises further. Finally, after the structural break in July 2007 the persistence
significantly drops and the level of the autocorrelations becomes in most cases negative. This points to
significant differences in the memory persistence of the stock–bond correlation in the subperiods.

Another interesting effect shown in Figure 3 is how time structural changes affect the global autocor-
relation function computed on the full sample inducing an artificially high level in the autocorrelation
coefficients. This phenomenon is discussed in detail by Diebold and Inoue (2001). Nonetheless, even with-
out this structural break effect, the autocorrelation function of the realized correlation remains highly
persistent, at least in the 98- July 07 period.

Following the recent literature on stock–bond correlations, we allow for structural breaks depending on
a wide set of predictor variables, directly incorporated in a tree-HAR model specification. In addition to
time, we considered as predictors past-lagged US S&P 500 and bond returns and realized volatilities, and
past-lagged realized correlations at three different time horizons (daily, weekly, and monthly). The choice
of the predictor space is clearly not restricted to the above mentioned variables and/or time horizons.
One can think, for example, to use overnight returns squared, cross-products, or other relevant predictors
in the modeling approach. In our case, we found that the mentioned variables at the daily horizon were
the most informative ones to predict realized correlations. The results of this in-sample analysis are
shown in the next section.

3.2. Estimation results

The analysis starts by estimating the tree-HAR model (1)-(3) on the whole data sample (from January
1990 to March 2008). Estimated coefficients, as well as the estimated regimes, are reported in Table 1.
Classical model-based bootstrapped standard errors are given in parentheses (see Efron and Tibshirani,
1993).
Table 1 shows that almost all coefficients in the local dynamics of the conditional mean and variance of
the Fisher-transformed (FT) realized correlations (with only one exception) are highly significant. About
11% of the observations in our sample belong to the first regime, which is characterized by relative large
losses of the daily S&P 500 Index (i.e. larger than 1%), and therefore of the US stock market, for the time
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period preceding the US financial crisis started in the 2007 summer. In this regime the volatility of the
FT-correlations is moderately high and the conditional mean dynamics are highly persistent. Moreover,
the long-run mean is negative. This result supports and can be interpreted through the “flight-to-
quality” effect already cited several times in the literature; see for example, Ilmanen (2003). In this
regime characterized by bad stock market conditions, stocks and fixed-income assets tend to move in
opposite directions, suggesting the phenomenon of fleeing from stock to bond markets.

The second and third regimes are characterized by “relatively good” stock market conditions in the
time period preceding July 2007. Under such conditions, we identified a structural break in time at the
end of 1993. Before that date, FT-realized correlations are moderately persistent, the long-run mean
is positive and small, and volatility is also small. Such dynamics can be reasonably well associated
with stable economic and market conditions. On the contrary, after the end of 1993 the conditional
variance increases of approximately a factor of 2 (which corresponds to a 20% increase on the original,
non-transformed correlations), conditional mean dynamics of FT-realized correlations become highly
persistent, and the long-run mean drastically increases.

The last regime corresponds to the months following the 2007 summer in our data sample (i.e. 249
daily observations). This regime is characterized by extremely high volatility and a low persistence of
FT-realized correlations. Similarly to the first regime, the long-run mean becomes negative. The same
economic interpretations raised for regime 1 also apply to the final period in our sample.

The above described regime structure generates a large number of regime switches (from regime 1 and
2 before the structural break corresponding to the end of the year 1993, and from regime 1 and 3 after
that break) that hover around the 10% of the data, independent if we count it before or after the break.
The average duration of regime 1 before the end of 1993 is very short (around one day) and slightly
increases after the break (around 1.2 days). This means that on average correlations follow the regime
1 dynamics for a very short period, and then switch to another regime. There is only one period of 5
consecutive days where the local dynamics of the FT-correlations stay in the regime 1. Average duration
of regimes 2 and 3 are significantly higher; they are about 13 days and 8 days, respectively.

To end this section, we report the results of different goodness-of-fit statistics: the AIC and BIC
criteria, and the mean absolute errors (MAE), the mean squared errors (MSE), and Ljung-Box (LB)
tests at three different lags (5, 20, 50) for the residuals Ut in (1). For the purposes of comparison and
to empirically verify whether one of the two effects (i.e. long-memory and structural breaks) is more
important, we report the same statistics for different competitors introduced in the literature: the stan-
dard AR(1) model, the ARMA(1,1) model, the ARIMA(1,1,1) model introduced for non-stationary time
series, a Tree-AR(1) model in the spirit of Audrino and Trojani (2006), the classical HAR model pro-
posed by Corsi (2009), and a two-regimes Markov-switching HAR model (RS-HAR). The last comparison
is particularly useful to investigate the possible advantages of using the tree-HAR model specification
against a fair competitor that takes into account both long-memory and structural breaks. Results are
summarized in Table 2
The superior ability of models taking into account both long-memory and structural breaks (i.e. the
tree-HAR and the RS-HAR models) in estimating the dynamics of the FT-realized correlations is clearly
shown by the values of the different goodness-of-fit statistics. For all performance measures considered,
the tree-HAR or the RS-HAR models yield the best results. When neglecting to incorporate in the model
long-memory or the possible presence of structural breaks, the estimates obtained for the conditional
dynamics of the FT-realized correlations are highly inaccurate. Moreover, incorporating long-memory in
the model seems to be more important than allowing for regime-shifts (see the comparison between the
classical HAR model and the tree-AR(1) model).
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In-sample performance results

AIC BIC MAE MSE LB(5) LB(20) LB(50)

AR(1) 224.81 244.02 0.1794 0.0615 0 0 0
ARMA(1,1) −919.18 −893.58 0.1551 0.0475 0 0 0
ARIMA(1,1,1) −980.01 −954.40 0.1545 0.0469 0.0005 0 0.0014
Tree-AR(1) −905.30 −828.49 0.1650 0.0522 0 0 0
HAR −984.68 −952.67 0.1539 0.0468 0 0 0.0012
RS-HAR −1876.9 −1787.4 0.1532 0.0464 0.1205 0.0254 0.2196
Tree-HAR −1575.6 −1447.6 0.1523 0.0455 0.1081 0.0608 0.4333

Table 2: In-sample goodness-of-fit results for the tree-HAR model, in comparison with the classical AR(1), ARMA(1,1),
ARIMA(1,1,1) models, a tree-AR(1) model, the classical HAR model, and a two-regimes Markov-switching HAR model
(RS-HAR). Data are FT-realized correlations between January 1990 and March 2008, for a total of 4,451 daily observations.
The performance measure considered are the Akaike and Bayesian-Schwartz information criteria (AIC, BIC), and the mean
absolute errors (MAE), the mean squared errors (MSE), and p-values of standard Ljung-Box tests at three different lags of
the residuals.

3.3. Forecasting results

To better validate the usefulness of the tree-HAR model for the real data under investigation, we
examine its forecasting ability, and compare this with the alternative methods introduced in the last
section. We performed a series of out-of-sample tests to assess the forecasting power of the tree-HAR
model for single-period and multi-period predictions of S&P - US Bond FT-realized correlations. Re-
garding goodness-of-fit statistics, we again considered the out-of-sample MAE and MSE of the residuals.
In addition to these performance measures, we also report results for the out-of-sample log-likelihood
in equation (4) in the single-period out-of-sample test, and the multiple R2 obtained when regressing
realizations against forecasts at the same time t (Mincer-Zarnowitz regression).

3.3.1. Single-period forecasts

To derive the daily forecasts we used a rolling strategy. The models are re-estimated every month (22
trading days) using all past data available in the sample. The initial in-sample period is from January
1990 to December 1999. Consequently, we obtained 1,979 out-of-sample daily forecasts (until March
2008). Results are summarized in Table 3. p-values of superior predictive ability (SPA) tests introduced
by Hansen (2005) for the null-hypothesis that each model, taken as a benchmark, is not inferior to any
of the alternatives are given in parentheses.
The tree-HAR model yields the best results for two out of the four goodness-of-fit statistics considered;
with respect to the MSE statistic, the ARIMA(1,1,1) model is slightly better, and with respect to the
log-likelihood the RS-HAR model yields the best result. Differences measured by the MAE and MSE
statistics are in some cases very small and not statistically significant in the cases of the ARIMA(1,1,1),
HAR and tree-HAR models. Only models that do not take into account long-memory (i.e. the AR(1),
tree-AR(1), ARMA(1,1)) are clearly outperformed by the competitors. However, with respect to the
out-of-sample likelihood, the tree-HAR and the RS-HAR models yield significant improvements in the
accuracy of the FT-realized correlation forecasts over the competitors.

Summarizing, Table 3 suggests that when the focus of the analysis is daily forecasting, a simple
HAR model, or even the ARIMA(1,1,1) model, yields very accurate results. Small improvements can be
obtained when using more flexible models like the tree-HAR and the RS-HAR models. Improvements
will be sometimes only marginal, depending on the performance measure and the competitor.
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Single-period forecasting results

Model Loglik. MAE MSE R2

AR(1) 418.20 (0) 0.2031 (0) 0.0811 (0) 0.3747
ARMA(1,1) 78.04 (0.014) 0.1696 (0.137) 0.0595 (0.011) 0.4758
ARIMA(1,1,1) 59.46 (0.033) 0.1685 (0.469) 0.0585 (0.897) 0.4814
Tree-AR(1) 168.37 (0) 0.1948 (0) 0.0801 (0) 0.3899
HAR 70.73 (0.009) 0.1683 (0.658) 0.0589 (0.366) 0.4779
RS-HAR −102.03 (0.813) 0.1689 (0.343) 0.0586 (0.685) 0.4815
Tree-HAR − 99.31 (0.617) 0.1676 (0.700) 0.0586 (0.433) 0.4823

Table 3: Comparative results of one day forecasts of S&P 500 US bond FT-realized correlations obtained using the classical
AR(1), ARMA(1,1), ARIMA(1,1,1) models, a tree-AR(1) model, the standard HAR model, a two-regimes Markov-switching
HAR model, and the tree-HAR model. The forecasting time period is between January 2000 and March 2008, for a total of
1,979 daily observations. Out-of-sample forecasts are computed using a rolling strategy: the models are re-estimated every
month (22 days) using the whole past information in the data sample. Performance is measured according to the out-of-
sample log-likelihood (Loglik.), mean absolute errors (MAE) and mean squared errors (MSE) of the residuals, and multiple
R2 obtained when regressing realizations against forecasts at the same time t (Mincer-Zarnowitz regression). Values in
parentheses are reported p-values of superior predictive ability (SPA) tests for the null-hypothesis that each model (taken
as a benchmark model) is not inferior to any of the alternatives.

3.3.2. Multi-period forecasts

Practical asset allocation applications typically require correlation forecasts at longer time horizons.
Therefore, we performed two out-of-sample tests at weekly (that is, five days) and monthly (that is, 22
days) horizons to assess the accuracy of the multi-period forecasts obtained using the different approaches.
Such multi-period predictions are constructed using filtered historical simulation (FHS); see Barone-Adesi
et al. (1998, 1999). FHS is a common, non-parametric version of the classical historical (Monte Carlo)
simulation, where the new shocks are taken from the observed, empirical distribution of the fitted residuals
(and not from a a-priori assumed theoretical distribution). Briefly, FHS works as follows. We generate
10,000 future scenarios at 5 (22) days horizons, bootstrapping the residuals estimated from the different
models. Here, we considered the stationary bootstrap of Politis and Romano (1994) to account for the
possible remaining autocorrelation in the residuals (see especially the Ljung-Box test results given in
Table 2). Modification of the implementation to the block bootstrap of Künsch (1989) is straightforward.
The forecast for the 5 (22) days ahead FT-realized correlation is then given by the median of the empirical
distribution of the simulated future scenarios.

As in the previous out-of-sample experiment, we used the same rolling strategy and initial in-sample
period. Results are summarized in Table 4. Again, p-values of SPA tests are reported in parentheses.
The better forecasting power of the tree-HAR model with respect to all competitors for multi-period
predictions is borne out by the results of the SPA tests. Especially for longer-time ahead forecasts (that
is, 1 month), the predictions obtained using the tree-HAR model outperform those gleaned from the
alternative approaches. Gains over the other competitors are, in most cases, statistically significant.

4. Conclusions

Combining realized covariances with realized volatilities, we obtained a realized correlation measure
where both the volatilities and the covariances are computed from tick-by-tick data. We then propose a
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Multi-period forecasting results: one week horizon

Model MAE MSE R2

AR(1) 0.3249 (0) 0.1777 (0) 0.1555
ARMA(1,1) 0.1895 (0.019) 0.0753 (0.004) 0.3603
ARIMA(1,1,1) 0.1874 (0.432) 0.0721 (0.034) 0.3731
Tree-AR(1) 0.2629 (0) 0.1553 (0) 0.0057
HAR 0.1874 (0.479) 0.0731 (0.041) 0.3649
RS-HAR 0.1888 (0.025) 0.0743 (0.033) 0.3633
Tree-HAR 0.1844 (0.891) 0.0702 (0.860) 0.4129

Multi-period forecasting results: one month horizon

Model MAE MSE R2

AR(1) 0.4514 (0) 0.3111 (0) 0.0199
ARMA(1,1) 0.2422 (0) 0.1175 (0) 0.1549
ARIMA(1,1,1) 0.2265 (0.002) 0.1012 (0.026) 0.1919
Tree-AR(1) 0.2962 (0) 0.1878 (0) 0.0049
HAR 0.2243 (0.049) 0.1023 (0.022) 0.1845
RS-HAR 0.2304 (0.001) 0.1072 (0.001) 0.1840
Tree-HAR 0.2163 (0.781) 0.0960 (0.545) 0.2394

Table 4: Comparative results of one week and one month forecasts of S&P 500 – US 30-years Treasury Bond FT-realized
correlations obtained using the classical AR(1), ARMA(1,1), ARIMA(1,1,1) models, a tree-AR(1) model, the standard HAR
model, a two-regimes Markov-switching HAR model, and the tree-HAR model. The forecasting time period is between
January 2000 and March 2008. Out-of-sample forecasts are computed using a rolling strategy: the models are re-estimated
every month (22 days) using the whole past information in the data sample. Performance is measured according to the
mean absolute errors (MAE) and mean squared errors (MSE) of the residuals, and multiple R2 obtained when regressing
realizations against forecasts at the same time t (Mincer-Zarnowitz regression). Items in parentheses are reported p-values
of superior predictive ability (SPA) tests for the null-hypothesis that each model (taken as a benchmark model) is not
inferior to any of the alternatives.

tree-HAR model as a simple and parsimonious representation for the conditional dynamics of the (Fisher-
transformed) realized correlations. The tree-HAR model is able to take into account two important
stylized facts of realized correlations: strong temporal dependence (that is, long-memory) and structural
breaks.

We estimated the tree-HAR model on the realized correlation series of S&P 500 and US bond re-
turns, finding empirical evidence that the conditional dynamics are subject to regime changes depending
on different values of past S&P 500 daily returns. We also identified two structural breaks in time,
corresponding to the end of 1993 and the summer of 2007.

We then tested the prediction accuracy of the model using SPA tests for different goodness-of-fit
statistics finding empirical evidence of its strong predictive power. The tree-HAR model significantly
outperforms the competitors, particularly when the final goal is multi-period forecasting.

Our study can be generalized along different directions. Given the central role of stock-bond correla-
tions in many practical financial problems, a natural extension of this study is to evaluate the tree-HAR
predictions using some economically relevant loss functions, such as portfolio performance and trading
strategies, risk-management (i.e. Value-at-Risk and Expected Shortfall), and option pricing. Although in
this study we restricted our focus on the very simple US stock-bond bivariate application to compare our
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results to those already found in the literature, the same methodology can be generalized to other, more
structured multivariate case studies. Achieving this goal will require the construction of valid positive
definite tick-by-tick realized covariances and correlations matrix (which is, however, still an active area of
ongoing research, see, for example, Barndorff-Nielsen et al., 2008) together with a proper generalization
to the multivariate setting of the tree-structured thresholds model (as the one proposed in Audrino and
Trojani, 2007).

Moreover, the model proposed in this study (i.e. the tree-HAR model) to estimate and forecast the
dynamics of realized conditional correlations may be used as a starting model to develop further improve-
ments. In particular, forecasts from the tree-HAR model can be combined with other model forecasts
or can be improved by using machine learning methodologies (for instance, bootstrap aggregating). The
tree-HAR model itself can be generalized to be able to take into account also smooth transitions across
regimes. These and other investigations are left for future research.
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