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“A few exciting words”: information and entropy revisited

David Bawden and Lyn Robinson
Centre for Information Science
City University London

Abstract

A review is presented of the relation between information and entropy, focusing on
two main issues: the similarity of the formal definitions of physical entropy,
according to statistical mechanics, and of information, according to information
theory; and the possible subjectivity of entropy considered as missing information.
The paper updates the 1983 analysis of Shaw and Davis. The difference in the
interpretations of information given respectively by Shannon and by Wiener,
significant for the information sciences, receives particular consideration.

Analysis of a range of material, from literary theory to thermodynamics, is used to
draw out the issues. Emphasis is placed on recourse to the original sources, and on
direct quotation, to attempt to overcome some of the misunderstandings and over-
simplifications which have occurred with these topics.

While it is strongly related to entropy, information is neither identical with it, nor its
opposite. Information is related to order and pattern, but also to disorder and
randomness. The relations between information and the ‘interesting complexity’,
which embodies both pattern and randomness, are worthy of attention.



“A few exciting words”: information and entropy revisited

THOMASINA: When you stir your rice pudding, Septimus, the spoonful of jam
spreads itself round making red trails like the picture of the meteor in my
astronomical atlas. But if need stir backward, the jam will not come together
again. Indeed, the pudding does not notice and continues to turn pink just as
before. Do you think this odd?

SEPTIMUS: No

THOMASINA: Well, | do. You cannot stir things apart.

SEPTIMUS: No more you can, time must needs run backward, and since it will
not, we must stir our way onward mixing as we go, disorder out of disorder
into disorder until pink is complete, unchanging and unchangeable, and we
are done with it forever. This is known as free will or self-determination.
Tom Stoppard, Arcadia, (Act 1, Scene 1), London: Faber and Faber, 1993

If information is pattern, the non-information should be the absence of
pattern, that is, randomness. This commonsense expectation ran into
unexpected complications when certain developments within information
theory implied that information could be equated with randomness as well as
with pattern. Identifying information with both pattern and randomness
proved to be a powerful paradox (Hayles 1999, p. 25)

Introduction

This paper re-examines the relations between information and entropy, a topic of
debate for nearly a century. It can be seen as updating, thirty years on, of the
analysis of Shaw and Davis (1983), presenting new findings and new perspectives. In
order to make proper sense of these, it is necessary to delve into the historical
development of the issues. Where possible, we have used quotations from original
sources, as this is an area where there has been much misunderstanding and
oversimplification. Our intention here is to try to understand what the original
authors meant, by considering their own words in context, thus minimising the
potential for misrepresenting them in our commentary. Such an exegetically
cautious approach to source material may be a technique generally appropriate for
studying the history of information science [a point graciously made by an
anonymous referee]. We give particular attention to the differences between Claude
Shannon and Norbert Wiener in interpretation of the information entropy
formalism, and the question of the subjectivity of entropy according to personal
knowledge, as both of these points are of particular interest for information science.

Necessarily, we have focused on certain aspects of a very broad topic. Good reviews
of other aspects are given by Furner (2014), Logan (2012), Burgin (2010), and
Schneider and Sagan (2005). This focus on one specific aspect of the information
concept is both a strength and a weakness. It does not allow us to deal with other



central concepts of the information sciences, such knowledge, documents, and signs
(see, for example, Capurro and Hjgrland, 2003; Floridi, 2010; Robinson and Bawden,
2014; Mingers, 2014); nor does it address the idea that the information sciences do
not need information as their fundamental concept (Furner, 2004). Nonetheless, we
think it is of value to look critically and in detail at the relation between information
and entropy, from the perspective of information science. We have three reasons for
holding this view.

The first reason is that numerous writers have pointed out that consideration of the
idea of entropy provides the strongest and most direct link between the conceptions
of information in the physical and social realms: for example

“.. there is one relationship that might give us cause to at least pause and
think before concluding that only physical properties can shape physical
reality. It lends some credibility to the notion that information itself might be
considered as a physical thing. This is the relationship between information
and entropy” (Baggott 2013, p. 241)

and

“by identifying entropy with missing information, Boltzmann hurled the
concept of information into the realm of physics” (von Baeyer 2003, p. 98).

Lossee (1997) insightfully referred to information and entropy as “cousins”; there is
indisputably a family resemblance, but it is not necessarily a close one. Wicken
(1987A, p. 18) wrote of the “semantic haze” that had developed over the decades
concerning the meanings of information and entropy.

It may be that a clear and unequivocal link may not be found; perhaps the various
meanings of information are simply incommensurable, and the link is only the use of
the same English word (Bawden, 2001). However, we believe that a clarification of
the information/entropy relationship should help to show, in more general terms,
the most fruitful ways of exploring the relations between ideas of information in
different realms, to the benefit of all the disciplines which have information as an
important concept (Robinson and Bawden 2014, Bawden and Robinson 2013). Shaw
and Davis (1983) addressed this issue thirty years ago, and many of the points they
noted are still the subject of debate, although it may be said that Wicken’s ‘semantic
haze’ is dissipating.

The second reason is that recent development and ideas have cast light on a decades
old problem; the debate as to whether information is one thing, or its exact
opposite. We focus in particular on the way in which the relation between
information and entropy has been interpreted in different, and sometime in
diametrically opposite, ways. These divergences may be seen as an example of the
way in which a theoretical framework may affect the meaning and significance of
any given concept (see, for example, Hjgrland, 2000, 2009, 2011). As a conceptual
analysis, this study may add to discussions of the epistemological status of some of



the concepts of information science (see, for example, Bates, 2006; Hjgrland, 2007;
Furner, 2014).

Entropy has always has the reputation of being a rather mysterious and wide-
reaching quality. Thus, Ford, writing from a physical science perspective, and arguing
that “... entropy need not be enveloped in mystery. It is a thermodynamic property
of a physical system, obtainable from measurements of the heat capacity”, also
acknowledges that “entropy and its increase are indeed culturally important because
they present us with a deep perspective on events in the world” (Ford 2013 p. 256
and p. 258). The idea of entropy, in some contexts, became far-removed from its
origins, becoming a social and literary trope, invoking ideas of complexity, patterns,
disorder, and chaos; see, as examples, Moorcock (1972), Pynchon (1973), Rifkin
(1980) and Greer (2009). Shaw and Davis (1983) give numerous early examples of
the application, or possibly sometimes misapplication, of the entropy concept,
Simberloff (1978) analyses its uses in Thomas Pynchon’s literary works, and its
literary and cultural applications are analysed in detail by Hayles (1990, 1999), and
the contributors to Hayles (1991), especially White (1991). This extension has not
been without its critics, Kostic (2014, p. 954), for example, giving the, perhaps rather
exaggerated, warning that “entropy is the most used and often abused concept in
science, but also in philosophy and society”. The American economist Paul
Samuelson remarked that it was “.. the sign of a crank or a half-baked speculator in
the social sciences is his search for something in the social system that corresponds
to the physicist’s notion of ‘entropy’ “ (Samuelson 1965, p. 450); a somewhat ironic
perspective, as Samuelson himself was a pioneer of the application to economics of
concepts from physical chemistry generally, and thermodynamics particularly
(Beinhocker 2006).

Even within a strictly scientific context, ideas of how entropy should be understood
have changed with time, as Holt (2012, p. 61) summarises:

“The concept of entropy is among the most fundamental in science. It
explains why some changes are irreversible and why time has a direction, an
“arrow” pointing from past to future. The notion of entropy arose in the
nineteenth century from the study of steam engines, and originally
concerned the flow of heat. Soon, however, entropy was rethought along
more abstract lines, as a measure of the disorder or randomness of a system.
In the twentieth century, entropy became still more abstract, merging with
the idea of pure information.”

And indeed, as we shall see, there is still controversy and debate about the
interpretation of entropy, in its purely scientific sense. Greven, Keller and Warnacke
2003, p. xii), who consider entropy as quantifying various aspects of complexity of
systems, comment on “the large number of different meanings attributed to this
word” just in mathematics and closely related areas. Styer (2000) identifies
‘disorder’, ‘randomness’, ‘smoothness’, ‘dispersion’, ‘homogeneity’ and ‘mixed-up-
ness’ as ways in which it has been understood, to which we will later add



‘uncertainty’, ‘freedom’, ‘probability’, ‘information’ and arguably ‘negative
information’.

The third reason is that the concept of information is inextricably interwoven with
the concept of entropy. Given that the concept of information is, by definition, at the
heart of information science, its relation to other fundamental concepts is of
importance for the foundations of the discipline. The relation shows itself in two
main respects: a formal similarity between the mathematical definitions of entropy
and of information; and a vexing question as to whether the objective physical
guantity of entropy is due to a subjective lack of information or knowledge.
Conceptual analysis of these issues, using the approach followed here of a close
reading of the original sources, may cast light on how foundational concepts of this
kind can best be understood.

We will now consider these inter-related conceptions, beginning with entropy as it
was first understood in the context of classical thermodynamics.



Thermodynamic entropy

The concept of entropy emerged in the mid-nineteenth century, from the study of
the design of steam engines, with the very practical engineering aim of improving
their efficiency (Miller 2007, Atkins 2007, 2010, Carroll 2011, Hemmo and Shenker
2012). The French engineer Nicolas Léonard Sadi Carnot initially showed that the
most efficient engine possible cannot be perfect; some energy must be lost in its
operation. The German physicist Rudolf Clausius coined the term ‘entropy, from the
Greek trope, meaning transformation, from an analysis of these phenomena
(Clausius 1865), since he regarded it as a measure of the ‘transformation content’ of
a body, its capacity for change (Denbigh 1981).

Consider a hot object that is cooling down, and losing heat to its surroundings; if, at
each moment, the heat being lost is divided by the temperature, then the sum of
this quantity over the whole process is the entropy. The evident fact that heat
always flows spontaneously from hot bodies to cooler bodies, and never the other
way round, is equivalent to the idea that the entropy of a closed system always
increases, never decreases; the well-known Second Law of Thermodynamics.
Entropy was generally regarded as a measure of the energy in a system that is in
some way poor quality, ‘lost’, useless or unavailable. A more recent interpretation is
that a concentration of energy which is dispersed, typically as heat, around a
physical system cannot readily be retrieved to do useful work (see, for example,
Sethna 2006).

It is represented most simply, in current notation, as
AS=AQ/T

AS being the entropy change associated with a change in heat AQ, with T the
absolute temperature. This can be thought of as the ratio of the quantity of energy
to the intensity of energy (Schneider and Sagan 2005). In effect, energy changes its
form over time, so that it becomes less useful; entropy quantifies the amount of
energy within an isolated system that cannot be used without investing work. The
energy of a system is divided into two parts: a part that is exploitable as work and a
part that is not:

AE = [pdV - [TdS

where AE is some change in the internal energy of a system between two
equilibrium states, [pdV is the work produced during that transformation, and [TdS,
where T is the temperature of the system, is taken to be the change of energy to a
form that is not exploitable as work, and dS is the entropy difference during the
transformation.

Modern thermodynamics has more complex variants; for example, in the case of a
gas differing in temperature, pressure and chemical potential (the tendency to
exchange particles) with its surroundings, the entropy change is given as (Ford
2013):



dS; = dS—dE/T - (P/T)dV + (u/T)dN

where dS; is the entropy change due to these factors, dS is the total entropy change,
dE is the energy (heat) change, T is the temperature, P is the pressure, dV is the
change in volume, p is the chemical potential, and dN is the change in number of
particles.

The details are unimportant. The point to be emphasised is that classical
thermodynamic entropy was derived as a straightforward objective property of bulk
matter, which can be measured with mundane instruments, typically a
thermometer, without any of its later associations of disorder, uncertainty and
subjectivity. And indeed, there are still some scientists who argue that this is where
the entropy concept should remain: “[Entropy] is nothing by itself. It has to be seen
and discussed in conjunction with temperature and heat, and energy and work. And,
if there is to be an extrapolation of entropy to a foreign field, it must be
accompanied by the appropriate extrapolations of temperature and heat and work"
(Miller 2007, p. 126).

What entropy was, in itself, was unknown: an understanding of its nature first
emerged in the development of statistical thermodynamics.



Statistical entropy

Statistical thermodynamics, pioneered by the Austrian physicist Ludwig Boltzmann in
the late nineteenth century, recognizes that the properties of matter on a large scale
are determined by the behaviour of the individual particles — generally atoms and
molecules — of which it is composed (Ford 2013, Miller 2007, Atkins 2007, 2010,
Carroll 2011). We cannot know the details of this behaviour — typical thermodynamic
systems on a human scale contain around 107 particles - but we can understand it
statistically. Boltzmann developed what is now termed statistical mechanics in a
number of publications over more then 20 years, but it is usually taken to have
originated in his analysis of the thermal properties of gases (Boltzmann 1872). He
showed that entropy was related to the probability of collisions between gas
particles with different velocities, and could be equated to the probability
distribution of the states of a system, expressed by the formula

S=klogW

S being the entropy, k is Boltzmann's constant, and W is a measure of the number of
states of a system; in general, the number of ways that molecules can be arranged,
given a known total energy. (Although this equation, using an Q symbol instead of
the more modern W, is carved on Boltzmann's tombstone in the cemetery in Vienna,
he never explicitly wrote the formula, in this form, which is due to Max Planck).

In modern statistical mechanics, W is usually taken as the Lebesgue measure, a
mathematical generalization of the intuitive idea of size, but that does not affect the
discussion here. The logarithm function is introduced simply to bring the very large
numbers involved down to more understandable quantities, and to allow entropies
to be added together. Strictly, the entropies of multiple systems are additive, but the
total number of arrangements is the product of the numbers of arrangements in
each system, not the sum; so it is the logarithms of the numbers of arrangements,
not the arrangements themselves, which are additive (Albert 2000).

The values in Boltzmann’s equation, counts of numbers of states, can be equated to
measured thermodynamic entropy through the constant k; changes in one can be
directly related to changes in the other, though they may seem conceptually very
different

Boltzmann’s idea is generally expressed through the concept of the macrostate, a
physical situation which we can recognize and distinguish, and the microstate, the
detailed situation at the level of individual particles, which we cannot. For example,
if we have two beakers, each containing the same volume of pure water at room
temperature, we will not be able to distinguish between them, and we will say that
they are the same macrostate. However, the detailed pattern of positions and
velocities of the water molecules in each glass, the microstates, will differ between
the glasses, and within each glass from moment to moment. Boltzmann relates this
directly to entropy, by showing that entropy was equivalent to the number of
microstates in a macrostate.



As Carroll (2011 p. 36-37) puts it:
“.. the great triumph of kinetic theory was its use by Boltzmann in
formulating a microscopic understanding of entropy. Boltzmann realized that
when we look at some macroscopic system, we certainly don’t keep track of
the exact properties of every single atom. If we have a glass of water in front
of us, and someone sneaks in and (say) switches some of the water
molecules around without changing the overall temperature and density and
so on, we would never notice. There are many different arrangements of
particular atoms that are indistinguishable from our macroscopic perspective.
And then he noticed that low-entropy objects are more delicate with respect
to such rearrangements. If you have an egg, and start exchanging bits of the
yolk with bits of the egg-white, pretty soon you will notice. The situations
that we characterize as “low-entropy” seem to be easily disturbed by
rearranging the atoms within them, while “high-entropy” ones are more
robust.”

Entropy increases in physical changes because systems are more likely to move to
macrostates with a larger number of possible microstates; there are simply more
ways to be high entropy than to be low entropy. As an example, imagine a large glass
tank filled with water, into which a small bottle of blue ink has been poured; the ink
will initially form a small irregular blue cloud in the water. If we leave the situation
for some considerable time, we will expect to find that the ink has spread
throughout the tank, giving a uniform light blue colour; we would be very surprised
to find that it has formed a very small cube of deep blue in one corner of the tank.
This is simply explained in Boltzmann’s terms. There are very many more microstates
(specific arrangements of molecules) which will give the uniform distribution of ink
that those which will give a small concentration of ink, and therefore the random
movements of the ink and water molecules are overwhelmingly likely to bring about
one of the uniform microstates. This is a statistical probability, not a deterministic
law; if we watch the tank long enough, we will certainly find a small ink spot formed,
but we will have to wait many times the age of the universe before this happens.

This statistical understanding of entropy, like the thermodynamic formulation,
relates to objective physical properties of matter, and the two are related. As
Hemmo and Shenker (2012, p. 57-58) put it:

“Intuitively, the idea here is that the larger the size of a macrostate, the
larger the set of microstates in that macrostate, so the less we know about
which is the actual microstate within that set, and therefore the less control
we have over the actual microstate within that macrostate, and therefore, in
turn, the less exploitable is the energy in order to produce work — which is
what entropy is about in thermodynamics. Notice that this expression is
about the entropy of a state, and not about entropy differences as in
thermodynamics. Moreover, this notion of entropy is defined for all
macrostates, and not only for equilibrium macrostates as in thermodynamics.
This is a conceptual generalization, involving a profound change that is
brought about by replacing thermodynamics by mechanics.”



This generalizing of the concept of entropy from its very specific thermodynamic
origins to deal with probability and uncertainty is a recurring theme in the
development of the understanding of the relationship between entropy and
information.

Boltzmann introduced the idea that entropy may be equated with disorder; the high-
entropy ‘robust’ systems described above by Carroll being thought of as disordered.
This became a very familiar viewpoint, entropy being regarded as the influence
behind everything tending to disorder and chaos. This is not altogether an accurate
reading of statistical entropy, as will be discussed later. An alternative viewpoint is to
regard entropy in terms of uncertainty at the microscopic level, since we can specify
a system only at the macroscopic level.

There emerges, worryingly for the objective physical sciences, the possibility that
entropy may be, to some extent, subjective. Entropy is a measure of the number of
particular microscopic arrangements of atoms, or other constituents of a system,
that appear indistinguishable from a macroscopic perspective. It relies on the
identification of macrostates, since entropy is due to the number of microstates
associated with them; but macrostates may be determined differently by different
observers. To take the example above of the beakers of water in the same
macrostate, if a second observer has a more accurate thermometer they may
determine that the water in one beaker is slightly above room temperature; the
macrostates will not be the same, and any calculation of entropy will be different.
Or, as Carroll (2011, p. 159) asks, what if we encountered a race of super-observant
extraterrestrials who could peer into a glass of liquid, and observe the position and
momentum of every molecule? Would they think that there was no such thing as
entropy? This subjective aspect to entropy has troubled physicists ever since the
entropy/disorder relation was proposed, as will be discussed further below.

Further, and crucially for our purposes, Boltzmann’s formalism allows entropy to be
understood in terms of information, and more specifically of ‘missing information’. It
rests on our not being able, to a greater or lesser extent, to distinguish between the
microstates in a given macrostate. The macrostate is what we know — the
specification of the macrostate is the limit of our information. Entropy is the missing
information — the uncertainty. If there were no missing information, no uncertainty,
the macrostate and microstate would be the same, and there would be no entropy.
If, that is to say, we had perfect information, then we could identify simply a state of
the system, with microstate and macrostate being equivalent. As we do not, the size
of the macrostate amounts to the extent of our ignorance, of the amount of missing
information; states of high entropy have many possible microstates, and therefore
may be said to correspond to a large information deficit. Statistical entropy can
therefore be seen to arise from, and potentially be equated to our lack of
information. As Albert (2000, p. 50-51) puts it:

“The fact that the entropy of a macrocondition is in some sense a measure of
how many microconditions are compatible with it means that entropy has



something to do with information. Entropy (that is) is a measure of how much
one can infer about a system’s microcondition from knowledge of its
macrocondition. The higher the entropy of a macrocondition, the larger the
volume of phase space which is compatible with it, the larger the number of
microconditions which are compatible with it, the less information that
macroconditions carries, the less a knowledge of that macrocondition can tell

”n

you

“And entropy clearly has something to do with (at least) intuitive ideas of
randomness and disorder. Conditions with higher entropies are in some sense
less structured, less arranged, less bunched-up, more dispersed, more of a
mess, than those with lower entropies.”

It is for this reason that von Baeyer makes the dramatic statement, quoted above,
about Boltzmann hurling information into physics, although it should be noted that
Boltzmann never used the language of information in any of his writings. This issue
will be discussed later.

Boltzmann's concept of entropy was based on the probabilities of individual particles
in an isolated system having certain positions and momentums. This was generalised
by the American chemist J. Willard Gibbs, who derived entropy in terms of
probability functions of holistic states of systems rather than of collections of
individual particles, while retaining Boltzmann's main insights (Gibbs 1902). (Gibbs,
in fact, carefully termed his functions ‘entropy analogues’, to avoid the claim that
they were identical to thermodynamic entropy (Denbigh 1981)). This approach
allows us to know important aspects of thermodynamic regularities without needing
to worry about defining macrostates. It is also more widely applicable in that, unlike
Boltzmann’s formula, it is applicable to systems interacting with their environment.
Gibbs’ formula for entropy is:

Se = -k Ypxlogpy

where pyis the probability that the system is in microstate x, k is Boltzmann’s
constant, and the summation is over all possible microstates.

This formulation is often used in statistical mechanics because it is easier to use in
calculation than Boltzmann’s formula, but it carries an important conceptual change.
As Carroll (2011, p. 169-170) puts it:

“Instead of thinking of entropy as something that characterizes individual
states — namely, the number of other states that look macroscopically similar
— we could choose to think of entropy as characterizing what we know about
the state. In the Boltzmann way of thinking about entropy, the knowledge of
which macrostate we are in tells us less and less about the microstate as
entropy increases: the Gibbs approach inverts this perspective and defines
entropy in terms of how much we know.... it associates the idea of ‘entropy’
with our knowledge of the system, rather than with the system itself. This



has caused all kinds of mischief among the community of people who try to
think carefully about what entropy really means.”

The measures discussed so far have been derived for the domain of classical physics.
Equivalents were introduced during the 1930s, most notably by von Neumann, for
systems of quantum particles. Although these are of great practical importance for
guantum computation (see, for example, Nielsen and Chang 2000 and Fayngold and
Fayngold 2013), they do not bring any new conceptions of entropy relevant to this
discussion.

A contribution to the debate on entropy and information, though it was not
presented or recognized as such, came in a paper by the Hungarian-American
physicist Leo Szilard (1929), as a contribution to a long-running problem known as
Maxwell’s Demon; a thought experiment on the nature of entropy (Leff and Rex
1990). The demon is an imaginary tiny creature, who operates a frictionless trapdoor
to separate high-energy and low-energy gas particles, and thus decrease entropy,
breaking the second law or thermodynamics by using its intelligence and
information. Szilard showed that the second law would not be violated if the
demon's decision to open or close the shutter - a measurement of a binary state -
was equivalent to an increase in the entropy of the overall system of AS=k log 2. This
exactly matches the decrease in entropy of the gas, due to the demon's action. The
entropy of the system 'informed demon plus segregated gas' is equal to that of the
system 'uninformed demon plus unsegregated gas'. Although Szilard did not state
the matter in exactly these terms, this implies that the information gained by the
demon can be expressed as Al = - k log 2; the negative sign implying that the increase
in information corresponds to a decrease in the entropy of the gas. As Hargatti
(2006, p. 46) puts it, "the solution included information transfer, although the term
itself was not mentioned, as it was not yet in usage as a mathematical concept". This
was later established, by Brillouin and others, as the minimum entropy production in
any act of measurement, i.e. any gain of information (Denbigh and Denbigh 1985).

Information entropy

The final step in the generalization of the entropy concept, and simultaneously in its
increasing involvement with information, came with the publication of Claude
Shannon’s well-known “mathematical theory of communication” (MTC) (Shannon
1948, Shannon and Weaver 1949). Shannon was dealing with a rather limited
context: the efficiency of the transmission of ‘meaning-free’ messages by
communication systems, building on the work of Nyquist and Hartley (Gleick 2011,
Lossee 1997). However, his formalism, and his idea of a quantitative measure of
information, soon took on a wider significance, Mackay arguing in 1953 that
‘information theory’ had a wider meaning than just Shannon’s communication
theory (and commenting that future historians of science might find it strange that
despite the activity in the United States following the publication of Shannon and
Weaver’s book, the first international symposium on information theory was held in
London in 1950 (MacKay 1969).

Shannon presented his formula for H, the measurement of information content, as



H=-K3 pilogpi

where p; is the probability of each symbol, and K is a constant defining the units. The
minus sign is included to make the quantity of information, H, positive; necessarily, a
probability will always be less than 1, and the log of such a number is always
negative. He pointed out that formulae of the general form H=-} p; log p; appeared
very often in information theory, as measures of information, choice and
uncertainty; the three concepts seeming virtually synonymous for his purposes.
Applied in a thermodynamic context, it follows the Gibbs approach in dealing with
the probabilities of states which cannot be known with certainty. It is, however,
much more general, in that it can be shown to be compatible with both the
Boltzmann and Gibbs entropies, and can be applied more widely than either, to
physical systems which are not in equilibrium (Ford 2013, p. 131).

The form of the equation is very similar to those for physical entropy discussed
above, and, notoriously, Shannon then gave the name 'entropy' to his quantity H. It
is usually stated that he was urged to do so by von Neumann, the original source for
this being Myron Tribus, who quoting a private discussion between himself and
Shannon in Cambridge, Massachusetts, on March 30" 1961, gives the following
account:

"When Shannon discovered this function he was faced with the need to
name it, for it occurred quite often in the theory of communication he was
developing. He considered naming it 'information’ but felt that this word had
unfortunate popular interpretations that would interfere with his intended
uses of it in his new theory. He was inclined towards naming it 'uncertainty’,
and discussed the matter with the late John Von Neumann. Von Neumann
suggested that the function ought to be called 'entropy' since it was already
in use in some treatises on statistical thermodynamics. Von Neumann,
Shannon reports, suggested that there were two good reasons for calling the
function 'entropy'. 'lt is already in use under that name’, he is reported to
have said, 'and besides, it will give you a great edge in debates because
nobody really knows what entropy is anyway'. Shannon called his function
'entropy' and used it as a measure of 'uncertainty’, interchanging between
the two words in his writings without discrimination". (Tribus 1964, p. 354)

He slightly embellished the story it in a later version (Tribus and Mclrvine 1971, p.
180), quoting Shannon as saying:

“My greatest concern was what to call it. | thought of calling it ‘information’,
but the word was overly used. So | decided to call it ‘uncertainty’. When |
discussed it with John von Neumann, he had a better idea. Von Neumann
told me, ‘You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, no one



knows what entropy really is, so in a debate you will always have the
advantage.”

Some commentators have doubted this story, including Gleick (2011) who calls it
untrue, though plausible, and Vedral (2010), for whom it is a plausible urban myth.
Smith (2001 p. 2) suggests that the “amusing anecdote is spoilt” by some pre-
history: Tolman (1938) attributes this formula, with its application in statistical
mechanics and relation to thermodynamic entropy, to Pauli (1933).

Others accepted it, and thought the less of von Neumann for it. Denbigh, for
example, argued that "in my view von Neumann did science a disservice!" (Denbigh
1981, p. 172). Although information theory and statistical mechanics have a common
basis in probability theory, and will require functions with the same mathematical
structure, "this formal similarity does not imply that the functions necessarily signify
or represent the same concepts.... It remains to be seen under what conditions, if
any, thermodynamic entropy and information are mutually interconvertable"
(Denbigh 1981, p. 172). Denbigh reported other suggestions, which he clearly found
more acceptable, as more neutral names for Shannon's H function, such as 'spread’
or 'dispersal'. Ben-Naim (2008, p. xviii) concurs with Denbigh’s criticism arguing that
information, choice and uncertainty are all simple, familiar, and meaningful terms,
while “entropy merely corrupts the term information”.

Donald Mackay was one of the first to express concern about this equivalence. In a
talk broadcast on BBC radio in 1950, he noted the identical nature of the equations:
“the units of course are different; but otherwise the only distinction is a difference in
sign: where information is given out, entropy increases. It is possible to make too
much of this resemblance” (MacKay 1969, p. 16). He later wrote that “the [Shannon]
entropy of selective information-content of a selection should not be facilely
identified with the physical entropy of thermodynamics. The two are equivalent only
in the particular case where the ensemble from which the selection is made is a
physical one defined for a state of thermodynamic equilibrium” (MacKay 1969
p174). Nonetheless MacKay was inspired to suggest in his 1950 talk that there might
be an information equivalent to the second law of thermodynamics: that an isolated
system can only lose or give out information, never gain it.

Schneider and Sagan (2005, p. 22) also consider that Shannon’s use of the entropy
term was confusing, since there was no simple correspondence between the
thermodynamic and information entropies, and “no general equivalence of
thermodynamics and information theory”. Wicken (1987A, 1987B) argues that,
although the basis of both Shannon entropy and thermodynamic entropy is
uncertainty, the uncertainties are of a different nature, and it is wrong to suggest
that Shannon’s formula is a generalization, applicable also in the thermodynamic
context. The entropy concept is also strictly applicable to ensembles of states (or
messages), whereas Shannon’s formula was applied to single messages. Complexity
would have been a better term than entropy, since “what the Shannon formula
measures, simply, is complexity of structural relationships” (Wicken 1987A, p. 24).



Miiller (2007, p. 124) is even more dismissive:

"No doubt Shannon and von Neumann thought that this was a funny joke,
but it is not — it merely exposes Shannon and von Neumann as intellectual
snobs.... If von Neumann had a problem with entropy, he had no right to
compound that problem for others ... by suggesting that entropy has
anything to do with information.”

In fact, the American physicist Richard Tolman had, a decade earlier, used the same
formula as presented by Shannon, in the context of thermodynamic entropy,
carefully qualifying its use by noting:

"the statement sometimes made that the entropy of a system is a measure of
the degree of our ignorance as to its condition. From a precise point of view,
however, it seems more clarifying to emphasise that entropy can be regarded
as a quantity which is thermodynamically defined with the help of its
relations to heat and temperature ... and statistically interpreted with the
help of the analogous relation between mechanical quantities" (Tolman

1938, p. 561).

Essentially the same point was made at about the same time by Slater (1939), who
also related a Shannon-like formula to physical entropy.

Even earlier, the American chemist G.N. Lewis (1930, p. 573) had expressed
essentially the same idea:

“Gain in entropy always means loss of information, and nothing more. It is a
subjective concept, but we can express it in a least subjective form, as
follows. If, on a page, we read the description of a physico-chemical system,
together with certain data which help to specify the system, the entropy of
the system is determined by these specifications. If any of the external data
are erased, the entropy becomes greater; if any essential data are added, the
entropy becomes less.”

Ben Naim (2008 p. 20) suggests that Lewis’s insistence that entropy was subjective
was due to his use of a general idea of information, not the specific and quantitative
measure introduced by Shannon. Qvortrup (1993) has argued that Shannon and
Weaver were unclear as to whether they regarded information as a substance or as
a sign; but this apparent lack of clarity has not altered the general perception of
Shannon’ theory as dealing with objective, rather than individual and subjective,
information. We will consider the debate about the subjectivity character of entropy
below.

Despite these qualifications, Shannon’s formula has been, and remains, widely used
for the calculation of physical entropy, under the title of ‘Shannon entropy’ or
‘information entropy’ or ‘statistical entropy’, although it is strictly only a measure of
guantity of information. Jaynes, as noted below, developed the link between



physical and statistical entropy mathematically a decade later. Katz gives a good
example of the nature of the link: statistical mechanics involves calculation and
prediction when we do not have full information, and probabilistic information
theory allows us to make best estimates in such circumstances: “knowledge, or
rather the lack of it, brings statistical mechanics into being” (Katz 1967, p. 12).

The analogy has been cogently expressed by Gleick (2011, p. 280):

To the physicist, entropy is a measure of uncertainty about the state of a
physical system: one state among all the possible states it can be. These
microstates may not be equally likely, so the physicist writes S = >p; log p;

To the information theorist, entropy is a measure of uncertainty about a
message: one message among all the possible messages that a
communications source can produce. The possible messages may not be
equally likely, so Shannon wrote H = -Yp; log p;.

The interpretation has been accepted in different ways. At the extremes, as we have
seen, there are those who emphasise solely the physical nature of entropy: Lieb and
Yngvason (2003), for example, deny that statistical mechanics, still less information
theory, is needed for a full understanding of entropy, while Kostic (2014 p. 966)
argues that “expanding [the] classical entropy concept to other types of disorder or
information is ‘overreaching’ and could be the source of many misconceptions”.
Others, conversely, have sought to recast thermodynamics in largely or solely
information terms (see, for example, Tribus 1961, Landsberg 1961, Katz 1969,
Duncan and Semura 2004, 2007, Ben-Naim 2008 and Vieland, Das, Hodge and Seok
2013).

Warren Weaver, in his commentary on the first presentation of Shannon’s MTC
attempted an explanation of the information-entropy link, regarding the emergence
of an entropy-like quantity in a mathematical theory of communication as “most
significant”. He nurtured the hope, as yet unfilled, that Shannon’s theory could be
extended to encompass meaning, encouraged by the view expressed by the leading
British physicist Sir Arthur Eddington (1928) that physical entropy was more
associated with concepts like beauty and melody, than with ideas like distance, mass
and force. This idea was taken up enthusiastically by Landsberg who, in a book
largely devoted to thermodynamics, nonetheless managed to suggest that Shannon
entropy might be applied in biology, music, linguistics, economics, and psychology,
and even suggested a thermodynamic analogy for Jeremy Bentham’s utilitarianism,
with entropy standing in for happiness (Landsberg 1961, pp. 234-240).

Noting that physical entropy was associated with randomness and ‘shuffledness’,
Weaver argued that we could reasonably say:

“This situation is highly organized, it is not characterized by large degree of
randomness or of choice — that is to say, the information (or the entropy) is
low” (Shannon and Weaver 1949, p. 103).



Or conversely, as Schneider and Sagan (2005, p. 23) put it:

"Information ... in information theory is equivalent not to order but to
disorder in the sense that it takes more binary decisions — more ones and
zeros, more bits of information — to describe disorderly situations of objects
than orderly ones.”

This view has come to be the most generally accepted, and its nature, power, and
limitations are set out particularly concisely and by Ruelle (1991). As Smith (2001, p.
5) puts it “the three concepts of ‘entropy’, ‘probability’ and ‘randomness’ turn out to
be equivalent, in the strict mathematical sense that establishment of any one leads
to establishment of the other two.” Indeed, the formula used by Boltzmann and
Shannon had its origins in the eighteenth century study of probability in games of
chance by the French mathematician deMoivre, and adapted to other domains
where uncertainty is of major importance (Wicken 1987A, 19878, Schneider and
Sagan 2005).

Physical entropy is a measure of the amount of randomness in a system.
Analogously, a message with a high Shannon information content is one which is
very random; it is extracted from a large class of possible messages. This
randomness may amount, in whole or in part, to useful information, or to nonsense.
It is applicable to ‘messages’ such as musical melodies or works of art, whose
information content may be measured, though it will in no way amount to a
measure of quality. Nor can Shannon’s theory address the “deep and complex”
(Ruelle 1991, p. 134) issue of meaning.

A large information content is therefore, in a sense, ‘the same as’ a high entropy
value. This viewpoint was very soon to be challenged.



Shannon and Wiener, information and entropy

At almost the same time as Shannon was publishing his MCT, Norbert Wiener (1948)
published his introduction to the field of cybernetics. (For a historical account of this
period, and the interactions between the main characters, including Shannon,
Wiener and von Neumann, see Gleick 2011). Albeit starting from the very different
perspective of an attempt to understand signaling and control in both animate and
inanimate systems, Wiener’s cybernetics also proposed a quantitative measure of
information. This was essentially the same as Shannon’s, with one significant
difference, to be noted later. Weiner notes the simultaneity of the developments:

".. we had to develop a statistical theory of the amount of information, in
which the unit amount of information was that transmitted as a single
decision between equally probable alternatives. This idea occurred at about
the same time to several writers, among them the statistician R.A. Fisher, Dr.
Shannon of the Bell Telephone Laboratories, and the author. Fisher's motive
in studying this subject is to be found in classical statistical theory; that of
Shannon in the problem of coding information; and that of the author in the
problem of noise and message in electrical filters" (Weiner 1948, p. 104).

It seems clear that Wiener regarded the quantitative definition of information in his
work to be equivalent to that of Shannon. A distinction is that Wiener immediately
makes a link with entropy, in a seemingly more direct manner than did Shannon:

"The notion of the amount of information attaches itself very naturally to a
classical notion in statistical mechanics: that of entropy. Just as the amount of
information in a system is a measure of its degree of organization, so the
entropy of a system is a measure of its degree of disorganization; and the one
is simply the negative of the other... We have said that amount of
information, being the negative logarithm of a quantity which we may
consider as a probability, is essentially a negative entropy.... It will be seen
that the processes which lose information are, as we should expect, closely
analogous to the processes which gain entropy. ... No operation on a

message can gain information on the average. Here we have a precise
application of the second law of thermodynamics in communication
engineering. Conversely, the greater specification of an ambiguous situation,
will ... generally gain information, and never lose it." (Wiener 1948, pp. 18
and 78-79)

And similarly in a slight later work:

“A measure of information is a measure of order. Its negative will be a
measure of disorder ... This measure of disorder is known to the statistical
mechanist as entropy .. [which concept] is associated with that of pattern,
and represents the disorder in a class of patterns. Amount of information is a
measure of the degree of order ... [The] amount of information is a quantity
which differs from entropy merely by its algebraic sign and a possible
numerical factor. Just as entropy tends to increase spontaneously in a closed



system, so information tends to decrease; just as entropy is a measure of
disorder, so information is a measure of order. (Wiener 1950, pp. 18-19, 20-
21 and 129)

The difference in the Shannon and Wiener formulae was simply a minus sign. Their
calculations gave the same numerical value but apparently opposite meanings. For
Shannon, information was equivalent to entropy; for Wiener it was equivalent to the
opposite, to negative entropy or ‘negentropy’.

Hayles (1999, pp. 102 and 305) explains the distinction in detail :
“although [Wiener and Shannon] conceived of information in similar ways,
Wiener was more inclined to see information and entropy as opposites ... Like
Brillouin and many others of his generation, Wiener accepted the idea that
entropy was the opposite of information. The inverse relation made sense to
him because he thought of information as allied with structure and viewed
entropy as associated with randomness, dissipation and death... Claude
Shannon took the opposite view and identified information and entropy
rather than opposing them. Heuristically, Shannon’s choice was explained by
saying that the more unexpected (or random) a message is, the more
information it conveys”

Gleick (2011, p. 281) sums it up in this way:

“Where Shannon identifies information with entropy, Wiener said it was
negative entropy. Wiener was saying that information meant order, but an
orderly thing does not necessarily embody much information. Shannon
himself pointed out their difference and minimized it, calling it a sort of
“mathematical pun”. They get the same numerical answers, he noted: “I|
consider how much information is produced when a choice is made from a
set —the larger the set the more information. You consider the larger
uncertainty in the case of a large set to mean less knowledge of the situation
and hence less information.”

Put another way, H [in Shannon’s sense] is a measure of surprise. Put yet
another way, H is the average number of yes/no questions needed to guess
the unknown message. Shannon had it right — at least, his approach proved
fertile for mathematicians and physicists a generation later — but the
confusion lingered for some years. Order and disorder still needed some
sorting.”

It may be said that in the information sciences, where Shannon’s approach has
proved distinctly unfertile (Capurro and Hjgrland 2003, Bawden and Robinson 2012,
chapter 4), this question is not so readily answered. And, as we note below, issues of
order and disorder relating to entropy itself still cause controversy. While Gleick is
correct in saying that most scientists have accepted Shannon’s understanding,
others still do not: the physicist Lee Smolin, for example, recently declaring simply
that information is the inverse of entropy (Smolin 2013). Gregory Bateson carefully



states that, in certain instances, information and negative entropy “overlap”
(Bateson 1971, p. 231). Hayles (1990, pp. 57-58) analysed a set of textbooks on
information theory published up to 1990, and concluded that they showed a clear
divide on the information/entropy issue. Those written by electrical engineers follow
Shannon, in concluding that the more uncertain a message is, the more information
it conveys. But they ignore the obvious conclusion that maximum information is
gibberish, nor do they give much space to the relation between information and
thermodynamic entropies. Those written by physical scientists followed the
Wiener/Brillouin approach, and gave much more discussion on the information /
thermodynamic entropy relation.

Hayles (1990, pp. 59 and 270) endeavours to explain the difference in terms of
personal experience, though using Brillouin, rather than Wiener, as the opponent to
Shannon. Shannon worked for a telecommunications company that made its living
by satisfying people’s curiosity. In more uncertain times, people want more
information - news, financial information, weather reports, etc. and they send more
telegrams, make more phone calls, etc. Shannon would naturally have thought
information and uncertainty were allied. Physical scientists, especially those involved
in thermodynamics, would see entropy as an inhuman chaos, and disorder as an evil,
the opposite of understanding and knowledge. She also suggests that it was the
experience of the second world war that made the association of information with
uncertainty so compelling to Shannon. Intriguing as these ideas are, they are not
fully convincing, given that Wiener had a similar background to Shannon. They do
remind us, however, that historically contingent sensibilities play a part in
understanding these issues.

Hayles (1990) also notes that one of the books she quotes as following Shannon’s
viewpoint, that of Raisbeck (1964), was “steeped in the engineering tradition” and
was written by Wiener’s son-in-law (p57). This is indeed a purely engineering text,
follows Shannon, and does not discuss the Shannon/Wiener issue, nor physical
entropy; and mentions Wiener only to list his Cybernetics as a reference. This is an
indication that Hayles recognized a rather different distinction: to Shannon’s view
(information as entropy)she recognized the opposite (information as negative
entropy) but associated this viewpoint with Brillouin rather than Wiener.

Donald MacKay argued that Shannon’s formula measured, not information per se,
but information-content, defined in terms of unexpectedness of messages selected
from an ensemble, but noted, in a chapter written in 1953, that it took “the varying
names of ‘selective information-content’, ‘selective entropy’, ‘negentropy’, or even
simply ‘entropy’” (MacKay 1969, p. 133). He took the view that Shannon information
was the opposite of entropy, and “that which determines form”, but noted “some
ambiguity of sign in the literature” (MacKay 1969, p160 and 172).

Gell-Mann and Lloyd (1996, p45) argue that entropy is associated with uncertainty,
and hence with ignorance. Information is the opposite of ignorance. Yet Shannon
information, |, “measures ignorance or uncertainty. However, | also measures
information. But ignorance and information are opposites: how can they be



measured by the same quantity?” Their answer is that the amount of information
conveyed by a message (a coin toss or a telegram) is measured by the uncertainty of
the tosser of the coin, or the reader of the telegram, before the event.

Kaufmann (2000, p. 88) explains it in this way: “The sum of these “plogp” terms for
the total set of messages at the source is the entropy of the source. Reception of the
signal reduces the receiver’s uncertainty about what is being sent from the source,
hence is a negative entropy. Shannon’s information measure is, thus, just the
negative of the normal entropy measure”.

Shannon and Wiener agree about how to calculate uncertainty — about the exact
microstate of a system, or the exact message which will be set — but they disagree
about how this uncertainty relates to information. For Shannon a high uncertainty is
a large amount of information, since the receipt of a message, or the identification
of a microstate, will remove this great uncertainty. Indeed, as Weaver
acknowledged, the logical, and seemingly strange, conclusion must be that when
extraneous noise is introduced into a message, the increased uncertainty makes the
message more informative (Wicken 1987B). For Wiener, this same high uncertainty
is a small amount of information, since it is our lack of information which causes the
uncertainty. In a sense, these are two sides of the same coin: Shannon focuses on
the amount information which will be gained by receipt of a message, or the
identification of a microstate, while Weiner considers the amount of information
implicit in our current knowledge. Or, as Hayles (1990, pp. 558-559) puts it, the
relation “is not especially complex or difficult ... The difference between the two
viewpoints can now be succinctly stated. Shannon considers the uncertainty in the
message at its source, whereas [Wiener] considers it at the destination. To ask which
is correct is like asking whether a glass is half empty or half full. The answer is
important not because it is correct but because it reveals an orientation towards the
glass and, by implication, an attitude towards life. Similarly, the [two] heuristics
reveal different attitudes towards chaos by their orientations toward the message.”

Shannon says that the more certain a message is, the less information it contains,
Wiener that the more surprising a message is, the less information it contains.

Both agree that entropy correlates with uncertainty. Shannon concentrates on the
inherent uncertainty before the message is received, Wiener on the uncertainty that
remains after the message is received. For this reason, Shannon entropy is often,
and arguably better, regarded as ‘prior uncertainty’. It is generally used in this sense
when Shannon’s formula is used as to assess uncertain outcomes, as in a study of
interface design, where the users were uncertain, to various degrees as to the
system’s response to their input (Spiekermann and Korunovska 2014).

Wiener’s concept of negentropy as an active force, associated with order, had been
anticipated by Erwin Schrodinger, one of the pioneers of quantum mechanics, in a
book based on a series of lectures given in Dublin in 1943 (Schrédinger 1944). In this,
he attempted, as no-one had done before, to give an account of living systems in
physical terms, and thereby arguably inaugurated the disciplines of biophysics and
molecular biology. Addressing the issue of how living organisms maintained their



orderly nature in a universe of increasing disorder, he invoked the thermodynamic
entropy concept, expressed, following Boltzmann and Gibbs, as

entropy = k log D

where k is the Boltzmann constant, and D is 'a quantitative measure of the atomistic
disorder of the body in question'. (Schrédinger 1944, p. 73). [Presumably D is here
equivalent to W in the entropy formalism noted above, and Schrodinger used the D
symbol for disorder in addressing a lay audience.]

He then argued that living organisms feed upon 'negative entropy'; plants obtaining
this from sunlight, and animals from consuming 'well-ordered' materials as food.
Finally, he concluded that "the awkward expression 'negative entropy' can be
replaced by a better one: entropy, taken with the negative sign, is itself a measure of
order" (Schrodinger 1944, p. 75).

Another early introduction of the idea that living creatures could create complex
organization, and hence bring about a local reduction in entropy, was put forward by
Blum (1951), who took the view that entropy, determined by the degree of
randomness, was the opposite of complexity and organisation.

An early critical analysis of the relation between Shannon information content and
thermodynamic entropy, and the first to specifically consider whether they were the
same or opposite, was given by D.A. Bell, a British professor of electrical engineering
at the universities of Birmingham and Hull. His contribution, which has largely gone
unnoticed, was presented in his book on the engineering applications of information
theory, first published in 1953, and running into four editions over fifteen years.

His view was stated unequivocally from the first. In the first two editions (1953 and
1956) he stated “Information is the negative of entropy. This means that the
information content (or better the potential information content) of any waveform,
collection of code symbols, or any other pattern can be assessed mathematically by
the same process used to define the entropy of such a system” [author’s italics] (Bell
1953, p. 1).

In the third edition (1962) and fourth edition (1968), this trenchant view was stated
in a slightly more nuanced way: “Information in a certain sense is a measurable
guantity which is independent of the physical medium by which it is conveyed: in
this respect it may be compared with “pattern”. The most appropriate measure of
information is mathematically similar to the measure of entropy, but there are good
reasons for reversing the sign and stating that information is the negative of entropy
in nature as well as in mathematical formulation .... The measure of information is
mathematically related to the measure of entropy, and there is also a physical
argument for a relationship between information and the negative of entropy” (Bell
1962, pp.1 and 4-5).



His basic view never changed over the fifteen years covering the four editions of the
book, the preface all editions stating: “Some space is devoted to an important
question of principle, whether information should be equated to negative or
positive entropy, and the author is firmly in favour of the former [author’s italics]
(bell 1953, p. v). And in all four editions, the same explanation is offered: “It is then
rather disturbing to find that in a paper which is one of the major works on
information theory for communication engineers, Shannon appears to equate
information to entropy without the negative sign. But there is in fact no direct
comparison between our application of entropy and Shannon’s, since he uses it as a
measure of the statistical characteristics of a source of information, not as a step
towards finding the information value of any given waveform or function. The
entropy of a message source is then proportional to the number of different
combinations (messages) which that source can produce” [author’s italics] (Bell 1953,
p. 27).

In all editions, Bell gives a homely example — the breaking of a set of type used to
print the text of Hamlet, which increases entropy as it reduces information —and
then develops the idea mathematically in an appendix, beginning “That there is a
similarity of mathematical form between information and negative entropy is
undoubted, but there is room for argument whether there is any ‘real’ or ‘physical’
connection between the two. Much of the published work on communication theory
glosses over this question” (Bell 1953, p. 120). His argument is that physical entropy
is intrinsically linked with energy and temperature, and that to relate it to
information, a more abstract dimensionless quantity must be found. In the second
edition of 1956, he introduced the idea that such a pattern was also to be found in
the physical representation of information, predating by some years the concept
that information is physical, usually attributed to Landauer.

Negative entropy, or negentropy was used in a wider scientific context very soon
after Shannon’s introduction of the idea, most notably by French physicist Léon
Brillouin, whose influential book Science and Information Theory appeared in 1956,
with a second edition in 1962, following the earlier introduction of his ideas
(Brillouin 1949, 1951A, 1951B, 1953). Other who took up the idea were Raymond
(1951), Rothstein (1951; 1952A; 1952B) and Branson (1953).

Rothstein (1952A, p. 1281) sums up their viewpoint: “statistical entropy has long
been recognized as a measure of missing information or lack of organization
(disorder). Precise formulation of the information concept leads, via the
measurement-communication analogy, to recognizing that physical information is
essentially negative entropy.”

Information theory was applied by these scientists to a variety of physical problems,
though — as Denbigh and Denbigh (1985) point out — with a surprisingly limited
treatment of thermodynamic entropy. While citing Shannon as the originator of
information theory, Brillouin’s perspective is clearly that of Wiener:



“The origin of our modern ideas about entropy and information can be found
in an old paper by Szilard, who did the pioneer work but was not well
understood at the time. The connection between entropy and information
was rediscovered by Shannon, but he defined entropy with a sign just
opposite to that of the standard thermodynamical definition. Hence what
Shannon calls entropy of information actually represents negentropy ...
Information and physical entropy are of the same nature. Entropy is a
measure of the lack of detailed information about a physical system. The
greater is the information, the smaller will be the entropy. Information
represents a negative term in the entropy of a system, and we have stated a
negentropy principle of information." (Brillouin 1962, pp. 161 and 293).

In Brillouin’s understanding of Maxwell’s Demon, the Demon’s information allows
him to sort molecules, thus decreasing the system’s entropy; but this information
had to be paid for by an increase in entropy elsewhere in the system. So information
and entropy are opposites and must have opposite signs; hence the idea of
negentropy for information.

The use of ‘negentropy’ has been criticized by some as confusing the issue, Ben-
Naim (2008), for example, suggesting that it is a ‘corruption’, and that it would be
better to call entropy neg-information. Wicken (1987B) argues that Brillouin failed to
distinguish between information and order, the latter being better related to
negentropy. Blum (1968) similarly took negentropy to be a probabilistic concept,
equivalent to an increase in order, and associated with arrangement and pattern,
but emphasized that it was not simply the opposite of thermodynamic entropy, not
related to meaning in any sense. And indeed, it has been shown that Brillouin’s
proofs of scientific concepts in information theoretic terms work equally well if the
signs are reversed (Wilson 1968).

The concept of negentropy, like that of entropy itself as noted above, has since been
applied, some would say unwisely, in a variety of disciplines (see the commentaries
and references by Shaw and Davis 1983, Hayles 1990, White 1991, Logan 2012, and
Robinson and Bawden 2014), and as Miiller rather sourly puts it "has fired the
imagination of physicists of the more esoteric type and theologians" (Miiller 2007, p.
322). Miller also notes the enthusiastic take-up of entropy and negentropy concepts
among such groups as biologists, economists, ecologists and sociologists, and warns
against "a lack of intellectual thoroughness in such extrapolations. Each one ought to
be examined properly for mere shallow analogies" (Miiller 2007, p. 73). The same is
surely true for applications in the information sciences.

Following Brillouin, other scientists followed this trend of using information theory
to explain scientific issues, in biology particularly. Following early consideration of
these ideas across wide areas of biology (Quastler 1953), Gatlin (1972) and Brooks
and Wiley (1988) both attempted an analysis of biology in information terms,
focusing on the relation between information entropy and evolution. All such
attempts required new concepts of information and/or entropy, Gatlin taking
information to be the difference between the maximum and observed entropies,



and Brooks and Wiley introducing the concept of ‘instructional information’. This is
an early indication of the difficulties of applying simple ideas of information and
entropy to dealing with issues of complexity and organization in the physical and
biological worlds: “some “entropies” and “informations” are physically
interpretable”, lament Brooks and Wiley (1988, p. 66), “and some are not”. Wicken
(1987A) criticizes what he sees as a proliferation of new and unneeded entropies,
and unwarranted use of the idea of ‘information content’, where complexity would
be a better term. Generally, however, these approaches all follow Wiener’s
perspective: increasing information stems from processes which decrease entropy,
and information is associated with organisation. A recent contribution analyses the
issue in terms of different contributions of thermodynamic entropy and information
entropy (Mitrokhin, 2014).

Conversely, in the physical sciences Shannon’s approach was used, in both formalism
and in interpretation, to cement the links between information content and physical
entropy, most notably by E.T. Jaynes (1957A; 1957B).

Jaynes’ basic concept is that the least biased assignment of probabilities to available
data is that which maximizes the Shannon entropy. His approach allows the
derivation of all of Gibbs’ results without the conceptual difficulties associated with
Gibbs’ approach (Tribus 1961). What has become known as Jaynes’ principle, the
maximizing of Shannon’s H, forms a general method of statistical inference in
statistical problems from many fields; a way of making the best estimate in the face
of insufficient information. It is entirely to do with the probabilities, and not with
information in any other sense, and certainly not with physical entropy; “Entropy is
not just a physical quantity for measuring the degree of randomness or information.
It is a reasoning tool too” (Tseng and Tuszynski, 2014, p. 3756).

Hobson (1971) states clearly that “E.T. Jaynes was the first to establish a clear and
useful connection between information theory and statistical mechanics” (p viii), and
that “If one takes the view that statistical mechanics is the study of incompletely
specified mechanical systems, then it becomes natural to try to applying the
mathematical theory of information to statistical mechanics. E.T Jaynes seems to
have been the first to make a clear, quantitative connection between information
theory and statistical mechanics, although several authors established a qualitative
connection prior to the work of Jaynes.” (pp. 10-11). These “several authors” he
names as Brillouin, Raymond, Rothstein, Landsberg and Tribus.

Emphasing the entirely probabilistic nature of Jaynes’ approach, without any
reference either to the thermodynamic context or to any ideas of order or structure,
Hobson (1971, p. 35) notes that “... information theory concepts should be relevant
to any field in which inductive probabilities are useful. The reason is that inductive
probabilities arise whenever the given information is not sufficient to permit
deductive inferences: any theory which purports to study information quantitatively
is likely to be useful in such a situation.” Shannon’s measure is a measure of the
missing information in a single probability statement, and “Jaynes’s principle
extends the information concept from the idea of the information content in a



probability distribution to the more direct idea of the information content in a body
of data” (Hobson 1971, p. 49). This usage of information entropies as a tool dealing
with probabilities in any context has proven useful in many fields; see, for example, a
recent example in ecology (Harte and Newman 2014).

Myron Tribus provided the first textbook to base the laws of thermodynamics on
information theory, rather then on physical arguments, using Jaynes’ ideas to show a
link between thermodynamic and information entropies (Tribus 1961). He set out his
ideas unambiguously at the start.

“In 1957, E.T. Jaynes of Stanford University published a remarkable paper.
Ever since 1948, the work of Claude Shannon of the Bell Telephone
Laboratories on the mathematical theory of communication had shown a
formal relation between information theory and thermodynamics. Jaynes ...
showed that if one took the idea of information theory as primitive and more
basic than thermodynamics, all of the formulae of statistical mechanics could
easily be derived ... It seemed useful therefore to attempt the writing of a
textbook for undergraduate students in engineering, presenting
thermostatics and thermodynamics from Jaynes’ point of view.”

(Tribus 1961, p. v111)

Tribus (1999) recalls that he was asked at his doctoral viva about the link between
Shannon and Clausius entropies but could not explain it satisfactorily. He read up
everything he could and then was directed by a student to Jaynes’ two-part 1957
paper. He saw this as the Rosetta stone, and studied with Jaynes. Tribus’ 1961 book
was based on work by Jaynes which was never published, and so was cited as ‘in
print’. In 1961, Tribus gave a seminar on these topics at MIT and was heavily
criticized. Among these critics was Benoit Mandelbrot, who consulted Shannon; the
latter disspelled Mandelbrot’s concerns, but criticized the use of Shannon’s
definition of entropy outside communication channels.

In similar vein, Katz (1967), argued that using the information theoretic approach to
statistical mechanics could not give any new results, but that it had pedagogical
value as an aid to understanding the concepts; entropy among others. Ben Naim
(2008) argues similarly that such approaches did not solve any thermodynamic
problem, but allowed the subject to be presented consistently and logically. A
number of studies have derived mathematical equivalences between the three
entropies — thermodynamic, statistical and informational — on the basis of
probability, more recently in a quantum mechanical framework; as an example see
Baumgartner (2014).

The British statistician R.A. Fisher had, as noted above, derived a measure for
information very similar to that of Shannon (Fisher 1922, 1935, 1950). It has been
widely used in the statistics of measurement theory, dealing with the maximum
amount of information which may be obtained by any measurement. Fisher’s
‘amount of information’ is a measure of precision or weight of evidence, equivalent
for a normal distribution to the reciprocal of the variance (MacKay 1969). However,



there is a clear distinction between Fisher information and Shannon (or Wiener)

information, put clearly at an early stage by Baer (1953 p. 22):
“we can distinguish sharply between the Shannon-Wiener functional
“information entropy” and another functional defined as “information” by
R.A. Fisher. Fisher also based his definition on the logarithm of the probability
distribution but the “information” he defines has to do with the statistics of
sampling and the determination of the parametric dependence of the
corresponding probability distribution”

Shannon’s is a simple scale function, not depending on any particular probability

distribution, and hence more generally applicable.

Shannon and Wiener, information and (dis)organization

Hayles (1999, p. 103) points out an interesting consequence of Wiener’s perspective:
... In retrospect, identifying entropy with information can be seen as a crucial
crossing point, for this allowed entropy to be reconceptualised as the
thermodynamic motor driving systems to self-organisation rather than as the
heat engine driving the world to universal heat death ... chaos went from
being associated with dissipation in the Victorian sense of dissolute living and
reckless waste to being associated with dissipation in a newly positive sense
of increasing complexity and new life”

Shannon’s use of the entropy term “led to the (metaphoric) knotting together of
concepts that are partly similar and partly dissimilar” (Hayles 1990, p. 50). If
randomness is understood as maximum information, then it is easy to see chaos as
the source of novelty; then complexity can be seen as rich in information, rather
than as deficient in order.

Although many texts and review articles within information science and related
areas mention Shannon’s theory, few mention Wiener, and the opposing sign. And
where they do, this is usually just a mention, without discussion. It appears that
Quortrup (1993) was the first author from LIS and related areas to draw explicit
attention to the discrepancy between the positions of Shannon (information as
chaos and entropy) and Wiener, and those scientists who took his position, notably
Bell, Brillouin and Stonier (information as order and negentropy).

This is particularly strange, as we imagine that many in the information disciplines
would instinctively regard information as associated with meaning, order and
organization, more than with the opposite. A few authors in LIS and cognate
disciplines who seek to link physical and social conceptions of information, take
Wiener’s viewpoint: for example Lossee (2012, p.45): “... the average information, in
an information theoretic sense, may be viewed as the negative of the entropy as
computed by a physicist”. MacKay (1969), as noted above, associated Shannon’s
information with negentropy and with the determination of form. Brier (2013, 2010),
noting that, from the perspective of entropy, Shannon’s information is the opposite
of Wiener’s information, sees the distinction as being that for Shannon entropy, i.e.
randomness, contains more information than does structure, while for Wiener



information amounts to a structured piece of the world. However, he finds both
lacking as a satisfactory basis for an account of consciousness and meaning. Stonier,
who regarded information as synonymous with organization, held that “the idea that
information and entropy are the same was subsequently replaced with the idea that
information was equivalent to negentropy” (Stonier 1990, p. 56). Although he held
that his view of information was diametrically opposite to that of Shannon, and
hence essentially that of Wiener, Stonier does not cite Wiener, crediting Schrédinger
with the negentropy concept; see Furner (2014) for a clear analysis of Stonier’s
ideas. Beer (1972) argued similarly that negentropy was the active information
content of a system, while Simon (1962), in his analysis of complexity and hierarchy,
took the Wiener position of information as the opposite of entropy, as does
Kauffman (2000) in his conceptions of self-organising systems. Bates regards
information as synonymous with pattern, and entropy as “pattern-less”, so that “the
only thing in the universe that does not contain information is total entropy: that
alone is pattern-free” (Bates 2006, p. 1033).

In a recent review, Logan writes that it is “extraordinary that [Shannon’s] definition
of information, limited in scope by his own admission, became the standard by
which almost all forms of information were gauged” (Logan 2012, p.75). Shannon
himself would also have found it odd; as he himself commented “It is hardly to be
expected that a single concept of information would satisfactorily account for the
numerous possible applications of this general field” (Shannon 1953, p. 105). Logan
takes the side of Wiener “arguing, as have many physicists before us, that
information and entropy are opposites and not parallel as suggested by Shannon”
(Logan 2012, p. 69), and regarding information as equivalent to organization. Furner
(2014) suggests that Logan’s idea of information is closely related to those of Stonier
and of Bates, but that the precise nature of the relation is unclear. (Furner also
points out that various misprints and misstatements in Logan’s article make the
arguments difficult to follow.)

Logan also draws attention to a ‘counter revolution’ within the information science
community, which attempted to build on the ideas of Shannon and Wiener, by
formulating a definition of information including semantic meaning. Donald Mackay,
notably, wished to identify information as that which brings about a change in a
recipient’s internal representation, and hence linked with meaning (MacKay 1969,
Hayles 1999). This appears very similar to Brookes’ (1980) ‘fundamental equation’,
which also presents incoming information as changing a person’s knowledge state,
but Brookes and MacKay do not seem to have acknowledged each other’s insights.

Shannon information, for MacKay (1969) was ‘selective’, concerned with how
message elements are chosen from a set of possible elements; semantic information
is ‘structural’ (introducing new features) or ‘metrical’ (increasing our confidence in
features already known), and concerned with how selective information is to be
understood. Typical of the definitions advanced were MacKay’s (1969, p. 158)
“makes a difference ... to what we believe to be the case” - so that for MacKay, as for
many later authors, including Hjgrland (2007) and Wallace (2012, p. 31), information
must be about something - and Bateson’s later and very similar “a difference that



makes a difference”. Strictly speaking, Bateson’s definition, though usually quoted in
this way, was more specific: information is “any difference which makes a difference
in some later event” (Bateson 1971, p. 231), which he considered equivalent to an
elementary ‘idea’ (Bateson 1970). Logan suggests that “distinction” is more closely
tied to meaning than “difference”, but the disparity is subtle. Logan, together with
other writers such as Burgin (2010), notes that the Shannon and Wiener
formulations, though seemingly opposite, are similar in that they are defined by
what they are (a thing), whereas Mackay’s and similar formulations define
information by what it does (a process).

However, MacKay’s information and similar formulations could not be quantified,
and hence, despite their significance for LIS and related areas, are not germane to
the information/entropy discussion. However, the idea of structural information has
echoes in some information-related measures of complexity (Bawden and Robinson
2015).

We might also agree with Logan that MacKay, the originator of the term
‘information theory’, and one of the first to challenge Shannon’s formula on the
grounds that it did not recognize that the measure of the kind of information of
interest in the social world - to LIS, although MacKay did not specifically mention our
discipline - is its ability to make a difference through meaning, was “certainly a
scholar who made a difference and deserves more credit and attribution than he
usually receives” (Logan 2012, p. 77).

Shannon and Wiener: an architectural aside

Smolin (2013 pp. 196-197), in a popular treatment of the physics of time, gives an
interesting example of the Wiener interpretation, in the context of architecture. For
a conventional brick building, the macrostate is the architect’s drawings, while the
microstate is the description of the position of each brick. “The architect needs to
specify only that brick walls of such-and-such dimensions are built, with openings for
windows and doors. He doesn’t need to say which bricks go where. Most bricks are
identical, so it doesn’t affect the structure if two identical bricks are swapped. Thus
there are a huge number of different microstates that give the same macrostate.”
He contrasts this with a building whose outer surface is composed of individual
elements, each unique, so that each element must go into a specific place,
exemplified by Frank Gehry’s Guggenheim Museum in Bilbao, with its metal sheet
construction. “In this case, the architectural drawing again specifies the macrostate,
and where each sheet goes is the microstate. But unlike the brick building, there is
no freedom to tamper with the microstate. There is only one microstate that gives
the intended macrostate.”

We may take Battersea Power Station in London — the largest brick building in
Europe, with over 60 million bricks - as a specific example of a brick building. (Gehry
is one of the architects working on its transformation)



The entropy of a building, Smolin says, is a measure of the number of different ways
to put the parts together to realize the drawing of the architect. The conventional
brick building has a very high entropy; a building like Gehry’s has a low entropy, zero
if only one microstate instantiates the macrostate. Smolin then argues that “We can
then see from this example that entropy is inverse to information” [Smolin’s italics] It
takes a lot more information to specify the design for a Gehry building because you
need to tell exactly how to fabricate each piece and exactly where each piece goes. It
takes much less information to specify the design of a normal brick building because
all you need to know are the dimensions of its walls”. Extending this argument to
physical systems generally, he denotes all improbable arrangements — those with
few microstates corresponding to the macrostate — as having low entropy and high
information. He gives the example of a cat — there are many more ways for the
molecules comprising the cat to be scattered around the room that to be in the
organized form of the living cat.

Shannon would say “l consider how much information is produced when a choice is
made from a set — the larger the set the more information”. The brick building has a
large set from which the particular microstate of individual bricks is chosen —so
Shannon would say it has a lot of information”. Smolin, and Wiener, are interested
in how much information has to be put in, to specify the particular microstate.
Wiener would “consider the larger uncertainty in the case of a large set to mean less
knowledge of the situation and hence less information.” In the brick building, we
have less knowledge of exactly what microstate is involved, and so less information.

The figure is calculated in the same way — it is the uncertainty as to which microstate
it is and is determined by the size of the set — but Shannon looks at the information
gained when the microstate is known, when the uncertainty is resolved, while
Wiener looks at the uncertainty per se as a lack of information.

And if the microstate is interesting — such as an artistic building or a cat —then we
will think of the information as making it interesting or meaningful. The choice of
microstate for the brick building, though informative from Shannon’s perspective, is
uninteresting, although the brick building is more ordered and structured.



Algorithmic entropy

The decades after the introduction of Shannon’s theory saw the advent of
information engineering, with the design and widespread use of digital computers,
processing physical instantiations of information. And, as studies of steam engines
processing energy had led to the first recognition of the entropy concept, so the
information revolution led to new perspectives on the relations between energy,
entropy and information, and to Landauer’s (1991) famous claim that ‘information is
physical’. (Leff and Rex 1990, 2002, Gleick 2011).

We will restrict ourselves here to the central point of importance for this discussion;
a coda to the concept introduced, though not explicitly stated, by Szilard, that there
is a direct connection between information and entropy. The work of Landauer and
Bennett in particular established that, while logical operations on information
elements are entropy-free, at the point when information is erased during the
process of a computation, heat is generated, and the entropy of the surroundings is
increased; for an accessible presentation, see Bennett and Landauer (1985). Logically
irreversible operations such as erasure necessarily involve entropy increase by klog2
per bit of erased information. In one sense, the link between information and
entropy is definitively established.

Having completed this sketchy and partial review of the historical development of
the information/entropy relationship, we now go on to analyse some particular
aspects, and recent developments.



Entropy and order; oddities, paradoxes and new views

The developments described in outline above have led to general agreement that
information is indeed related to physical entropy. But the relation is more subtle and
complicated that the ways in which it is commonly presented.

The simple, and until recently generally accepted, viewpoint is that physical entropy
is equivalent to disorder; Slater, for example, stating the commonly held ‘pre-
Shannon’ position that entropy measured “randomness or disorder” (Slater 1939, p.
9). If we take Shannon’s position that information is equivalent to entropy, and
reaches its maximum in randomness and disorder, then this is a strange situation;
the idea that ‘information equals disorder’ is not a viewpoint that usually makes
sense from the perspective of the information disciplines. (The term ‘random’ is
perhaps unfortunate here, as it has associations of ‘meaningless’ and ‘useful’;
Shannon’s theory is silent on the meaning and utility of messages whose information
content is measured by probability.) But equally, the idea that ‘information equals
negentropy equals order’ does not seem appropriate; the quotation from Gleick
(2011, p. 281) above reminds us that order is not necessarily informative, and
orderly things do not necessarily embody much information.

At this point, one might be excused for concluding that the information/entropy
relationship is not really relevant to the kind of information, and information issues,
of interest to information science, taking the kind of position espoused by Hjgrland
(2007) and Cornelius (2014). But we should remember that the entropy/disorder
relation is by no means as simple as it has been presented in the past. (And even in
science, there have been authors such as Denbigh and Denbigh (1985) who have
criticized it, and have given examples where the relation between entropy and order
is ambiguous, particularly when ‘disordered’ systems are simple and uniform.)

Let us first consider four examples which illustrate this.

1. An example of the entropy/disorder relationship often presented by
library/information science tutors seeking to make the idea accessible is that of a
disordered book collection; Shaw and Davis (1983) quote several such analogies. A
diligent librarian sorts and orders the book, doing both mental and physical work in
the process. The entropy of the collection reduced, while to compensate the entropy
of the wider universe is increased, as a result of the heat generated by the librarian’s
work. Sadly, this appealing and homely analogy is rather lacking. The work done, and
universal entropy generated, would be exactly the same if the librarian were further
disordering the books, or just moving them from one disordered state to another.
Any claim to entropy reduction as a result of ordering relies on having a definition of
order, such that we can show that the final result is a smaller macrostate, in
Boltzmann’s terms, than the original; this is surprisingly difficult to do, lacking a
formal objective definition of order suitable for this situation. The librarian may
arrange the books by colour; however a colour-blind reader will discern no change in
the order and hence no change in the entropy. The librarian may organize a
collection according to a classification scheme; but the resultant increase in order,
and in information content, will be evident only to someone who is familiar with the



intellectual rationale for the scheme, and considers that it is a helpful arrangement
for their purposes.

Wicken (1987B) criticizes a similar example given by Gatlin (1972), of the ordering of
disordered Scrabble pieces, on the grounds that entropy, disorder and
disorganization have very different meanings which are often conflated. Lambert
(1999) emphasizes that moving macroscopic objects around does not affect their
thermodynamic entropy, though it may affect their information content, if a
satisfactory way can be found to measure this.

2. This leads to the familiar tidy/messy desk example, a tidy desk being claimed to be
of lower entropy than a messy desk, and hence its tidying an example of entropy
reduction. There are several issues here. Most obviously, as Ford (2013, pp. 1-2) and
Schneider and Sagan (2005, p. 21) point out, a messy desk does not have more
entropy than a tidy one; they are simply two specific states of the system. To bring
entropy into it, we would have to define ‘tidy’ and ‘untidy’ in an unambiguous way -
Ford suggests by the fraction of desk top visible — then we could assess the statistical
likelihood of how such a starting configuration would change over time, if essentially
random changes were made. We would expect that a ‘tidy’ desk, having fewer
microstates, would become more untidy over time; it would diverge in an uncertain
way from its initially well-defined state. In that sense, there is an analogy with
statistical entropy, but it should not be taken too literally. And again there is the
need for a definition of ‘ordered’ or ‘tidy’; particularly tricky in this context, when
research has shown that ‘messy desk’ owners can retrieve items just as quickly as
keepers of tidy desks (Lansdale 1991) and that apparent messiness in an office
environment may enhance creativity (Vohs, Redden and Rahinel 2013). There may
well be a ‘hidden order’ in such situations, which may confound simplistic
untidy/entropic assumptions. And, while it is true that tidying a messy desk requires
work, causing an increase of temperature, and hence entropy, in the room in which
the desk is located, so also does an enthusiastic messing up of a tidy desk (Schneider
and Sagan 2005, p. 21). Nonetheless, the idea that a messy desk or room is an
example of high entropy, and that information may reduce entropy, in the form of a
knowledge of where things should go in the tidying process, remains a popular
teaching tool; see, for instance, Peterson (2014).

3. As a further thought experiment, let is return to our example of the blue ink
poured into a large glass tank of water, slightly amending an example given by
Carroll (2011). We noted that we would expect after some time the ink cloud to
disperse, giving a uniform light blue colour; a straightforward example of
spontaneous entropy increase. We expect this situation to remain indefinitely, but
are surprised to find that some time the ink has coalesced to form an accurate
representation of the Statue of Liberty. We go to find a camera to record this strange
event, but on our return the ink has further coalesced into a small featureless blob.
This is, as said earlier, something which we would expect to happen, but only on
extremely long time scales; the point is, however, that in moving from diffuse blue
tank, to Statue of Liberty, to small blob, entropy has steadily increased, simply
because the volume occupied by the ink, and hence the number of possible



microstates, has drastically reduced. This seems intuitively wrong, if entropy is
associated with order; the Statue of Liberty conveys meaning, it is interesting, it
must surely be, in some way, more organized and order-rich than a small featureless
blob. This reminds us that meaning and interest are subjective, and not directly
associated with the kind of order that is the opposite of entropy. That order reflects
the simple notion that dispersed distributions correspond to larger numbers of
possible arrangements - vastly larger if the number of elements is involved is large —
than do concentrated distributions do, so they take up correspondingly larger chunks
of phase space (Albert 2000).

4. Finally, we may refer to an example given by both Carroll (2011) and Ford (2013);
the totality of the physical universe. According to our current best knowledge, this
has progressed from a smooth hot gas, through the current era of structure and
organization — galaxies, stars, planets, people, books — to end in a sea of cold
featureless uniformity. And yet we are told that entropy increases steadily
throughout this process, which again seems intuitively wrong. Further, if the smooth
hot gas at the beginning of the universe is indeed of high entropy, then it should be
high in Shannon information, which again seems intuitively strange.

One partial explanation is simply that the early universe was very hot, and hot
materials have more entropy than cold materials. Another is the influence of gravity.
Simply stated, although the details are not fully understood, irregularities and
structures formed under the influence of gravity have a high entropy (for brief
accounts, see Gribbin 2009, Carroll 2011 and Smolin (2013), and for more detail see
Wallace 2010); in a very real sense, gravity puts information into the universe. As
Davies (1987, p. 135) puts it “Gravity in the early universe can therefore be seen as
"the fountainhead of all cosmic organization ... triggering a cascade of self-organizing
processes".

This is a dramatic illustration of the extent to which physical entropy involves
considerations which can have no equivalent in applications of entropy in the
information sciences. There is a second point. While the initial and final states of the
universe are very different in physical entropy, they are very similar in another
respect; they are both very simple, in contrast to the complexity of the present era.
Denbigh and Denbigh (1985), among others, give similar examples for chemical
systems. This is an indication that it will be necessary to look to ways to include
complexity in extending and illuminating the information/entropy relationship; see
Bawden and Robinson (2015).

All four examples raise questions of subjectivity. The question as to whether physical
entropy is subjective, in a way which is worrying for a scientific concept, has been of
concern since the idea that it was related to missing or incomplete information was
introduced by Boltzmann and Gibbs. Maxwell, the originator of the Demon, may
have been the first to recognize this (Schneider and Sagan 2005), since he wrote in a
Encyclopedia Britannica article on diffusion in 1878 that “dissipated energy is energy
which we cannot lay hold of and direct at pleasure, such as the energy of the
confused agitation of molecules which we call heat. Now, confusion, like the



correlative term order, is not a property of material things in themselves, but only in
relation to the mind which perceives them” (Maxwell 1878, p. 216).

Those approaching the issue from the physical sciences have typically wanted to

insist on its objectivity as a physical quantity. Hobson (1971) wrote a clear statement

of this position:
“The view that statistical mechanics is the study of incompletely specified
mechanical systems is sometimes criticized on the grounds that it is
subjective (i.e. involves the observer), whereas science is supposed to be
objective. Without getting into a discussion of whether or not science is
actually objective, the author would like to point out that this viewpoint is as
objective as any physical theory can be expected to be. According to the
operational philosophy of physics, physical theories should depend upon the
measuring instruments of the observer. Mechanics deals with the ideal case
of perfect and complete measurements. Statistical mechanics makes
predictions based on information obtained from imperfect measurements.
The predictions naturally depend upon the information, i.e. upon the
measuring instruments. The theory does not, however, depend upon the
subjective views of the observer: two observers, equipped with identical
measuring instruments and obtaining identical readings with these
instruments, will make precisely the same statistical mechanical predictions
about the outcomes of future measurements ... [if two observers with
instruments of different sensitivity reach different conclusions, then] ... the
difference is subjective in the sense that it is different for the two observers,
but objective in the sense that the difference depends only on the measuring
instruments available.” (Hobson 1971, pp. 6-7)

For Hobson, entropy is a measure of the observer’s uncertainty about the exact
state, knowing only some macroscopic data. It is meaningless to speak of the
entropy of a particular state .. it only has meaning in terms of a probability
distribution. “It might be helpful to speak of the ‘entropy of the data’ or the ‘entropy
relative to the observer’ rather than the entropy of the system ... For any measured
values of [macroscopic parameters] the entropy takes on a perfectly well-defined,
measurable value S ... the same for all observers possessing the same data. Thus the
entropy is not really subjective (i.e. relative to the observer), but is instead relative
to observer’s data” (Hobson 1971, p. 90).

This, Hobson tells us, explains well-known Gibbs paradox. If two volumes of gases A
and B, at first kept apart, mix, then here is an increase in entropy — the entropy of
mixing — provided A and B are distinguishable. If they are not distinguishable, there
is no entropy increase. The increase is the same, whether A and B are almost the
same in nature , or totally different. This is not explicable physically, but is explicable
on the basis of a discontinuous jump in the data — distinguishable to
indistinguishable. (We might note that Slater (1939) had explained the paradox four
decades earlier in similar terms, but without invoking the ‘entropy of the data’
concept, relying rather on quantum theory to make the point that entities are either
identical or not, a sharp binary distinction.)



Objectivity here means that several observers, given the same data, would reach the
same conclusions about entropy. Apparent subjectivity comes simply from the fact
that different observers may have different data, as in the example quoted earlier
that a rearrangement of books by colour or by classification scheme will not be an
apparent reduction in entropy to readers who are respectively colour-blind or are
ignorant of the intellectual basis of the classification.

Others made similar points. “This all-pervasive capacity for change within the
universe is surely independent of man’s presence and is thus fully objective” wrote
Denbigh (1981, p. 185), while Albert (2000, p. 103) insisted that entropy “is an
objective physical characteristic of the individual microconditions of individual
thermodynamic systems. The entropy of a microcondition is the logarithm of the
standardly calculated phase-space volume of the macrocondition to which the
microcondition in question belongs.”

Atkins (1984, p. viii) argued similarly, noting that he had deliberately omitted any
reference to the relation between information theory and entropy, although he
conceded that the principles and mathematics of information theory could
substantially contribute to the formulation of thermodynamics. Atkins was
concerned that:
“there is a danger, it seems to me, of giving the impression that entropy
requires the existence of some cognizant entity capable of possessing
“information” or of being to some degree “ignorant”. It is then only a small
step to the presumption that entropy is all in the mind, and, hence is an
aspect of the observer. | have no time for this muddleheadedness and intend
to keep such accretions at bay”.

Schneider and Sagan (2005, p. 22) consider that this objection is “understandable
but overdone” since information theory is about much more than messages
exchanged between conscious beings. As developed by scientists such as Jaynes
(1957A, 1957B), it focuses on information obtained from experiments, and is as
applicable to thermodynamics as to any other area.

The issue was addressed thoughtfully by Denbigh (1981), who concluded that this
was not an issue provided that a number of caveats were taken into account. The
entropy which we calculate is the entropy of our data on a physical system, and —
like many other quantities - its value will change when our data changes. Also in
some circumstances we will have a choice of how to calculate entropy, depending on
the assumptions which we make about physical systems. As Landsberg had put it,
two decades earlier, considering both physical entropy and information entropy of
messages, “the entropy of a system or text depends not only on the system or text,
but also on our knowledge of it, and on the questions we ask about it” (Landsberg
1961, p. 237).

A very full treatment was given by Denbigh and Denbigh (1985), to provide a counter
to what they regarded as a widely accepted, though erroneous, view that “entropy



really signifies nothing more than a lack of human knowledge” (p. vii). Such ideas,
they suggest, began with Gibbs, were first presented explicitly by Lewis, in the 1930
guotation above, and gained general credence with the use of information theory to
address thermodynamic problems. Their rebuttal relies on the idea that incomplete
information does not equate to subjectivity. A calculated entropy may change, like
any other physical quantity, when available data changes, but this is not subjective in
the usual meaning of the word, for entropy any more than for any other quantity.
Given the change in data, and an agreed formula, any scientist would agree with the
changed value, which may reasonably be called objective. They therefore prefer the
approach of Hobson (1971), noted above, that we should speak of ‘the entropy of
the data’, which will naturally change when the data change.

Nor is it the case that gaining more accurate information necessarily reduces the
calculated entropy of a system; they give several physical examples where the
calculated entropy increases. Finally, they are argue that using the formalism and
terminology of information for physical entropy allows the introduction of terms
such as ‘ignorance’ and ‘surprise’ which have no meaning in the physical context.
Their contention is that physical entropy is an objective quantity, which is unaffected
by our knowledge, though any calculated numerical value is subject to our
ignorance.

Ben-Naim (2008, p. 29) agrees with Denbigh and Denbigh that there is no “problem
about whose information is measured by H”, provided that we use Shannon’s
objective measure of information.

Ford (2013), Carroll (2011), Ben-Naim (2008) and Georgii (2003) also present
arguments against being overly concerned about subjectivity. As long as we agree on
what system we are measuring, and a framework for what is to be included in our
description of it and with what degree of detail, then entropy should be a well-
defined and objective measure of remaining uncertainty, calculated from
measurements made within that framework. We should not be misled by the use of
terms like uncertainty and ignorance to believe that it is subjective. This does
however mean that there will be different, perhaps many, entropies, depending the
nature of framework and what variables are included within it (Lebowitz and Maes
2003). This is in line with the general view of objective interpretations and
judgments; that they make sense only when viewed within a constant set of criteria
(Gaukroger 2012).

The need for such a framework is well illustrated by an example due to Brillouin
(1949). If we take a textbook, or a volumes of printed newspapers, and an equal
weight of waste paper, do they have the same entropy? Brillouin suggested that
they do if we are making a fire with them, but not if we propose to read them. Or, to
adapt an example from Lebowitz and Maes (2003), we may measure the entropy
change when a collection of coloured balls — let us say red, green and blue — initially
separated by colour are allowed to mix; but the assessment will be different for an
observer who is red-green colour-blind, or who is watching the process on a black-
and —white monitor. This does not make the value of entropy subjective; it is just



being measured within a framework of different variables, or, more generally, within
a different conceptual perspective.

Of course, the problem largely disappears if we regard entropy as equivalent to, or
the opposite of information. The idea that we may have a different amount of
information about a system according to the context and circumstances does not
trouble us, and does not make us want to insist that the information cannot
therefore be considered objective.

We might also note en passant that the concept of entropy as missing information is
rooted in classical physics, whereby gaining perfect information is always possible, at
least in principle. In quantum physics, uncertainty and probability becomes a fixed
and fully objective attribute of the word, removing in a different way concerns about
subjectivity (Vedral 2012). Recent studies also suggest that entropy may result from
guantum entanglement and decoherence causing a loss of objective information,
rather than from human ignorance, again restoring the objectivity of entropy; for an
accessible review, see Wolchover (2014), and also Tegmark (2014) and Gharibyan
and Tegmark (2013).

The matter is no means entirely settled however, and different opinions are still
expressed: “there are several different answers to such questions, none of which is
found satisfactory by everyone working in the field of statistical mechanics”
(Carroll 2011, p.160). For example, Hemmo and Shenker (2012), deal with it by
adopting the philosophical position of physicalism, and regarding the, allegedly
subjective, recognition of macrostates by an observer as simply an objective
microstate of the observer’s brain; the observer is a part of the mechanical system,
while Baranger (2001) argues that entropy is entirely subjective; it is a measure of
disorder, but the disorder is in our heads, in our knowledge of a system. The eminent
British physicist Sir Roger Penrose (2004) worries about what he perceives as a
subjective element to entropy, and suggests that this means that it may not be a
truly fundamental physical entity.

There has been a general move away from equating entropy with disorder in
scientific contexts in recent years. This interpretation, introduced by Boltzmann as
essentially synonymous with a state of high probability, has been criticized by a
number of science educators as unhelpful, if not actively misleading, following the
suggestions of earlier commentators such as Denbigh and Denbigh (1985). Leff
(1996) and Lambert (2002) have recommended its replacement by the idea of
entropy increase as ‘energy dispersal’, among a large number of possible
microstates; Kostic (2014) makes similar points. Leff (2012) argues that disorder is a
poor metaphor for entropy. Spreading or dispersal of energy is better, as this
explicitly includes the energy aspect of physical entropy, but uncertainty, or more
specifically missing information, is also a useful metaphor. Both metaphors refer to
choice, since as a system can spread over many microstates, there is more
uncertainty as to what the state actually is; “spreading and missing information
provide complementary, useful views of entropy” (Leff 2012, p. 276). Disorder is only



loosely related to this, and may be misleading. Leff suggests that the symbol S,
traditionally used for entropy, should indicate ‘Spreading’.

Styer (2000) also notes several arguments against the disorder interpretation,
including its invitation to focus on a single state rather than a class of states, and its
vagueness, with no precise definition of disorder. However, recognizing that it is at
times appropriate, he recommends a joint use of the similes of ‘entropy as disorder’
and ‘entropy as freedom’; the latter essentially the same as energy dispersal.
Brissaud (2005) comes to similar conclusions.

One rather technical point is that physical entropy is an extensive property; that is to
say crudely that if an amount of substance has a certain entropy, then twice as much
substance will have twice as much entropy. While this seems sensible for the
physical quantity, it does not seem intuitively sensible to suggest that the larger
amount of material is ‘twice as disordered’. To deal with this problem, and the fact
that entropy is not always additive, a variety of ‘extended entropies’, most notably
those of Lansberg, Tsallis, Renyi and Vedral, have been developed, which
characterize disorder in somewhat different ways (Davison and Shiner 2005);
Shterenberg similarly considers new formulations of the entropy concept to relate to
ideas of order, orderliness and organization (2013), while Schneider and Sagan
(2005) note such proliferations as metric, topological, algorithmic and Galois
entropies.

Ben-Naim (2008, 2009, 2011) noting that the interpretation of entropy as disorder
has prevailed for over 100 years, finds two difficulties: the fact that there are cases
where disorder is clearly observed without a corresponding energy change; and,
more fundamentally, that the concept of order is not well-defined, so that it may be
difficult, if not impossible, to say which of two states is more or less ordered. The
idea of disorder is “at best a vague, qualitative and highly subjective one” (Ben-Naim
2008, p. 10). He recommends, and defends in detail, an interpretation in terms of
Shannon’s measure, since this concept of information is very general, and
encompasses both objective and subjective types of information. He argues that
entropy, in all senses in which the word is used, including but not limited to
thermodynamics, is best understood as uncertainty or, more fully, the amount of
missing information.

Ford (2013) makes a similarly convincing case that entropy is better regarded as
uncertainty, or missing information, than as disorder. We do not possess all the
microscopic information about a complex system, and that missing information
constitutes its entropy:

“Entropy is uncertainty commodified. .. We do not or cannot measure all the
details of the present state of the world and so when processes occur we are
not quite sure what will happen ... Our certainty about the future is less then
our certainty about the present ... The increased uncertainty is quantified as

an increase in the total entropy of the world, and that is what entropy is. The



most remarkable thing is that we can measure it with a thermometer.” (Ford
2013, p. xiii).

The growth of disorder, says Ford (2013, p. 135) is a useful shorthand description for
the growth of entropy, and does capture some of Boltzmann’s insight, since
describing a system as disorderly implies uncertainty in its future behaviour; but it is
not the whole story. There are too many counter-examples, and, as noted already,
we have no good definition of order that will fit all circumstances. It also spares us
worrying about whether the final state of the universe is ordered (in that there is
uniformity) or disordered (in that it must be high-entropy); it simply has a maximally
uncertain microscopic state.

This idea of the link between entropy as disorder (disorder increases over time,
because there are more ways to be ordered than disordered) and entropy as missing
information (we can have, in principle, complete knowledge of a system in the past,
or in the present, but our knowledge decreases the further into the future we
predict) has been made by Katz (1967) and by Tribus: “if we recognize that entropy
only measures the extent of our ignorance about the detailed behavior of a system,
we can see that the increase is in our confusion about the system” (Tribus 1961, p.
146).

Greene (2011, p. 251-253) gives intuitively clear examples of the idea of physical
entropy as equating to missing, or, as he puts it, hidden, information. Entropy, the
number of rearrangements of a system’s microscopic constituents that leave its
overall macroscopic features unchanged, is a measure of the gap in information
between the data we have, about the macroscopic arrangements, and the data we
do not have, about the particular microstate. The microscopic details include
information which is hidden when we consider only macroscopic properties; we can
quantify this in Shannon’s terms as the number of yes/no questions that could be
answered if we knew all the unknown microscopic details. Entropy is the measure of
hidden information, measured in this way.

Conclusions
“Information is information”, wrote Norbert Wiener (1961, p. 132), “not matter or
energy”. It is not entropy either.

In an editorial, warning of the uncritical and over-enthusiastic use of what even he
was by then calling information theory, Claude Shannon (1956, p.3) wrote that “the
use of a few exciting words like information, entropy, redundancy, do not solve all
our problems” [his italics].

Consideration of the relation between information and physical entropy over the
past three decades, since the Shaw and Davis paper, has been very productive for
the physical sciences, introducing information as a fundamental physical quantity.

But it has not been so not so productive for the information sciences; here is it the
wrong question, since information is not entropy or negentropy, though it is related



to both. The interesting question for the information sciences is the relation
between information and ‘interesting complexity’. This has also developed
considerably since Shaw and Davis’s review (Bawden and Robinson 2015).

Information is not entropy, other than in a purely formalistic or metaphorical sense.
And physical entropy is not information, since it involves, heat, temperature, gravity
and other physical quantities. Entropy can therefore only be equated with
information if we accept the controversial argument that all reality is at root
information (Bawden and Robinson, 2013). The success of the ‘information entropy’
formalism in physical studies does not affect this conceptual point. Similarly, there is
now general agreement, with some remaining concerns, that entropy is not
intrinsically subjective, dependent only on our state of knowledge.

Information is associated with both pattern and randomness. We can now see
clearly that there are two aspects to information role in creating complexity. For the
unpredictable, and arguably creative, aspects, Shannon information is appropriate.
For the aspects of structure and organisation, Wiener’s negative entropy concept is
inappropriate, and too simplistic. We need a better way of understanding and
formalising this aspect of information, not more wrangling over the relation between
information and entropy.

Physical entropy is best understood as uncertainty, and, to a certain extent, disorder.
Shannon’s theory is the best general formula for entropy, in all its instantiations,
since all depend on the probabilities laws. Perhaps Von Neumann was right all along.

Wiener’s insight that information is related in some way to order needs to be dealt
with, not by amending Shannon’s ideas but by adding to them. Arguably, negentropy
would be better defined as difference between maximum entropy and the actual
Shannon value, rather than the negative of Shannon.

The philosophers of information, Dretske (1981) by implication, and Floridi (2010)
explicitly, take Shannon’s viewpoint. But Floridi (2013), reminding us that Shannon’s
theory is best understood as a constraint on what we can say about information and
its role, speaks of an ‘Archipelago of information’, different definitions of
information for different purposes. Similarly, there are different forms of entropy for
different purposes (Frigg and Werndl 2011). This reinforces the value of studies of
information and related concepts in different domains (Furner, 2014; Robinson and
Bawden, 2014).

The relation between information and entropy, order and disorder then, is far from
clear. Perhaps it is more helpful to consider information and complexity (or
simplicity), rather than information and order (or disorder), though entropy is also
involved in any such comsideration (Bawden and Robinson, 2015)
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