

City, University of London Institutional Repository

Citation: MacFarlane, A. (2009). Models Performance Issues in Parallel Computing for

Information Retrieval. In: Goker, A. S. & Davies, J. (Eds.), Information Retrieval: Searching
in the 21st Century. (pp. 255-271). John Wiley & Sons Inc. ISBN 0470027622

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4492/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Parallel Computing for Information Retrieval and
Performance Issues

Andrew MacFarlane

1. Introduction

The use of performance models when considering the deployment of parallel computing to
information retrieval applications is a much neglected area. During the late 1980’s and early
1990’s there was a great deal of interest in research into parallel computing for Information
Retrieval, but due to various issues interest has faded and very little research is now being
done MacFarlane (2000). Much of this work was a) empirically based and did not try to
produce models of performance in order to obtain some kind of theoretical underpinning for
the research; b) only tackled one issue i.e. search for the most part; and c) only looked at one
method for the distribution of data to nodes in a parallel machine. The PhD thesis written by
the author MacFarlane (2000) attempted to tackle these issues and succeeded with issue c),
but a great deal still needs to be addressed in a) and b). In this chapter we will briefly review
the relevant literature, present a model of performance developed in MacFarlane (2000) and
outline areas of further research that the author regards as being fruitful. The chapter is
organised as follows. Section 2 justifies the use of parallel computing to solve information
retrieval problems. Section 3 reviews previous work in modelling parallel IR. In section 4 a
definition of tasks in IR under discussion and describes a number of distribution methods for
inverted files which could be used in these tasks. Using these defined tasks and distribution
methods, a synthetic model of performance outlined in section 5, which is in turn examined
using empirical evidence in section 6. Finally we draw conclusions from the material and
outline further research.

2. Why parallel IR?
There is a limit to the gains which can be achieved algorithmically and while great strides
have been made in the power of computer hardware parts (particularly CPU’s) there will
always be an absolute limit. This combined with increasing amounts of information being
made available, particularly on the Internet, is putting increasing strain on sequential
processing systems. The only way forward for many compute heavy tasks is to use
parallelism. There are a number of computationally heavy tasks in information retrieval which
do require the use of parallelism (more detail of these tasks is given in section 5). There is
increasing interest in using much larger collections for experimentation recently with the
introduction of a Terabyte track within the TREC series of conferences (Clarke et al, 2005)
and some kind of parallelism will be useful to the participants.
 It should be noted that the use of parallelism for IR caused some controversy in the
late 1980’s with criticism from Stone (1987) and Salton & Buckley (1988). The basis of this
criticism was some work done on the massively parallel Connection Machine which used a
signature file method (a fixed length surrogate is used to represent each document). Of the
criticisms Stone’s was more useful in that he put forward an alternative parallel method based
on inverted files – a far more efficient method for search (Harman et al, 1992). Stones ideas
have proved to be very influential and most parallel IR systems use inverted files. In a review,
Rasmussen (1992) put forward a number of reasons for applying parallelism to IR problems:

• Response times: there may be situations (the web is a good example of this) where
many users require access to the same document collection. The purpose of
parallelism would be to reduce contention between queries thereby increasing the
system response time and query throughput.

• Very large databases: the time to process queries increases linearly with the
document collection e.g. a query on a 10 gigabyte collection which takes 10 times

longer than a query on a 1 gigabyte collection. The purpose of parallelism is to scale
up the methods used to handle much larger collections.

• Superior algorithms: there are some models such as the extended Boolean models
(Fox et al, 1992) which offer improved retrieval effectiveness at the cost of extra
computation. The role of parallel computing is to make these algorithms useable in a
realistic search environment.

• Search cost: Stanfill et al (1989) showed the resources needed to search a database
approach a level of cost effectiveness, given the assumption that search time is linear
with collection size and resource costs are static. The role of parallelism is to make
the deployment of hardware economically effective (web search engines use this
factor to very good effect).

In this chapter we concentrate on addressing the issue of Response times. The examples we
give above are all related to queries, but the issue applies as much to other tasks in IR such as
Indexing and Inverted file maintenance.

3. Review of previous work
There have been two major reviews of parallel computing for information retrieval, namely
Rasmussen (1992) and MacFarlane et al (1997). For the most part these reviews concentrated
on the practical implementation of information retrieval systems, such as the architectures and
algorithms used, and models implemented etc. The Rasmussen (1992) review did have a
section on evaluation performance using such metrics as Speedup, but does not tackle the
issue of modelling performance. Performance modelling in this context means a predictive
model that can be used to estimate how a given algorithm will behave under a given set of
conditions. Of particular concern is the lack of recent interest in doing research in parallel IR:
it is seen as a ‘solved problem’ etc. However there has been success in applying parallelism to
real world IR problems: the most significant example is that of the Internet search engines.
There is therefore good reason to produce predictive models of performance.
 A few attempts haven been made to produce such models, but they also have
limitations. Those models that provide a general performance overview of IR do not deal with
the problem of distribution (Cardenas, 1975; Fedorowicz, 1987; Wolfram, 1992a and 1992b).
Distribution in this context is the method of allocation of index data to nodes in a parallel
computer. Much of the work described in the literature on the subject which does look at
distribution either tackles one task (Jeong and Omiecinski, 1995; Tomasic and Garcia-Molina,
1993a & 1993b) or one aspect of a task such as the consideration of only one distribution
method (Ribeirio-Neto et al, 1999; Hawking, 1996). We define a task as being a specific
aspect of an IR system that has its own functionality (see section 5 below). In an attempt to
address this issue MacFarlane (2000) produced a synthetic model of performance which
tackles both the issue of distribution and on a number of different tasks. It is this model which
is discussed in this chapter. It should be noted that we draw a distinction between synthetic
models that only predict the relative difference between two algorithms and analytical models
which actually try to predict real performance of the two algorithms. Attempts by the author
to produce an analytical model of performance failed due to the complexity of trying to model
real performance on a disparate number of tasks: this is the main reason that the issue has not
be tackled satisfactorily in the literature.
 In order to set the scene for our attempt at solving this problem we describe the issue
of distributing inverted file data and define some tasks that we attempt to model using our
techniques.

4. Distribution methods for inverted file data
We look at four distribution methods; On-the-fly distribution, Replication and two types of
Partitioning. Because of the criteria used some data distribution methods are invalid for some
tasks (this issue is tackled when the tasks are defined below). In order to explain the
differences between these distributions we use an abstract task, which is defined as follows.

We have some inverted file data D, together with some work W to be done on D (W can be
any information retrieval task e.g. index a document or do a search). When W is applied to D,
we get a result R. Any or all of the three variables D, W and R may be subdivided or
partitioned in some way; W’, D’ and R’ will denote some such partition or subset, which may
nevertheless be the whole of the original variable in some cases. We define some algorithmic
steps on these variables that are common to all distribution methods;

• A central node sends W” plus any data needed to a number of i identical processor
nodes.

• The processor nodes apply W’ to D’ to produce results R’.
• The results R’ are sent back to the central node which prepares the final result R using

all R’ results.

It may help the reader to think of an inverted file (or more formally D) as a matrix with the
rows made up of term references and the columns made up of references to documents, see
fig 1.
 Documents
 1 n
 1 x x x x
 x x x
 x x x x x x
Terms x x x x x x
 x x
 x x xxx xxxxxx xx x x x xx x x
 m

Fig 1: Example matrix

In the example we have m terms in the collection, which invert n documents from the indexed
text. Relations between terms and documents are signified by a x. The matrix will be very
sparse, and some relations between documents and terms or vice versa will be richer than
others. We will use this matrix representation to show how data is distributed in the methods
to be examined in this chapter.

4.1 On-the-fly distribution
We define On-the-fly distribution as the distribution of part of the data as it is required by a
given task. It is a dynamic data distribution method, all the others are static. The method is
very flexible in that we can distribute the whole matrix D or any D’ which could be the whole
or part of either a row or column. The inverted file data is held in one location. Consider the
following example;

 Out In

 R W Processor
 i*(W’+D’) Node 1
 Central
 Node i*R’
 Processor
 D|D’ Node i

 D

Fig 2: Example of abstract task on On-the-fly distribution

Note that the ellipse is a node, a box is a disk, and the dashed line box is the universe of our
processor nodes. The arrows signify the direction of data exchange between nodes and or
disks. Our abstract task uses the following algorithmic steps. The work W is input and the
data associated with W (D’) is lifted from the inverted file and is packed up with a subset of
W (W’). Each of the i processor nodes each gets its own W’ and D’, and processes the data
producing R’. All results from i processor nodes (R’) are sent back to the central node which
prepares the final result R. The significant disadvantage with this method is that a large
amount of data must be distributed before computation can be done. The communication may
swamp any useful work, and this makes the distribution method impractical for many
information retrieval tasks.

4.2 Inverted file Replication
Replication is the duplication of inverted file data on local disks of a parallel computer. Each
node in the system has access to all the data locally, therefore the need to transmit large
amounts of data is greatly reduced. The advantage of replication as against On-the-fly
distribution is that the high communication cost is much reduced without loss of flexibility.
The disadvantage is that space costs are considerably higher than any of the other distribution
methods discussed here. Consider the following example;

 Out In

 R W Processor D
 i*W’ Node 1 D’
 Central
 Node i* R’
 Processor D
 Node i D’
 D

Fig 3: Example of abstract task on inverted file replication.

The key issue here is that all nodes have access to matrix D locally. In our abstract task we
send each processor node W’ together with some scheme for partitioning the matrix as
required by the given computation or task. We then produce R’ for each processor node and
return the result back to the central node to compute the final R as would be done with On-
the-fly distribution. A further advantage in having the whole matrix D available to the node is
that load can be re-balanced by exchanging subsets of W’ between the processor nodes,
without having to communicate any aspect of D.

 Out In

 R W Processor D’
 i*W’ Node 1 D’’
 Central
 Node
 i*R’ Processor D’
 Node i D’’

Fig 4: Example of abstract task on inverted file partitioning.

4.3 Inverted file partitioning
 Partitioning is the fragmentation of inverted file data over local disks in a parallel computer
(see fig 4). In the example given in figure 4 each node has access to its own subset of D, D’
and which can only be accessed by that node. In terms of the abstract task, each node

manipulates a subset of D’, D’’ in order to service work W or W’. The node services W or W’
depending on the task and partitioning type. The advantage of partitioning is that the space
costs are lower than Replication, but it is a static distribution method and is therefore not as
flexible as the On-the-fly distribution method. The process of distribution is also much more
complex than inverted file Replication.

 Documents
 1 i j n

 1 x x x x
 x x x
 x x x x x x
Terms x x x x x x
 x x
 x x xxx xxxxxx xx x xx xx x x
 m

Fig 5: Example DocId matrix partitioning

 There are two main inverted file Partitioning methods (Jeong and Omiecinski, 1995):
by term identifier (TermId) and by document identifier (DocId). These partitioning methods
are orthogonal to each other. With DocId partitioning the terms for a single document are
placed on one disk, therefore postings for the same term may be held on multiple disks (see
figure 5).

 Documents
 1 n

 1 x x x x
 x x x

 i x x x x x x
Terms x x x x x x
 j x x
 x x xxx xxxxxx xx x x x xx x x
 m

Fig 6: Example TermId matrix partitioning

We assume for arguments sake that we have three partitions in our example. In the example
documents 1 to i-1 are given to node 1, documents i to j-1 are given to node 2 and documents
j to n are given to node 3. The demarcation of the partitions is signified by the dotted line.
With respect to our abstract task, we need to distribute W (if W is a query) to all partitions as
all may have data for any or all of the terms in W. With TermId partitioning however, all
postings for a given term are on one disk, therefore postings for the same document may be
on multiple disks (see figure 6). In the example terms 1 to i-1 are given to node 1, terms i to j-
1 are given to node 2 and terms j to n are given to node 3. With respect to our abstract task
and our specific example given above on DocId, nodes get there own unique subset of work
W’ as each nodes has its set of unique terms.

5. Tasks in Information Retrieval
To recap, we define a task as being a specific aspect of an IR system that has its own
functionality. We do not attempt to examine every task in IR, as the field is large. Thesaurus
construction, clustering and hypertext creation tasks are among the notable exceptions that we
do not investigate. We largely concentrate on what we regard as the main tasks in IR such as

indexing and search: we define a main task as one with which an IR system using inverted
files would be unable to function if such did not exist. The other (non-main) tasks studied can
be built using the core tasks and extended as required. For example index update can be built
from search and index functionality, while routing/filtering and passage retrieval can be built
from search functionality. Each of the tasks to be studied in this chapter is defined below.

5.1 The indexing task
The indexing task is the process of taking raw text and building an index over that text using
some criteria such as removal of stop words and stemming, etc. The process of indexing is
one of the most computationally intensive aspects of IR requiring vast CPU, memory and disk
resources (but is done only once and incremented thereafter). It is therefore a prime candidate
for the application of parallelism. We consider Partitioning only for this task. On-the-fly
distribution is irrelevant (our consideration of distribution is on inverted file data not raw
text). Indexing on one processor and copying the data to the nodes can produce Replicated
indexes.

5.2 The probabilistic search task
The probabilistic search task is the process of servicing queries on inverted files to produce a
ranked list of documents using a term weighting scheme such as that derived by Robertson
and Sparck Jones (1976). Query processing in this context is very fast, which is why inverted
files in some form have become the dominant storage technique in IR. However, it is still
possible to increase the speed of query processing further using parallelism, and by doing so
increase the system throughput. With respect to distribution methods, Replication is not a
suitable method for probabilistic search (with the possible exception of concurrent query
service) while On-the-fly would restrict efficiency due to the extra communication overhead.
It is likely that this extra overhead would outweigh any gain made by parallelism. Our
discussion on the probabilistic search task is restricted to Partitioning methods only.

5.3 The passage retrieval task
The passage retrieval task described here is one used in Okapi experiments conducted within
the TREC conference framework, in particular Okapi at TREC-3 Robertson et al (1995). We
classify passage retrieval as being the retrieval of part of a document that is most likely to be
of interest to a user, given a query. This algorithm takes an atom of text, say a paragraph, and
iterates through the atoms of a document to a given maximum passage size. Passages that do
not have query terms at either the start or end text atoms are ignored. Each passage is
assigned a weight (using probabilistic model techniques), and the best-weighted passage used
for display to the user, as a surrogate for the whole document or in relevance feedback. This
passage processing technique is very computationally intensive and benefits from parallelism
MacFarlane et al (2004). We study Partitioning methods only for the same reasons as given
for the probabilistic search task.

5.4 The routing/filtering task
The idea behind information filtering is to disseminate incoming documents to users who
require them. Users have long term information needs that may be satisfied by newly
published documents. A method for information filtering is to take the documents that have
been marked relevant by the user in the past and apply a relevance feedback mechanism to
obtain a set of terms that can be applied to the new documents. We use TREC definitions of
routing and filtering Harman (1996). In routing we provide the user with the top n documents,
while in filtering we make a binary decision on which n documents will be presented to the
user. There are a number of filtering techniques: batch filtering that takes n documents as a
batch and adaptive filtering where documents are considered one at a time, with the
possibility of feedback after each one. In Robertson et al (1995) it was stated that an
alternative to some term ranking methods described would be to "evaluate every possible
combination of terms on a training set and use some performance evaluation measure to

determine which combination is best". This is a combinatorial optimisation problem in term
selection. A number of Hill Climbers have been implemented in Okapi at TREC-4 Robertson
et al (1996) to solve this problem. The method we concentrate on in this chapter is the ‘Find
Best’ algorithm which is a steepest ascent Hill Climber – the best term is chosen from on the
terms in the evaluation set until some stopping criteria has been reached e.g. no further
improvement can be made. In each algorithm a number of operations are available for term
selection: add only, remove only and add/remove. Query terms can also be re-weighted any
number of times. We consider add only with no re-weighting, and also with re-weighting
terms twice. It is this term selection task in routing/filtering that we attempt to model here.
We examine all the data distribution techniques theoretically for this task.

5.5 The index update task
The index update task consists of a number of different aspects. We consider the issue of
transaction processing where a transaction is either a document to be inserted or a
probabilistic search request. We define index update as data to be periodically added to the
index when a buffer with document insertions has exceeded some memory limit. This
requires some form of index reorganisation which must be done concurrently with transaction
processing to prevent delays: we assume that transaction processing cannot be suspended and
specify a requirement that queries should be serviced as soon as possible. It should be noted
that we consider insertions only, not deletions or modifications. To do otherwise would
complicate the modelling process further and in any case most text collections are archival in
nature (the web being a notable exception). Index maintenance is a computationally intensive
activity and we study the modelling of the task in order to investigate the viability of
parallelism in a transaction processing context. We study partitioning methods only for the
same reasons as given for the probabilistic search task.

6 A synthetic model of performance for parallel IR
In this section we briefly outline synthetic models of performance in order to compare
distribution methods for all tasks under consideration in the chapter (a detailed description of
the actual models themselves can be found in MacFarlane (2000)). However, due to
practicalities we do not study absolute performance of the tasks (for reasons stated above),
and our emphasis is restricted to the derivation of synthetic models that can only be used for
comparative purposes. Not having to address the issue of absolute performance simplifies the
process of modelling greatly. While our primary aim is to produce models that are strong
enough to compare distribution methods and make choices between them, we also try to look
beyond this simple requirement. We would like models that are good enough to predict the
relative difference between data distribution schemes. We would also like to be able to make
generic statements about parallel IR performance beyond the algorithms and architectures
which we examine in this chapter: this may be difficult to do given the range of systems
described in the literature (see Rasmussen (1992) and MacFarlane et al (1997)). These issues
will be examined later on in the chapter by reviewing the empirical results gathered. The
algorithms and methods modelled in this chapter are those described in MacFarlane et al
(1999). We have a number of general variables for the models that are declared in table 1.

 Tcpu : CPU time (for some operation).
 Ti/o[x] : I/O time - Components: 1Tseek + x Ttrans;
 Tseek : Time to seek for I/O
 Ttrans : Time to transfer data for I/O
 Tcomm : Communication time
 Tt : Unit Time
 P : No of nodes in a parallel machine
 LI[P] : Load imbalance estimate at P processors

Table 1. General variables for the synthetic models

 The format of the models is functional. This allows us to specify equations and reuse
them in other defined equations. This makes it easier to replace various aspects of a given
model in order to study different type of methods not under consideration in this chapter such
as query processing optimisation and compression. We attempt to make our models as generic
as possible. All functions return a single figure in abstract time. The functions only take
variables as arguments: we do not specify higher order functions. Lookup values declared in
the form x[y] (e.g. LI[P]) are not recorded as parameters but global variables. The scope rules
for any declared variable are the normal ones found in most programming languages:
variables declared locally take precedence over global ones. Sequential and parallel models
are declared for all tasks. Simplifying assumptions for each of the models is declared in the
relevant sections.
 We make a number of assumptions in the general variables that impact (with varying
degrees) on the synthetic models. We assume a low latency network in order to simplify the
modelling of communication (otherwise we would have to break down Tcomm using a Tcomm[x]
format). For I/O we do allow two forms as blocks of data can be either static or dynamic. The
Ti/o form of the variable can be used if fixed size blocks are transferred, and it is safe to
assume that the balance between transfer and seek time is constant. We use the Ti/o[x] where
variable sized blocks are transferred and the balance between seek and transfer time must be
an integral part of the modelling process. For seek time we assume that an I/O request entails
a single disk head movement. We assume an accumulated increase in load imbalance
(variable LI[P]), at a rate of 0.015 for all synthetic models. It is difficult to know what the
load balance will be for the parallel version of a particular task, without running a program
and measuring the imbalance. We take this approach to provide a reasonable level of load
imbalance for a given parallel machine size. For a given model we assume that the same
parallel machine is used, that is the communication, CPU and I/O costs are identical across
nodes in the machine: we do not address the issue of heterogeneous parallelism in the models
(e.g. nodes with different architectures).
 What follows in section 7 is a brief description of the model is given for each task
described in section 5, and the results using that model are examined and compared with
empirical data. Details of the models and how they were constructed and derived can be
found on a web site from MacFarlane (2000).

7 Empirical examination of synthetic model
Our purpose in this section is twofold, to compare the theoretical results in order to show
which distribution method is appropriate for each task, and then to compare the theoretical
results with empirical results from our implementation of the tasks in order to see how well
the models can distinguish different distribution methods. In each section we describe the
evidence used to instantiate the theoretical models, in order to produce them. All diagrams
declare the theoretical results on abstract unit time as against the number of processors (P).

7.1 Comparative results using indexing models
The evidence we used to develop the theoretical models is from the BASE1 collection
Hawking et al (1999): this collection consists of 187,000 documents with an average
document length of around 465 words. We use the following values in the models: Tcpu of
0.01, Ti/o of 0.015 and Tcomm of 1 – these were chosen to reflect he approximate balance
between the different aspects. We assume the transfer to and from disk is with fixed sized
blocks. With communication time we assume a fast network, given the amount of data to be
transferred between nodes. We produce three theoretical models, one for the TermId
partitioning method and two for the DocId partitioning method. The two models for the latter
partitioning scheme reflect different types of builds: Local where documents are saved to and
indexed from a local disk and Distributed where a single master processor distributes
documents to other processors in the parallel computer.
 From figure 7 it can be seen that there is an advantage in theory in using DocId
partitioning over the TermId method for indexing in that the models for the former predict
better performance over the latter on all parallel machine sizes. It should be noted that the

model predicts a narrowing of the gap between partitioning methods with increasing machine
size (we will examine this issue later in this section). There is little difference between Local
and Distributed builds in DocId, but we have assumed a high bandwidth network in the
instantiated models (the graph for Local build DocId is obstructed by Distributed build DocId
as there is virtually no difference in theoretical time between them). If we assumed a much
lower bandwidth network, there would be a clear difference between the builds and TermId
would not compare well with either of the DocId methods.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

1 2 3 4 5 6 7 8 9

P

U
ni

t T
im

e INDEXLocal_Docid

INDEXDistr_DocId

INDEXDistr_TermId

Fig 7. Synthetic indexing performance on 1 to 9 Leaf nodes

When comparing the performance of both partitioning methods with our empirical results
MacFarlane at al (2005), the synthetic model for indexing was able to predict that DocId
builds are faster than TermId builds. Our empirical results show definitively that the DocId
partitioning scheme is a superior method in terms of speed, than the TermId method
MacFarlane et al (2005). The clear reason for this was the extra communication costs, implied
by the TermId method: even using the assumption of a fast network. The extra
communication costs are largely due to an extra merging process needed for TermId indexing.
Documents are distributed to processors in TermId for a parsing phase, which meant that
intermediate results must be exchanged, requiring N*(N-1) data sets to be transmitted over
the network. Problems in the modelling of communication in the synthetic model on this
merging process meant that a widening gap in performance between the two partitioning
methods for increasing parallel machine size was not anticipated (the model actually
predicted a narrowing of the gap in run time between the two partitioning methods). This
failure in modelling is discussed in more detail in the conclusion. With respect to Local
versus Distributed builds in DocId partitioning, no direct comparison was made, as it was
clear that Local build indexing run time would be faster.

7.2 Comparative results using search models
The BASE1 collection was again used as source of evidence to develop the theoretical search
models. The same values for Tcpu and Tcomm where used as in the indexing models, but
assumed in the search case that variable sized blocks would be transferred from disk and
therefore split Ti/o into Ttrans and Tseek using the values 0.015 and 0.1 respectively. These are the
values we assumed for all the theoretical search models discussed below. We assumed a
query size of 2.5 terms for the models as users tend to submit just over two terms per query
(Silverstein et al, 1999). The results of applying these values shown in fig 8 demonstrate that
in theory the DocId partitioning method (SEARCHdocid) would perform better than the TermId
method using either a parallel sort (SEARCHtermid2) or sequential sort (SEARCHtermid1). The
comparative results also predict that the TermId method with parallel sort will outperform the

algorithm with a sequential sort by a substantial amount: the synthetic model predicts that a
sequential sort will be a bottleneck. The prediction on the TermId partitioning method with a
sequential sort is particularly bleak, with little or no advantage to be gained from parallelism.

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1 2 3 4 5 6 7 8 9

P

U
ni

t T
im

e SEARCHdocid

SEARCHtermid1

SEARCHtermid2

Fig 8. Comparative results for search models on 1-9 leaf nodes

 Our empirical results MacFarlane et al (2000) show that runs on the DocId
partitioning scheme outperform a TermId scheme, whether or not a parallel sort is
implemented. The prediction in the synthetic model that a sequential sort would be a
bottleneck is confirmed by empirical results (MacFarlane et al, 2000). The synthetic model is
also able to predict the relative performance difference between the partitioning methods to a
great extent. However our empirical results show that TermId with parallel sort performance
is nearer to TermId with sequential sort, whereas our synthetic model predicted that search on
TermId with parallel sort would be nearer to DocId. The implemented parallel sort, required
that the final merged results be distributed to processors and the sorted data retrieved when
each processor has completed its sort: as with indexing this communication was not dealt with
correctly by the synthetic model.

0.0

100000.0

200000.0

300000.0

400000.0

500000.0

1 2 3 4 5 6 7 8 9

P

U
ni

t T
im

e

PASSAGEdocid_local

PASSAGEdocid_distr

PASSAGEtermid1

PASSAGEtermid2

Fig 9. Synthetic passage retrieval model on 1 to 9 leaf nodes

7.3 Comparative results using passage retrieval models

We used the same values for the models as per the search models in section 7.2 above, but
need some further assumptions to make on the average number of text segments to inspect per
document and the total number of documents on which to do passage retrieval: we chose the
values of 11 and 1000 respectively. Figure 9 shows the results on the theoretical passage
retrieval models for both partitioning methods. There is clearly a significant problem with
using TermId partitioning with the passage retrieval algorithm we model. The predicted
comparative performance is so poor that the DocId models appear to be near zero. It is clear
from the model that predicted communication costs would increase the run time of any
parallel program using such a partitioning method. Given the problems with modelling
communication in both indexing and search models, the costs for passage retrieval are likely
to a significant underestimate. As a result we chose not to run any practical experiments using
this partitioning method, and therefore concentrated on the DocId partition method alone
using both the local and distributed document allocation methods. With the local method, the
local top 1000/P documents are used for passage processing, whereas in the distributed
method the global top 1000 documents are processed.
 Fig 10 shows synthetic model results for DocId partitioning only. With both types of
passage retrieval using DocId the prediction is time reduction with increasing numbers of
processors, but the local method (marked PASSAGEdocid_local) shows slightly better theoretical
results than the distributed method (marked PASSAGEdocid_distr). There is a little extra
communication for the distributed method, where the master process needs to identify the top
1000 documents, and inform the search processes as to which of their documents are to be
examined for passages. Also, there is no guarantee that passages will be equally distributed in
the distributed method, and this has the potential to effect load balance. This aspect is very
difficult to model, as the distribution of documents to which passage processing is to be
applied, cannot be determined prior to search.

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1 2 3 4 5 6 7 8 9

P

U
ni

t t
im

e

PASSAGEdocid_local PASSAGEdocid_distr

Fig 10. Synthetic passage retrieval models - DocId only

The empirical results show that our synthetic model correctly predicted that the local

passage processing method would outperform the distributed version. However, the model
was unable to predict the relative difference due to the super linear speedup performance for
the former and the erratic nature of the performance in the latter on short queries (MacFarlane
et al, 2004). The remarkable performance of the local passage processing method was
somewhat hard to fathom at first, as the number of passages processed was around the same
as the distributed method. However individual text atoms can vary in size considerably, it is
clear that the local method was processing a different set of documents which were less
computationally costly to process than the distributed method. The variable performance of
the distributed method was due to the different numbers of documents processed at each
machine size, which tended to vary quite considerably and non deterministically. The factors

found by empirical experiment added yet another unforseen level of complexity to the
modelling process which we are currently unable to deal with, that is modelling the effect of
text atoms on passage processing.

7.4 Comparative results using term selection models
For our modelling of the term selection we assumed that the optimisation process would be
done on 300 terms with a maximum of 100 iterations. The values chosen for these variables
were used in the empirical experiments (MacFarlane et al, 2003). We modelled only one of
the hill climbers under consideration, namely ‘Find Best’. Fig 11 shows the comparison
between models on all distribution and partitioning methods with the number of processors
(P) set between 10-100.

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

10 20 30 40 50 60 70 80 90 100

P

U
ni

t T
im

e

ROUTINGdocid

ROUTINGtermid

ROUTINGrep

ROUTINGparfly

Fig 11. Term selection model results using large slave node set and iteration sizes

 The theoretical models predict that the best performing distribution scheme overall
would be the replication method. On smaller processor sets, the DocId partitioning method
shows better theoretical results, but predicts that the performance would deteriorate
substantially due to the restriction on the level of parallelism in that distribution method: the
communication/ computation balance would be skewed with increasing numbers of
processors. We therefore did not implement the DocId partitioning method, as it was clear
that other distribution methods where more likely to succeed when larger parallel machines
were used. The prediction with respect to TermId partitioning and On-the-fly distribution is
that there is little difference between them particularly with large processor sets.
 The synthetic model was successfully able predict that Replication is a superior
method to On-the-fly distribution, but not that the latter would perform so poorly
(MacFarlane, 2000). The ‘Find Best’ algorithm show near linear speedup on the Replication
method. However, the results for the On-the-fly distribution method actually show a
slowdown with more processors than just using one processor: the performance gets worse
with more processors. This is in spite of the fact that we used a 50 Mb per second network or
on a large scale Fujitsu parallel computing (with 100 processors). The bottleneck at the
synchronisation point, where data must be exchanged between iterations proved to the
stumbling block for the method.
 We can make a further statement on the synthetic models, given the evidence found
with On-the-fly distribution. The TermId partitioning method would require more
communication at the synchronisation point than On-the-fly distribution. There is no
guarantee that query terms with be distributed evenly with the TermId method, and this has
the potential to effect load balance detrimentally. The TermId partitioning method is therefore
not a viable method, and as a result we did not implement this scheme for our experiments.

7.5 Comparative results using index update model
In the index update model we assumed that for every 10 searches, there would be 1 update to
process. Fig 11 shows the prediction using these values and compares the theoretical
performance between both types of partitioning methods where transactions are affected by a
concurrent index update (models are labelled with the suffix RO) and normal transaction
processing without contention for resources. What we mean by concurrent index update is
that updates held in a temporary buffer are merged with the inverted file, while transactions
are serviced concurrently.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

P

U
ni

t T
im

e TRANSdocid

TRANStermid2

TRANSdocid-RO

TRANStermid2-RO

Fig 11. Comparison between partitioning methods in presence and absence of index update

 The models predict that DocId partitioning will outperform TermId whether or not
there is contention for resources due to index update. As you would expect, where there is
contention for resources the predicted performance is worse than non-contention models. The
model on TermId partitioning in the presence of an index update predicts a deterioration in
performance with increasing numbers of processors: with DocId the prediction is that
performance will remain constant after a certain number of processors is reached.
 Our synthetic model for the index update task is strong enough to distinguish between
the partitioning methods (MacFarlane et al, 2007). Problems highlighted in our probabilistic
search experiments (see section 7.2 above) impose severe restrictions on transaction
processing when the TermId method is used, which are difficult to solve within our
experimental context. These problems (most notably the sort aspect of search) had an impact
on the relative difference between the two partitioning methods during transaction processing,
a problem the synthetic model was not able to deal with very well. The synthetic model
correctly predicted that the performance of transactions serviced on TermId indexes during an
index reorganisation would deteriorate (although the empirical results were relatively worse
because of a list size problem described in (MacFarlane et al, 2006). The synthetic model also
correctly predicted that transaction performance on DocId partitioning indexes would be
constant after a given number of leaf nodes is reached in the same situation.

7. Conclusions and Further research
The synthetic models outlined in this chapter predict that for most tasks the DocId
partitioning method would be the better performing data distribution scheme of those studied.
For the index, probabilistic search, passage retrieval and index update tasks the prediction is
unambiguous. For the passage retrieval task in particular it is very clear that the TermId
partitioning method is simply not viable: we did not therefore implement this partitioning
method for the passage processing task (MacFarlane et al, 2000). The theoretical evidence on

the routing/filtering task is more complicated and therefore needs more discussion. On small
numbers of processors the prediction is that DocId partitioning would be the best data
distribution scheme, but on larger parallel machines the performance would deteriorate due to
excessive communication. Due to the restrictions on inter-set parallelism, the proposed
method for DocId partitioning does not show the same promise as intra-set parallelism usable
on the other distribution methods. Of the other three, the prediction is that replication would
be the best performing method and that performance with on-the-fly distribution would be
about the same with TermId partitioning. We therefore concentrated our efforts on replication
and on-the-fly distribution schemes, partly because of the theoretical comparison and partly
because such methods are easier to manage. Only one indexing run needed to be initiated in
order to undertake those experiments, whereas with TermId partitioning a new indexing run
would be required for every processor added.
 Further work on the synthetic modelling technique used in this chapter is merited
both in terms of strengthening the actual model and extending it for use in other tasks not
studied here. While the models were able to correctly predict that one distribution scheme was
superior to the others, given the empirical evidence, they were not able to predict the relative
difference between the models. This was largely because the synthetic models were not able
to model communication completely. The key aspect to concentrate on initially therefore will
be the modelling of communication, given that it was such a significant problem in our
models. The problems in being able to do this successfully should not be underestimated. The
model will not only have to cope with interactions between two processors, it will also have
to model the pattern of communication throughout the whole system (one of the reasons for
our simplified modelling of communication was to avoid this complexity). A particular
problem with passage retrieval, is the ability to model the effect of the text atoms on passage
processing: this non-deterministic factor is very hard to model. An interesting and worthwhile
piece of research would be to extend the functional modelling and use formal techniques to
prove various aspects of it: this may well provide insights that would not be obtained
otherwise. When many problems have been solved by using synthetic modelling, and more of
an understanding of the theory of performance of parallelism in IR is obtained, it may well be
possible to derive an analytical model of performance in order to model real performance.
Hopefully, this analytical model would be able to predict the actual performance in a given IR
task, more accurately then we can at present.

References

Cardenas, A.F. (1975). Analysis and performance of inverted data base structures.
Communications of the ACM, 18 (5), 253-263.

Clarke, C., Craswell, N. and Soboroff, I. (2005). Overview of the TREC 2004 Terabyte
Track, in Proceedings of the Eleventh Text REtrieval Conference, (TREC 2004), (eds E.
Voorhees and L. Buckland), NIST Special Publication 500-261, Gaithersburg, U.S.A,
[available on: http://trec.nist.gov - visited 15th March 2007].

Fedorowicz, J. (1987). Database performance evaluation in an indexed file environment.
ACM Transactions on Database Systems, 12 (1):85-110.

Fox, E., Betrabet, S., Koushik, M., and Lee, W. (1992). Extended Boolean models in
Information Retrieval, Data Structures and Algorithms. (eds W.B. Frakes, and R. Baeza-
Yates), Prentice-Hall, N.J., pp393-418.

Harman, D.K. Fox, E. Baeza-Yates, R and Lee, W. (1992). Inverted Files, in Information
Retrieval, Data Structures and Algorithms. (eds W.B. Frakes, and R. Baeza-Yates), Prentice-
Hall, N.J., 28-43.

Harman, D.K. (1996). Overview of the fourth text retrieval conference (TREC-4), in,
Proceedings of the Fourth Text Retrieval Conference (TREC-4), (ed D.K. Harman) NIST
Special Publication 500-236, Gaithersburg, U.S.A, 1-24.

Hawking, D. (1996). Document retrieval performance on parallel systems. In: ARABNIAL,
H.R., ed, Proceedings of the 1996 International Conference on Parallel and Distributed
Processing Techniques and Applications, Sunnyvale, California, August 1996, (Athens:
CSREA): 1354-1365.

Hawking, D., Craswell, N. and Thistlewaite, P. (1999). Overview of TREC-7 very large
collection track. In: Voorhees, E.M. and Harman, D.K., eds. Proceedings of Seventh Text
Retrieval Conference (TREC-7), Gaithersburg, USA, November 1998. NIST SP 500-242,
(Gaithersburg: NIST): 257-268.

Jeong, B., and Omiecinski, E. (1995). Inverted file partitioning schemes in multiple disk
systems. IEEE Transactions on Parallel and Distributed Systems, 6 (2): 142-153.

MacFarlane, A. Robertson , S.E. AND McCann, J. A. (1997). Parallel computing in
information retrieval – an updated review. Journal of Documentation 53(3), 274-315.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (1999). PLIERS: a parallel information
retrieval system using MPI. In: Dongarra, J., Luque, E. and Margalef, T., eds. Proceedings of
6th European PVM/MPI Users' Group Meeting, Barcelona, Lecture Notes in Computer
Science 1697, (Berlin: Springer-Verlag): 317-324.

MacFarlane, A. (2000). Distributed Inverted files and performance: a study of parallelism and
data distribution methods in IR, PhD thesis, City University London, August 2000. [Available
on: http://www.soi.city.ac.uk/~andym/PHD/: visited 7th November 2005]

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2000). Parallel search using partitioned
inverted files. In: DE LA FUENTE, P., ed, Proceedings of String Processing and Information
Retrieval - SPIRE 2000, September 2000, A Coruna, Spain, (Los Alamitos:IEEE Computer
Society Press), 209-220.

MacFarlane, A. Robertson , S.E. and McCann, J. A. (2003). Parallel computing for term
selection in routing/filtering, In: Sebastiani, F. Proceedings of ECIR 2003, LNCS 2633, 537-
545.

MacFarlane, A. Robertson , S.E. and McCann, J. A. (2004). Parallel computing for Passage
Retrieval. ASLIB Proceedings: New Information Perspectives, 56(4), 201-211.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2005). Parallel methods for the
generation of partitioned inverted files. ASLIB Proceedings: New Information Perspectives,
57(5), 434-459.

MacFarlane, A., McCann, J. A. and Robertson, S.E. (2007). Parallel methods for the update
of partitioned inverted files. ASLIB Proceedings: New Information Perspectives (to appear).

Rasmussen, E. (1992). Parallel information processing. In: Williams M.E., Annual Review of
Information Science and Technology (ARIST), Volume 27, 99-130.

Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., and Ziviani, N. (1999). Efficient distributed
algorithms to build inverted files. In: Hearst, M., Gey, F. and Tong, R., Proceedings for the
22nd International Conference on the Research and Development in Information Retrieval,
SIGIR'99, (New York: ACM Press): 105-112.

Robertson, S.E., & Sparck Jones, K. (1976). Relevance weighting of search terms.
JASIS, May-June: 129-145.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M. & Gatford, M. (1995). Okapi
at TREC-3. In: Harman, D.K., ed. Proceedings of Third Text Retrieval Conference,
Gaithersburg, USA, November 1994, NIST SP 500-226, (Gaithersburg: NIST): 109-126.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M. and Payne, A.
(1996). Okapi at TREC-4. In: Harman, D.K., ed, Proceedings of the Fourth Text Retrieval
Conference, Gaithersburg, U.S.A, November 1995, NIST SP 500-236, (Gaithersburg: NIST):
73-96.

Salton, G., and Buckley, C. (1988). Parallel text search methods. Communications of the
ACM, 31 (2): 202-215.

Silverstein, C., Henzinger, M., Marais, H, and Moricz, M. (1999). Analysis of a very large
web search engine log. SIGIR Forum, 33 (1): 6-12.

Stanfill, C., Thau, R., and Waltz, D. (1989). A parallel Indexed algorithm for Information
Retrieval. In: Belkin, N.J., and van Rijsbergen, C.J., eds. Proceedings of the 12th annual
conference on research and development in Information Retrieval, SIGIR'89, (New York:
ACM Press): 88-97.

Stone, H. S. (1987). Parallel querying of large database: a case study. IEEE Computer, 20
(10): 11-21.

Tomasic, A., and Garcia-Molina, H. (1993a). Performance of inverted indices in shared-
nothing distributed text document information retrieval systems. Proceedings of the 2nd
International Conference on Parallel and Distributed Information Systems, (Los Alomitos:
IEEE Computer society press): 8-17.

Tomasic, A., and Garcia-Molina, H.. (1993b). Caching and database scaling in distributed
shared-nothing information retrieval systems. In: Buneman, P., and Jajoida, S., eds,
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data.
(N.Y.: ACM Press): 129-138.

Wolfram, D. (1992a). Applying informetric characteristics of databases for IR system file
design, part i: informetric models. Information Processing and Management, 28 (1): 121-133.

Wolfram, D. (1992b). Applying informetric characteristics of databases for IR system file
design, part ii: simulation comparisons. Information Processing and Management, 28 (1):
135-151.

