IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Adamsky, F., Khayam, S. A., Jaeger, R. & Rajarajan, M. (2014). Stealing
bandwidth from BitTorrent seeders. Computers & Security, 46, pp. 126-140. doi:
10.1016/j.cose.2014.07.009

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4485/

Link to published version: https://doi.org/10.1016/j.cose.2014.07.009

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Stealing Bandwidth from BitTorrent Seeders

Florian Adamsky?, Syed Ali KhayamP, Rudolf Jiger®, Muttukrishnan
Rajarajan®

@(Clity University London, London, England
YPLUMgrid, Inc., Sunnyvale, CA, USA
CTHM University of Applied Sciences, Campus Friedberg, Germany

Abstract

BitTorrent continues to comprise the largest fraction of Internet traffic. While
significant progress has been made in understanding the BitTorrent choking
mechanism, its security vulnerabilities have not been investigated thoroughly.
This paper presents an experimental analysis of bandwidth attacks against
different choking algorithms in the BitTorrent seed state. We reveal a simple
exploit that allows malicious peers to receive a considerably higher download
rate than contributing leechers, therefore introducing significant efficiency
degradations for benign peers. We show the damage caused by the proposed
attack in two different environments: a lab testbed comprising 32 peers and
a PlanetLab testbed with 300 peers. Our results show that 3 malicious peers
can degrade the download rate up to 414.99 % for all peers. Combined with
a Sybil attack that consists of as many attackers as leechers, it is possible to
degrade the download rate by more than 1000 %. We propose a novel choking
algorithm which is immune against bandwidth attacks and a countermeasure
against the revealed attack.

Keywords: Peer-to-peer, BitTorrent, Attacks, Countermeasures

1. Introduction

High market penetration of broadband connectivity in the past decade has
catalyzed a fundamental change in user’s traffic characteristics with Peer-to-

Email addresses: Florian.Adamsky.1@city.ac.uk (Florian Adamsky),
akhayam@plumgrid.com (Syed Ali Khayam), Rudolf.Jaeger@iem.thm.de (Rudolf
Jiager), R.Muttukrishnan@city.ac.uk (Muttukrishnan Rajarajan)

Preprint submitted to Computers € Security June 21, 2014

Peer (P2P) file sharing content comprising a considerable fraction of today’s
Internet traffic [1, 2]. Simultaneous to widespread usage of P2P software,
a global debate continues to take place on copyright violations perpetuated
through P2P software. In addition to public litigation, active measurement
studies [3, 4] have revealed many attacks on P2P systems, allegedly launched
by companies hired by the music and film industries. Hence, at this time it
is important to investigate the threat landscape for P2P systems.

Considering the BitTorrent ecosystem, an attacker has four major com-
ponents to attack: leechers, seeders, peer and torrent discovery. Peer discov-
ery techniques have evolved with the introduction of Distributed Hash Ta-
ble (DHT) [5], Peer Exchange (PEX) [6] and Local Peer Discovery (LPD) [7].
Also, the change from major torrent discovery websites (e.g. PirateBay) to
magnet links [8] makes the torrent discovery process more robust against
attacks. Consequently, leechers and seeders represent the most vulnerable
parts in this ecosystem. One attack that is directed against leechers and
seeders is the bandwidth attack.

Dhungel et al [9] defined a bandwidth attack as a malicious peer who
manages to download from the seeder with the highest speed. As a result,
the malicious peer allocates a slot from the active peer set. We add a new
attack dimension to this vector, where an attacker gets more bandwidth by
one of the following scenarios:

e incorrect protocol implementation;
e incorrect protocol specification;
e programming errors in the BitTorrent client; and/or

e implementation errors in the transport protocol (e.g. TCP [10], Micro
Transport Protocol (uTP) [11]).

In this paper, we investigate the vulnerability of different chocking al-
gorithms in seed state against bandwidth attacks and reveal a vulnerability
caused by incorrect specification of the BitTorrent fast extension. This ex-
tension was introduced to ramp up the bootstrapping time for new peers.
However, a malicious peer can exploit this extension to steal bandwidth even
when a peer is choked. We show that this attack can create significant re-
ductions in download rates for all participating peers.

The key contributions of this paper are as follows:

e We evaluate the effectiveness of bandwidths attacks on different chock-
ing algorithms in seed state on a lab testbed system with 32 peers
running commonly-used BitTorrent client software.

e We repeat the experiment in a large-scale scenario on PlanetLab with
300 peers to validate the attacks’ utility and effectiveness.

e We show how an attacker can exploit a programming error in the chok-
ing algorithm to steal large amounts of bandwidth from a seeder.

e We show a vulnerability caused by an incorrect protocol specification,
analyze its impact empirically, and propose, implement and evaluate a
countermeasure to patch the vulnerability.

e We propose a countermeasure against the allowed fast attack and pro-
pose a novel seeding algorithm which is resilient against bandwidth
attacks. We evaluate the proposed algorithm for performance, stabil-
ity and security.

2. Related Work

In this section, we discuss the related work that has influenced and in-
spired this paper.

Adar and Huberman [12] analyzed the user traffic on Gnutella and found
that 70 % of all Gnutella users share no files. They argue that free riding
is a major threat to P2P networks which leads to degradation of the system
performance and introduces vulnerabilities in the system.

Dhungel et al. [13] provided the first investigation of bandwidth and con-
nection attacks on BitTorrent. They defined bandwidth attacks as peers who
try to allocate an upload slot from the seeder as soon as possible to nip the
seeder in the bud. Their measurements showed that bandwidth attacks are
rather ineffective, and it is only possible to increase the download time up to
10 %. In another work, Dhungel et al. [4] came to the conclusion that it is
not possible to nip the seeder in the bud. The present work, on the contrary,
shows that bandwidth attacks can be launched effectively against seeders.
The same authors also studied connection and piece attacks against leechers
in detail [14].

Liogkas et al. [15] designed and implemented three selfish-peer exploits
to obtain bandwidth without sharing pieces with other peers. In the first

exploit, their client only downloads pieces from the seeder. Seeders can be
easily identified as they advertise themselves by sending a HAVE_ALL message
or a complete bitfield. The second exploit attempts to download only from
the fastest peers. This exploit observes the frequency of the HAVE messages
from the victim. This information is exploited to rougly calculate the down-
load rate of the peer. The last exploit introduces false but rare pieces to
attract high bandwidth leechers. This attack exploits the vulnerability that
a peer can announce pieces which it does not own. They concluded that their
exploits delivered significant benefits, but also that BitTorrent proved to be
quite robust against them. Extending this work, Locher et al. [16] developed
a selfish BitTorrent client called BitThief, which never serves any content to
other peers. This client exploits optimistic unchoking and does not perform
any chokes or unchokes, and never announces any pieces. The results of this
study showed that BitThief succeeded in downloading the complete file in
any case. In rare cases, their client even outperformed the mainline client. In
both of these works, the focus of the attack was to download the complete file
without sharing upload bandwidth. While prior work in this domain focusses
on downloading of a complete file, we instead investigate the effectiveness of
attackers which are only interested in degrading system efficiency but are not
not interested in data integrity.

Defrawy et al. [17] showed that it is possible to launch a distributed denial-
of-service (DDoS) attack on BitTorrent. DDoS belongs to the category of
bandwidth attacks. An attacker can set a victim as one of the trackers. All
future peers attempt to contact the victim, consequently flooding the victim
with BitTorrent packets.

Piatek et al. [18] performed a measurement of millions of BitTorrent users
and showed that the performance and availability of BitTorrent is quite poor.
These measurements motivated the authors to design and implement a new
one-hop reputation protocol for P2P networks. The idea of this protocol is
to encourage persistent contribution incentives and rewarding contributions.
Every client maintains a history of interactions, which serve as intermediaries
attesting of the behavior of others. While this protocol limits free-riding, it
is hard to compare their protocol with the seeding algorithm proposed in this
paper (Section 6.2) as one-hop reciprocation changes the standard BitTorrent
protocol behaviors.

We have shown in our previous work [19] that it is possible to exploit the
choking mechanism in leech state. This can destabilize BitTorrent’s cluster-
ing to attack high bandwidth leechers. One disadvantage of this attack is

4

that an attacker has to wait until the victim optimistically unchokes him.
Since this aspect makes the attack somewhat ineffective, in this work we in-
vestigate attacks from a malicious peer towards specific seeders, without the
need for the malicious peer to be an active swarm member.

3. Background

This section gives a brief overview of the BitTorrent protocol and its fast
extension, with special emphasis on those parts of the protocol that can be
exploited.

3.1. Terminology
In view of a lack of uniform terminology in BitTorrent and P2P commu-
nities, we first introduce the terminology that will henceforth be used in the

paper.
Peer A node that runs a BitTorrent client.
Swarm All the peers sharing a torrent are called a swarm.

Torrent A file that contains metadata about the swarm and the distributed
files.

Leecher and Seeder A peer is a leecher when it is downloading content of
a torrent. A peer is a seeder when it has downloaded all the content
and is sharing it with other leechers.

Free Rider A peer that only downloads data and denies uploading to other
peers.

Choked Peer P is choked by peer () when () does not send data to P.
Interested Peer P has data that peer () wishes to acquire.

Active Peer Set Active peer set for a peer P is a subset of peers that are
interested and P has unchoked them.

Piece The download is divided into equally sized parts called Pieces.
Block Pieces are again divided into equally sized Subpieces or Blocks.

We use the terms choking algorithm in seed state and seeding algorithm in-
terchangeably.

3.2. BitTorrent protocol overview

Two unique distinguishers of BitTorrent are its bandwidth choking and
rarest-piece-first mechanisms. BitTorrent uses these two complementary
techniques to avoid free-riders and to ensure a tit-for-tat-ish way of resource
sharing [20, 21]. The choking algorithm decides which peers may download
and which may not. Choking is done for the following reasons:

e it prevents free-riders;
e it ensures a consistent download rate;

e TCP’s congestion control behaves poorly when sending over many con-
nections at once.

The algorithm works in a tit-for-tat-ish way and favors the peers who
are uploading more actively. Each connection has two states on either end:
uninterested /interested and unchoked /choked. A peer is interested when the
opposite side has data which the peer wants to acquire. Choking means that
a peer does not send data until unchoking happens. Data will only be sent
when one side is interested and the other side is unchoked. By default every
peer has 4 unchoke slots and decides which peers get unchoked according to
the following policy:

e Every 10 seconds all peers are ordered by their download rates. The
top 3 peers in this ordered list are unchoked.

e Every 30 seconds one peer is chosen randomly to get unchoked. This
is called optimistic unchoking.

Optimistic unchoking allows new peers, which have nothing to share,
to get pieces more quickly to engage in the tit-for-tat. This bootstrapping
process takes several minutes to take action. Data between peers is only be
sent when one peer is interested and the other one is unchoked. The decision
of which peer will be choked is based on the peers’ upload rates, and the top 4
peers (i.e. peers with the highest upload rates) will be unchoked. The choking
algorithm is different when a peer is in seeder state. We will introduce four
different seeding algorithms in Section 4.1. In the next section, we describe an
extension to the BitTorrent protocol to speed up the bootstrapping process.

3.3. Allowed Fast Extension

In 2008, Harrision and Cohen released the BitTorrent Enhancement Pro-
posal (BEP) 6, which describes a new extension called Fast Extension [22].
It contained four extensions which are: state machine reworking, have-all,
suggest-piece, and allowed-fast [23]. We focus on the allowed fast extension.
The BitTorrent choking mechanism has one disadvantage: If a peer has no
data to share, it needs several minutes to ramp up before it can be a full
member of a swarm. The allowed fast extension tries to speed this process
up. Without this extension a peer without data needs to wait until another
peer optimistically unchokes it. The allowed fast extension enables down-
loading even if a peer is choked. This allows a peer to get pieces quickly and
to engage in BitTorrent’s tit-for-tat.

If a peer asks for a piece but is choked, it gets an allowed fast message that
contains a list of pieces that can be downloaded. This list is called allowed
fast set and is generated according to the pseudocode given in Algorithm 1.

1 ¢ «— OxFFFFFF00 & ip;

2 x.append(infohash);

3 while |z| < k do

4 x «— SHA1(x);

5 for i < 0 to 4 do

6 break if(|a| == k);

7 piece <— partition first 4 Bytes from x;
8 add piece to a if it’s not already there;
9 end

10 end

Algorithm 1: Algorithm that generates the allowed fast set.

Lines 1 and 2 in Algorithm 1 remove the last octet from the IP address
of the peer, concatenate it with the infohash of the torrent, and save it to a
variable x. Then the algorithm (line 4) calculates the SHA1 [24] hash of the
variable . Lines 5-9 slice four bytes from the beginning of the SHA1 hash
and interpret that as an integer value. This integer is the piece number.
If this piece is not yet in the allowed fast set, it is added to the set. This
gets repeated until the allowed fast set contains k pieces. BEP 6 sets k =
10, however peers are free to adjust k to suit their load. The next section
describes a vulnerability of this extension and shows a way to exploit it.

4. Bandwidth Attacks

In a bandwidth attack, a malicious leecher steal bandwidths by occupying
an unfair number of a seeder’s unchoke slots. As a result, the download
speed from benign leechers gets reduced. Additionally, if the seeder has set a
seeding ratio, the seeder will stop seeding earlier. These attacks are hard to
detect as an attacker running a bandwidth attack only needs a misbehaving
BitTorrent client.

A peer maintains n connections to other peers. From these n peers, a
seeder gives an unchoke slot to u peers and an optimistic unchoke slot to
o peers. The BitTorrent specification sets © = 3 and o = 1. If an attacker
can exploit the choking algorithm in seed state and occupy those u slots, then
other peers may starve. This is because the other peers can only get pieces
through the optimistic unchoke slot, since this slot is assigned randomly
and therefore hard to attack. We denote the upload capacity of the seeder b.
TCP distributes the available bandwidth evenly across all active connections.
Consequently the bandwidth consumption from a malicious peer is:

bA:’LLX

. 1
U+ o (1)

The bandwidth consumption of the other peers, which get pieces through
the optimistic unchoking, then is :

bL:OX

u+o 2)

Since u > o, a bandwidth attack can generate significant damage to the
overall performance of a swarm. Combined with a Sybil attack, an attacker
can attack all seeders in a swarm, as a single attacker can be easily detected.
Since there are different peer selection algorithms, the attacker needs different
exploits for those algorithms. We examined the default seeding algorithm of
prominent BitTorrent clients and list those in Table 1—entries are ordered
by the latest market share statistics from [25].

In the next sections, we will describe and show how an attacker can exploit
different choking algorithms in seed state to occupy an unfair number of the
unchoke slots.

4.1. Seeding Algorithms
While significant progress has been made in understanding the BitTorrent
choking mechanism, its security vulnerabilities have not been investigated

Table 1: BitTorrent clients in combination with the used Seeding Algorithm order by
market share according to [25].

Client Version Market Share Seeding Algorithm
1 uTorrent 3.2.2 4797 % Longest Wait

2 Vuze 4.8.1.2 22.49 % Fastest Upload

3 Mainline 772 13.01 % Longest Wait

4 Transmission 2.61 7.00 % Fastest Upload

5 Unknown 5.22 % n/a

6 Libtorrent 0.16.10 1.02 % Round Robin

thoroughly. Neither is there an incentive in BitTorrent to stay as a seeder
(making seeders rare), nor is it possible for a seeder to verify if an unchoked
peer is behaving properly. This property can be exploited by a malicious
peer. In Figure la one can see the upload piece distribution of the choking
algorithm in leech state and Figure 1b in seed state. Every line represents a
different peer; the length represents the upload duration.

Figure la depicts the result of the tit-for-tat incentive mechanism for
a leecher that uploads pieces to multiple peers. Only peers who uploaded
to that leecher are in turn allowed to download. However, the seeder in
Figure 1b only uploads to a couple of peers, because the malicious peers
have the fastest download speeds. Other peers can only download pieces via
the optimistic unchoke slot, where one peer is chosen randomly to download.
This example shows that the seeding algorithm specified in BEP 03 is unfair
and can be exploited by malicious peers [21] [18]. In the following subsections
we show different seeding strategies that are used by popular BitTorrent
clients and different ways to exploit them.

4.1.1. Fastest Upload

The Fastest Upload (FU) algorithm is similar to the choking mechanism
in leecher state, except that a seeder uses the download rate, instead of the
upload rate, to select candidates to unchoke. It follows that this algorithm
favors the fastest downloaders. The assumption behind this algorithm was
that a fast downloader is also a fast uploader and therefore the distribution is
faster when favoring the fastest downloader. This assumption was based on a
false premise as asynchronous Internet connections (e.g. Digitial Subscriber
Line (DSL)) are still used widely in home and small office networks.

This algorithm was used widely in early versions of BitTorrent clients,

3 [~ T T T
< 3
<
s 9| |
3 2
E:
1 [i
g 1
Z
. L " . e
100 200 300 100 200 300 400
Time (s) Time (s)
(a) Leech State (b) Seed State

—a— Leechers —e— Malicious Peers

Figure 1: Comparison between the upload piece distribution of the choking algorithms in
(a) leech state and in (b) seed state. The data was produced with the cluster environment
from Section 5.1 with 1 seeder that has 5 Mbps upload limit, 29 leechers with 1 Mbps and
3 fast peers with no limit (malicious peers).

and is still used by 29.49 % BitTorrent clients (e.g. Vuze, Transmission),
according to Table 1. It can be easily exploited by an attacker that has a
high download capacity [18]. A BitTorrent client sorts all peers according
to the download rate. If an attacker downloads faster than the other peers,
then it is possible to occupy the unchoke slots.

4.1.2. Round Robin

Round Robin (RR) is a well-known OS scheduling algorithm that gives
each process equal time frames. In the context of BitTorrent, RR algorithm
operates on the number of pieces, with the upload slots rotating every n
pieces.

An attacker has no possibility to get a permanent slot. Every peer gets the
same amount of pieces. However, if there are multiple attackers connected to
the seeder then the benign peers can be forced to wait wait longer to acquire
their pieces.

10

4.1.83. Anti Leech

Chow et al. [26] found out that leechers’ progress is slower at the beginning
(when a leecher has only a few pieces) and at the end (when the leecher has
difficulties to find peers with interesting pieces). To solve this problem, they
introduced a new seeding algorithm that prefers peers when they only have
a few pieces and when they have nearly all the pieces. We are not aware of
any implementation of it apart from libtorrent (versions 0.16.0 and higher),
where they called this algorithm Anti Leech (AL). From every peer p in the
peer list, the seeder calculates a score according to equation 3:

-t if) <!
a(p) =

3
f(p) x % otherwise, (3)

where the number of pieces from the complete file is denoted as f and the
number of downloaded pieces from a peer p is denoted as f(p). The seeder
orders the peers in the peers list according to their score and unchokes the
first three.

The authors mentioned that this algorithm can be exploited by an at-
tacker by pretending to have none or nearly all pieces. However, they argue
that this is hard, since it requires source code modification. We disagree
with this argument because client-side source code changes can be trivially
introduced by malicious peers. To avoid this attack, the authors propose a
simple countermeasure that keeps track of the uploaded pieces to a specific
peer and blocks a peer if it has reached that limit.

4.1.4. Longest Waiter

Starting with version 4.0.0, the mainline client introduced a new algo-
rithm in seed state, that we call Longest Waiter (LW). It is first mentioned
by Legout et al. [21]. This algorithm orders all unchoked and interested peers
according to the time they were last unchoked.

LW is mostly used from clients that are programmed by BitTorrent Inc.
This algorithm is comparable with RR, since an attacker has no possibilities
to get any advantages over the benign peers. However, every additional
attacker who is connected to the seeder increases the wait time for the benign
peers.

4.2. Programming Errors in Clients
Programming errors like buffer or heap overflows can cause significant
damage on a remote host since an attacker can exploit this error to exe-

11

cute malicious code. In a P2P network, an attacker can additionally exploit
programming errors to cause free riding or to steal bandwidth from other
peers.

During our research, we have found such a programming error in libtor-
rent!. In our experimental evaluation in Section 5, we found out that the
seeding algorithm RR is the most vulnerable one. Since RR cannot be in-
fluenced by an attacker, it was clear that this artifact was caused by a pro-
gramming error. Together with the author of libtorrent, we exposed a faulty
counter variable which counted the number of bytes during the last unchoke
round. This counter was being reset for every unchoke round (typically 15
seconds) and not every unchoke. This led to a situation where an attacker
does not lose his permanent slot. This can be seen in the experimental eval-
uation in Section 5, as we informed the author who quickly wrote a patch for
this issue to solve it in future versions. In the following sections, we will re-

fer to malicious peers exploiting this implementation vulnerability asRound
Robin Fixed (RF).

4.8. Allowed Fast Extension Attack

The allowed fast extension has two security vulnerabilities. The first one
is integrated into Algorithm 1, which removes the last octet of the IP address
of the peer. This ensures that a peer that has more IP addresses in a network
cannot get more pieces. The second consideration is that an attacker might
download the allowed pieces over and over again, as the BEP 6 specification
states that: “A peer MAY reject requests for already Allowed Fuast pieces if
the local peer lacks sufficient resources, if the requested piece has already been
sent to the requesting peer, or if the requesting peer is not a starting peer”.
According to RFC 2119 [27] “MAY” means optional, thus implyingthat it is
possible to ask for the same pieces over and over again. To test this attack,
we modified a BitTorrent client that exploits this vulnerability.

4.8.1. Attack Description

The pseudocode which attacks the allowed fast extension is described in
Algorithm 2.

The attacker peer first contacts the victim and sends the victim a Bit-
Torrent handshake. During the handshake, the victim tells the attacker if

http://www.rasterbar.com/products/libtorrent/index.html

12

http://www.rasterbar.com/products/libtorrent/index.html

1 foreach incoming message M do

2 switch M do

3 case HAVE ALL or HAVE

4 Reply with HAVE NONE;

5 Send INTERESTED;

6 ase ALLOWED_ _FAST or CHOKE
7 add piece to St;

8 begin thread with endless loop

9 forall the pieces of S; do

<)

10 Send REQUEST for piece;
11 Wait n seconds;

12 end

13 end

14 endsw

15 end

Algorithm 2: Pseudocode of the Fast Extension Attack.

he/she supports the fast extension. After the handshake, the victim sends a
message with an indication of whether it is a seeder (HAVE_ALL) or a leecher
(HAVE message). In both cases, the attacker replies with a HAVE_NONE mes-
sage, followed by an INTERESTED message (see line 3-5 in Algorithm 2). If
the victim’s BitTorrent client fully implements the allowed fast extension,
the attacker receives an ALLOWED_FAST packet with a piece number.

After the initial handshake, the attacker (lines 9-14) starts a new thread
for every ALLOWED_FAST packet it received. Those threads contain an endless
loop that requests all pieces from the allowed fast set. This ensures that the
attacker gets the pieces when choked and unchoked, thereby allowing the
attacker to steal bandwidth permanently.

4.8.2. Affected Clients

Table 2 lists prominent BitTorrent clients that we have tested for the vul-
nerability described in the last section. Entries in the table are ordered by
the latest market share statistics from the Tribler? P2P research team [25].
uTorrent, the client with the largest market share, supports the fast exten-

Zhttp://www.tribler.org/

13

http://www.tribler.org/

Table 2: BitTorrent clients order by market share according to [25]. Column Vulnerable
shows if the client supports the allowed fast semantics and if it is vulnerable to the proposed
attack.

Client Version Market Share Vulnerable
1 uTorrent 3.2.2 4797 % No
2 Vuze 4.81.2 2249 % Yes
3 Mainline 7.7.2 13.01 % No?
4 Transmission 2.61 7.00% No
5 Unknown 5.22 % n/a
6 Libtorrent 0.16.10 1.02 % Yes

sion, but only half of the semantics of the allowed fast part. This is because
BitTorrent Inc. has called upon academics [28] to study the consequences of
this extension, which will not be implemented until more insight experimen-
tal results are available. In this regard, to the best of our knowledge, this
the first paper to investigate the security consequences of the allowed fast
extension. Vuze, the second most widely-used protocol, is vulnerable to the
proposed attack. However, Vuze is only partly affected as it allows pieces
to be downloaded 64 times and then all further requests are rejected. Nev-
ertheless we have listed Vuze as vulnerable since it is possible to reconnect
and restart the attack. The mainline BitTorrent client is similar to uTorrent.
Transmission supports the fast extension, but the code was commented at
the time of writing of this paper—clearly the possibility of including the ex-
tension in future releases is being considered right now. To test libtorrent, we
used Deluge that makes use of this library. This client is also vulnerable to
the proposed attack. Based on these statistics, it is clear that a large fraction
of BitTorrent clients in the world are vulnerable to the fast extension attack.

The next step is to test this attack in a real network to see how the
BitTorrent protocol reacts to it.

5. Experimental Evaluation

In this section, we describe the experimental setup and show the results
under the following attack scenarios: In the first experiment, we attack the
initial seeder with different number of attacks and different upload limits and

3At the moment, but code is in mainline so will be vulnerable soon.

14

compared the results with an experiment without an attacker. In the sec-
ond experiment, we simulate a Sybil attack where an attacker uses multiple
compromised computers to launch the attack.

To judiciously evaluate the attacks’ effectiveness, our experiments are
repeated on two testbeds: a Cluster lab environment and PlanetLab. We
now describe both these testbeds and outline our experimental results on
these testbeds.

5.1. Experimentation on the Cluster Testbed

We perform experiments using private torrents in our testbed consisting
of 32 nodes with a controller and a monitor node. These nodes are desktop
machines, which are running the BitTorrent Transmission version 2.61 and
Deluge version 1.3.5 (libtorrent 0.16.10) over Ubuntu GNU Linux 12.04.1
LTS. A network diagram can be seen in Figure 2. We wrote a distributed
experiment library in Perl to simultaneously control all nodes. This software
monitors and records the status of each peer at every second. This includes:
nodes in peer set, nodes in active peer set, interested and choked states
for each of the peers in the active peer set, and upload and download rate
with each of the peers in the active peer set. In all experiments, the seeder
distributes a file with a size of 100 MiB and a piece size of 64 KiB. The
controller node executes the experiments and monitors each of these nodes.

?

()

Py Switch @ Internet

€

Figure 2: Network diagram of the Cluster testbed.

All experiments simulated a flash crowd scenario to get reproducible re-
sults. To create a more realistic scenario, every node generated random
HTTP background traffic. Every leecher disconnected after receiving a com-
plete copy of the file and only the initial seeder stayed connected for the com-
plete duration of the experiment—this is because BitTorrent does not reward

15

a seeder to stay active. Finally, every experiment was repeated 10 times and
the average values for these experiments are reported in subsequent sections.
In this section we experimentally evaluate the effectiveness of the proposed
attack. We use a delay ratio (d) metric to quantify the effectiveness of an
attack:

d— ta() — td(x)’ (@)
ta(x)
where the average download time of an arbitrary piece x without the attack
is denoted as t4, while the download time with an ongoing attack is denoted
as tij.

In this experiment, we attacked the initial seeder with 1, 2, 3 and 4 at-
tackers and compared the results with an experiment without an attacker.
We repeat this experiment for every seeding algorithm mentioned in Sec-
tion 4.1. We set the upload limit from the seeder to 1, 5 and 10 Mbps in
different experiments. Leechers do not have up or download limits.

5.1.1. Seeder with 1 Mbps Upload Limit

Figure 3 shows the average download time with an increasing number
of attackers. Our first observation from Figure 3a is that RR is the most
vulnerable algorithm—with one attacker, RR has a delay ratio up to 42.17 %,
with two attackers up to 105.60 %, with three attackers a sharp jump up to
328.76 %, and with four attackers the average download time increases by
414.80 %. This is the highest increase and can be explained by the fact that
the RR implementation in libtorrent was incorrect and favored attackers—
as explained in Section 4.2. The allowed fast attack has not increased RR
significantly.

The second most vulnerable algorithm is FU. The growth of the average
download time from FU is somewhat linear. It starts with an increase of
up to 29.63 % with one attacker and ends eventually with an increase of
up to 189.07 % with four attackers. However, it is worth mentioning that
the allowed fast attack can increase the results from the bandwidth attack
against FU. Both scenarios with one and two attackers the allowed fast attack
is around 10 % higher than the bandwidth attack. With three attackers, the
difference is up to 70 % and with four attackers it is up to 45 %.

What is interesting to note from the results of the AL algorithm is that
there is a big difference between a bandwidth attack and the allowed fast
attack. With three attackers, the bandwidth attack achieves a d of up to

16

D]

g 800 800

=

<

& 600 600

()

3

A 400 400

&

S 200 200

> | | | | | |

< 0 1 2 3 4 0 1 2 3 4

Number of Attackers Number of Attackers

(a) Bandwidth Attack (b) Allowed Fast Attack

Seeding Algorithms: —e—RR-#-FU —e— AL —— LW ——RF

Figure 3: File transfer of a 100 MiB file with a piece size of 64 KiB via BitTorrent with
a seeder that has a 1 Mbps upload limit. Subfigure (a) shows a normal bandwidth attack
and subfigure (b) shows a bandwidth attack combined with the Allowed Fast Attack.

67.23 % and the allowed fast attack achieves a d up to 275.80 %. This can be
explained by the flash crowd situation, since nearly all peers have the same
score at the beginning and at the end of this scenario. If peers have the same
score, libtorrent prefers the peer which have waited the longest. This indi-
cates that the bandwidth attack against AL only takes effect when the other
peers have some pieces. However, the allowed fast attack steals bandwidth
even when choked. We believe that the effect of bandwidth attack against
AL is higher in real-world, because a flash crowd scenario can only appear at
the beginning of a torrent. The algorithms LW and RF are relatively resilient
against bandwidth attacks. LW reached with four attackers up to 69.84 %
and RF up to 82.31 %.

5.1.2. Seeder with 5 Mbps Upload Limat

Figure 4 depicts an attack against a seeder with 5 Mbps upload limit.
Contrary to the attack against the seeder with 1 Mbps upload limit, the
most vulnerable algorithm is not RR, rather it is FU. This indicates that
the programming error is only visible when the seeder has low bandwidth

17

=

£

=

~ 200 200

&

2

=

g

=

- 100 100

20

&

% | | | | | |

< 0 1 2 3 4 0 1 2 3 4

Number of Attacker Number of Attacker

(a) Bandwidth Attack (b) Allowed Fast Attack

Seeding Algorithms: —e—RR-#-FU —e— AL —— LW ——RF

Figure 4: File transfer of a 100 MiB file with a piece size of 64 KiB via BitTorrent with a
seeder that has 5 Mbps upload limit. Subfigure (a) shows a normal bandwidth attack and
subfigure (b) shows a bandwidth attack combined with the allowed fast attack.

capabilities. The d of FU with one bandwidth attacker is up to 60.64 % and
with four up to 385.41 %. As written in Section 5.1, the leechers and the
attackers have the same bandwidth capabilities. Nevertheless, the attacker
is able to request more pieces than the competitive leechers using the simple
attack script in Algorithm 2.

The next algorithm that is impacted adversely is AL. A bandwidth attack
with one attacker is not significantly different from the experiment without
attacker. However, the d with two attackers reaches up to 25.52 %, with three
attackers up to 62.21 %, and with four attackers up to 182.99 %. Similar
to the attack experiment with 1 Mbps against AL, the allowed fast attack
increases the impact. The allowed fast attack achieves against AL the follow-
ing d values: 19.45 %, 68.05 %, 197.44 % and 212.31 %. As in the previous
experiment, the seeding algorithms RF and LW have the lowest impact. LW
gets with a normal bandwidth attack and four attacker up to 33.93 % in-
creased and with the allowed fast attack up to 72.19 %. RF is also increased
up to 50.74 % and up to 98.44 % with the allowed fast attack.

18

5.1.3. Seeder with 10 MBit Upload Limit

200

Average Download Time (s)

0 1 2 3 4 0 1 2 3 4
Number of Attacker Number of Attacker
(a) Bandwidth Attack (b) Allowed Fast Attack

Seeding Algorithms: —e— RR = FU —e— AL —+— LW ——RF

Figure 5: File transfer of a 100 MiB file with a piece size of 64 KiB via BitTorrent with
a seeder that has 10 Mbit upload limit. Subfigure (a) shows a normal bandwidth attack
and subfigure (b) shows a bandwidth attack combined with the allowed fast attack.

Finally, we repeat the experiment with a seeder having a 10 Mbps upload
limit (Figure 5). Generally, it can be seen that the more bandwidth the seeder
has, the more resilient it is against bandwidth attacks. In this experiment,
the most vulnerable algorithm is again FU. The d of FU with one, two,
three and four bandwidth attackers is up to 23.29 %, 86.36 %, 242.97 % and
229.54 %, respectively. With the help of the allowed fast extension attack
using three attackers, the d can be degraded up to 349.94 %. For all other
algorithms’ degradation of d is also significant but less than 100 %. The
second most vulnerable algorithm was the AL seeding algorithm, similar to
the experiment with 5 Mbps. The attack achieves with one attacker a d of up
t0 97.66 % and with four attackers 409.15 %. For the other seeding algorithm,
we only mention the results with four attackers. The broken round-robin
implementation achieves a d of up to 163.94 %, LW up to 52.00 %, RF up to
77.51 %.

19

5.1.4. Launching Bandwidth Attacks in Sybil Mode

In a Sybil Attack [29], an attacker injects multiple fake peers, which are
all under the control of the attacker, into the network. We now evaluate
the efficacy of the proposed allowed fast attack in Sybil mode.* In this
experiment, with every iteration we increased the number of attackers and
reduced the number of leechers until we have the same number of attackers
and leechers. Figure 6 depicts the results with a seeder that has a 5 Mbps
upload capacity.

1,000 F

09]
o
]

600

400

200

Average Download Time (

10 20 30 40 50 60 70 80 90 100
Number of Attacker in Percent

—o—Wo-aFU-e AL—+—LW —<+—RR-e-RF

Figure 6: File transfer of a 100 MiB file with a piece size of 64 KiB via BitTorrent with a
seeder that has 1 Mbps upload limit. Subfigure (a) shows a normal bandwidth attack and
subfigure (b) shows a bandwidth attack combined with the Allowed Fast Attack.

The Sybil attack shows that as more attackers are injected into the swarm,
the impact of the attack becomes progressively more severe. When 25 % from
the swarm are attackers, then it is possible to increase the average download
time for all peers up to more than 500 % if the seeder uses FU, AL or RR. The
seeding algorithms LW or RF also concede a d of more than 250 %. If there
are half as many attackers as leechers, then the d of the leechers increases up

4This is a realistic scenario as botnets are available for hire for as little as $0.50 per
bot [30].

20

to 700 % if a seeder makes use of FU, AL and RR. However, if a seeder uses
LW or RF then this value is more than 300 %. If an attacker introduces the
same amount of attackers as leechers, then the most vulnerable algorithms
FU, AL and RR increase the average download time up to 1000 %. RR is
the worst hit with the highest d of 1561.18 %. LW and RF concede greater
than 500 % increase.

5.2. Experimentation on the PlanetLab Testbed

The next set of experiments were performed on the PlanetLab platform °
to test the large-scale effects of bandwidth attacks. PlanetLab is a collection
of machines distributed over the globe. All nodes are connected to the In-
ternet and therefore experience all the facets of an unreliable network, like
latency, packet loss, packet corruption, etc.

Our setup of the large-scale experiment consists of one seeder, one tracker
and 300 leechers. This scale of this setup is inspired by similar experiments
by prior studies; e.g. [31], [18] and [32]. All experiments simulated a flash
crowd scenario and all peers have upload and download rates of 1 Mbps.
This is a judicious bandwidth number, since much of the developing world is
still operating in the 1 Mbps range [33|. We introduced 4 attackers (1.33 %
of the leechers) that had no bandwidth limits. Figure 7a shows the results of
the bandwidth attack and Figure 7b outlines the results of the allowed fast
attack. All experimental results are averaged over ten runs.

The results show that AL is the most vulnerable seeding algorithm with
a d of 247.68 %, because of its missing security feature. Note that this value
is quite close to the cluster result presented earlier which showed a delay
ratio of 275.80 %. Similar to our previous experiments, the second most
vulnerable algorithm is FU where a bandwidth attacker can increase the
average download time of 300 leechers up to 47.78 % and with the allowed
fast attack up to 92.32 %. Both RF and LW are relatively robust against
bandwidth attacks with an increase of 15.92 % and 14.50 %. However, the
allowed fast attack is able to increase the average download times of RR
and LW up to 87.23 % and 69.41 %, respectively. We also repeated the
experiment with less then 300 leechers and obtained similar results.

Shttp://www.planet-lab.org/

21

http://www.planet-lab.org/

%‘LOOO B 3,6‘79.6* 4,000 3,6‘10‘7

= N N

=

3,000 1 3.000] :

i

S

=

£2,000 |- + 2,000 |- 1,9928 1,911.5 1,729.2 :

a 1,508.4

%}1 - L0207 1,183.21,168.7 000 1,0%0.7

i; ’ \D ! H ! ! , \D ! ! ! !
w/o FU RF LW AL w/o FU RF LW AL

(a) Bandwidth Attack (b) Allowed Fast Attack

Figure 7: File transfer on PlanetLab of a 100 MiB file with a piece size of 64 KiB via Bit-
Torrent. The data was produced with 1 seeder that has a 1 Mbps upload limit, 300 leechers
with 1 Mbps download limits and 4 malicious peers. All values are averaged values of ten
iterations.

5.8. Discussion

We showed an in-depth security analysis of the different seeding algorithm
of the BitTorrent protocol. The results show that the seeding algorithms RR,
FU and AL are quite vulnerable, while RF and LW are not as vulnerable. A
malicious peer that exploits these algorithms increase its seeding score and
therefore gets more download time. It was not possible to cripple the network
completely, because of the optimistic unchoke slot. However, with unlimited
resources, an attacker can slow down the BitTorrent download for all peers
to an unusable level.

We also provided large-scale experiments on PlanetLab to show the real-
world effects of bandwidth attacks. While the attacks’ impact on PlanetLab
was a bit more contained than the cluster experiment, attack trends observed
in the cluster testbed were validated by the PlanetLab experiments. We only
had one seeder and in a real-world swarm there are usually more seeders.
However, a malicious peer can attack multiple seeders at the same time—it
is easy to find all the seeders in a swarm, as one just has to connect to the
tracker frequently and wait for a peer that sends a complete bitfield or a
HAVE_ALL message. The only exception here is a seeder that uses the super-
seed [34] feature.

22

6. Countermeasures

In this section, we propose a countermeasure against the allowed fast at-
tack and a novel seeding algorithm which is highly resilient against bandwidth
attacks.

6.1. Allowed Fast Attack

There are two possible countermeasures against the allowed fast attack.
The first is to change the word “MAY” to “MUST” in the following sentence
from BEP 6: “A peer MAY reject requests for already allowed fast pieces
(...)". However, this countermeasure prevents retransmission of a damaged
piece. Another countermeasure is to upper bound the number of pieces that
can be downloaded; for example, the client Vuze has a limit of 64 times.
While this strategy reduces the effectiveness of this attack, it is still possible
to restart the attack after the limit is reached.

In light of the above discussion, an effective countermeasure must restrict
the TP address of the peer which has reached the limit to avoid restarting of
the attack. We implemented this countermeasure in libtorrent and repeated
the experiment with a seeder having a 1 Mbps upload limit.

Figure 8 shows experimental results of implementing the countermeasure
that limits the allowed fast pieces. Figure 8a shows the results from the
allowed fast attack and Figure 8b shows the results with a patched libtorrent
version. It can be seen that with the countermeasure in place the attack
has nearly no effect on the seeder. However, the seeding algorithm FU is an
exception where the attacker is not choked from the seeder because it is the
fastest downloader. Our countermeasure strategy against the allowed fast
attack has been contributed to the community in libtorrent 0.16.11 ©.

6.2. Bandwidth Attack

As seen in our experimental evaluation, the seeding algorithms LW and
RF are the ones which are most resilient against bandwidth attacks. How-
ever, an attacker just has to wait long enough to get a slot. For a working
countermeasure against bandwidth attacks, the seeder needs to verify which
peers have shared pieces with other peers and which ones have not. The
seeder would then unchoke u peers, which have shared the most number of

Shttp://sourceforge.net/p/libtorrent/mailman/message/31298868/

23

http://sourceforge.net/p/libtorrent/mailman/message/31298868/

=

g 800 800 |- |
=

o]

2 600 600 - :
=

3

A 400 400 |- :
]

Y)
£ 200 200 P
= | | | | | |

< 0 1 2 3 4 0 1 2 3 4

Number of Attacker Number of Attacker
(a) Allowed Fast Attack (b) Allowed Fast Attack with Counter-
measure

Seeding Algorithms: —e— RR = FU —e— AL —+— LW ——RF

Figure 8: File transfer of a 100 MiB file with a piece size of 64 KiB via BitTorrent with
a seeder that has 1 Mbps upload limit. (a) Allowed fast attack; (b) Allowed fast attack
with a patched seeder.

pieces. This requires a secure proof that a peer has shared pieces with others,
that is hard to fake by an attacker.

We propose a new seeding algorithm that is fast, hard to exploit, and
ensures that only peers that have shared are getting an unchoke slot. We
call this seeding algorithm Peer Idol (PI) [35]. If a peer wants to download
pieces from a seeder then it has to send a new BitTorrent message to the
seeder, that we call vote. This message contains a list of n peers which the
requesting peer has downloaded the most pieces from. Thus a peer has to
vote for other peers. The notation A > B indicates that the requesting peer
has downloaded more pieces from peer A than from peer B. Figure 9 shows
an example with 3 peers and one seeder which has two unchoke slots.

All leechers from the example in Figure 9 send their votes to the seeder Sp;.
Peer A favors the peers C', B and D, as A has downloaded the most from
these peers. The seeder Sp; awards each peer that is in the vote with points:
Peer C' gets 3 points, peer B gets 2 points and peer D gets 1 point. We
calculate the PI score as follows:

24

Figure 9: Example of how leechers send their votes to the seeder.

1

PI(p) = Z%(p)- (5)

The function V;(p) returns 1 or 0, depending on weather peer i voted
for peer p or not. If PI(p) of two peers is the same, then PI prefers the
peer which has waited the longest. Every unchoked peer downloads for at
least two unchoke rounds to avoid quick choking and unchoking, known as
fibrillation [36]. According to Equation (5), Peer C' has the highest score
with PI(C) = 6, followed by Peer A with PI(A) = 5 and Peer B with
PI(B) = 3. Thus, Sp; unchokes C' and A and chokes B. If a vote contains
peers unknown peer, the seeder will add these peer in a list of potential
peer candidates. This list contains peers from LPD, PEX and DHT. If the
seeder has to little peers, it randomly chooses peers from this list and tries
to connect to it. In the example in Figure 9, Sp; saves the two unknown
peers D and E in its candidate list.

This score calculation is a well-known method in political voting and is
called Borda Count (BC), named after Jean-Charles de Borda [37|. Instead of
BC, we have also tested the Condorcet Method (CM) algorithm, but noticed
two major problems: First, the computation complexity of CM is O(N?) as
all peers have to compete with each other. In comparison, the complexity
of BC is O(1), because the seeder increases the vote counter of that specific
peer. Secondly, since the last peer would loose all pairwise comparisons, the
score of the last peer would always be C'M (p) = 0.

We defined additional security rules to protect against attacks. A peer
must send a vote in order to get voted. This ensures, that peers send votes to
the seeder. But an exception can be made, if the seeder does not have enough

25

=z 140 F .

£

& 120 | —

<

< 100 100 |- 1

=

3 80 |

A

)

?50 50 . 60 - .

g | | | | | | | |

< 0.5 1 1.5 2 0.5 1 1.5 2
Upload Speed (kbps)10* Upload Speed (kbps)10*

(a) Leechers have no upload or download (b) Leechers have different download lim-
limit its and no upload limit

Figure 10: Effects of the different seeding algorithms on the average download speed in dif-
ferent environments. The upload speed of the seeder was gradually increased. Source: [35].

peers. A peer gets blacklisted and disconnected if the vote contains more
than n peers, the IP address of the requesting peer or repeated peers. In the
next subsections we evaluate the PI scoring method in terms of performance,
stability and security.

6.2.1. Performance

One of BitTorrent’s most important properties is performance, so a new
seeding algorithm should not make BitTorrent slower. Our hypothesis is
that PI will not degrade BitTorrent’s performance, even with the message
overhead of the vote message. This is based on the fact that PI reward
sharing peers. In the first experiment, we compared the performance of the
seeding algorithms in an optimal environment (described in Section 5.1),
where the leechers had no download or upload limits. The seeder, however,
had an upload speed limit that was gradually increased. Figure 10a shows
the average download speed of all peers depending on the upload speed from
the seeder.

The results in Figure 10a were limited to 5-20 Mbps, as we did not
observe a significant difference between the algorithms in the 1-4 Mbps range.
Beginning from 5 Mbps RF and AL move apart from FU, LW and PI. For
simplicity, RF represents the slower group and PI the faster group. The

26

(ol | . i
= 30

[«D]

g

= 20| :
(@}

(@)

s

- 10 |
g 5,1 5,1 8 49

- i 1B i

ZS | | | |

FU RF LW AL PI

Figure 11: The number of connected peers of the seeder in a swarm of 32 peers. All values
are average values of ten iterations.

seeding algorithm RF ranges from 55.7-567 s and has a mean value of 120.5 s.
Compared with the faster group, the range is 45.9-566 s and the mean value
is 111.5 s. The median difference between both groups is 10 s.

6.2.2. Stability

Stability implies that the service should continue working as expected,
even if peers go offline.

If several peers go offline in a swarm with a low peer set cardinality, one
of the following consequences would happen: Either peers starve, since they
do not have enough peers to finish the download, or the peers have to request
the tracker for more peers. The last consequence results in an increase in
download time. Both consequences disrupt the stability of the service. Thus,
we run an experiment and counted the number of peers connected to the
seeder. Figure 11 shows the number of connected peers to the seeder.

PI uses the tracker and the voting mechanism to get new peers. All the
other seeding algorithms only use the tracker to get new peers. The seeder
that makes use of PI had a connection to nearly all peers. This is because
the seeder saves unknown peers from votes to a list for a possible connection
candidates. If the seeder has fewer peers, it chooses randomly a peer from
that list and tries to connect to it. Wu et al. [38] studied peer exchange
in BitTorrent and concluded that peer exchange significantly reduces the
download time. Therefore peer exchange lowers the dependency of a central
tracker and increases the stability and robustness of BitTorrent.

27

6.2.3. Security

We now investigate how vulnerable the PI algorithm is to bandwidth
attacks and compare the results with the other algorithms. For that purpose,
we introduced 3 malicious peers that attack each algorithm in its own way.
The attackers connect to the seeder 5 seconds before the leechers to ensure
that the attackers are getting the unchoke slots first. We counted how many
attackers and leechers were unchoked and depicted the results in Figure 12.

g

g | |

5 96.7 100

A, 100 — T 89.9 B
W 80.7 =

o)

3

£ 50f :
5 19.3

e 11.5 : 10.1

o

5 o el O] il S
e}

§ T T T T T

Z. FU AL RF LW PI

I8 Leechersl Attackers ‘

Figure 12: The unchoke ratio of attackers and leechers of the different seeding algorithms
witout the optimistic unchoke slot. The data was produced with 1 seeder that has 5 Mbit /s
upload limit, 29 leechers with 900 kbit /s download limit and 3 malicious peers. All values
are average values of ten iterations. Source: [35].

To exploit the FU malicious peers just have to download faster than its
competitors. Thus, we equipped the attackers with more bandwidth than its
competitors. The attack script requests random blocks and tries to download
as much as possible. The results in Figure 12 which shows, that FU is quite
vulnerable against these attacks—only 3.3 % leechers were unchoked while
96.7 % attackers were unchoked.

In comparison to FU, RF unchokes 88.5 % leechers and only 11.5 %
attackers. The probability that RF chooses an attacker is P(A) = Z—;, where
n, is the number of attackers and n, is the number of peers that the seeder
has in its peer set. Therefore, the probability that a leecher is chosen by RF
is P(L) = P(A) = % RF is quite robust against bandwidth attacks and

gives each peer the same amount of pieces.

28

AL favors the peers that have nearly-all or nearly-none pieces. As a result,
F(p) from equation 3 is always 0, leading to AL(p) = F which is the highest
score for a peer. In other words, the benign leechers have to be content with
the optimistic unchoke slot.

The script that attacks PI sends every 10 second a fake vote to the seeder,
which contains the other attackers. A fake vote con only contain n — 1
attackers, since the requesting peer is not allowed to include itself to the
vote. As the results depict in Figure 12, the PI algorithm is the most robust
one against bandwidth attacks. It can be seen that PI only unchokes 10.1 %
of the attackers and 89.9 % of the leechers.

7. Conclusions

This paper proposed an experimental evaluation of bandwidth attacks
against seeding algorithms and presented a novel bandwidth attack that ex-
ploit the allowed fast extension. We have shown that the seeding algorithms
FU, RR and AL are highly vulnerable. Multiple attackers were able to in-
crease the average download time in our cluster testbed for all peers from
300 % to 414 % when the seeder made use of FU, RR or AL. Seeding algo-
rithms RF and LW are less vulnerable, but it was still possible to increase
the average download time from 70-150 %. We also provided large-scale
experiments on PlanetLab to show the real-world effects of bandwidth at-
tacks. While the attacks’ impact on PlanetLab was a bit more contained
than the cluster experiment, attack trends observed in the cluster testbed
were validated by the PlanetLab experiments. We combined a Sybil attack
with a bandwidth attack and showed that if an attacker introduces as many
attackers as leechers, the average download time increases by up to 1000 %.
We showed how a malicious peer can exploit the allowed fast extension to in-
crease the impact of the bandwidth attacks significantly. In our analysis, we
also found, reported, and helped in fixing a programming error in libtorrent
that could be exploited by a malicious peer to gain more bandwidth. We
also communicated our protocol enhancements to the libtorrent open-source
community. Finally, we proposed a simple countermeasure to the allowed
fast attack and a novel seeding algorithm that is resilient against bandwidth
attacks.

29

8. Acknowledgement

We would like to thank the University of Applied Sciences Technische
Hochschule Mittelhessen (THM) for providing us with the cluster we have
used in our work. A very special thanks to Arvid Norberg, who worked with
us to fix the round robin programming error and for this libtorrent library.
We also thank Syed Fida Hussain Gilani for his help on using PlanetLab.

[1] E. Van Der Sar, BitTorrent Traffic Surges After LimeWire Shutdown,
http://goo.gl/VIsya, 2011. Accessed: 21/06/2014.

[2] E. Van Der Sar, BitTorrent Traffic Increases 40 % in Half a Year, http:
//goo.gl/d4cGA, 2012. Accessed: 21/06,/2014.

[3] P. Dhungel, D. Wu, B. Schonhorst, K. W. Ross, A measurement study of
attacks on bittorrent leechers, in: Proceedings of the 7th International
Workshop on Peer-to-Peer Systems, 2008, p. 7.

[4] P. Dhungel, X. Hei, D. Wu, A measurement study of attacks on bittor-
rent seeds, in: (ICC), 2011 IEEE, 2011, pp. 1-5.

[5] A. B. Loewenstern, BEP 0005: DHT Protocol, Technical Report,
BitTorrent Inc., 2008. http://www.bittorrent.org/beps/bep_0005.
html.

[6] User:AMC1, BitTorrent Peer Exchange Conventions, http://wiki.
theory.org/BitTorrentPeerExchangeConventions, 2008. Accessed:
21/06/2014.

[7] A. Norberg, Local Peer Discovery Documentation, http://goo.gl/
jAgT1C, 2009. Accessed: 21,/06,/2014.

[8] T. PirateBay, No more torrents=no changes anyhow, http://
thepiratebay.se/blog/208, 2012. Accessed: 21/06,/2014.

[9] P. Dhungel, D. Wu, X. Hei, B. Schonhorst, Is BitTorrent Unstoppable?,
2007.

[10] R. Sherwood, B. Bhattacharjee, R. Braud, Misbehaving TCP receivers
can cause Internet-wide congestion collapse, in: Proceedings of the 12th

ACM conference on Computer and communications security, 2005, pp.
383-392.

30

http://goo.gl/VJsya
http://goo.gl/d4cGA
http://goo.gl/d4cGA
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
http://wiki.theory.org/BitTorrentPeerExchangeConventions
http://wiki.theory.org/BitTorrentPeerExchangeConventions
http://goo.gl/jAgTlC
http://goo.gl/jAgTlC
http://thepiratebay.se/blog/208
http://thepiratebay.se/blog/208

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

F. Adamsky, S. A. Khayam, R. Jaeger, M. Rajarajan, Security Analysis
of the Micro Transport Protocol with a Misbehaving Receiver, in: In-
ternational Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2012, pp. 143-150.

E. Adar, B. A. Huberman, Free Riding on Gnutella, First Monday 5
(2000).

P. Dhungel, X. Hei, D. Wu, K. Ross, The seed attack: Can bittorrent
be nipped in the bud?, Technical Report, Department of Computer and
Information Science, Polytechnic Institute of NYU, 2008.

P. Dhungel, D. Wu, K. W. Ross, Measurement and mitigation of Bit-
Torrent leecher attacks, Elsevier Computer Communications 32 (2009)
1852-1861.

N. Liogkas, R. Nelson, E. Kohler, L. Zhang, Exploiting BitTorrent For
Fun (But Not Profit), in: Proceedings of the 5th International Workshop
on Peer-to-Peer Systems, 2006, pp. 1-1.

T. Locher, P. Moor, S. Schmid, R. Wattenhofer, Free Riding in BitTor-
rent is Cheap, in: Proceedings of the 5th Workshop on Hot Topics in
Networks, 2006, pp. 85-90.

K. El Defrawy, M. Gjoka, A. Markopoulou, BotTorrent: misusing Bit-
Torrent to launch DDoS attacks, in: Proceedings of the 3rd USENIX
workshop on Steps to reducing unwanted traffic on the Internet, 2007,

pp. 1-6.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkataramani,
Do incentives build robustness in BitTorrent?, in: Networked Systems
Design and Implementation, 2007, pp. 1-14.

F. Adamsky, H. Khan, M. Rajarajan, S. A. Khayam, POSTER: Desta-
bilizing BitTorrent’s Clusters to Attack High Bandwidth Leechers, in:
ACM Computer and Communications Security 2011, 2011, pp. 1-1.

B. Cohen, Incentives build robustness in BitTorrent, in: Workshop on
Economics of Peer-to-Peer systems, 2003, pp. 1-1.

31

[21]

22]

23]

[24]

[25]

26]

27]

28]

[29]

[30]

[31]

A. Legout, G. Urvoy-Keller, P. Michiardi, Rarest first and choke al-
gorithms are enough, in: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, New York, New York, USA, 2006,
pp. 203-216.

D. Harrison, B. Cohen, Fast Extension, Technical Report, Bit-
Torrent Incorporation, 2008. http://www.bittorrent.org/beps/bep_
0006.html.

B. Cohen, Discussion of BEP 6: Fast Extension, 2008. Accessed:
21/06/2014.

D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF'), 2011.

E. Van Der Sar, uTorrent Keeps BitTorrent Lead, BitComet Fades Away,
http://goo.gl/EImuS, 2011. Accessed: 21/06/2014.

A. L. H. Chow, L. Golubchik, V. Misra, Improving BitTorrent: a simple
approach, in: Proceedings of the 7th international conference on Peer-
to-peer systems, IPTPS’08, 2008, p. 8.

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
1997.

D. Harrison, Discussion of BEP 6: Fast Extension, 2008. Accessed:
06/08,/2013.

J. R. Douceur, The Sybil Attack, in: Proceedings of 1st International
Workshop on Peer-to-Peer Systems, 2002, pp. 251-260. URL: http:
//www.springerlink.com/index/3an0ek5gfan3dtx9.pdf.

Y. Namestnikov, The economics of botnets, Technical Report,
Kaspersky Lab, 2009. https://www.securelist.com/en/analysis/
204792068/The_economics_of_Botnets.

M. Sirivianos, J. Han, P. Rex, C. X. Yang, Free-riding in BitTorrent
Networks with the Large View Exploit, in: Proceedings of the 6th
International Workshop on Peer-To-Peer Systems, 2007, pp. 1-7.

32

http://www.bittorrent.org/beps/bep_0006.html
http://www.bittorrent.org/beps/bep_0006.html
http://goo.gl/EImuS
http://www.springerlink.com/index/3an0ek5gfan3dtx9.pdf
http://www.springerlink.com/index/3an0ek5gfan3dtx9.pdf
https://www.securelist.com/en/analysis/204792068/The_economics_of_Botnets
https://www.securelist.com/en/analysis/204792068/The_economics_of_Botnets

32]

33

[34]

35]

[36]

[37]

[38]

Z. Chen, Y. Chen, C. Lin, N. V., P. Cao, Experimental Analysis of
Super-Seeding in BitTorrent, in: Communications, 2008. ICC ’08. IEEE
International Conference on, 2008, pp. 65-69.

R. L. Cottrel, How Bad Is Africa’s Internet?, http://spectrum.
ieee.org/telecom/internet/how-bad-is-africas-internet, 2013.
Accessed: 12/06/2014.

J. Hoffman, BEP 0016: Superseeding, Technical Report, BitTorrent Inc.,
2008. http://www.bittorrent.org/beps/bep_0016.html.

F. Adamsky, S. A. Khayam, R. Jaeger, M. Rajarajan, Who is going to
be the next BitTorrent Peer Idol?, in: Proceedings of the 12th IEEE In-
ternational Conference on Embedded and Ubiquitous Computing, 2014,

pp. 1-6.

B. Cohen, The Bittorrent Protocol Specification, Technical Report, Bit-
torrent, Inc., 2008. URL: http://bittorrent.org/beps/bep_0003.
html.

S. Stahl, P. E. Johnson, Understanding Modern Mathematics, Jones &
Bartlett Pub (Ma), 2006.

D. Wu, P. Dhungel, X. Hei, C. Zhang, K. W. Ross, Understanding Peer
Exchange in BitTorrent Systems, in: Proceedings of the 10th Interna-
tional Workshop on Peer-to-Peer Systems, 2010, pp. 1-8.

33

http://spectrum.ieee.org/telecom/internet/how-bad-is-africas-internet
http://spectrum.ieee.org/telecom/internet/how-bad-is-africas-internet
http://www.bittorrent.org/beps/bep_0016.html
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html

	Introduction
	Related Work
	Background
	Terminology
	BitTorrent protocol overview
	Allowed Fast Extension

	Bandwidth Attacks
	Seeding Algorithms
	Fastest Upload
	Round Robin
	Anti Leech
	Longest Wait

	Programming Errors in Clients
	Allowed Fast Extension Attack
	Attack Description
	Affected Clients

	Experimental Evaluation
	Experimentation on the Cluster Testbed
	Seeder with 1 Mbps Upload Limit
	Seeder with 5 Mbps Upload Limit
	Seeder with 10 MBit Upload Limit
	Launching Bandwidth Attacks in Sybil Mode

	Experimentation on the PlanetLab Testbed
	Discussion

	Countermeasures
	Allowed Fast Attack
	Bandwidth Attack
	Performance
	Stability
	Security

	Conclusions
	Acknowledgement

