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Abstract

This paper presents two classes of tick-by-tick covariance estimators adapted to the

case of rounding in the price time stamps to a frequency lower than the typical arrival

rate of tick prices. Through Monte Carlo simulations we investigate the behavior of such

estimators under realistic market microstructure conditions analogous to those of the

financial data examined in this paper’s empirical section, that is, non-synchronous trad-

ing, general ARMA structure for microstructure noise, and true lead-lag cross-covariance.

Simulation results show the robustness of the proposed tick-by-tick covariance estimators

to time stamp rounding, and their overall performance is superior to competing covari-

ance estimators under empirically realistic microstructure conditions. These results are

confirmed in the empirical application where the economic benefits of the proposed esti-

mators are evaluated with volatility timing strategies applied to a bivariate portfolio of

S&P 500 futures and 30-year US treasury bond futures.

JEL classification: C13; C22; C51; C53

Keywords: High frequency data; Realized covariance; Market microstructure; Bias

correction; Portfolio selection; Volatility timing.
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1 Introduction

Asset return covariance plays a prominent role in many important theoretical as well as prac-

tical problems in finance. Analogous to the realized volatility approach (Andersen, Bollerslev,

Diebold, and Labys, 2001, 2003,; Barndorff-Nielsen and Shephard, 2001, 2002a, 2002b, 2005;

Comte and Renault, 2001), the idea of employing high frequency data in the computation

of daily (or lower frequency) covariance between two assets leads to the concept of realized

covariance (or covariation).

The standard way to compute realized covariance is to choose a time interval, construct

an artificially regularly spaced time series by using an interpolation scheme, and then take

the contemporaneous sample covariance of those regularly spaced returns. However, simula-

tions and empirical studies indicate that such a covariance measure is biased toward zero and

rapidly increases with the reduction of the time length of the fixed interval chosen. Similar

to the construction of realized volatility, the presence of market microstructure can induce

significant bias in the standard realized covariance measure, but the microstructure effects

responsible for this bias are different. Bid-ask bouncing, the major source of bias for the

realized volatility, will merely increase the variance of the covariance estimator, but it will not

induce any bias. By contrast, the so-called non-synchronous trading effect (Lo and MacKinlay,

1990) strongly affects the estimation of the realized covariance and correlation. Because the

sampling from the underlying stochastic process is different for different assets, assuming that

two time series are sampled simultaneously (when the sampling is non-synchronous) gives rise

to the non-synchronous trading effect. As a result, covariances and correlations measured with

high frequency data will possess a bias toward zero that increases as the sampling frequency

increases. This dramatic drop of the absolute value of correlations among stocks when in-

creasing the sampling frequency was first reported by Epps (1979). Since then, this effect has

been confirmed by many other authors using real data and simulations, such as Dacorogna

and Lundin (1999), Renó (2003), and Martens (2004). Various estimators have been proposed

that try to correct for this bias using regularly interpolated returns: see, for example, Scholes

and William (1977), Cohen et al. (1983) and Lo and MacKinlay (1990).

Instead, an unbiased tick-by-tick realized covariance estimator that does not rely on any

3



interpolation scheme, has been proposed and formally analyzed under the assumption of no

microstructure noise by Hayashi and Yoshida (2005).1 This estimator was recently investigated

by Palandri (2006), Voev and Lunde (2007), Hautsch et al. (2009), and Griffin and Oomen

(2011).

The application of the Hayashi and Yoshida estimator requires precise knowledge of the

time stamps of every tick. Unfortunately, the time stamps of tick-by-tick data are often

rounded at some minimum time frequency (one second or one minute). Depending on the

liquidity of the asset, it is possible (and very likely, especially for the one-minute rounding)

that a sequence of successive prices will be recorded with identical time stamps. For exam-

ple, important databases that use this type of format include the index, bond gold and oil

futures from Price-data.com (an example of which is shown in Table 1) and Tickdata.com and

individual stocks, index futures, and options from the Nikkei Needs tick database.

Insert Table 1 about here

For tick-by-tick realized volatility computation, this time stamp rounding does not pose

any problems as long as the true order of the prices is preserved. However, for tick-by-tick

realized covariance, even if the order of the prices is kept for each asset, the rounding of the

time stamps precludes the knowledge of the correct time ordering among the ticks of the two

series inside the minimum time interval, which is a necessary condition for the application of

the Hayashi and Yoshida tick-by-tick estimator.

This paper proposes two tick-by-tick covariance estimators adapted to the case of rounding

in the price time stamps: the First–Last and the Needlework estimators. Although the time

stamp rounding induces a natural calendar time grid, these methods may be seen as a general

way of computing Hayashi and Yoshida type estimators at any given lower frequency, thus

considerably extending the applicability of the proposed estimators and improving accuracy

in presence of strong market microstructure noise.

We investigate, through Monte Carlo simulations, the behavior of the thus modified tick-

by-tick estimators under a variety of market microstructure structures and under conditions

1This also independently appeared (in a much less formalized version) in Martens (2004) as a simple, more

efficient version of the De Jong and Nijman estimator in the absence of true lead-lag cross-covariance.
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analogous to those of the financial data studied in the empirical section of this paper. In

particular, we consider non-synchronous trading, a wide range of different levels of noise to

signal ratio, general ARMA structure for the microstructure noise, and true lead-lag cross-

covariance. Our main finding is that the proposed tick-by-tick estimators clearly outperform

several different alternatives proposed in the literature.

This finding is confirmed in the empirical application where, in the spirit of the methodol-

ogy suggested by West et al. (1993) and Fleming et al. (2001, 2003), we compare the utility

level obtained by different variance-covariance estimators in the context of portfolio alloca-

tion. We find that a risk-averse investor who uses a conditional mean-variance optimization

rule to reallocate funds daily across stocks (S&P 500) and bonds (30–year US Treasury bond)

always reaps an economic gain by switching from standard covariance estimators to the two

tick-by-tick covariance estimators proposed. Often such economic gain is substantial.

The remainder of the paper is organized as follows: Section 2 describes the classical tick-by-

tick realized covariance estimator introduced in the literature. Section 3 defines the modified

tick-by-tick estimators adapted to the case of rounded time stamps. Section 4 shows the

results of realistic Monte Carlo simulations, and Section 5 presents the empirical application

where the economic benefits of the proposed estimators are evaluated with volatility timing

strategies applied to the bivariate portfolio of S&P 500 futures and 30-year US treasury bond

futures. Section 6 summarizes and concludes.

2 Realized covariance tick-by-tick

Contrary to standard approaches, the tick-by-tick realized covariance estimator does not rely

on the construction of a regular grid since it is based on the whole tick-by-tick raw data

series. This approach has the twofold advantage of exploiting all the information available in

the data and the ability to avoid the bias toward zero of the realized covariance. The non-

synchronous trading effect produces a bias in the usual covariance measure as a consequence

of the synchronization of the two series, that is, as a consequence of the construction of a

regular grid in physical time.

The bias of the covariance estimator based on fixed interval returns can be seen as arising
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from two distinct effects. First, the absence of trading on one asset in a certain interval

produces a zero return for that interval and then artificially imposes a zero value on the

cross-product of returns producing a bias toward zero in the realized covariance (which, in

its standard version, is simply the sum of those cross-products). Second, the construction

of a regular grid, depending on the frequency of tick arrivals, affects the computation of the

realized covariance. For more liquid assets with higher average arrival rates, the last tick to

fall in a certain grid interval is typically much closer to the end point of the grid compared to

that of a less liquid asset. Any difference in the time stamps between these last ticks in the

grid for the two assets will correspond to a portion of the cross-product returns, which will

not be accounted for in the computation of the covariance. This occurs because, for the more

liquid asset, the (unobserved) returns corresponding to this time difference will be imputed to

the current grid interval; while for the less liquid asset, this portion of returns will be ascribed

to the next grid interval, so that the two will no longer be matched and their contribution

to the cross-product’s sum will be lost (see Figure 1). This lost portion of covariance in each

interval also produces a bias towards zero in the realized covariance computed with a regular

grid, a bias that will also increase with the number of intervals and hence with the frequency.

Insert Figure 1 about here

Under the assumption of efficient markets (that is, markets that have no leads and lags

cross-covariance between the true latent efficient price of the two assets) and no microstructure

effects, Hayashi and Yoshida (2005) formally proved that an unbiased and consistent covariance

estimator can be computed simply by summing all the cross-products of returns that have a

non-zero overlapping of their respective time span. In other words, a given tick-by-tick return

on one asset is multiplied with any other tick-by-tick return of the other asset that has a

non-zero overlap in time, that is, which shares (even for a very small fraction) the same time

interval.

Analytically, given a standard continuous time process for asset j

dpj(t) = µj(t)dt+ σj(t)dWj(t), (1)

where dWj(t) is a Wiener process, and discrete price observations {pj(nj,q)}q=0,1,2,··· ,M at
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times nj,q with associated tick returns

rj,q = pj(nj,q)− pj(nj,q−1) (2)

the Hayashi and Yoshida realized covariance estimator for two assets i and j and a given time

interval t (for example one day), is defined as:

RCt =

Mi,t
∑

s=1

Mj,t
∑

q=1

ri,s rj,q I(δq,s > 0) (3)

with Mi,t + 1, and Mj,t + 1 the total number of ticks on time interval t for asset i and j

respectively, I(·) the indicator function, and

δq,s = max(0,min(ni,s, nj,q)−max(ni,s−1, nj,q−1)) (4)

the overlap in time between any two tick returns ri,s and rj,q.

The Hayashi and Yoshida estimator is unbiased because no portion of covariance will be

lost; while the portion of cross-product that does not overlap will have zero mean. Avoiding

the noise and the discarding of price observations caused by the regular grid interpolation will

considerably reduce the variance of the estimator. Nevertheless, in the presence of a fixed

amount of market microstructure noise and under the assumption of no cross-correlated noise

structures, the estimator in this form will not be consistent because, although unbiased, its

variance will diverge as the number of observations tends to infinity.

The Hayashi and Yoshida estimator, as any other covariance estimator applied bivariately

to a large dataset, will not provide a variance–covariance matrix which is guaranteed to be

positive definite. In fact, estimation error on the elements of the covariance matrix implies

that the largest sample eigenvalues of the matrix are biased upwards, while the smallest ones

are biased downwards. Then, in some cases, the smallest eigenvalues can become negative so

that the matrix will no longer be definite positive. To recover the positive definitiveness one

could apply a spectral decomposition and impose positivity to all the eigenvalues. Another

general and convenient way to address this problem would be through the so called shrinkage

estimator proposed by Frost and Savarino (1986) and Ledoit and Wolf (2003, 2004a, 2004b)

which also reduces the variance-covariance matrix estimation error (see Corsi, 2005, for the

application of shrinkage to tick–by–tick realized covariance matrices with a flexible target

matrix and an asset dependent shrinkage intensity depending on the number of ticks).
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3 Realized covariance with rounded time stamps

We propose simple modified tick-by-tick estimators designed to overcome or alleviate the

imprecise time stamps problem discussed above that renders the application of the Hayashi

and Yoshida realized covariance estimator unfeasible. In order to define them, we first establish

the following notation. Time stamps are discretized on a regular grid τ = {h∆}h=1,2,...,H where

∆ is the rounding frequency (one minute on our data):

n
(F )
j,τ ≡ min

q
{nj,q : nj,q ≥ τ − 1} and n

(L)
j,τ ≡ max

q
{nj,q : nj,q ≤ τ} (5)

p
(F )
j,τ ≡ pj

(

n
(F )
j,τ

)

and p
(L)
j,τ ≡ pj

(

n
(L)
j,τ

)

(6)

so that p
(F )
j,τ is the first and p

(L)
j,τ is the last price inside the time interval τ with identical time

stamps.

For each asset we also define two tick-types of return series:

r
(F )
j,τ = p

(F )
j,τ − p

(F )
j,τ−1 and r

(L)
j,τ = p

(L)
j,τ − p

(L)
j,τ−1 (7)

one is constructed only from p
(F )
τ (for any τ) and the other one is constructed using only p

(L)
τ .

These two returns series can be seen as the returns of two different regular grid interpola-

tion schemes: one using next-tick interpolation r
(F )
j,τ and the other employing previous-tick

interpolation r
(L)
j,τ .

3.1 The First–Last estimator

The first estimator we propose to overcome the problem due to rounded time stamps in the

data combines the two different interpolation schemes (previous and next tick), introduced

above, in the following way:

FLt =
1

2







M
(F )
i,t

∑

s=1

M
(L)
j,t

∑

q=1

r
(F )
i,s r

(L)
j,q I(δq,s > 0) +

M
(L)
i,t

∑

s=1

M
(F )
j,t

∑

q=1

r
(L)
i,s r

(F )
j,q I(δq,s > 0)






. (8)

It can be seen as the average of two Hayashi and Yoshida-type estimators: one applied to the

return series constructed with next-tick interpolation (that is, taking the first tick) for the

first series and previous-tick interpolation (which considers the last tick) for the second series

(see Figure 2), and doing exactly the contrary for the second estimator. We call this realized

covariance estimator the First–Last tick-by-tick covariance estimator.
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Insert Figure 2 about here

The reason we only consider the first p
(F )
τ and last p

(L)
τ price tick inside each bin is that

among these type of ticks we can most reasonably ascertain their correct order (by assuming

only that n
(F )
i,τ < n

(L)
j,τ and n

(F )
j,τ < n

(L)
i,τ ) and maximize the time overlap between the corre-

sponding return intervals.

As long as n
(F )
i,τ < n

(L)
j,τ and n

(F )
j,τ < n

(L)
i,τ , and assuming no correlated noise structures, the

two Hayashi and Yoshida-type of estimators in the First–Last are unbiased. Since it is the

average of two Hayashi and Yoshida estimators, the First–Last estimator clearly has the same

statistical properties as the Hayashi and Yoshida one; in particular, it is unbiased and, in the

absence of market microstructure noise, consistent as ∆ → 0 and H → ∞ (for details see

Hayashi and Yoshida, 2005 and Griffin and Oomen, 2011).

To improve the asymptotic properties of the estimators in the presence of market mi-

crostructure noise, we apply the methodology introduced by Zhang et al. (2005) based on

sub–sampling, that is averaging the estimators obtained by considering several different sub-

grids (i.e. so-called subsamples) of the original grid for some determined average size H , with

H ≤ H .2

In more details, let us assume that the original grid τ is partitioned in K non-overlapping

subgrids τ (k), k = 1, . . . , K, where the natural way to choose the kth subgrid τ (k) is

τ (k) = {k∆, (k +K)∆, (k + 2K)∆, . . . , (k + (Hk − 1)K)∆},

where Hk is the integer making (k+HkK)∆ the last element of τ (k). We let Hk be the number

of the observations in the subgrid τ (k). In general Hk need not to be the same across k. Let

us denote the sub-sampled version of the FLt estimator as

FL
(sub)
t =

1

K

K
∑

k=1

FL
(k)
t (9)

where FL
(k)
t is the First-Last estimator constructed on the subgrid τ (k).

By combining tick–by–tick features of Hayashi and Yoshida with features of calendar time

sampling, the First–Last estimator provides a way to sub–sampling the Hayashi and Yoshida

2For a general theory and application of the sub–sampling scheme see also Kalnina (2010).
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estimator in presence of rounded time stamps. This mixed tick–time/calendar time feature

permits to extend the applicability of the proposed estimator since it could be applied not only

to the calendar time grid naturally induced by rounding, but to any selected time grid. For

example, by setting K = 30 we would estimate realized covariance using data on a 30-minute

grid.

Under standard regularity assumptions on the price processes (1) and on the multivariate

volatility process, the proposed FL
(sub)
t estimator achieves consistency even in the presence

of microstructure noise, that is the FL
(sub)
t estimator converges in probability to the true

unknown integrated covariance as ∆ → 0, H → ∞, and H
K

→ ∞. In fact, using a different

aggregation scheme, Palandri (2006) and Voev and Lunde (2007) show that under the assump-

tion of i.i.d. microstructure noise the sub–sampling of Hayashi and Yoshida over a number

of subgrids that grows proportionally with the number of observations achieves consistency

of the estimator by balancing between the discretization and noise errors (as in Zhang et al.

2005). Sub–sampling has also the practical consequence of improving on the estimation ac-

curacy when market microstructure noise becomes large relative to the volatility signal of the

true price (i.e. for large values of noise to signal ratios).

Although no problems are apparent in the empirical application, in theory it can occur

that n
(F )
i,τ > n

(L)
j,τ or n

(F )
j,τ > n

(L)
i,τ . In this case, the First–Last estimator may still suffer an

attenuation bias. A simple solution would be to skip one time stamp. Consequently, however,

we would further reduce the frequency and the number of employed returns, diminishing the

precision of the estimator in presence of low noise to signal levels. An alternative approach to

overcome this problem is proposed in the next section.

3.2 The Needlework estimator

Consider the “cross-bins” tick returns:

r
(LF )
j,τ+1 = p

(F )
j,τ+1 − p

(L)
j,τ (10)

and the standard last-tick interpolation returns r
(L)
j,τ to compute:

Needleworkt =

M
∑

τ=1

r
(L)
i,τ r

(L)
j,τ + r

(L)
i,τ r

(LF )
j,τ+1 + r

(L)
j,τ r

(LF )
i,τ+1 (11)
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We call this realized covariance estimator the Needlework tick-by-tick covariance estimator.

Exactly the same idea can be applied to the first-tick interpolation.

The intuition behind this construction is (see Figure 3):

Insert Figure 3 about here

The lost portion of covariance (given by the time difference of the last ticks in the two series)

is considered in one of the two cross-products with the cross-bin returns. The other cross-

product will be ineffective, but since we do not know the time order between the last two

returns of the two series, both cross-bin returns must be included to ensure coverage of the

lost portion of covariance induced by the interpolation. This method may be seen as a general

way of correcting standard interpolation schemes and could then be used whenever one wants

to compute standard realized covariance at any given time interval. In fact, although the time

stamp rounding induces a natural calendar time grid (for instance at the one minute interval),

any lower frequency can be considered and the estimator computed with the sub–sampling

method previously described. As already mentioned, this ensures consistency and extends the

applicability of the estimator.

Using a sub-sample of the total number of ticks employed by the Hayashi and Yoshida

estimator, we can expect the Needlework and the First–Last tick-by-tick estimators to be

less efficient in the absence of microstructure noise or with low level of noise to signal ratio.

Nevertheless, these forms of sub–sampling of the Hayashi and Yoshida estimator, could help

in the presence of a significant level of market microstructure noise (as suggested by Palandri,

2006, and Voev and Lunde, 2007). Moreover, as the simulation results summarized in the

next section show, it could also help to correct for the significant bias towards zero empirically

found in the Hayashi and Yoshida estimator for highly liquid assets (see Griffin and Oomen,

2011) produced by the empirical presence of lead-lag cross-covariance (assumed to be zero in

Hayashi and Yoshida, 2005).

The efficiency of the proposed estimators in the presence of microstructure noise will depend

on the characteristics of the data. Thus, their asymptotic and finite sample properties will

be hard to compute analytically. In order to assess the efficiency of the modified tick-by-tick

estimators on empirical data, we perform a simulation study in which the data generating
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process (DGP) mimics (as closely as possible) the econometric properties of the two empirical

series we investigate in our real data application. The parameters are chosen to match (as

closely as possible) the empirical observation frequencies, level of volatilities, noise structures,

and intensities.

4 Monte Carlo simulations

In this section we evaluate the performance of different covariance estimators in three different

simulation environments. In the first, we consider i.i.d. microstructure noise (standard setting)

over a wide range of values of the noise to signal level, which is the key parameter affecting

simulation results (as also reported in Griffin and Oomen, 2011); in the second environment

we closely reproduce the complex dependence structure of the microstructure noise observed

in the empirical data; in the third one, we generalize the simulation conditions to consider the

empirically relevant effect of significant lead-lag cross-covariance.

4.1 Standard setting

The data generating process we consider here is a Lo and MacKinlay (1990) non-synchronous

trading model with a heteroskedastic factor and microstructure noise, calibrated on our em-

pirical data set. Our data is more than 18 years’ tick-by-tick bivariate series of S&P 500 and

30-year US treasury bond futures with time stamps rounded to one minute.

The Lo and MacKinlay model defines the true return of an asset as given by a single factor

model. Hence, considering two assets, the virtual continuously compounded return (here we

consider return intervals of one second) ri,t is given by:

ri,t = µi + βift + εi,t i = 1, 2 (12)

where βi is the factor loading of asset i, εi,t represents the idiosyncratic noise of asset i, and

ft is the zero mean common factor.

Assuming that the idiosyncratic noises ε1,t and ε2,t are mutually uncorrelated, and that

both are uncorrelated with the common factor ft, the true covariance between the two assets
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is:

σ1,2,t = β1β2σ
2
f,t (13)

where σ2
f,t is the variance of the common factor ft.

In the Lo and MacKinlay model, the common factor f is assumed to be a simple ho-

moskedastic process; hence the variance of f is a constant σ2
f . Consequently, the true covari-

ance also remains constant. In the version adopted here, however, in order to increase the

realism of the DGP and to allow the true covariance to be time-varying, the dynamics of the

common factor f are assumed to follow a discretized version (at the Euler clock of one second)

of the stochastic volatility model proposed by Heston (1993)

dft =
(

µ−
vt
2

)

dt+ σf,t dBt (14)

dvt = k(α− vt)dt+ γv
1/2
t dWt (15)

where vt = σ2
f,t and the initial value v0 is drawn from the unconditional gamma distribution

of v.

In the Lo and MacKinlay model the prices are assumed to be observed with a certain

probability 1− πi, where πi is the so-called non-trading probability. We found it more conve-

nient to express the frequency of the price observations in terms of the corresponding average

intertrade duration between ticks τi.
3

The values of the average intertrade durations and volatilities are chosen to match the

statistical properties observed in the empirical data. Therefore, with asset 1 mimicking the

S&P and asset 2 the US bond, the following configuration of the parameters is chosen: τ1 = 8

seconds, τ2 = 18 seconds, an average annualized volatility of about 20 percent for asset 1 and

10 percent for asset 2, and a correlation of 30 percent between the two assets. Time stamps

of the observed prices are rounded at the one-minute level.

Each time a price is observed we simulate market microstructure effects by adding a sta-

tionary noise component independent of the price process. In this section we consider standard

i.i.d. market microstructure noise whose variance is varied so to obtain a wide range of noise

3For example, a non-trading probability of 90 percent corresponds to an exponential distribution of the

intertrade duration with a mean value of 10 seconds. In our data the average intertrade duration is eight

seconds for the S&P return series and 18 seconds for the US bond return series.
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to signal ratios for the observed returns process4 (which, in this analysis, are set to be equal

for both assets). We then investigate the performances of realized covariance estimators for

noise to signal values ranging from zero (no microstructure noise) to three (extremely high

level of microstructure noise).

In our simulation study we compare the following realized covariance measures:

• The proposed First–Last estimator and its sub–sampled version. For each noise–to–

signal ratio we select, through a grid search over integer numbers, the degree of sub–

sampling K which minimize the root mean square error of the estimator.

• The proposed Needlework estimator and its sub–sampled version with optimized sub–

sampling K.

• The Hayashi and Yoshida estimator described in Section 2. Being unfeasible on rounded

time stamps, in our simulations setting this tick–by–tick estimator is computed before

performing the time stamp rounding, that is, differently from all the other estimators,

it is always computed on the exact time stamps.

• The standard realized covariance computed with an interpolated regular grid of one-

minute returns.

• The standard realized covariance computed with a fixed return time interval of five

minutes.

• The Scholes and William (1977) covariance estimator, which adds to the contemporane-

ous sample covariance of fixed interval returns, one lead-lag cross-covariance. To improve

the performance of this estimator we choose the frequency of the fixed interval returns

that provides the best results in terms of the root mean squared errors (RMSE). In our

simulation set-up, such an optimal frequency is approximately one minute.

• The estimator proposed by Cohen et al. (1983), which is a simple generalization of the

Scholes and Williams estimator where more than one lead and lag are considered. As

in Bollerslev and Zhang (2003), we compute the Cohen et al. estimators with 12 leads

4As defined in Oomen (2006).
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and lags at the 10-second frequency, which was the better performing choice given our

simulation set-up.

• The Lo and MacKinlay estimator, given by:

σ̂1,2 =
1− π̂1π̂2

(1− π̂1)(1− π̂2)
Cov

[

rs1,t, r
s
2,t

]

(16)

where Cov
[

rs1,t, r
s
2,t

]

is the covariance between the observed one-second returns rsi,t. Con-

trary to the highly noisy non-trading probability estimation proposed by Lo and MacKin-

lay, where π̂1 = Cov
[

rs1,t, r
s
2,t+1

]

/Cov
[

rs1,t, r
s
2,t

]

(π̂2 is defined in an analogous way), we

estimate those probabilities by counting the observed number of ticks in each day and

dividing that by the total number of seconds in the day.

• The Two-Scale covariance estimator recently proposed by Zhang (2011) which is designed

to simultaneously correct for the Epps effect and the microstructure noise. We follow

Zhang (2011) recommendation of selecting a sub–sampling frequency for the slower time

scale “large enough”, by choosing it equal to 10.

Insert Table 2 about here

Table 2 reports the performance results, measured in terms of root mean square error

(RMSE), of the different estimators. The simulated data are generated with standard i.i.d.

microstructure noise and noise–to–signal ratios of 0, 0.5, 1, . . . , 3. For noise–to–signal ratios

lower than one, the best estimator is the unfeasible Hayashi and Yoshida, followed by the

First-Last and Needlework estimators with no sub–sampling (i.e. K = 1). We then have the

Scholes and William and Cohen et al. lead lag estimators, the one minute and five minute

standard realized covariance estimators and finally, with a much larger RMSE, the Two-Scale

covariance estimator and the Lo and MacKinlay one.

For noise–to–signal ratio between one and two, however, the proposed First–Last and

Needlwork estimators show RMSE smaller than that of the Hayshi and Yoshida estimator

which starts to show an increasing bias. The rank of the other estimators remain the same

beside that the five minute covariance now outperforms the one minute estimator. The op-

timal degree of sub–sampling K remains equal to 1 (i.e. no sub–sampling) up to a level of
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noise–to–signal equal to one for the Needlework and equal to two for the First–Last. It thus

seems that the Needlework estimator requires a higher degree of sub–sampling than the First–

Last, probably because it employs a larger number of cross–returns (each cross–return being

contaminated by microstructure noise). However, the final performance with the optimal de-

gree of sub–sampling is similar between the two estimators, although the First–Last seems to

perform generally slightly better.

For large level of microstructure noise, i.e. noise–to–signal level larger than two, the Hayshi

and Yoshida starts to be very biased and imprecise, and again the best estimators are the sub–

sampled version of the First–Last and Needlework, although with different degree of optimal

sub–sampling between the two (the Needlework being about double that of the First–Last).

It is interesting to note that, contrary to the other estimators, the RMSE of the Two-Scale

covariance tends to increase very little with the increase of noise–to–signal ratio, becoming

competitive for very large noise–to–signal levels.

Summarizing the results of this first simulation analysis, we found that the proposed esti-

mators outperform all the other feasible estimators for any level of noise–to–signal ratio, and

they even outperform the unfeasible Hayashi and Yoshida for noise–to–signal levels larger than

one. Moreover, we found that sub–sampling becomes increasingly useful for noise–to–signal

ratio of 1.5 and larger, and, as a rule of thumb, the First–Last has an optimal degree of sub–

sampling about equal to the noise–to–signal ratio while the one of the Needlework is about

two times the noise–to–signal ratio.

4.2 Empirically realistic microstructure noise

From the empirical study of the tick-by-tick series of those assets, we found significant de-

parture from the standard independent and identically distributed random variables (i.i.d.)

assumption on the structure of the market microstructure noise. Through study of the auto-

correlation of the tick returns of those series, more complex structures than those of a simple

MA(1) expected under the standard i.i.d. assumption were found.

Insert Figure 4 about here
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We suggest that such autocorrelation patterns of the tick returns could be explained by

assuming a more complex ARMA structure for the microstructure noise. The noise structure

is closely reproduced (see Figure 4) by introducing an MA(2) for the asset 1, mimicking the

S&P 500 with θ1 = 0.85, θ2 = 0.25 and a noise-to-signal ratio of 0.45, and a strong oscillatory

AR(1) with φ1 = −0.65 and noise-to-signal ratio of 0.6 for the asset 2 corresponding to the

US bond.

Figure 5 and Table 3 report the results of the 25,000 simulations.

Insert Table 3 about here

Insert Figure 5 about here

With these observation frequencies, the one-minute realized covariance is slightly biased.

By contrast, the five-minute realized covariance is unbiased, but has a larger variance. Same

performances are observed for the Two-Scale covariance estimator. Despite the direct esti-

mation of the non-trading probabilities, the Lo and MacKinlay estimator (though unbiased)

is extremely inaccurate, also with this type of market microstructure noise. With chosen fre-

quencies, both the Scholes and Williams and the Cohen et al. estimators are almost unbiased

and reasonably accurate. However, the better ones are the tick-by-tick covariance estima-

tors having no bias and the smallest dispersion among the estimators considered. With this

moderate level of microstructure noise, the First–Last and Needlework estimators turn out

to be less precise than the Hayashi and Yoshida one, which is unfeasible in the presence of

rounded time stamps. This loss of efficiency is a direct consequence of the lower number of

ticks employed in constructing the estimator. Nevertheless, differences from the Hayashi and

Yoshida estimator are small. The First–Last and the Needlework estimators remain superior

to all other feasible classical covariance estimators.

4.3 Lead–lag cross–covariances

An important empirical feature recently found by Griffin and Oomen (2011) is that financial

high frequency data (especially more liquid data) show the presence of positive and significant

lead and lag cross-covariance. As suggested by these authors, cross-dependence between non-

overlapping returns can be due to non-instantaneous price adjustment, meaning that more
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trades are necessary before prices fully incorporate the new information available. In such

cases, the Hayashi and Yoshida estimator becomes biased because it neglects portions of cross-

dependence that extend beyond the overlapping interval (dependence is assumed to be zero

in the Hayashi and Yoshida derivation of their covariance estimator). The non-instantaneous

price adjustment interpretation suggests that lead and lag cross-covariance might be better

modeled by introducing delay adjustment in the true underlying price process than by in-

troducing cross-dependence in the microstructure noise. (The latter will also suffer from the

problem of linking a cross-dependence that arguably exists in physical time with a microstruc-

ture noise but is instead observed under trading time).

In order to reproduce it in our data-generating process, we generate lead and lag cross-

dependence between the true return processes by introducing strong persistence in the dy-

namics of the common factor. To this end, the discretized version of the Heston model for ft

is replaced by a simple discretized Ornstein-Uhlenbeck process with slow mean reversion. In

this simple way, our DGP can now produce a lead lag cross–covariance structure that closely

mimics those structures empirically found in Griffin and Oomen (2011) (see Figure 6).

Insert Figure 6 about here

Table 4 and Figure 7 report the estimation results of the different covariance estimators.

Insert Table 4 about here

Insert Figure 7 about here

In the presence of lead lag cross-covariance, the Lo and MacKinlay estimator, the standard

one-minute estimator, and the Hayashi and Yoshida estimator are all severely biased, while

the five-minute, Scholes and Williams, Cohen et al., and the Two-Scale remain unbiased but

with large variances. The Hayashi and Yoshida estimator has the smallest dispersion, but the

presence of such significant bias substantially increases its RMSE. By contrast, the modified

tick-by-tick estimators proposed remain both virtually unbiased and achieve the lowest RMSE

values among all the competing estimators (also including the Hayashi and Yoshida one).

The intuition for this result is that both the First–Last and the Needlework are form of sub–

sampling (to the rounding frequency) of the Hayashi and Yoshida, thus reducing the sensitivity

of the estimators to the presence of high–frequency lead–lag cross–covariances.
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4.4 Summarizing the simulation results

The proposed First–Last tick-by-tick estimator is the best performing estimator (closely fol-

lowed by the Needlework estimator) among the feasible ones, since the Hayashi and Yoshida

estimator is unfeasible on tick-by-tick data with rounded time stamps. It also performs favor-

ably compared to the Scholes and Williams, Zhang Two-Scale covariance, and the Cohen et al.

estimators, even if their return frequency was chosen according to the simulation settings to

give the best results. When lead-lag cross-covariance is introduced, both proposed estimators

remain unbiased and clearly outperform even the Hayashi and Yoshida estimator, which under

these conditions becomes severely biased.

5 Empirical application

5.1 Data

We now apply the proposed First–Last covariance estimator to the tick-by-tick bivariate series

of S&P 500 futures and 30-year US treasury bond futures. The data are from the Price-

data.com database. Time stamps are rounded at the one-minute level (see Table 1). The

period considered extends from January 1990 to May 2008. The time series of the realized

daily stock–bond covariances is plotted in Figure 8.

Insert Figure 8 about here

First, to appreciate the remarkable difference between the daily realized covariances mea-

sured by using tick-by-tick data and the standard cross-products of daily returns (the usual,

inaccurate proxy for daily covariances in standard multivariate volatility models), both mea-

sures are plotted together on the same scale. These differences are of central importance when

assessing the fitness of a model for volatilities or correlations (see, for example, Patton, 2011).

Using inaccurate proxies for daily covariance may lead to the choice of a less accurate model

for forecasting second-order dynamics.
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5.2 Assessing performance with volatility-timing strategies

We also evaluate the economic benefit of the proposed covariance estimators, employing the

methodology suggested by West et al. (1993) and Fleming et al. (2001, 2003), which compares

the utility level obtained by different variance-covariance estimators in the context of portfolio

allocation.5 In particular, we consider a risk-averse investor who uses a conditional mean-

variance optimization rule to allocate funds across stocks (S&P 500) and bonds (30–year

US Treasury bond), re-balancing his portfolio daily. To avoid short selling restrictions and

minimize transaction costs, the allocation decisions are implemented by trading on futures

contracts.

Defining Rf
t+1 and Rt+1 as the risk–free rate and the bivariate vector of daily return from

t, t + 1, respectively, we denote µt = Et [Rt+1] the vector of conditional means and Σt =

Et [(Rt+1 − µt+1)(Rt+1 − µt+1)
′] the conditional covariance matrix of Rt+1. The investor then

solves the following quadratic program:

min
wt

w′

tΣtwt

subject to

w′

tµt + (1− w′

t12)R
f
t = µp

where wt is the vector of portfolio weights, 12 is the 2 × 1 unit vector, and µp is a target

expected return of the portfolio. The solution to this classical mean-variance optimization

problem is:

wt =
(µp − Rf

t )Σ
−1
t (µt −Rf

t 12)

(µt − Rf
t 12)Σ

−1
t (µt − Rf

t 12)

hence, the portfolio weights wt identify the daily re-balanced portfolio that minimizes con-

ditional variance for any choice of expected return µp. The optimal portfolio weights vary

through time as both µt and Σt change. However, since there is no evidence of predictability

in the expected returns at the daily level, we assume that the investor sets µp equal to Rf
t+1

5As an alternative, one may think to assess the goodness of the different realized covariance estimators

in other empirical applications like, for example, risk management (see, among others, Fleming and Kirby,

2003.). This is left for future research.
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plus a constant spread (10% for the S&P 500 and 5% for the US treasury Bond). In a mean-

variance framework, this is therefore equivalent to following a volatility-timing strategy where

the weights vary only with Σt.

The variance–covariance matrix Σt is estimated daily using the high frequency information

at time t − 1. To quantify the economic value of volatility timing using alternative realized

covariance measures, we compute the daily variance–covariance matrix with the following

covariance estimators: First–Last, Needlework, standard one–minute, standard five–minute,

Scholes and Williams, and Cohen 12 lead–lags. To focus our attention on the impact on

portfolio allocation of the different covariance estimates, we use the same variance measure

for all the different variance–covariance matrices: the Two-Scale realized volatility estimator

of Zhang et al. (2005).

Following Engle and Colacito (2006), Bandi et al. (2008), and Audrino and Trojani (2011),

we quantify the economic differences between the alternative covariance estimates using the

variance component of an investor’s long-run mean–variance utility:

AU =
λ

2

1

N

N
∑

t=1

(Rp
t − R̄p)2 (17)

where

Rp
t = Rf

t + w′

t−1(Rt − Rf
t 12)

is the return of the portfolio constructed at time t − 1, R̄p is the sample mean of portfolio

returns, and λ is a coefficient of risk–aversion. The difference between two AU measures

obtained with different covariance estimators can be interpreted as the fee that the investor

would be willing to pay to switch from one covariance measure to the other.

5.3 Empirical results

We compute the AU quantity of equation (17) for the different high frequency covariance esti-

mators over the full sample of more than 18 years from January 1990 to May 2008. We choose

the US three-month rate as proxy for the risk-free rate Rf
t . Table 5 reports the annualized

fees (expressed in basis points) that an investor following a volatility timing strategy would

be willing to pay to employ the First–Last covariance measure in place of the other realized
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covariance estimators. Results are reported for three conventional values of the risk-aversion

parameter λ = 2, 7, and 10 and three targets of the portfolio expected return µp = 6%, 10%

and 15%.

Insert Table 5 about here

The figures reported in Table 5 shows that an investor following a volatility timing strategy

would always be willing to pay a positive amount of money (the annual fees) in order to switch

to the First–Last realized covariance measure (although the economic difference between First–

Last and Needlework is negligible). The economic gains in employing the proposed tick-by-tick

covariance estimators are often remarkably large, especially for greater values of µp and λ.

6 Conclusions

We adapted the approach of computing realized covariance with tick-by-tick data to the case

where price time stamps are rounded to a frequency lower than the typical arrival frequency

of the asset encountered in the real world. The proposed methods can be seen as general

interpolation schemes allowing to compute unbiased realized covariance at any desired time

interval. In fact, although the time stamp rounding induces a natural calendar time grid,

the proposed estimators can be computed at any lower time frequency by employing the

sub–sampling and averaging scheme which ensures consistency and robustness in presence of

market microstructure noise.

Monte Carlo simulations performed with a wide range of noise–to–signal ratios, realistic

dependence structures of the microstructure noise and true lead-lag cross covariance, show

that the proposed First–Last and Needlework tick-by-tick covariance estimators turn out to

be systematically the best performing among the realized covariance estimators that can be

feasibly computed in presence of rounded time stamps. Moreover, thanks to higher robustness

to large microstructure noise (with the sub–sampled versions), and significant lead-lag cross-

covariance they even outperform (in terms of RMSE) the unfeasible Hayashi and Yoshida

tick-by-tick estimator which, under these conditions, shows a substantial bias.

An empirical application considering a risk-averse investor who uses a conditional mean-

variance optimization rule to allocate funds across stocks (S&P 500) and bonds (30 year US
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Treasury bond) shows that such an investor would always be willing to pay a positive and

often large amount of money to switch from a standard covariance measure to the proposed

tick-by-tick ones, confirming the simulation results.
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S&P 500 data sample

Date Time Name Price

20030724 1322 SP 03U 994.3

20030724 1322 SP 03U, 994.5

20030724 1322 SP 03U 994.7

20030724 1322 SP 03U 994.8

20030724 1322 SP 03U 994.9

20030724 1322 SP 03U 995.0

20030724 1322 SP 03U 995.2

20030724 1322 SP 03U 995.1

20030724 1322 SP 03U 995.0

20030724 1323 SP 03U 994.8

20030724 1323 SP 03U 994.7

20030724 1323 SP 03U 994.6

20030724 1323 SP 03U 994.5

20030724 1324 SP 03U 994.3

20030724 1324 SP 03U 994.2

20030724 1324 SP 03U 994.0

Table 1: Small data sample example for the S&P 500 index future on 24 July 2003 (20030724).

The data are from the Price-data.com database. Time is written in the format hours minutes

(hhmm).
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Different noise–to–signal ratios simulation results: standard setting

noise–to–signal ratio 0 0.5 1 1.5 2 2.5 3

Lo-MacKinlay 0.465 0.884 2.832 6.176 10,92 16.927 24.350

1 min no correction 0.312 0.326 0.347 0.396 0.483 0.599 0.758

5 min no correction 0.327 0.336 0.347 0.367 0.418 0.470 0.527

Scholes and Williams Cov 0.244 0.246 0.273 0.312 0.378 0.472 0.595

10 sec Cohen 12 leads-lags 0.256 0.263 0.293 0.345 0.450 0.592 0.779

Zhang Two-Scales Cov 0.392 0.399 0.400 0.396 0.408 0.407 0.410

First-Last 0.190 0.193 0.210 0.234 0.282 0.3490 0.433

First-Last Optimal Sub. (optimal K) 0.190 (1) 0.193 (1) 0.210 (1) 0.234 (1) 0.298 (2) 0.311 (2) 0.351 (3)

Needlework 0.187 0.196 0.225 0.275 0.343 0.454 0.571

Needlework Optimal Sub. (optimal K) 0.187 (1) 0.196 (1) 0.225 (1) 0.271 (3) 0.312 (4) 0.340 (5) 0.374(6)

Hayashi and Yoshida on exact time stamp 0.126 0.141 0.210 0.348 0.554 0.837 1,175

Table 2: Root mean squared errors (RMSE) of the estimation errors on the annualized covariance for a simulation set-up having

i.i.d. microstructure noise and noise–to–signal ratios of 0, 0.5, 1, . . . , 3. The First-Last and Needlework estimators are computed

with no sub–sampling and with optimal sub–sampling K (reported in parenthesis). Being unfeasible on rounded time stamps

data, as a comparison the Hayashi and Yoshida estimator is computed (unlike all the other estimators) on the exact time stamps.

29



Calibrated S&P US bond simulation

bias std RMSE

Lo and MacKinlay -0.0009 0.8090 0.8090

1-min no correction -0.1764 0.2732 0.3252

5-min no correction -0.0374 0.3392 0.3413

Scholes and Williams -0.0073 0.2592 0.2593

Cohen et al. 12 leads-lags -0.0057 0.2719 0.2719

Zhang Two-Scales Cov -0.0353 0.4035 0.4050

First–Last -0.0032 0.1973 0.1973

Needlework -0.0042 0.2060 0.2060

Hayashi and Yoshida 0.0002 0.1602 0.1602

Table 3: Mean, standard deviation and root mean squared errors (RMSE) of the estimation

errors on the annualized covariance for a simulation set-up that reproduces the statistical

properties of the S&P 500 and US bond future data. As a comparison, the Hayashi and

Yoshida estimator is computed (unlike all the other estimators) on the exact time stamps.
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Calibrated S&P US bond simulation with lead–lag cross–covariances

bias std RMSE

1-min no correction -0.4698 0.1710 0.5000

5-min no correction -0.0802 0.4405 0.4478

Scholes and Williams 0.0111 0.2945 0.2947

Cohen et al. 12 leads-lags 0.0110 0.3158 0.3159

Zhang Two-Scales Cov 0.0806 0.3533 0.3624

First–Last 0.0018 0.1938 0.1938

Needlework -0.0081 0.2046 0.2047

Lo and MacKinlay -1.3238 0.7719 1.5324

Hayashi and Yoshida -0.2077 0.1513 0.2570

Table 4: Mean, standard deviation and root mean squared errors (RMSE) of the estimation

errors on the annualized covariance for a simulation set up that reproduces the statistical

properties of the S&P 500 and US bond future data, including lead-lag cross-dependence. As

a comparison, the Hayashi and Yoshida estimator is computed (unlike all the other estimators)

on the exact time stamps.
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Volatility timing comparison: Annualized fees (in basis points)

Target Realized Covariance Measure λ = 2 λ = 7 λ = 10

Needlework 0.109 0.381 0.545

One–Minute 3.382 11.838 16.912

6% Five–Minute 5.770 20.195 28.850

Scholes and Williams 3.955 13.842 19.774

Cohen et al. 12 leads-lags 9.904 34.662 49.518

Needlework 0.045 0.159 0.227

One–Minute 10.535 36.873 52.676

10% Five–Minute 19.584 68.545 97.922

Scholes and Williams 13.967 48.885 69.836

Cohen et al. 12 leads-lags 39.283 137.489 196.413

Needlework 0.253 0.885 1.265

One–Minute 25.452 89.081 127.259

15% Five–Minute 49.344 172.703 246.718

Scholes and Williams 37.345 130.707 186.724

Cohen et al. 12 leads-lags 113.944 398.804 569.720

Table 5: Annualized fees (expressed in basis points) that an investor following a volatility

timing strategy would be willing to pay to employ the First–Last covariance measure in place of

the alternative realized covariance estimators. The portfolio weights are obtained minimizing

the conditional variance of a portfolio containing the S&P 500 and 30–year US Treasury bond

over the full sample from January 1990 to May 2008 (4,480 daily observations).
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Graphical illustration of the Epps effect

Figure 1: Graphical representation of the Epps effect arising from standard covariance es-

timators when returns are interpolated on a regular grid (vertical lines) using previous tick

interpolation, that is considering the last price tick of the interval (represented with a small

square) as the price prevailing at the end of the grid. The shaded area is the portion of co-

variance lost because of the wrong imputation of a portion of the second asset return to the

next interval.
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Graphical illustration of the First–Last covariance estimator

Figure 2: Graphical representation of the first component
∑M

(F )
i,t

s=1

∑M
(L)
j,t

q=1 r
(F )
i,s r

(L)
j,q I(δq,s > 0)

of the First–Last covariance estimator, where the first asset i is interpolated with next-tick

interpolation (small circles represent the first ticks) and asset j with previous tick interpolation

(with last ticks being the small squares).
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Graphical illustration of the needlework covariance estimator

Figure 3: Graphical illustration of the needlework covariance estimator with the two cross-bin

returns r
(LF )
i,τ+1 and r

(LF )
j,τ+1 (small inner arch) multiplying the last-tick interpolated returns of

the other asset in order to correct for the lost portion of covariance induced by previous tick

interpolation.
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S&P 500
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Figure 4: Tick-by-tick autocorrelations of S&P 500 (top) and US bond (bottom) empirical

(left) and simulated (right) returns. In order to mimic the dynamics of the S&P 500, an

MA(2) microstructure noise has been simulated with θ1 = 0.85, θ2 = 0.25 and noise to signal

of 0.45. For the same reason, for the US bonds the microstructure noise is an AR(1) with

φ1 = −0.65 and noise to signal of 0.6.
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Covariance estimation errors for empirically calibrated simulations
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Figure 5: Comparison of the probability density function of the covariance estimation errors

for a simulation set-up that reproduces the statistical properties of the S&P 500 futures and

US bond future data. Only the best (in terms of MSE) five estimators are plotted.

37



Simulated true lead-lag cross-covariance
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Figure 6: Lead-lag cross-covariances of simulated data obtained from a Lo and MacKinlay

(1990) non-synchronous trading model with market microstructure noise and common factor

following a slow mean reverting Ornstein-Uhlenbeck process.
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Covariance estimation errors with true lead-lag cross-covariance
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Figure 7: Comparison of the probability density function of the covariance estimation errors

for a simulation set-up that reproduces the statistical properties of the S&P 500 futures and

US bond future data and the presence of true lead-lag cross-covariance between the two series.

Only the best (in terms of MSE) five estimators are plotted.
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S&P US bond covariance from 1990 to 2008
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Cov with daily returns
First−Last Realized Cov

Figure 8: Time series of daily realized covariances constructed using tick-by-tick data (solid

line) superimposed on the daily cross-product returns (dotted line) of S&P 500 futures 30-year

US treasury bonds from 1990 to 2008.
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