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Abstract

Recent contributions to kernel smoothing show that the performance of

cross-validated bandwidth selectors improves significantly from indirectness

and that the recent do-validated method seems to provide the most practi-

cal alternative among these methods. In this paper we show step by step

how classical cross-validation improves in theory, as well as in practice, from

indirectness and that do-validated estimators improve in theory, but not in

practice, from further indirectness. This paper therefore provides a strong

support for the practical and theoretical properties of do-validated bandwidth

selection. Do-validation is currently being introduced to survival analysis in

a number of contexts and this paper provides evidence that this might be the

immediate step forward.
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1 Introduction

Indirect cross-validated bandwidth selection has a number of theoretical and practi-

cal advantages, see among others Hart and Yi (1998), Hart and Lee (2005), Savchuk

et al. (2008, 2010). In this paper classical cross-validation is improved through in-

directness considering a series of polynomial kernels as indirect kernels. The limit of

this series of polynomial kernels is the popular Gaussian kernel. Asymptotic theory

provides evidence that the performance of indirect cross-validation improves with

the order of the polynomial kernel with the Gaussian limit being the best perform-

ing. This provides some theoretical justification for the fact that the Gaussian kernel

is a popular choice in indirect cross-validation. However, we show that even our best

performing indirectly cross-validated bandwidth selectors are outperformed by the

recent do-validated estimator of Mammen et al. (2011). Therefore we have con-

sidered improving do-validation from indirectness using polynomial kernels in the

indirect step. Indirect do-validation does indeed outperform classical do-validation

from the point of view of asymptotic theory. However, from a practical point of view,

do-validation is still the best method. This paper can therefore be seen as an argu-

ment in favour of exploring do-validation in kernel smoothing rather than trying to

improve it even further. This is indeed being done at the moment, see Gámiz-Pérez

et al. (2013a,b,c) for the introduction of do-validation to three fundamental models

of survival analysis. Do-validation could be considered in other smoothing problems,

see for example Soni et al. (2012), Oliveira et al. (2012), Spreeuw et al. (2013),

Lee et al. (2010, 2012a,b), Buch-Kromann and Nielsen (2012), González-Manteiga

et al. (2013).

The paper is organized as follows. In Section 2 we first consider indirect cross-

validation, where the theoretical and practical improvements of highering the power

of the indirect kernel is very clear. Both the theoretical and the finite sample

performance improve consistently in every step when increasing the power of the

indirect kernel. In Subsection 2.1 we describe a simulation study to assess the finite

sample performance of the method. In Section 3 we consider indirect do-validation.

The theoretical relative improvements of highering the power of the indirect kernel

3



follow the same pattern as we found in indirect cross-validation. However, the finite

sample results are less clear. Section 4 concludes the paper.

2 Indirect cross-validated bandwidth selection in

kernel density estimation

In this section we consider indirect cross-validation in its simplest possible version

taken from Savchuk et al. (2008, 2010). These papers considered a number of vari-

ations of indirect cross-validation. We consider here the simplest possible version,

where one has one indirect kernel and one original kernel. The above two papers

seem to have some preference for a mixture of Gaussian kernels as indirect kernel.

Here we provide a theoretical justification for why this might be a good idea. The

Gaussian kernel is in some sense the optimal kernel of a class of indirect kernels, and

the theoretical and practical advantage of choosing the Gaussian kernel as indirect

kernel can be quite substantial. In our derivation of indirect cross-validation below

we use notation similar to the used by Mammen et al. (2011), who considered a

class of bandwidth selectors with the indirect cross-validation bandwidth ĥICV,L,

with indirect kernel L, as a special case.

The aim is to get a bandwidth with a small Integrated Squared Error (ISE) for the

kernel density estimator

f̂h,K(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
,

with symmetric kernel function K.

The bandwidth ĥICV,L is based on the inspection of the kernel density estimator

f̂h,L, for a kernel L that fulfills L(0) = 0. And it comes from the following CV score:∫
f̂h,L(x)2dx− 2n−1

n∑
i=1

f̂h,L(Xi). (1)

Note that because of L(0) = 0 we do not need to use a leave-one-out version of f̂h,L

in the sum on the right hand side. Also any kernel L can be defined to fulfill such

condition just by setting L(u) = L(u)1u6=0, and it will be considered hereafter in the
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indirect step. Thus, the indirect cross-validation bandwidth ĥICV,L is defined by

ĥICV,L = d−1L ĥL

with ĥL being the minimizer of the score (1). Here, we define

dM =

(
R(K)

R(M)

µ2
2(M)

µ2
2(K)

)−1/5
(2)

for a kernel M with R(g) =
∫
g2(x)dx, µl(g) =

∫
xlg(x)dx for functions g and

integers l ≥ 0. Note that the bandwidth ĥL is a selector for the density estimator

with kernel L. After multiplying with the factor d−1L it becomes a selector for the

density estimator f̂h,K . This follows from classical smoothing theory and has been

used at many places in the discussion of bandwidth selectors. Note that the indirect

cross-validation method contains the classical cross-validation bandwidth selector as

one example with K = L.

We now apply results from Mammen et al. (2011) to derive the asymptotic distribu-

tion of the difference between the indirect cross-validation bandwidths ĥICV,L and

the ISE-optimal bandwidth ĥISE. Here, the bandwidth ĥISE is defined by

ĥISE = arg min
h

[∫ (
f̂h,K(x)− f(x)

)2
dx

]
. (3)

Under some mild conditions on the density f and the kernels K and L, see As-

sumptions (A1) and (A2) in Mammen et al. (2011), one gets by application of their

Theorem 1 that

n3/10(ĥICV,L − ĥISE)→ N(0, σ2
ICV,L) in distribution,

with

σ2
ICV,L = Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ cL,K

}
(4)

where Cf,K , R(f ′′), R(f) and V(f ′′) are functionals depending on the density f ,

its derivatives and the kernel K. The functional cL,K is what distinguishes the

asymptotic variance of the bandwidth estimates and it only depends on the chosen

kernels L and K. See Mammen et al. (2011) for an explicit definition of all of these

functionals.
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Here we are interested in indirect cross-validation defined with any symmetric kernel

K (as for example the Epanechnikov kernel) and as the kernel L a polynomial kernel

with higher power. Specifically we define a general kernel function with power r by

K2r(u) = κr(1− u2)r1{−1<u<1} (5)

with κr = (
∫ 1

−1(1 − u
2)rdu)−1. Note that for r = 1 it is the Epanechnikov kernel

and for r = 2 it gives the quartic kernel. We now study the theoretical performance

of indirect cross-validation for the choice K = K2 (the Epanechnikov kernel) and

L = K2r for different choices of r. We start by considering the limiting case r →

∞. For this purpose we consider the kernel K∗2r(u) = (2r)−1/2K2r((2r)
−1/2u) that

differs from K2r by scale. Because the definition of the bandwidth selector does not

depend on the scale of L we have that σ2
ICV,K2r

= σ2
ICV,K∗

2r
. Furthermore, because of

limr→∞(1 − (2r)−1u2)r = e−u
2/2 it holds that, after scaling, the polynomial kernels

converge to the Gaussian kernel when r goes to infinity

lim
r→∞

(2r)−1/2K2r((2r)
−1/2u) = φ(u) =

1√
2π
e−

u2

2 .

Moreover, it holds that σ2
ICV,K2r

= σ2
ICV,K∗

2r
→ σ2

ICV,φ for r → ∞. This can be

shown by dominated convergence using the fact that (1− (2r)−1u2)r ≤ e−u
2/2. Thus

a Gaussian indirect kernel is a limiting case for the performance of indirect cross-

validation.

According to the results above, the asymptotic variance of ĥICV,K2r − ĥISE is of the

form giving in (4) with cL,K ≡ cr a constant depending on r. We have just argued

that cr → c∞ for r → ∞ where c∞ = 3.48 is the constant corresponding to the

Gaussian kernel. Figure 1 shows cr as a function of r. It illustrates the convergence

but it also shows that this convergence is monotone: by increasing the power r

(r = 2, 3, 4, . . .) we get an incremental reduction in the asymptotic variance factor

for indirect cross-validation.

One sees that the trick of indirect cross-validation significantly improves on cross-

validation. And specifically the asymptotics for the indirect crossvalidatory band-

widths with K being the Epanechnikov kernel and L = K2r, are given below for

r = 1, 2, 8 and r → ∞. Here r = 1 is classical cross-validation (CV) using the
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Epanechnikov kernel, and r → ∞ is indirect cross-validation with the Gaussian

kernel as the indirect kernel (ICVG).

σ2
CV = Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 7.42

}
σ2
ICV2

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 4.71

}
σ2
ICV8

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 3.72

}
σ2
ICVG

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 3.48

}
.

The first improvement of going from standard cross-validation to having an indi-

rect kernel of one more power is the most important one. The crucial component

of the asymptotic theory is decreasing from 7.42 to 4.71. This is sufficiently sub-

stantial to consider this simple adjustment of classical cross-validation to solving a

good and important part of the problem with the volatility of the cross-validation

estimator. However, indirect cross-validation can do better. Going to the Gaussian

limit brings the crucial constant down to 3.48! This is quite low and approaching

the do-validation constant of 2.19 found in Mammen et al. (2011). It turns out

that 3.48 is still so big that 2.19 is a major improvement in theory and practice.

Do-validation does better than indirect cross-validation in theory and practice, even

when the latter is based on the optimal Gaussian kernel.

2.1 Simulation experiments about indirect cross-validation

The purpose of this section is to study the performance of the indirect cross-

validation method with respect to standard cross-validation and the optimal ISE

bandwidth ĥISE defined in (3). We consider in the study three possible indirect

crossvalidatory bandwidths: ĥICV2 , ĥICV8 and ĥICVG . These arise by using the

Epanechnikov kernel as the kernel K, and as kernel L, the higher power polyno-

mial kernel, K2r defined in (5), for r = 2, 8, and K∞ that is the Gaussian kernel.

We consider the same data generating processes as Mammen et al. (2011). We

simulate six designs defined by the six densities plotted in Figure 2 and defined as

follows:
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3.48

3.72

4.71

7.42

> 3.48 (gaussian)

● K2r

K∞= gaussian

Figure 1: Asymptotic variance reduction for indirect cross-validation with kernels

K2r for r = 1, 2, . . .∞. The limit kernel is the Gaussian plotted using a discontinuous

line.

1. a simple normal distribution, N(0.5, 0.22),

2. a bimodal mixture of two normals which were N(0.35, 0.12) and N(0.65, 0.12),

3. a mixture of three normals, namelyN(0.25, 0.0752), N(0.5, 0.0752) andN(0.75, 0.0752)

giving three clear modes,

4. a gamma distribution, Gamma(a, b) with b = 1.5, a = b2 applied on 5x with

x ∈ IR+, i.e.

f(x) = 5
ba

Γ(a)
(5x)a−1e−5xb,

5. a mixture of two gamma distributions, Gamma(aj, bj), j = 1, 2 with aj = b2j ,

b1 = 1.5, b2 = 3 applied on 6x, i.e.

f(x) =
6

2

2∑
j=1

b
aj
j

Γ(aj)
(6x)aj−1e−6xbj

giving one mode and a plateau,

6. and a mixture of three gamma distributions, Gamma(aj, bj), j = 1, 2, 3 with

aj = b2j , b1 = 1.5, b2 = 3, and b3 = 6 applied on 8x giving two bumps and one

plateau.

Our set of densities contains density functions with one, two or three modes, some

being asymmetric. They all have exponentially falling tails, because otherwise one
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Design 1 Design 2

ĥISE ĥCV ĥICV2
ĥICV8

ĥICVG
ĥISE ĥCV ĥICV2

ĥICV8
ĥICVG

n = 100

m1 2.328 4.944 4.804 4.583 4.446 3.477 6.313 6.047 5.876 5.809

m2 1.876 6.185 5.557 5.451 5.256 1.989 5.611 5.089 4.683 4.511

m3 0.000 4.963 4.087 3.840 3.472 0.000 2.550 1.969 1.969 1.969

m4 0.000 -1.839 -1.044 -0.458 -0.230 0.000 0.587 1.049 1.532 1.746

m5 0.000 0.714 0.724 0.724 0.722 0.000 0.943 0.948 0.950 1.000

n = 200

m1 1.417 2.573 2.481 2.359 2.288 2.307 3.816 3.700 3.495 3.451

m2 1.098 2.747 2.609 2.435 2.213 1.372 3.376 3.239 2.577 2.533

m3 0.000 3.161 2.545 2.133 1.989 0.000 2.174 1.821 1.487 1.477

m4 0.000 -0.718 -0.438 0.024 0.192 0.000 -0.087 0.240 0.593 0.769

m5 0.000 0.687 0.690 0.687 0.687 0.000 0.723 0.751 0.733 0.737

n = 500

m1 0.731 1.221 1.175 1.129 1.108 1.208 1.780 1.756 1.695 1.674

m2 0.465 1.078 1.027 0.913 0.867 0.648 1.237 1.245 1.147 1.122

m3 0.000 2.615 2.214 1.935 1.818 0.000 1.296 1.218 1.076 0.997

m4 0.000 -0.805 -0.417 -0.193 -0.104 0.000 -0.195 0.008 0.193 0.285

m5 0.000 0.666 0.666 0.651 0.656 0.000 0.632 0.629 0.632 0.634

n = 1000

m1 0.439 0.719 0.712 0.675 0.664 0.732 1.049 1.006 0.987 0.976

m2 0.277 0.699 0.699 0.622 0.606 0.377 0.722 0.624 0.609 0.599

m3 0.000 2.190 2.161 1.741 1.688 0.000 1.227 1.071 0.914 0.857

m4 0.000 -0.596 -0.434 -0.236 -0.155 0.000 -0.201 -0.074 0.051 0.119

m5 0.000 0.667 0.667 0.643 0.632 0.000 0.586 0.560 0.554 0.554

Table 1: Simulation results about the indirect cross-validation method with designs 1

and 2. We compare the standard cross-validation, ĥCV , with three indirect versions

ĥICV2, ĥICV8 and ĥICVG for kernels K2r with r = 2, 8,∞. As a benchmark we report

the results for the unfeasible ISE optimal bandwidth, ĥISE. All the numbers have

been multiplied by 100.

has to work with boundary correcting kernels. The main mass is always in [0, 1].

For the purposes of this paper we use five measures to summarize the stochastic
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Design 3 Design 4

ĥISE ĥCV ĥICV2
ĥICV8

ĥICVG
ĥISE ĥCV ĥICV2

ĥICV8
ĥICVG

n = 100

m1 4.448 7.232 7.061 6.905 6.951 4.842 7.918 7.818 7.636 7.643

m2 2.231 6.392 6.141 5.326 5.247 2.644 6.698 6.842 6.400 6.440

m3 0.000 1.766 1.515 1.461 1.526 0.000 1.595 1.460 1.357 1.328

m4 0.000 0.629 1.008 1.423 1.705 0.000 -0.256 1.146 0.569 0.742

m5 0.000 0.824 0.883 0.957 1.060 0.000 0.822 0.842 0.844 0.869

n = 200

m1 2.830 4.216 4.034 3.872 3.864 3.100 4.643 4.521 4.453 4.405

m2 1.343 3.043 2.788 2.310 2.299 1.657 3.645 3.299 3.391 3.265

m3 0.000 1.244 1.016 0.947 0.932 0.000 1.396 1.228 1.106 1.118

m4 0.000 0.086 0.291 0.593 0.707 0.000 -0.313 -0.042 0.233 0.360

m5 0.000 0.626 0.649 0.626 0.648 0.000 0.758 0.765 0.765 0.778

n = 500

m1 1.540 2.006 1.955 1.908 1.889 1.687 2.338 2.270 2.193 2.164

m2 0.685 1.053 0.998 0.994 0.963 0.767 1.576 1.516 1.333 1.272

m3 0.000 0.859 0.812 0.673 0.640 0.000 0.924 0.826 0.721 0.717

m4 0.000 -0.074 0.033 0.187 0.271 0.000 -0.436 -0.205 -0.031 0.073

m5 0.000 0.562 0.532 0.532 0.532 0.000 0.625 0.611 0.587 0.587

n = 1000

m1 0.943 1.166 1.135 1.112 1.109 1.060 1.341 1.317 1.281 1.270

m2 0.405 0.620 0.590 0.533 0.536 0.491 0.725 0.706 0.645 0.632

m3 0.000 0.683 0.553 0.457 0.444 0.000 0.784 0.639 0.549 0.504

m4 0.000 -0.118 0.003 0.088 0.139 0.000 -0.287 -0.132 0.030 0.114

m5 0.000 0.446 0.467 0.428 0.438 0.000 0.564 0.538 0.528 0.528

Table 2: Simulation results about the indirect cross-validation method with designs 3

and 4. We compare the standard cross-validation, ĥCV , with three indirect versions

ĥICV2, ĥICV8 and ĥICVG for kernels K2r with r = 2, 8,∞. As a benchmark we report

the results for the unfeasible ISE optimal bandwidth, ĥISE. All the numbers have

been multiplied by 100.

performance of any bandwidth selectors ĥ:

m1 = mean(ISE(ĥ)) (6)

m2 = std(ISE(ĥ)) (7)

m3 = 90%quantile
(
|ISE(ĥ)− ISE(ĥISE)|/ISE(ĥISE)

)
(8)

m4 = mean(ĥ− ĥISE) (9)

m5 = 90%quantile
(
|ĥ− ĥISE|/ĥISE

)
. (10)
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Design 5 Design 6

ĥISE ĥCV ĥICV2
ĥICV8

ĥICVG
ĥISE ĥCV ĥICV2

ĥICV8
ĥICVG

n = 100

m1 3.356 5.575 5.488 5.250 5.208 3.633 5.458 5.279 5.184 5.149

m2 1.383 6.160 6.065 4.638 4.575 1.617 4.309 3.829 3.245 3.140

m3 0.000 1.730 1.624 1.458 1.380 0.000 1.332 1.121 1.122 1.122

m4 0.000 -0.101 0.616 1.270 1.521 0.000 0.749 1.369 1.970 2.279

m5 0.000 0.920 0.999 0.999 0.999 0.000 0.917 0.950 0.999 0.999

n = 200

m1 2.293 3.516 3.400 3.269 3.223 2.387 3.397 3.317 3.220 3.212

m2 0.864 2.907 2.483 2.309 2.194 0.955 2.378 2.209 2.014 1.949

m3 0.000 1.551 1.425 1.289 1.248 0.000 1.160 1.040 0.965 0.962

m4 0.000 -0.370 0.158 0.638 0.833 0.000 0.373 0.672 1.020 1.194

m5 0.000 0.791 0.819 0.825 0.807 0.000 0.856 0.839 0.839 0.838

n = 500

m1 1.287 1.857 1.806 1.758 1.729 1.355 1.823 1.746 1.719 1.700

m2 0.520 1.329 1.238 1.176 1.081 0.495 1.150 0.889 0.885 0.821

m3 0.000 1.298 1.104 0.964 0.930 0.000 0.973 0.886 0.872 0.788

m4 0.000 -0.093 0.143 0.439 0.602 0.000 -0.333 -0.045 0.244 0.399

m5 0.000 0.760 0.774 0.751 0.762 0.000 0.637 0.621 0.618 0.618

n = 1000

m1 0.844 1.147 1.102 1.075 1.067 0.892 1.074 1.054 1.032 1.024

m2 0.357 0.691 0.611 0.565 0.546 0.304 0.458 0.445 0.393 0.370

m3 0.000 1.053 0.866 0.802 0.729 0.000 0.500 0.465 0.403 0.441

m4 0.000 -0.300 -0.109 0.133 0.245 0.000 -0.149 0.049 0.253 0.381

m5 0.000 0.667 0.600 0.586 0.591 0.000 0.500 0.516 0.520 0.500

Table 3: Simulation results about the indirect cross-validation method with designs 5

and 6. We compare the standard cross-validation, ĥCV , with three indirect versions

ĥICV2, ĥICV8 and ĥICVG for kernels K2r with r = 2, 8,∞. As a benchmark we report

the results for the unfeasible ISE optimal bandwidth, ĥISE. All the numbers have

been multiplied by 100.

The above measures have been calculated from 500 simulated samples from each

density and four samples sizes n = 100, 200, 500 and 1000. The measures m1, m2

and m4 where also used in the simulations by the former paper by Mammen et al.

(2011). We have included measures m3 and m5 which are informative about the

stability of the bandwidth estimates. Tables 1, 2 and 3 show the simulation results.

Note that the bias (m4) is consistently increasing as a function of the power of
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Figure 2: The six data generating densities: Designs 1 to 6 from the upper left to

the lower right.

the indirect kernel with the indirect Gaussian kernel having the largest bias. This

increase in bias is being more than balanced by a decreasing volatility (m2) as a

function of the power of the indirect kernel. As a result, the overall performance,

the averaged integrated squared error performance (m1), is decreasing as a function

of the power of the indirect kernel with the Gaussian indirect kernel performing

best of all. These results are very clear for all the designs and sample sizes and the

indirectness in cross-validation is indeed working quite well.

3 Indirect do-validation in kernel density estima-

tion

Here we describe the indirect do-validation method and provide theoretical and

empirical results in a similar way to that for indirect cross-validation above. We

conclude that indirect do-validation improves consistently theoretically when the

power of the indirect kernel increases. The relative improvements parallel those

we saw for indirect cross-validation. However, it does not seem like the practical

improvements follow the theoretical improvements for indirect do-validation. The

original conclusion of Mammen et al. (2011) seems to be valid also here: “when

the theoretical properties are so good as in do-validation, it is the practical imple-

mentation at hand that counts, not further theoretical improvements”. Going all

the way to the limiting Gaussian kernel is not of practical relevance for indirect

do-validation.
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In our derivation of the methodology, we follow Mammen et al. (2011) that first

consider a class of bandwidth selectors that are constructed as weighted averages

of cross-validation bandwidths. This class of bandwidth selectors contains the clas-

sical cross-validation bandwidth selector as one example with J = 1 and L1(u) =

K(u)1(u 6= 0). And it also contains the do-validation method, which combines left

and right one-sided cross-validation using the local linear kernel density estimator

(Jones, 1993; and Cheng 1997a, 1997b). In fact the method cannot work on local

constant density estimation because of its inferior rate of convergence when applying

to asymmetric kernels. For a kernel density estimator f̂h,M with kernel M the local

linear kernel density estimator can be defined as kernel density estimator f̂h,M∗ with

“equivalent kernel” M∗ given by

M∗(u) =
µ2(M)− µ1(M)u

µ0(M)µ2(M)− µ2
1(M)

M(u).

In one-sided cross-validation the basic kernel M(u) is chosen as 2K(u)1(−∞,0) (left

one-sided cross-validation) or 2K(u)1(0,∞) (right one-sided cross-validation). This

results in the left and right one-sided equivalent kernels, K∗left and K∗right, respec-

tively. The left one-sided cross-validation bandwidth is calculated by(
R(K)

R(K∗left)

µ2
2(K

∗
left)

µ2
2(K)

)1/5

ĥKleft
,

where ĥKleft
is the minimizer of the left one-sided cross-validation criterion defined

as (1), but involving the local linear density estimator with equivalent kernel K∗left.

In exactly the same way we define the right one-sided cross-validation bandwidth,

but considering now the kernel K∗right. Finally, the do-validation selector ĥDO is

given by the simple average

ĥDO =

(
R(K)

R(K∗left)

µ2
2(K

∗
left)

µ2
2(K)

)1/5
ĥKleft

+ ĥKright

2
. (11)

See Mart́ınez-Miranda et al. (2009) and Mammen et al. (2011) for more details.

Left one-sided cross-validation and right one-sided cross-validation are not identical

in practice because of differences in the boundary. However, asymptotically they

are equivalent. As we will see in our simulations do-validation delivers a good
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stable compromise. It has the same asymptotic theory as each of the two one-sided

alternatives and a better overall finite sample performance.

Theorem 1 in Mammen et al. (2011) provides the asymptotic distribution of ĥDO −

ĥISE. Under their Assumptions (A1) and (A2) it holds for symmetric kernel K that

n3/10(ĥDO − ĥISE)→ N(0, σ2
DO) in distribution,

where σ2
DO has the form of (4). For K equal being the Epanechnikov kernel the

asymptotic variance is given by

σ2
DO = Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 2.19

}
.

This can be compared with the asymptotic variance of the plug-in bandwidth which

is equal to

σ2
PI = Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 0.72

}
.

The second term (the only one which differs among bandwidth selectors) was also

calculated for the quartic kernel, which is the kernel K2r with r = 2. The calculation

as above gave the value 1.89 and 0.83 instead of 2.19 and 0.72 (see Mammen et al.

2011). The immediate lesson learned from comparing the asymptotic theory of do-

validation of the two kernels considered above is the following: the second term

is bigger for plug-in estimator for the quartic kernel than for the Epanechnikov

estimator. However, for cross-validation and do-validation it is the exact opposite,

the second term is smaller for the quartic kernel than for the Epanechnikov estimator.

Therefore, relatively speaking the validation approaches do better for the higher

power kernel K2r with r = 2, than for the lower power kernel K2r, with r = 1 (the

Epanechnikov kernel). One could argue that validation does better for the higher

power kernel than for the lower power kernel. However, lets further consider the

case that we are really interested in the optimal bandwidth for the lower power

kernel and we really want to use a validation approach to select that bandwidth,

see Mammen et al. (2011) for practical arguments for using validation instead of

plug-in. Then it seems intuitively appealing to carry that validation out at the

kernel with a high power to select the validated bandwidth for that higher power

14



kernel and then adjusting this bandwidth to the lower power kernel by multiplying

by the kernel constant d−1K2r
defined in (2). And this is what we call hereafter indirect

do-validation to distinguish it from do-validation where the indirect kernel is a one-

sided version of K. The formal definition of the indirect do-validation bandwidth

ĥIDOr with kernels K and K2r is therefore

ĥIDOr = d−1K2r
ĥDO,r

where ĥDO,r is the do-validation bandwidth defined in (11) but calculated with

K = K2r (r = 1, 2, . . .).

By simple calculations we can write ĥIDOr as

ĥIDOr =

(
R(K)

µ2
2(K)

µ2
2(K

∗
2r,left)

R(K∗2r,left)

)1/5(
ĥK2r,left

+ ĥK2r,right

2

)
,

where ĥK2r,left
and ĥK2r,right

are the minimizers of the cross-validation criterion (1)

involving the local linear density estimators with equivalent kernels K∗2r,left and

K∗2r,right, respectively. Then, we can use again Theorem 1 in Mammen et al. (2011)

to get that

n3/10(ĥIDOr − ĥISE)→ N(0, σ2
IDOr

) in distribution

where σ2
IDOr

has again the same form as (4). We get a result that is similar to the

findings in our discussion of indirect cross-validation in Section 2. By increasing the

power r (r = 2, 3, 4, . . .) of the indirect kernel we get an incremental reduction in

the asymptotic variance factor. Again, for r →∞ the factor converges to the factor

of indirect do-validation with Gaussian kernel. This can be shown as in Section 2.

Figure 3 shows the factor as a function of r.

One sees that the trick of indirect do-validation significantly improves on do-validation.

Below we provide the resulting asymptotics for the indirect do-validation band-

widths, hIDOr , with r = 1, 2, 8 and the Gaussian kernel.
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Figure 3: Asymptotic variance term for indirect do-validation with kernels K2r for

r = 1, 2, . . .∞. The limit kernel is the Gaussian plotted using a discontinuous line.

σ2
DO = Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 2.19

}
σ2
IDO2

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 1.65

}
σ2
IDO8

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 1.37

}
σ2
IDOG

= Cf,K

{
4R(K)

V(f ′′)

R(f ′′)R(f)
+ 1.29

}

3.1 Simulation experiments about indirect do-validation

Here we extend the simulation experiments carried out for indirect cross-validation

in Subsection 2.1 with the just defined indirect do-validation method. We evaluate

the finite sample performance of highering the powers of the indirect kernel for

indirect do-validation, and compare with the former do-validation and the optimal

ISE bandwidth (ĥISE). We consider in the study three possible indirect do-validation

bandwidths: ĥIDO2 , ĥIDO8 and ĥIDOG
, which were defined above.

Tables 4, 5 and 6 show the simulation results. As we saw for indirect classical cross-

validation, the finite sample bias (m4) is consistently increasing when highering the

power of the indirect kernel. However, this increase in bias is offset by a decrease

in volatility (m2). This is consistently over sample size and design and follow the

results we saw in the previous section for classical cross-validation. However, when
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Design 1 Design 2

ĥISE ĥDO ĥIDO2
ĥIDO8

ĥIDOG
ĥISE ĥDO ĥIDO2

ĥIDO8
ĥIDOG

n = 100

m1 2.328 3.052 3.038 2.999 2.989 3.477 4.949 5.141 5.504 5.723

m2 1.876 2.204 2.211 2.172 2.143 1.989 2.642 2.703 2.761 2.757

m3 0.000 1.324 1.058 1.058 1.060 0.000 1.277 1.385 1.646 1.832

m4 0.000 1.902 2.290 2.745 3.041 0.000 3.389 4.080 5.171 5.808

m5 0.000 0.583 0.603 0.616 0.633 0.000 0.914 0.999 1.139 1.204

n = 200

m1 1.417 1.803 1.788 1.776 1.775 2.307 2.930 2.925 3.011 3.108

m2 1.098 1.402 1.373 1.341 1.313 1.372 1.663 1.651 1.668 1.693

m3 0.000 0.900 0.833 0.851 0.880 0.000 0.748 0.755 0.893 1.029

m4 0.000 1.116 1.414 1.760 2.022 0.000 1.607 1.865 2.421 2.859

m5 0.000 0.516 0.532 0.563 0.581 0.000 0.632 0.667 0.750 0.826

n = 500

m1 0.731 0.903 0.889 0.878 0.876 1.208 1.439 1.439 1.442 1.458

m2 0.465 0.559 0.553 0.537 0.532 0.648 0.775 0.773 0.771 0.777

m3 0.000 0.750 0.690 0.667 0.688 0.000 0.526 0.543 0.568 0.601

m4 0.000 0.418 0.618 0.836 0.990 0.000 0.679 0.832 1.058 1.258

m5 0.000 0.464 0.470 0.483 0.500 0.000 0.500 0.524 0.552 0.601

n = 1000

m1 0.439 0.525 0.519 0.514 0.513 0.732 0.846 0.841 0.839 0.842

m2 0.277 0.320 0.316 0.313 0.312 0.377 0.426 0.425 0.425 0.429

m3 0.000 0.615 0.535 0.491 0.480 0.000 0.459 0.410 0.377 0.410

m4 0.000 0.297 0.438 0.569 0.659 0.000 0.345 0.423 0.564 0.681

m5 0.000 0.434 0.432 0.449 0.464 0.000 0.421 0.428 0.448 0.471

Table 4: Simulation results about the indirect do-validation method with designs 1

and 2. We compare the original do-validated bandwidth, ĥDO, with three indirect

versions ĥIDO2, ĥIDO8 and ĥIDOG
for kernels K2r with r = 2, 8,∞. All the numbers

have been multiplied by 100.

it comes to the overall average integrated squared error performance the impression

is less clear. Sometimes increasing the power of the indirect kernel improves results,

sometimes it does not. Overall, the indirect do-validation methods perform more

or less the same. Therefore, for do-validation the decrease in volatility (m2) and

the increase (m4) seem to be effects of similar size overall. So, the estimators have

similar averaged ISE behavior, but they are quite different, when it comes to their
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Design 3 Design 4

ĥISE ĥDO ĥIDO2
ĥIDO8

ĥIDOG
ĥISE ĥDO ĥIDO2

ĥIDO8
ĥIDOG

n = 100

m1 4.448 11.283 11.597 11.532 11.328 4.842 6.462 6.483 6.536 6.601

m2 2.231 3.885 3.774 3.904 3.960 2.644 3.246 3.209 3.208 3.216

m3 0.000 4.913 4.996 4.913 4.782 0.000 0.943 0.941 1.021 1.027

m4 0.000 10.198 10.687 10.793 10.661 0.000 3.352 3.619 4.019 4.300

m5 0.000 1.943 1.943 1.943 1.943 0.000 0.894 0.944 1.000 1.027

n = 200

m1 2.830 3.799 3.997 4.207 4.391 3.100 3.940 3.955 3.956 3.984

m2 1.343 2.288 2.560 2.624 2.630 1.657 2.032 2.018 1.983 1.980

m3 0.000 0.811 0.941 1.256 1.368 0.000 0.774 0.797 0.830 0.871

m4 0.000 1.895 2.307 2.899 3.345 0.000 2.147 2.371 2.670 2.904

m5 0.000 0.734 0.896 1.085 1.159 0.000 0.794 0.853 0.912 0.922

n = 500

m1 1.540 1.757 1.751 1.767 1.798 1.687 1.967 1.956 1.961 1.974

m2 0.685 0.815 0.806 0.808 0.829 0.767 0.882 0.877 0.873 0.870

m3 0.000 0.397 0.390 0.417 0.458 0.000 0.491 0.456 0.511 0.548

m4 0.000 0.545 0.627 0.839 1.036 0.000 0.973 1.108 1.368 1.546

m5 0.000 0.438 0.440 0.498 0.531 0.000 0.587 0.587 0.617 0.632

n = 1000

m1 0.943 1.044 1.039 1.039 1.045 1.060 1.174 1.169 1.175 1.183

m2 0.405 0.449 0.450 0.454 0.462 0.491 0.534 0.523 0.518 0.517

m3 0.000 0.300 0.274 0.270 0.281 0.000 0.322 0.315 0.326 0.345

m4 0.000 0.206 0.279 0.408 0.517 0.000 0.544 0.662 0.870 1.008

m5 0.000 0.368 0.368 0.400 0.435 0.000 0.470 0.470 0.498 0.502

Table 5: Simulation results about the indirect do-validation method with designs 3

and 4. We compare the original do-validated bandwidth, ĥDO, with three indirect

versions ĥIDO2, ĥIDO8 and ĥIDOG
for kernels K2r with r = 2, 8,∞. All the numbers

have been multiplied by 100.

bias/variance trade off.

4 Concluding remarks

This paper is on indirect cross-validation. The term indirect cross-validation orig-

inates from one particular application of it by Savchuk et al. (2010). The do-

validation version of indirect cross-validation introduced in Mammen et al. (2011)
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Design 5 Design 6

ĥISE ĥDO ĥIDO2
ĥIDO8

ĥIDOG
ĥISE ĥDO ĥIDO2

ĥIDO8
ĥIDOG

n = 100

m1 3.356 4.437 4.509 4.533 4.539 3.633 4.972 5.036 5.136 5.211

m2 1.383 1.566 1.534 1.476 1.446 1.617 1.911 1.884 1.850 1.817

m3 0.000 1.061 1.137 1.185 1.185 0.000 1.000 1.031 1.078 1.157

m4 0.000 5.434 6.041 6.557 6.721 0.000 5.794 6.305 6.913 7.317

m5 0.000 0.999 0.999 1.021 1.042 0.000 1.042 1.084 1.131 1.174

n = 200

m1 2.293 3.008 3.036 3.054 3.063 2.387 3.206 3.250 3.310 3.362

m2 0.864 1.002 0.984 0.918 0.896 0.955 1.242 1.270 1.272 1.273

m3 0.000 1.029 1.050 1.048 1.065 0.000 0.971 1.006 1.052 1.086

m4 0.000 4.331 4.707 5.149 5.378 0.000 4.163 4.508 5.018 5.386

m5 0.000 0.923 0.923 0.977 0.999 0.000 0.975 0.999 1.067 1.090

n = 500

m1 1.287 1.668 1.678 1.695 1.710 1.355 1.694 1.700 1.718 1.738

m2 0.520 0.550 0.537 0.520 0.512 0.495 0.621 0.617 0.604 0.596

m3 0.000 0.911 0.958 0.990 1.027 0.000 0.712 0.714 0.709 0.750

m4 0.000 3.211 3.449 3.820 4.046 0.000 2.430 2.624 2.935 3.148

m5 0.000 0.875 0.928 0.951 0.976 0.000 0.751 0.751 0.786 0.800

n = 1000

m1 0.844 1.016 1.023 1.036 1.050 0.892 1.030 1.031 1.043 1.056

m2 0.357 0.396 0.393 0.381 0.374 0.304 0.334 0.327 0.318 0.315

m3 0.000 0.612 0.632 0.717 0.771 0.000 0.509 0.480 0.492 0.543

m4 0.000 1.868 2.064 2.387 2.605 0.000 1.448 1.580 1.878 2.077

m5 0.000 0.718 0.728 0.775 0.799 0.000 0.600 0.595 0.638 0.684

Table 6: Simulation results about the indirect do-validation method with designs 5

and 6. We compare the original do-validated bandwidth, ĥDO, with three indirect

versions ĥIDO2, ĥIDO8 and ĥIDOG
for kernels K2r with r = 2, 8,∞. All the numbers

have been multiplied by 100.

proved superior to earlier versions of indirect cross-validation in practice. See the

empirical work in Savchuk et al. (2008), where the original indirect cross-validated

bandwidth selector had inferior performance to the celebrated plug-in type band-

width selector of Sheather and Jones (1991). However, the numerical work in Mam-

men et al. (2011) indicated that do-validation performs better in practice than

a plug-in bandwidth selector. We also considered plug-in bandwidths and various
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combinations of plug-in, cross-validated and do-validated bandwidths. Neither of

these attempts performed as well as the do-validated bandwidth. It would be inter-

esting to see whether indirect cross-validation and do-validation would also be useful

to improve other variants of the kernel density estimation problem, such as the prob-

lem considered by Gavriliadis and Athanassoulis (2012), Park (2013), Eidous (2012)

or Mart́ınez-Miranda et al. (2013).
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Gámiz-Pérez, M.L., Mammen, E., Mart́ınez-Miranda, M.D., Nielsen, J.P., 2013c.

Do-validating local linear hazards. Submitted preprint.

Gavriliadis, P.N. and Athanassoulis, G.A., 2012, The truncated Stieltjes moment

problem solved by using kernel density functions. Journal of Computational

and Applied Mathematics, 236(17), 4193–4213.
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