

City, University of London Institutional Repository

Citation: MacFarlane, A., McCann, J. A. & Robertson, S. E. (2007). Parallel methods for

the update of partitioned inverted files. Aslib Proceedings; New Information Perspectives,
59(4/5), pp. 367-396. doi: 10.1108/00012530710817582

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4456/

Link to published version: https://doi.org/10.1108/00012530710817582

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

Parallel methods for the update of partitioned inverted files

A. MacFarlane
School of Informatics, City University London, UK

J.A. McCann
Department of Computing, Imperial College London, UK

S.E. Robertson
Microsoft Research Ltd, Cambridge, UK

Abstract
Purpose – An issue which tends to be ignored in information retrieval is the issue of

updating inverted files. This is largely because inverted files were devised to provide

fast query service, and much work has been done with the emphasis strongly on

queries. In this paper we study the effect of using parallel methods for the update of

inverted files in order to reduce costs, by looking at two types of partitioning for

inverted files: document identifier and term identifier.

Design/methodology/approach – Raw update service and update with query service

are studied with these partitioning schemes using an incremental update strategy. We

use standard measures used in parallel computing such as speedup to examine the

computing results and also the costs of reorganising indexes while servicing

transactions.

Findings – Empirical results show that for both transaction processing and index

reorganisation the document identifier method is superior. However, there is evidence

that the term identifier partitioning method could be useful in a concurrent transaction

processing context.

Practical implications – There is an increasing need to service updates which is now

becoming a requirement of inverted files (for dynamic collections such as the Web),

demonstrating that a shift in requirements of inverted file maintenance is needed from

the past.

Originality/value – The paper is of value to database administrators who manage

large-scale and dynamic text collections, and who need to use parallel computing to

implement their text retrieval services.

Keywords Information retrieval, Parallel programming, Inverted files

Paper type Research paper

1. Introduction
One of the most neglected areas in information retrieval is the issue of servicing

updates to inverted files. In most applications this is understandable given that some

databases will not be updated very frequently: for example, Dialog and DataStar have

databases which are updated weekly, monthly quarterly or even yearly (Thomson

Dialog, 2005). However, some applications such as web search engines or News

services like Reuters could have updates arriving 24 hours a day, and there is no time

when the system could be taken down and the updates serviced in a batch. Updating

inverted files is very expensive and periodically requires the re-indexing of the whole

 2

database. It is therefore becoming increasingly important to examine the impact of

update and query services on inverted files. In this paper we describe the update

mechanism for a Parallel text retrieval system, PLIERS, on two different types of

partitioning methods: term identifier partitioning (TermId) where each term, with all

its associated postings is assigned to a single fragment (and therefore information

about any document is distributed among fragments); and document identifier

partitioning (DocId) where the reverse is the case.

2. Experimental methodology
Much of the previous work in the area of inverted file maintenance (Reddaway, 1991;

Shoens et al., 1994; Clark and Cormack, 1995; Brown et al., 1994) has advocated the

use of buffering updates to save on Input/Output. Some argue that to update the index

for each individual arriving document is inefficient (Shoens, et al., 1994) but use a

synthetic workload performance analysis to support their arguments. We attempt to

simulate a persistent service for updates without coding a complete transaction

service, accepting that it is better to wait a little before updating an index. To do this

we keep an in-core buffer to which updates are added when they are received. When

this buffer is full, we initiate an index reorganisation merging the in-core update index

with the index kept on disk. In order to do this we use the following strategy:

1. Read in inverted list from disk.

2. Add new postings to inverted list.

3. Save the new postings to disk to a temporary postings file.

As we are unlikely to be able to keep the dictionary in-core, we keep a subset of the

keywords in memory, with each element of the subset a header of a keyword block

held on disk. All hit keyword blocks are saved to a temporary Keyword file for

realism. The advantage of this method is that we can do a realistic disk re-organisation

simulation without the need for expensive rollbacks in order to conduct repeated

experiments on the same data set. We do not attempt to reorganise the whole index as

we assume that a large chunk of the database will never be referenced by incoming

updates. The transaction we refer to as updates are collection updates or document

insertions: we do not address the issue of document removals or document changes.

Our assumption is that text collections are in the main archival. Our priority is to try

and keep the index in a state that would allow us to service fast query processing. We

do, however, allow the service of transactions while the reorganisation of the index is

being done: there is a strict interleaving between the reorganisation of a term and

transaction service to prevent concurrency problems. There may therefore be some

delays to transactions while a reorganisation of the index is going on.

A number of issues have not been addressed, such as simultaneous update and query

processing together with concurrency control due to time constraints. However, we

recognise the importance of those issues and deal with them theoretically elsewhere

(MacFarlane et al., 1996). The document availability semantics we use is Late

Availability which is defined by MacFarlane and colleagues (1996). A survey of

strategies for updating inverted files is available in Zobel and Moffat (2006).

 3

3. Transaction topologies
Given that we want to service search and updates simultaneously, the transaction

topology cannot differ too much from the search topology described elsewhere

(MacFarlane et al., 2000). We therefore define top and leaf nodes which can handle

both search operations and the update operations implemented. We describe the

additional functionality needed by the nodes to support update operations above.

Figure 1 shows an example of transaction topology with the service of updates.

Take in Figure 1. Example of transaction topology configuration

3.1 Top node

The top node being the interface to the topology, accepts new documents, breaks them

down into their constituent words, and sends the index information to the relevant

inverted file fragment. The main issue here is that the top node must know what type

of partitioning method being used in order to send data to fragments accordingly. For

example, in TermId partitioning a bucket of words will be formed for each fragment

of the inverted file. These can be sent directly to the fragments. However, with DocId

partitioning, a decision must be made as to how new documents are allocated to the

fragments. We make the assumption that over a given period of time incoming

documents that are distributed in a “round robin” fashion will give each fragment

roughly the same amount of data, although it is unlikely to be evenly distributed. We

therefore assign new document to fragments using a “round robin” distribution

method when document identifier partitioning is used. For both types of partitioning

method a confirmation of update completion must be received before a commit notice

is sent to the client.

3.2 Leaf node

The leaf node receives index data and merges it with the fragment index data handled

by that particular leaf node. This sequential process is identical to that described in

another paper by MacFarlane and colleagues (2005). Some collection statistics and

document data must be shared amongst leaf nodes (e.g., collection size and document

length). Each leaf has a document map structure which records such information.

When a search transaction is received by the leaf, both the index and the in-core buffer

are searched. If a reorganisation of the index is initiated new updates are added to a

separate temporary buffer: this is searched as well if new queries are received by the

leaf. When the reorganisation is complete this temporary buffer becomes the main

buffer.

4. Software and hardware used
PLIERS (ParaLLel Informaton rEtrieval Rearch System) has been developed at City

University using ideas from Okapi to investigate the use of parallelism in IR. PLIERS

is designed to run on several parallel architectures and is currently implemented on

those which use Sun Sparc, DEC Alpha and Pentium PII processors. The results

presented in this paper were obtained on 8 nodes of a 12 node AP3000 at the

Australian National University, Canberra. Each node has its own local disk: the

 4

shared nothing architecture (DeWitt and Gray, 1992) is used by PLIERS. The

Fujistsu AP3000 is a distributed memory parallel Computer using Ultra 1 processors

running Solaris 2.5.1. Each node has a speed of 167Mhz. The torus network has a top

bandwidth of 200 Mbytes/s per second.

5. Data and settings used
The data used in the experiments was the BASE1 and BASE10 collections, both sub-

sets of the official 100 Gigabyte VLC2 collection (Hawking et al., 1999). The BASE1

is 1 Gigabyte in size, while BASE10 is approximately 10 Gigabytes in size. We use

two types of builds for indexes: distributed builds where text is kept centrally and

distributed to index nodes and local builds where text is physically distributed to

nodes and indexed locally (MacFarlane et al., 2005). For the distributed build method

we use the BASE1 collection only, creating indexes on 1 to 7 processors and servicing

transactions on all of those indexes. Two types of index were built for these

experiments: one set using TermId partitioning and one using DocId partitioning. The

BASE1 and BASE10 collections were used for the local build method, running

queries on 8 nodes: the client and top node had to be placed on the same node as one

leaf. The DocId partition method is used on these experiments. We built one set of

indexes which contained position data and one set without position data for both types

of build methods and both types of partitioning methods (runs with position data are

marked ‘position data’, while those without such data are marked ‘postings only’).

Take in Table I. Details of transaction sets used in experiments

Table I shows the transaction sets used in our experiments. The queries are based on

topics 1 to 450 of the TREC1 to TREC8 ad-hoc tracks: 400 queries in all (the topics

201-250 in TREC4 did not have a title only field in the topics). The terms were

extracted from TREC topic descriptions using an Okapi query generator utility to

produce the final query. The average number of terms per query is 3.46. The

document updates were chosen from a Reuters-22173 collection (Lewis, 2006) not in

the VLC2 set: we refer to this file as REUTERS. We chose this set because we can

guarantee that the data is new to the VLC2 set. The REUTERS file is 1.2 Mb in size

and has 1000 records. We took both these sets and created transaction sets with

differing numbers of updates and queries, varying the number of updates to queries.

We do this at a number of rates ranging from 10 queries per 1 update down to 1 query

per 1.25 updates. We also examine update and query only service. This allows us to

both examine the effect between updates and queries as well as finding a good point

where buffer re-organisation is needed. We apply these transactions to all the indexes

built (described above), both in the presence and absence of an index reorganisation.

All figures produced are averages of 5 runs per experiment. For the one leaf

experiments we use a client/server process. We record the raw index reorganisation

speed to establish the best point to initiate it. We use a number of measures to

examine the results. These are elapsed time in seconds, load imbalance (LI), speedup,

and scaleability for transactions and index reorganisation and transaction throughput

(transactions per hour). Equations for most of these metrics are declared in the

Glossary.

 5

6. Experimental results on transaction processing
We have a number of aspects which we wish to examine by looking at the empirical

results produced. The first of these is the issue of update performance (see section

6.1). Is there a big performance penalty in only allowing one update at a time in the

system? We also need to examine the transactions as a whole looking at aspects such

as the interaction between queries and updates and its impact on performance (see

section 6.2). Both updates and transactions are examined in the presence and absence

of index reorganisation. The performance of index reorganisation is examined in

section 6.3, together with a discussion on a good buffer size for the collections being

examined. A summary of the experimental results is given in section 6.4.

Take in Figure 2. BASE1 [DocId]: average elapsed time in ms for update

transactions (postings only)

Take in Figure 3. BASE1 [TermId]: average elapsed time in ms for update

transactions (postings only)

Take in Figure 4. BASE1 [DocId]: average elapsed time in ms for update

transactions (position data)

Take in Figure 5. BASE1 [TermId]: average elapsed time in ms for update

transactions (position data

6.1 Performance of update transactions

As there is no general criterion for response time for update transactions as there is for

query transactions (Frakes, 1992) we need to define one here. The criterion we use is

that updates should be done within 1/10th of a second (or 100 milliseconds). This

strict criterion is chosen because we want to ensure that queries are not delayed much,

although users who submit documents for update would prefer a fast response. The

elapsed time for update transactions is quite small for most runs (see Figures 2 to 5).

All times are under 100 milliseconds and times do reduce with increasing numbers of

leaf nodes. There are two main observations from this. The first is that update

transaction elapsed times meet our criterion and are therefore acceptable in our terms.

Any delays by blocking other transactions while an update is done are therefore small.

The second is that speedup is found in systems using parallelism, which is surprising

given the restrictions on parallelism with the type of update transaction processing

implemented (see Figures 6 to 9).

Take in Figure 6. BASE1 [DocId]: speedup for update transactions (postings only)

Take in Figure 7. BASE1 [TermId]: speedup for update transactions (postings only)

Take in Figure 8. BASE1 [DocId]: speedup for update transactions (position data)

Take in Figure 9. BASE1 [TermId]: speedup for update transactions (position data)

The results show that DocId partitioning has a much more beneficial effect on elapsed

times than TermId partitioning and the advantage in elapsed time using multiple leaf

 6

nodes is superior with DocId. The reasons for these effects are twofold: memory and

communication. With DocId the increase in memory affects elapsed time positively,

and communication is done with one leaf node only. This memory advantage is offset

with extra communication with TermId as document data must be communicated to

all leaf nodes. It should be noted that most of the conclusions drawn here apply to

updates which record position data. The exception is that TermId partitioning in many

cases does not meet the 100 millisecond criterion together with the single leaf nodes

run (see Figure 5).

Take in Figure 10. BASE1 [DocId]: average elapsed time in ms for update

transactions during index reorganisation (postings only)

Take in Figure 11. BASE1 [TermId]: average elapsed time in ms for update

transactions during index reorganisation (postings only)

Take in Figure 12. BASE1 [DocId]: average elapsed time in ms for update

transactions during index reorganisation (position data)

Take in Figure 13. BASE1 [TermId]: average elapsed time in ms for update

transactions during index reorganisation (position data)

Figures 10 to 13 show the effect of initiating an index reorganisation while serving

update transactions. Elapsed times on both types of partitioning method are increased,

but DocId partitioning is much better able to handle the resource contention than

TermId. In terms of our 100 millisecond criterion, DocId meets our requirement while

TermId partitioning does not. While DocId runs show reduction in elapsed time over

multiple leaf nodes, TermId runs actually record a reduction in performance. The

reason for this is simple: index reorganisation on DocId partitioned inverted file is

done on much shorter lists. Therefore a request for transaction service on TermId

partitioning is more likely to be delayed, hence the increase in percentage terms for

elapsed time over DocId as shown in Figures 14 to 17. With respect to indexes which

contain position data, most runs, apart from a few on DocId partitioning, exceed the

100 millisecond criterion. TermId partitioning runs are particularly badly affected with

some runs registering an increase of around three hundred per cent over elapsed times

when index reorganisation is done.

Take in Figure 14. BASE1 [DocId]: % increase in average elapsed time for update

transactions during index reorganisation (postings only)

Take in Figure 15. BASE 1 [Termld]: % increase in average elapsed time for update

transactions during index reorganisation (postings only)

Take in Figure 16. BASE 1 [Docld] % increase in average elapsed time for update

transactions during index reorganisation (position data)

Take in Figure 17. BASE 1 [Termld]: % increase in average elapsed time for update

transactions during index reorganisation (position data)

Take in Table II. BASE1/BASE10 [DocId]: index update results for update

transactions

 7

Table II shows the details of comparable BASE1 and BASE10 runs using the DocId

partitioning method. It should be noted that BASE10 runs are slightly higher than our

criterion for elapsed times for update. It may not therefore be possible to set such a

strict criterion for larger databases, and we may have to relax our requirements to, say,

a second. All BASE10 elapsed times are under a second, even updates done on

indexes with position data while an index reorganisation is being done. The scalability

for update transactions on the BASE10 collection is very good indeed, particularly for

indexes with postings only data. The scalability reduces while index reorganisation is

being done, but is still good.

6.2 Performance of transactions as a whole

The average elapsed time for transactions as a whole is very good with all times under

a second, including BASE10 experiments. Figures 18 to 21 show average elapsed

times for transactions on the BASE1 collection using all types of indexes and

partitioning methods.

Take in Figure 18. BASE1 [DocId]: transaction average elapsed times in ms

(postings only)

Take in Figure 19. BASE1 [TermId]: transaction average elapsed times in ms

(postings only)

Take in Figure 20. BASE1 [DocId]: transaction average elapsed times in ms

(position data)

Take in Figure 21. BASE1 [TermId]: transaction average elapsed times in ms

(position data)

From these elapsed times it can be seen that there is a reduction in average time when

the number of update transactions is increased and when DocId partitioning is used.

The reduction due to increased level of updates is because updates are smaller in

average time and will reduce the average transaction time. The DocId partitioning

method outperforms TermId quite considerably on any of the transaction sets used.

The performance problem found with runs on TermId partitioning in previous

experiments (MacFarlane et al., 2000) severely affect the overall performance of those

runs. No real speed advantage by the use of parallelism is demonstrated in any of the

TermId partitioning experiments. In fact slowdown is registered for all parallel runs on

indexes with postings only data (see Figure 23). Speed advantage on indexes

containing position data is recorded, but is very slight (see Figure 25). With DocId

partitioning we do gain speed advantage using parallelism (see Figures 22 and 24), but

the proportion of updates in the transaction set may actually increase the average

elapsed time when more leaf nodes are used (see Figures 18 and 20). The level of

parallelism which can be successfully deployed depends on the balance in time

between updates and queries, at the point where gain in parallelism is outweighed by

loss in servicing updates.

Take in Figure 22. BASE 1 [Docld]: speedup for all transactions (postings only)

 8

Take in Figure 23. BASE 1 [Termld]: speedup for all transactions (postings only)

Take in Figure 24. BASE 1 [Docld]: speedup for all transactions (position data)

Take in Figure 25. BASE 1 [Termld]: speedup for all transactions (position data)

Figures 26 to 29 show the effect of index reorganisation on transactions serviced over

BASE1 collection. The results show that DocId partitioning outperforms TermId if an

elapsed time criterion is used. While runs on DocId partitioning using parallelism

reduce run times over the client/server runs, TermId runs actually increase in time.

This evidence is consistent with the update transaction results described above.

However, it is clear that DocId partitioning after a certain parallel machine size holds

the run times constant, and the ability to cope with resource contention is far superior

to that of TermId. There is some doubt as to the wisdom of deploying parallelism after

a given point, but other factors such as the total time for an index reorganisation are

important. Our choice of either parallelism or the actual level of parallelism will

depend on the balance between normal transaction processing and transaction

processing during an index update. A further interesting observation is that transaction

sets with more update transactions are less affected by resource contention than others

with more query transactions, which is particularly noticeable in TermId results (see

Figures 27 and 29). The reason for this is that update transactions are faster than query

transactions and are therefore much less affected when the index is being updated.

Take in Figure 26. BASE1 [DocId]: average elapsed time in ms for all transactions

during index reorganisation (postings only)

Take in Figure 27. BASE1 [TermId]: average elapsed time in ms for all transactions

during index reorganisation (postings only)

Take in Figure 28. BASE1 [DocId]: average elapsed time in ms for all transactions

during index reorganisation (position data)

Take in Figure 29. BASE1 [TermId]: average elapsed time in ms for all transactions

during index reorganisation (position data)

What effect do these results have on throughput? In Figures 30 to 34 the throughput

figures are declared, with the data separated into transaction sets. The suffix "ro" in

the diagrams signifies that the run was done in the presence of an index

reorganisation. The throughput measure is thousands of transactions per hour.

Take in Figure 30. BASE1: combined transactions throughput for UPDATE1

transaction set

Take in Figure 31. BASE1: combined transactions throughput for UPDATE2

transaction set

Take in Figure 32. BASE1: combined transactions throughput for UPDATE3

transaction set

Take in Figure 33. BASE1: combined transactions throughput for UPDATE4

transaction set

Take in Figure 34. BASE1: combined transactions throughput for UPDATE

transaction set

 9

The main conclusion from these throughput results is that DocId partitioning

outperforms TermId using any type of index (as would be expected from the elapsed

time data). Using this measure demonstrates how disappointing the performance of

TermId actually is: throughput is not improved by the addition of extra leaf nodes.

Many runs are limited to a throughput of 20k transactions per hour. The best

performing index type/partitioning pair is DocId with postings only indexes on any of

the transaction sets. It can be seen in the diagrams through DocId with postings only

data that the transaction set has an impact on trends in throughput. For example, on

the UPDATE1 set there is a clear increase in throughput for increasing numbers of

leaf nodes, while throughput on the UPDATE set shows a clear tailing off effect with

larger numbers of leaf nodes (see Figures 30 and 34). Throughput on the index

type/partitioning method relative to each other is consistent irrespective of the

transaction set under scrutiny.

Take in Figure 35. BASE1 [DocId]: load imbalance for all transactions (postings

only)

Take in Figure 36. BASE1 [DocId]: load imbalance for all transactions (position

data)

Take in Figure 37. BASE1 [TermId]: load imbalance for all transactions (postings

only)

Take in Figure 38. BASE1 [TermId]: load imbalance for all transactions (position

data)

How does load imbalance affect the results given above? Load imbalance does not

appear to be a significant problem: Figures 35 to 38 show the overall level of load

imbalance for all transactions. It can be seen that imbalance is higher in DocId than it

is in TermId, for both types of indexes. The imbalance figures for all results are

relatively small, but clearly there is an increase in imbalance with increasing parallel

machine size on DocId, while imbalance on TermId remains fairly constant. The key

result here is that document updates do not harm overall load imbalance significantly.

The “round robin” method of distributing document updates to nodes when DocId

partitioning is used is a reasonable method. The results also show that it may be

possible to offer better concurrent transaction service on TermId partitioning than

DocId partitioning (this is consistent with imbalance results found in probabilistic

search (MacFarlane et al., 2000)).

Take in Table III. BASE1/BASE10 [DocId]: index update results for all transactions

Table III shows the scalability results for all transactions. Average elapsed times for

BASE10 runs during normal transaction processing are all under half a second when

postings only indexes are used and under a second for position data indexes. The

delays on BASE10 while indexes are updated are considerable and runs are over

double, a factor particularly significant for indexes with position data. It may not be

 10

viable to use the index update method for this task, particularly if queries are delayed

beyond the 10 second elapsed time recommendation (Frakes, 1992) during an index

reorganisation on much larger collections. Scalability is very good and increases with

the number of updates in a transaction: as would be expected since updates provide

much better scalability than queries (see Table II). Elapsed times trends are inverse to

that of scalability and for the same reason.

It is clear that within our experimental framework the best partitioning method for

transaction processing is DocId. Both the experiments discussed here and work

discussed throughout this paper show that DocId partitioning provides better

performance both in normal transaction processing and when an index reorganisation

is initiated for all types of transactions. However, the imbalance figures demonstrate

that concurrent transaction processing might work well on TermId partitioning, a

conclusion which reinforces our previous experience with search (MacFarlane et al.,

2000). Scalability of transactions using DocId partitioning is good, but results

demonstrate that the index update task defined here may not be a viable solution for

much larger collections than ones considered here.

6.3 Performance of index reorganisation

The results found in our index reorganisation performance confirm that it is better to

wait for a given period and do the reorganisation collectively than do it on a one

document basis (Shoens et al., 1994). Figures 39 to 42 show the index reorganisation

results using elapsed time in seconds.

Take in Figure 39. BASE1 [DocId]: index reorganisation elapsed time in seconds

(postings only)

Take in Figure 40. BASE1 [DocId]: index reorganisation elapsed time in seconds

(position data)

Take in Figure 41. BASE1 [TermId]: index reorganisation elapsed time in seconds

(postings only)

Take in Figure 42. BASE1 [TermId]: index reorganisation elapsed time in seconds

(position data)

Above all these figures show how expensive index reorganisations are, particularly for

indexes with position data. It should be noted that these figures are much reduced

from a method which would require a reorganisation of the whole index. The best

buffer size for this data is 500 documents: there is very little difference between

reorganisations done on buffer sizes of 500 documents and 400 documents,

particularly for indexes with position data. There is an increase in the elapsed time for

increasing buffer size on all runs, but the increase is not linear with the number of

documents in the buffer: the results on multiple leaf nodes are the same. Comparing

the partitioning methods, elapsed times on DocId are better than TermId using all

buffer sizes and on all multiple leaf nodes runs apart from 2 leaf nodes on a 500

document buffer. Speed advantage is shown in both partitioning methods by

increasing the leaf nodes set in a run. Figures 43 to 46 show the speedup for index

reorganisation on both partitioning methods.

 11

Take in Figure 43. BASE1 [DocId]: index reorganisation speedup (postings only)

Take in Figure 44. . BASE1 [DocId]: index reorganisation speedup (position data)

Take in Figure 45. BASE1 [TermId]: index reorganisation speedup (postings only)

Take in Figure 46. BASE1 [TermId]: index reorganisation speedup (position data)

Good speed advantage is shown by any number of leaf nodes using any type of

partitioning method. Super-linear speedup is shown on both partitioning methods,

apart from TermId, on any run using 6 leaf nodes with any type of index. The run on 6

leaf nodes on an 80 document buffer is particularly disappointing considering the

other results. We will return to this factor when discussing load imbalance below.

Why does this super-linear speedup occur? If we examine the total time needed for an

index reorganisation we find that all parallel runs reduce the total time for an index

reorganisation. Figures 47 and 48 show the underlying reason why the super-linear

speedup occurs.

Take in Figure 47. BASE1 [DocId]: millions of postings handled during index

reorganisation

Take in Figure 48. BASE1 [TermId]: millions of postings handled during index

reorganisation

The total number of posting records handled for DocId actually reduces with

increasing numbers of leaf nodes, but TermId runs move much the same amount of

data. The reason for this effect in DocId partitioning is that as the number of leaf

nodes is increased, the more frequent terms which both the buffer and index shared

are spread over more blocks which have fewer records associated with them. The

more frequent occurring terms are interspersed among less frequent terms as more

blocks are handled. This effect does not happen on TermId partitioning as much the

same blocks will be handled by parallel runs of any leaf node size. There is some

variation in TermId but the effect is minimal. Note that the number of postings moved

for a 500 document buffer is always slightly more than those for a 400 document

buffer. The total number of postings in BASE1 collection is 22.6 million: just over

half the index is reorganised for just 500 documents, reducing with increasing

numbers of leaf nodes. The evidence suggests that a good buffer size for this data is

500 documents.

From the evidence given above there is clearly an offset between the advantage gained

in DocId partitioning by increasing the number of leaf nodes and improvements in

performance gained by waiting until the buffer has reached a given size. We can

therefore make a case for delaying the initiation of index reorganisation on more leaf

nodes until their buffers contain more documents. In this way we can take advantage

of both effects discussed, i.e. less data movement on more leaf nodes and less time

when an index update is being done. Figs 49 to 52 provides more evidence of the

increased buffer effect on load imbalance.

 12

Take in Figure 49. BASE1 [DocId]: index reorganisation load imbalance (postings

only)

Take in Figure 50. BASE1 [TermId]: index reorganisation load imbalance (postings

only)

Take in Figure 51. BASE1 [DocId]: index reorganisation load imbalance (position

data

Take in Figure 52. BASE1 [TermId]: index reorganisation load imbalance (position

data)

The imbalance figures for DocId partitioning show that initiating index

reorganisations with a 40 document buffer does not yield good load balance.

Increasing the leaf nodes set size also has a tendency to increase imbalance. The

TermId partitioning method is generally more consistent, but imbalance on six leaf

nodes for any buffer size is noticeably worse than for other leaf nodes. This is a failure

of the distribution process which relies on a heuristic to distribute data to leaf nodes.

This has a direct and significant impact on speedup for TermId partitioning runs for 6

leaf nodes (see figs 45 and 46).

6.4 Summary of experimental results

In all aspects of transaction processing and index reorganisation, DocId partitioning is

shown to be superior to TermId partitioning. For update transactions both methods are

quick when data is added to the buffer, but DocId provides better transaction

performance when an index reorganisation is being executed. Many update

transactions meet our 100 millisecond requirement for elapsed times for document

insertions. For transactions with both updates and queries, DocId is superior largely

because of the performance improvement which is obtained with that method, shown

in previous experiments with probabilistic search (MacFarlane et al., 2000). The total

number of records moved during index reorganisation is reduced with increasing

numbers of leaf nodes when DocId partitioning is used. There is, however, an offset

between the buffer size for incoming updates and increasing the leaf nodes set in order

to reduce the amount of data moved. Overall our empirical results demonstrate that

DocId partitioning is the preferred method for servicing the inverted file index

maintenance techniques outlined in this paper. One might question the viability of the

method of index update, if queries are delayed beyond the 10 second response time

recommended by Frakes (1992) or updates are delayed more than the 100 millisecond

or 1 second requirement recommended in this paper. This issue will be examined

further in the conclusion.

Conclusion
The empirical results from this research show that in all aspects of both transaction

processing and index reorganisation, the DocId partitioning method is far superior.

Problems highlighted in our probabilistic search experiments (MacFarlane et al.,

2000) impose severe restrictions on transaction processing when the TermId method is

used, which are difficult to solve within our experimental context. These problems

(most notably the sort aspect of search) had an impact on the relative difference

between the two partitioning methods during transaction processing. In index

reorganisation when using DocId partitioning, the amount of data which needs to be

 13

moved reduces with increasing leaf node set size due to the qualities of the keyword

set for each element of the leaf nodes set (the assumption made in the synthetic model

was correct). Providing the same term block strategy was used, this effect will be a

generic one. We have found evidence, however, that TermId might be useful in a

concurrent transaction processing context, and this would have to be the focus for any

future research.

It may be the case that the methods outlined in this paper for dealing with new

documents may not be viable in a realistic situation: we could consider a scenario

where the update rate was so high buffer space would run out, thereby crashing the

system or cause a denial of service. Such a problem would occur when there are more

updates being submitted to the system than it can handle, so that the time to re-

organise an index with these new updates is greater than the actual time available on

the system. There are limits to a method of storage such as inverted file which is

designed for fast search and which is expensive to maintain: therefore, for these high

update applications some other method of transaction processing and storage method

is required. Where our methods are not useable we would recommend the use of a two

phase signature search (Cringean et al., 1990) which allow for cheap updates, but also

allow for a high degree of parallelism.

Acknowledgements
This research is supported by the British Academy under grant number IS96/4203. We

are also grateful to ACSys for awarding the first author a visiting student fellowship at

the Australian National University in order to complete this research and the use of

their equipment. We are particularly grateful to David Hawking for making the

arrangements for the visit to the ANU.

References
Brown, E.W., Callan, J.P., Croft, W.B. and Moss, J.E.B. (1994), “Suporting full-text

information retrieval with a persistent object store, in Jarke, M., Bubenko, J. and

Jeffery, K. (Eds), Proceedings of EDBT'94, March 1994, LNCS 779, Springer-

Verlag, pp. 365-377.

Clarke, C.L.A. and Cormack, G.V. (1995), Dynamic Inverted Indexes for a

Distributed Full-Text Retrieval System, MultiText Project Technical Report

MT-95-01, Department of Computer Science, University of Waterloo, Ontario.

Cringean, J.K., England, R., Manson, G.A. and Willett, P. (1990), “Parallel text

searching in serial files using a processor farm”, in Vidick, J.L. (Ed),

Proceedings of the 13th International Conference on Research and

Development in Information Retrieval, ACM Press, pp. 429-453.

DeWitt D. and Gray, J. (1992), “Parallel database systems: the future of high

performance database systems”, Communications of the ACM, Vol. 35, No. 6.

Frakes, W.B. (1992), “Introduction to information storage and retrieval systems”, in

Frakes, W.B, and Baeza-Yates, R. (Eds), Information Retrieval, Data Structures

and Algorithms, Prentice-Hall, pp. 1-12.

Hawking, D. Craswell N. and Thistlewaite, P. (1999), “Overview of TREC-7 Very

Large Collection Track”, in Voorhees, E.M. and Harman, D.K. (Eds),

 14

Proceedings of the Seventh Text Retrieval Conference, Gaithersburg, U.S.A,

November 1998, NIST Special publication 500-242, pp. 91-104.

Lewis, D. (2006), The Reuters 21578 test collection, available at:

http://www.daviddlewis.com/resources/testcollections/reuters21578/ (accessed

22 August 2006).

MacFarlane, A., McCann J.A. and Robertson S.E. (2005), “Parallel methods for the

generation of partitioned inverted files”, Aslib Proceedings, Vol. 57 No. 5, pp.

434-459.

MacFarlane, A., Robertson S.E. and McCann J.A. (1996), “On concurrency control

for inverted files”, in Johnson, F.C. (Ed.), Proceedings of the 18th BCS IRSG

Annual Colloquium on Information Retrieval Research, March 26-27 1996,

Manchester, BCS IRSG, pp. 67-79.

MacFarlane, A., Robertson S.E. and McCann J.A. (1999), “PLIERS at TREC8”, in

Voorhees, E. and Harman, D.K. (Eds), Proceedings of the Eight Text Retrieval

Conference, Gaithersburg, U.S.A, November 1999, Gaithersburg, SP 500-246,

NIST, Gaithersburg, pp. 241-252.

MacFarlane, A., Robertson S.E. and McCann J.A. (2000), “Parallel methods for the

search of partitioned inverted files, in, De La Fuente, P. (Ed.), Proceedings of

String Processing and Information Retrieval - SPIRE 2000, September 2000, A

Coruna, Spain, IEEE Computer Society Press, pp. 209-220.

Shoens, K., Tomasic, A. and Garcia-Molina, H. (1994), “Synthetic workload

performance analysis of incremental updates”, in Croft, W.B. and Van

Rijsbergen, C.J. (Eds), Proceedings of the 17th annual international ACM-

SIGIR conference on research and development in Information Retrieval.

SIGIR94, Springer-Verlag, London, pp. 329-338.

Reddaway, S.F. (1991), “High speed text retrieval from large databases on a massively

parallel processor”, Information Processing & Management, Vol. 27 No. 4, pp.

311-316.

Thomson Dialog (2005), Dialog Database Catalog, Thomson Dialog Ltd,

http://www.dialog.com [visited 29
th

 May 2007]

Zobel, J. and Moffat, A. (2006), “Inverted files for text search engines”, ACM

Computing Surveys, Vol. 38, No. 2, article 6.

 15

Glossary

Distributed Build Method of building indexes where text is distributed from a single node.

DocId Parititioning method which assigns all document data for a given document

to one index partition

Efficiency Measure of the effective use of processors. Definition:

Speedup on n processors/n processors

LI A measure of the amount of load imbalance on n processors:

max time on n processors/average time on n processors

Local Build Method of indexing where all processing is kept local to the node.

Mhz Megahertz: processor clock speed.

Partition Fragment of inverted file on a nodes disk.

Scalability A measure of how well the algorithm scales on the same equipment.

Definition:
Time on small collection Size of large collection

-------------------------------- * -----------------------------

Time on large collection Size of small collection

Speedup Measure of speed advantage of parallelism. Definition:

Time on 1 processors / Time on n processors.

TermId Parititioning method which assigns all term data for a given term to one

partition

TREC Annual Text Retrieval Conference run by the National Institute of Standards

and Technology in the United States.

VLC Very Large Collection: Collection of 100 GB web data used in the TREC-7

VLC2 sub-track.

 16

Figure 1. Example of transaction topology configuration

0

20

40

60

80

100

1 2 3 4 5 6 7

Leaf nodes

T
im

e
:

m
s

update

update1

update2

update3

update4

Figure 2. BASE1 [DocId]: average elapsed

time in ms for update transactions

(postings only)

Leaf nodes

T
im

e
:

m
s

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 3. BASE1 [TermId]: average elapsed

time in ms for update transactions

(postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 4. BASE1 [DocId]: average elapsed

time in ms for update transactions

(position data)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 5. BASE1 [TermId]: average elapsed

time in ms for update transactions

(position data)

 commit

 Top Node Client
 document

 commit analysed document

 Leaf Node
1
 Leaf Node

2
 Leaf Node

n

 Disk
1
 Disk

2
 Disk

n

 17

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 6. BASE1 [DocId]: speedup for

update transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 7. BASE1 [TermId]: speedup for

update transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 8. BASE1 [DocId]: speedup for

update transactions (position data)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 9. BASE1 [TermId]: speedup for

update transactions (position data)

 18

Leaf nodes

T
im

e
:

m
s

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 10. BASE1 [DocId]: average elapsed

time in ms for update transactions during

index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 11. BASE1 [TermId]: average

elapsed time in ms for update transactions

during index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 12. BASE1 [DocId]: average elapsed

time in ms for update transactions during

index reorganisation (position data)

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 13. BASE1 [TermId]: average

elapsed time in ms for update transactions

during index reorganisation (position data)

 19

Leaf nodes

%
 i
n

c
re

a
s
e

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 14. BASE1 [DocId]: % increase in

average elapsed time for update transactions

during index reorganisation (postings only)

Leaf nodes

%
 i
n

c
re

a
s
e

0

50

100

150

200

250

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 15. BASE1 [TermId]: % increase in

average elapsed time for update transactions

during index reorganisation (postings

only)

Leaf nodes

%
 i
n

c
re

a
s
e

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 16. BASE1 [DocId]: % increase in

average elapsed time for update transactions

during index reorganisation (position data)

Leaf nodes

%
 i
n

c
re

a
s
e

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 17. BASE1 [TermId]: % increase in

average elapsed time for update transactions

during index reorganisation (position data)

 20

Leaf nodes

m
s

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 18. BASE1 [DocId]: transaction

average elapsed times in ms (postings only)

Leaf nodes

m
s

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 19. BASE1 [TermId]: transaction

average elapsed times in ms (postings only)

Leaf nodes

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 20. BASE1 [DocId]: transaction

average elapsed times in ms (position data)

Leaf nodes

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 21. BASE1 [TermId]: transaction

average elapsed times in ms (position data)

 21

Leaf nodes

S
p

e
e
d

u
p

0

1

2

3

4

5

6

7

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 22. BASE1 [DocId]: speedup for all

transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 23. BASE1 [TermId]: speedup for all

transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

0

1

2

3

4

5

6

7

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 24. BASE1 [DocId]: speedup for all

transactions (position data)

Leaf nodes

S
p

e
e
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 25. BASE1 [TermId]: speedup for all

transactions (position data)

 22

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 26. BASE1 [DocId]: average elapsed

time in ms for all transactions during index

reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 27. BASE1 [TermId]: average

elapsed time in ms for all transactions during

index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 28. BASE1 [DocId]: average elapsed

time in ms for all transactions during index

reorganisation (position data)

Leaf nodes

T
im

e
:

m
s

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 29. BASE1 [TermId]: average

elapsed time in ms for all transactions during

index reorganisation (position data)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

DocId- NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId-POS-ro

TermId- NPOS-

ro

TermId- POS-

ro

Figure 30. BASE1: combined transactions

throughput for UPDATE1 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId- NPOS-ro

DocId- POS-ro

TermId-NPOS-ro

TermId- POS-ro

Figure 31. BASE1: combined transactions

throughput for UPDATE2 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId-POS

TermId-NPOS

TermId-POS

DocId-NPOS-ro

DocId-POS-ro

TermId-NPOS-ro

TermId-POS-ro

Figure 32. BASE1: combined transactions

throughput for UPDATE3 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId- POS-ro

TermId- NPOS-ro

TermId- POS-ro

Figure 33. BASE1: combined transactions

throughput for UPDATE4 transaction set

 23

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId- POS-ro

TermId- NPOS-ro

TermId- POS-ro

Figure 34. BASE1: combined transactions throughput

for UPDATE transaction set

 24

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 35. BASE1 [DocId]: load imbalance

for all transactions (postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 36. BASE1 [DocId]: load imbalance

for all transactions (position data)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 37. BASE1 [TermId]: load imbalance

for all transactions (postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 38. BASE1 [TermId]: load imbalance

for all transactions (position data)

 25

0

50

100

150

200

1 2 3 4 5 6 7

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 39. BASE1 [DocId]: index

reorganisation elapsed time in seconds

(postings only)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 40. BASE1 [DocId]: index

reorganisation elapsed time in seconds

(position data)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 41. BASE1 [TermId]: index

reorganisation elapsed time in seconds

(postings only)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 42. BASE1 [TermId]: index

reorganisation elapsed time in seconds

(position data)

 26

1

6

11

16

2 3 4 5 6 7

Leaf nodes

S
p

e
e
d

u
p

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 43. BASE1 [DocId]: index

reorganisation speedup (postings only)

1

6

11

16

2 3 4 5 6 7

Leaf nodes

S
p

e
e
d

u
p

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 44. BASE1 [DocId]: index

reorganisation speedup (position data)

Leaf nodes

S
p

e
e
d

u
p

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 45. BASE1 [TermId]: index

reorganisation speedup (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 46. BASE1 [TermId]: index

reorganisation speedup (position data)

 27

Leaf nodes

R
e
c
o
rd

s
:
m

il
li
o
n
s

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 47. BASE1 [DocId]: millions of

postings handled during index reorganisation

Leaf nodes

R
e
c
o
rd

s
:
m

il
li
o
n
s

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 48. BASE1 [TermId]: millions of

postings handled during index reorganisation

 28

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 49. BASE1 [DocId]: index

reorganisation load imbalance

(postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 50. BASE1 [TermId]: index

reorganisation load imbalance

(postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 51. BASE1 [DocId]: index

reorganisation load imbalance

(position data)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 52. BASE1 [TermId]: index

reorganisation load imbalance

(position data)

 29

Table I. Details of transaction sets used in experiments

Transaction

set Name

No of

Updates

No of

Queries

No of

Transactions

UPDATE1 40 400 440

UPDATE2 80 400 480

UPDATE3 200 400 600

UPDATE4 400 400 800

UPDATE 500 400 900

Table II. BASE1/BASE10 [DocId]: index update results for update transactions

Metric Collection UP UP1 UP2 UP3 UP4

Postings Only (No Positions)

Elapsed Time (ms) BASE1

BASE10

43

109

43

124

46

124

40

121

43

123

Scalability BASE10 3.97 3.46 3.72 3.33 3.51

Elapsed Time (ms)

during index update

BASE1

BASE10

55

268

64

380

62

359

60

310

57

299

Scalability during

index update

BASE10 2.07 1.67 1.73 1.95 1.91

Position Data

Elapsed Time (ms) BASE1

BASE10

52

202

48

265

51

261

48

243

51

246

Scalability BASE10 2.55 1.83 1.97 1.98 2.06

Elapsed Time (ms)

during index update

BASE1

BASE10

103

621

130

971

131

975

125

892

115

817

Scalability during

index update

BASE10 1.66 1.34 1.34 1.40 1.40

Table III. BASE1/BASE10 [DocId]: index update results for all transactions

Metric Collection UP UP1 UP2 UP3 UP4

Postings Only (No Positions)

Elapsed Time (ms) BASE1

BASE10

60

257

75

479

73

440

66

363

60

280

Scalability BASE10 2.35 1.56 1.66 1.83 2.14

Elapsed Time (ms)

during index update

BASE1

BASE10

80

551

118

1021

112

949

98

776

82

604

Scalability during

index update

BASE10 1.46 1.15 1.18 1.26 1.36

Position Data

Elapsed Time (ms) BASE1

BASE10

72

448

103

891

97

818

84

660

73

505

Scalability BASE10 1.61 1.15 1.18 1.27 1.45

Elapsed Time (ms)

during index update

BASE1

BASE10

159

1368

265

2562

246

2364

205

1924

167

1517

Scalability during

index update

BASE10 1.17 1.04 1.04 1.07 1.10

