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December 16, 2010

1



Abstract

Bandwidth selection in kernel density estimation is one of the fundamental

model selection problems of mathematical statistics. The study of this problem

took major steps forward with the papers of Hall and Marron (1987) and Hall

and Johnstone (1992). Since then focus seems to have been on various versions

of implementing the so called plug-in method aimed at estimating the minimum

mean integrated squared error (MISE). The most successful of these efforts

still seems to be the plug-in method of Sheather and Jones (1991) or Park and

Marron (1990) that we also use as a benchmark in this paper. In this paper we

derive a new theorem deriving the asymptotic theory for linear combinations of

bandwidths obtained from different selectors as e.g. direct and indirect cross-

validation and plug-in, where we take advantage of recent advances in the study

of indirect cross-validation; see Hart and Yi (1998), Hart and Lee (2005) and

Savchuk, Hart and Sheather (2010a,b). We conclude that the slow convergence

of data-driven bandwidths implies that once asymptotic theory is close to that

of plug-in then it is the practical implementation that counts. This insight led

us to a bandwidth selector search with the symmetrized version of onesided

cross-validation as a clear winner. 1

Keywords: bandwidth choice, cross-validation, plug-in, nonparametric esti-

mation.
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(DFG), Projects FOR916, and MA1026/10-2.
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1 Introduction

Standard (least-squares) cross-validation was proposed by Rudemo (1982) and Bow-

man (1984). The simplicity of its implementation and its intuitively appealing inter-

pretation probably makes it the most popular automatic bandwidth selection method.

Its practical data-driven flavor makes up for its lack of stability in the eyes of many

practitioners. The lack of stability of standard cross-validation has been pointed out

for both kernel density estimation and kernel regression estimation (Hall and Mar-

ron, 1987; Härdle, Hall and Marron, 1988). In Żychaluk and Patil (2008) it has

been argued that instability of cross validation is often due to discretization effects.

These drawbacks of standard cross-validation have motivated several studies on more

stable bandwidth selectors, most of them related to the plug-in method (Biased cross-

validation by Scott and Terrell, 1987; smoothed cross-validation by Hall, Marron and

Park, 1989; Sheather and Jones, 1991; the stabilized bandwidth selector rule by Chiu,

1991; the kernel contrast method of Ahmad and Ran, 2004; recent bootstrap methods,

see Cao, 1993; among others). Better performance of plug-in has been questioned in

Loader (1999). He points out that the value of the chosen bandwidth heavily de-

pends on the arbitrary specification of pilot bandwidths and may be strongly biased

in case of misspecification. Still quite recently, SiZer became a popular alternative,

see Chaudhuri and Marron (1999), Godtliebsen, Marron and Chaudhuri (2002), and

Hanning and Marron (2006). Note that SiZer does not search for an optimal data-

driven bandwidth, but instead highlights for each bandwidth which features (of the

density or regression) get detected.
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Indirect cross-validation is another class of bandwidth selectors. These selectors make

use of so-called selection kernels. A bandwidth is chosen for the selection-kernel es-

timator by cross-validation and this bandwidth is then rescaled by an appropriate

factor to be suitable for the kernel estimator at hand, see Savchuk, Hart and Sheather

(2010a). It has been argued that cross-validation is in particular performing well in

harder estimation problems. Indirect Cross-validation makes use of this relation by

choosing selection kernels for which bandwidth choice is a more difficult estimation

problem, see e.g. Section 4 in Hart and Lee (2005) for this point. Appropriate se-

lection kernels robustify the bandwidth choice against discretization effects and data

rounding. For a detailed discussion, see Savchuk, Hart and Sheather (2010b). One

version of the general principle of indirect cross-validation is onesided cross-validation.

Onesided cross-validation was originally proposed by Hart and Yi (1998) for local lin-

ear regression. In Hart and Lee (2005) it was shown that in contrast to classical cross

validation this approach is robust against spurious and nonspurious serial correlation.

Onesided cross-validation was extended to our density case by Mart́ınez-Miranda,

Nielsen and Sperlich (2009).

In this paper we derive a new theorem on combinations of kernel density bandwidths

and investigate its practical potential. This new theorem discusses the difference of

the bandwidth selectors to hISE and hMISE where hISE is the random bandwidth that

minimizes the integrated squared error (ISE) and where hMISE minimizes the mean

integrated squared error (MISE). The theorem allows combinations of bandwidths

from both direct and indirect cross-validation and can include bandwidth selectors as

well that converge to hMISE with a faster rate of convergence. While we have investi-
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gated a large class of combinations through simulation studies, we only present those

six bandwidth combinations that are helpful for a better understanding of our overall

conclusions. First we look at the asymptotically optimal combination of the standard

cross-validation bandwidth and an asymptotically MISE optimal bandwidth. With

the Epanechnikov kernel it turns out that the optimal combinations pick 1.21 times

the plug-in bandwidth and place a negative weight of 0.21 on the cross-validation

bandwidth. This is not surprising considering the well known negative correlation

between the cross-validation and the plug-in bandwidth, see Hall and Marron (1987).

When the combined bandwidth is compared to an asymptotically MISE optimal band-

width it turns out that the kernel density estimator with MISE optimal bandwidth

can have an increase in its expected ISE of up to 40 %, at least in the asymptotic

limit. This asymptotic advantage of the combined bandwidth does not seem to de-

scribe what is going on in finite samples. Indeed, we have implemented the two

bandwidth selectors with simulated data where we used a plug-in bandwidth along

Sheather and Jones (1991) and in the simulations the kernel density estimator with

the combined bandwidth behaved very poorly. The reason seems to be that plug-in

estimators have a tendency to oversmooth in finite samples while standard cross-

validation is almost unbiased. The asymptotic optimal combination of plug-in and

cross-validation suffers in practice from a tendency to oversmooth even more. From

this study we learn that the slow convergence of bandwidth selection asymptotics

has the consequence that we can not fully rely on theory when picking our practical

bandwidth selector. To illustrate this point even more, we implemented the intuitive

simple average of the plug-in bandwidth and the cross-validation bandwidth. This
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simple combination is appealing because of the well known practical experience of

plug-in bandwidths to oversmooth, while the almost unbiased cross-validation band-

width sometimes have very bad performance because of undersmoothing. Therefore,

intuition says that a simple average should improve both, which indeed turns out to

be the case. The asymptotic performance of this simple average is much better than

for ordinary cross-validation and only slightly worse than for the plug-in method. In

practice it outperforms both. This insight led to a search for good finite sample per-

formance of combinations of bandwidths with an asymptotic performance close to the

plug-in method. The overall winner of this search was a simple combination of the

right-sided and the left-sided versions of onesided cross-validation. We call this new

bandwidth selector “do-validation” (double onesided cross-validation). The conclu-

sion of this paper therefore suggests the do-validation bandwidth as an asymptotically

well performing bandwidth selector with excellent finite sample properties.

The paper is organized as follows. In Section 2 we define a new class of combined

cross-validation bandwidth selectors. In Section 3 theoretical properties of linear

combinations of cross-validated bandwidths and a plug-in bandwidth are derived. In

Sections 4 and 5 we consider six bandwidth selectors: the standard cross-validation

ĥCV , left and right onesided cross-validation ĥL,OSCV and ĥR,OSCV , do-validation ĥDO,

a plug-in bandwidth ĥPI as an example of a bandwidth that is asymptotically equiv-

alent to the MISE minimizing bandwidth hMISE, an asymptotically optimal combi-

nation ĥmix1 of ĥCV and ĥPI , and finally the simple average ĥmix2 of ĥCV and ĥPI .

For all our six considered bandwidths we consider their difference with the ISE op-

timal bandwidth hISE. The asymptotic variances of all these differences are sums of
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two terms. All bandwidths have the same asymptotic first component. The second

component varies with the different methods. While it is quite large for the cross-

validation method, it is less than one third of this value for all other methods. The

exact asymptotic values become less important than the practical performance of the

implementation at hand. This is one conclusion of Section 5 where we present results

of a finite sample study where do-validation ĥDO comes out as the best of the con-

sidered methods. Another conclusion is that combinations of certain bandwidths can

improve a lot in ISE compared to their individual performance.

2 A general class of data-driven bandwidth esti-

mators

In this paper we consider a class of bandwidth selectors ĥ that are constructed as

weighted averages of cross-validation bandwidths ĥj. The aim is to get a bandwidth

with a small Integrated Squared Error (ISE) for the kernel density estimator

f̂h,K(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
.

The bandwidths ĥj are based on the inspection of kernel density estimators f̂h,Lj
(x), 1 ≤

j ≤ J , for kernels Lj that fulfill Lj(0) = 0. For 1 ≤ j ≤ J we define ĥj by the cross-

validation method

ĥj = arg min
h

∫
f̂h,Lj

(x)2dx − 2n−1

n∑
i=1

f̂h,Lj
(Xi). (1)

Note that because of Lj(0) = 0 we do not need to use a leave-one-out version of f̂h,Lj

in the sum on the right hand side. For some weights wj (not necessarily positive)
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with
∑J

j=1 wj = 1, a new bandwidth selector ĥ is defined by

ĥ =
J∑

j=1

wj

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

ĥj (2)

where R(g) =
∫

g2(x)dx, μl(g) =
∫

xlg(x)dx for functions g and integers l ≥ 0.

The bandwidth ĥj is a selector for the kernel Lj. After multiplying with the fac-

tor (R(K)μ2
2(Lj))

1/5(μ2
2(K) R(Lj))

−1/5 it becomes a selector for the kernel K. This

follows from classical smoothing theory and has been used at many places in the

discussion of bandwidth selectors.

Our class of bandwidth selectors contains the classical cross-validation bandwidth

selector as one example with J = 1 and L1(u) = K(u)1(u �= 0). If one uses a

leave-one-out version of (1), one would replace f̂h,Lj
(Xi) by n(n−1)−1f̂h,Lj

(Xi) in the

second term on the right hand side of (1). This change is asymptotically negligible

and does not lead to obvious changes in the finite sample performance. Furthermore,

there is a difference if two observations have the same value. Under our assumptions

this happens only with zero probability. Thus, our discussion carries over without

changes to leave-one-out versions of our proposal.

Our main proposal from the general class (2) is do-validation. It is based on the

combination of left and rightsided cross-validation. Onesided cross-validation (OSCV

hereafter) has been proposed by Mart́ınez-Miranda, Nielsen and Sperlich (2009) for

kernel density estimation. In their implementation they make use of the local linear

kernel density estimator (Jones, 1993; and Cheng 1997a, 1997b). For a kernel density

estimator f̂h,M with kernel M the local linear kernel density estimator can be defined
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as kernel density estimator f̂h,M∗ with ”equivalent kernel” M∗ given by

M∗(u) =
μ2(M) − μ1(M)u

μ0(M)μ2(M) − μ2
1(M)

M(u). (3)

In onesided cross-validation the basic kernel M(u) is chosen as 2K(u)1(−∞,0) (leftsided

cross-validation) and 2K(u)1(0,∞) (rightsided cross-validation). This results in the

following equivalent kernels

KL(u) =
μ2(K) + uμ∗

1(K)

μ2(K) − (μ∗
1(K))2

2K(u)1(−∞,0), (4)

KR(u) =
μ2(K) − uμ∗

1(K)

μ2(K) − (μ∗
1(K))2

2K(u)1(0,∞), (5)

with μ∗
1(K) =

∫ ∞
0

uK(u)du. Here we have assumed that the kernel K is symmetric.

The left-OSCV criterion (OSCVL) is defined by

OSCVL(h) =

∫
f̂ 2

h,KL
(x)dx − 2n−1

n∑
i=1

f̂h,KL
(Xi), (6)

with ĥL as its minimizer; and the left-OSCV bandwidth is calculated from ĥL by

ĥL,OSCV = CĥL,

where

C =

(
R(K)

μ2
2(K)

μ2
2(KL)

R(KL)

)1/5

, (7)

see Mart́ınez-Miranda, Nielsen and Sperlich (2009).

In exactly the same way we define the right-OSCV criterion, OSCVR, except that

f̂h,KL
in (6) is replaced by f̂h,KR

. The right-OSCV bandwidth is calculated by

ĥR,OSCV = CĥR, where C is the same as in (7) and ĥR is the minimizer of OSCVR.

Onesided cross-validation does not work in a local constant version, i.e. with the

choice KL(u) = 2K(u)1(−∞,0) or KR(u) = 2K(u)1(0,∞). This holds because of the
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inferior rate of convergence of the onesided local constant kernel density estimator.

This was the reason why Mart́ınez-Miranda, Nielsen and Sperlich (2009) suggested

the use of local linear density estimation.

The do-validation selector ĥDO is given by

ĥDO =
1

2
(ĥL,OSCV + ĥR,OSCV ).

Left-onesided cross-validation and right-onesided cross-validation are not identical in

the local linear case because of differences in the boundary. However, asymptotically

they are equivalent. As we will see in our simulations do-validation delivers a good

stable compromise. It has the same asymptotic theory as each of the two onesided

alternatives and a better overall finite sample performance.

3 Asymptotic theory

In this section we state an asymptotic result on the difference between a combined

bandwidth selector ĥ, defined in (2), with the MISE-optimal bandwidth hMISE and

the ISE-optimal bandwidth hISE,

hMISE = arg min
h

E

[∫ (
f̂h,K(x) − f(x)

)2

dx

]
,

hISE = arg min
h

[∫ (
f̂h,K(x) − f(x)

)2

dx

]
.

Under our assumptions, see below, it holds that hMISE =

(
R(K)

μ2
2(K)R(f ′′)

)1/5

n−1/5 +

o
(
n−3/10

)
.
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We are also interested in ĥ∗, with ĥ∗ being a combination with an asymptotical

MISE-optimal bandwidth ĥMISE defined by

ĥ∗ =
J∑

j=2

wj

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

ĥj + w1ĥMISE, (8)

where
∑J

j=1 wj = 1 and where ĥMISE is a bandwidth selector with ĥMISE = hMISE +

oP (n−3/10). In the simulations we will choose ĥMISE = ĥPI where ĥPI is refers to

a plug-in selector along Sheather and Jones (1991) and Park and Marron (1990),

respectively.

We now state a theorem about the asymptotic distribution of ĥ − hMISE, ĥ − hISE

and ĥ∗ − hISE. For this result we need the following assumptions:

(A1) K and Lj (j = 1, . . . , J) are compactly supported. The kernels are continuous

on IR−{0} and have one-sided derivatives that are Hölder continuous on IR i.e.

there exist constants c, δ > 0 such that |g(x) − g(y)| ≤ c|x − y|δ for x, y < 0

or x, y > 0 with g equal to K ′ or L′
j (j = 1, . . . , J). The left- and right-

sided derivatives differ at most on a finite set. For j = 1, . . . , J , Lj(0) = 0,∫
uLj(u)du = 0 and

∫
uK(u)du = 0.

(A2) The density f is bounded and twice differentiable. The derivatives f ′ and f ′′

are bounded and integrable. The second derivative is Hölder continuous with

exponent δ > 1
2
.

For do-validation condition (A1) is satisfied if the kernel K satisfies the required

smoothness conditions. In particular, Assumption A1 allows kernels that are smooth

inside their support but are not differentiable at the boundary of the support.
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Theorem 1. Combination of bandwidths. Under A1, A2 the bandwidth selector

ĥ in (2) satisfies

n3/10(ĥ − hISE) → N(0, σ2
1) in distribution, (9)

n3/10(ĥ − hMISE) → N(0, σ2
2) in distribution, (10)

where

σ2
k =

4

25
R(K)−2/5μ

−6/5
2 (K)R(f ′′)−8/5

V(f ′′)δk +
1

50
R(K)−7/5μ

−6/5
2 (K)

×R(f ′′)−3/5R(f)

∫ [
δkH(u) −

J∑
j=1

wj

(
R(K)

R(Lj)

)
Hj(u)

]2

du,

(11)

with

V(f ′′) =

∫
f ′′2(x)f(x)dx −

(∫
f ′′(x)f(x)dx

)2

,

H(u) = 2

∫
K(u + v)K(v)dv + 2

∫
K(−u + v)K(v)dv

+2

∫
K(u + v)vK ′(v)dv + 2

∫
K(−u + v)vK ′(v)dv,

Hj(dju) = 2

∫
Lj(u + v)Lj(v)dv + 2

∫
Lj(−u + v)Lj(v)dv

+2

∫
Lj(u + v)vL′

j(v)dv + 2

∫
Lj(−u + v)vL′

j(v)dv

−2
[
Lj(u) + uL′

j(u) + Lj(−u) − uL′
j(−u)

]
,

dj =

(
R(K)

R(Lj)

μ2
2(Lj)

μ2
2(K)

)−1/5

, δk =

⎧⎪⎪⎨⎪⎪⎩
1 for k = 1,

0 for k = 2.

For a choice of ĥMISE with ĥMISE = hMISE + oP (n−3/10), the combination ĥ∗ in (8)
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satisfies

n3/10(ĥ∗ − hISE) → N(0, σ2
1) in distribution, (12)

with σ2
1 as in (11) but with H1 = 0.

For the special choice J = 1, w1 = 1, the asymptotic expansions in (9), (10) and (12)

reduce to the classical results in Hall and Marron (1987), see their Theorem 2.1 and

discussions in Section 2.3. Then, equation (12) implies an expansion for the difference

between the ISE optimal bandwidth hISE and the MISE optimal bandwidth hMISE

and equations (9) and (10) compare the classical cross-validation bandwidth selector

with these two target bandwidths.

Under additional smoothness assumptions on f , Hall and Johnstone (1992) discussed

efficient estimation of the ISE-optimal bandwidth hISE. They showed that estimation

of hISE is asymptotically equivalent to the estimation of R(f ′) =
∫

f ′(x)2dx. Using an

efficient estimator of R(f ′), one gets an estimator ĥ of hISE such that n3/10(ĥ−hISE)

has asymptotic variance 4
25

R(K)−2/5μ
−6/5
2 (K)R(f ′′)−8/5 V(f ′′). Thus, in our class of

bandwidth selectors a bandwidth would achieve the optimality bound if

∫ [
H(u) −

J∑
j=1

wj

(
R(K)

R(Lj)

)
Hj(u)

]2

du = 0. (13)

We do not know if this can be achieved by appropriate choice of kernels Lj and weights

wj. In the next section we will discuss the size of the left hand side of (13) for some

choices of the kernels Lj and weights wj.
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4 Six combinations of bandwidth selectors

For given kernels K and Lj (j = 1, . . . , J) and a density f , we might explicitly

calculate the components in the asymptotic variance in (11), for the just introduced

class of bandwidth selectors (2), and also for the combinations (8). We look for

good selectors, in the optimality sense of Hall and Johnstone (1992), i.e. bandwidths

which, holding constant the first variance term in (11), have a small second term. Hall

and Johnstone (1992) showed that an asymptotically achievable bandwidth exists

where the second term is zero but they never pursued the issue any further and

did not provide practical examples of such bandwidth selectors. In our search for

good bandwidth selectors, we do for the first time provide a bandwidth selector with

better asymptotic theory than the plug-in method, namely the optimal combination

of plug-in (with weight w1) and classical cross-validation. Figure 1 shows up to a

factor the graphs of the resultant second variance term in (11) against the weight for

the Epanechnikov kernel. We plot the noisy term in a wide range including negative

weights to get optimality (as we argued in Section 1 because of the known negative

correlation between them). And indeed the optimum is achieved by weighting the

plug-in bandwidth with w1 = 1.21 and cross-validation with w2 = 1 − w1 = −0.21.

Such an optimal combination yields a second term in (11) of 0.51Cf,K with Cf,K =

1
25

R(K)−7/5μ
−6/5
2 (K)R(f ′′)−3/5R(f). With 0.72Cf,K an asymptotically MISE optimal

bandwidth ĥMISE has a second term that is about 40 per cent above the term of the

combined bandwidth. Thus, asymptotically, the expected ISE can increase up to 40

per cent. For the quartic kernel we get weights w1 = 1.37 and w2 = −0.37. Here

14



the factor of the second term increases from 0.44 to 0.83. This gives an increase of

expected ISE of up to 90 per cent. However, in the next section we will see that

despite the excellent asymptotic properties these combined bandwidth selectors can

show poor performance in finite samples.

0.5   1     1.2116 1.5   

0.5059

1
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Figure 1: The factor 1
2

∫ [
H(u) − ∑J

j=1 wj

(
R(K)
R(Lj)

)
Hj(u)

]2

du of the second compo-

nent of the asymptotic variance in (11). The factor is plotted for the combination of

an asymptotical MISE optimal bandwidth with standard cross-validation. The density

estimator is calculated with an Epanechnikov kernel. For the combined bandwidth the

factor is equal to 1
2

∫
[w1H(u) − (1 − w1)4(K(u) + uK ′(u))]2 du. The optimal value

is achieved by weighting the plug-in bandwidth with w1 = 1.21.

In the following display we show the asymptotic variances of n3/10(ĥ − hISE) or

n3/10(ĥ∗ − hISE), respectively (as given by expression (11)), for each of the follow-

ing six bandwidths: onesided cross-validation ĥOSCV , do-validation method ĥDO, the
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standard cross-validation bandwidth ĥCV , an asymptotical MISE optimal bandwidth

ĥMISE, and two combinations of ĥCV and ĥMISE. The first combination ĥmix1 is

the optimal combination ĥmix1 = 1.2116ĥMISE − 0.2116ĥCV . The second one is the

pragmatic average ĥmix2 = 0.5ĥMISE + 0.5ĥCV . The asymptotic variances of these

bandwidths are given for the Epanechnikov kernel by:

σ2
OSCV = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 2.19

}
σ2

DO = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 2.19

}
σ2

CV = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 7.42

}
σ2

MISE = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 0.72

}
σ2

mix1 = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 0.51

}
σ2

mix2 = Cf,K

{
4R(K)

V(f ′′)
R(f ′′)R(f)

+ 2.89

}
with Cf,K as above. For the quartic kernel we get the same expressions with the

constants 2.19, 2.19, 7.42, 0.72, 0.51, 2.89 replaced by 1.46, 1.46, 5.87, 0.83, 0.44,

2.63.

There are two components which inflate all the variances, but only the second term

differs between selectors. We can observe a clear reduction in this second variance

term in both onesided cross-validation and do-validation, compared with standard

cross-validation. The asymptotic variance of asymptotical MISE optimal methods

is lower than for all competitors with one exception: it is beaten by the optimal

combination of itself with classical cross-validation. But as we will see in the next

section, the asymptotic properties of all our considered bandwidths - except for classi-

cal cross-validation - are that good and at the same time that close to each other that
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in practice these differences become irrelevant. Now it is the numerical performance

that matters.

5 Finite Sample Performance

The purpose of this section is to study the performance of the six bandwidths defined

in Section 4 in finite samples, sometimes just of moderate size. As asymptotical MISE

optimal bandwidth we use in the simulations a plug-in bandwidth ĥPI as proposed

by Sheather and Jones (1991); see also Park and Marron (1990). This plug-in band-

widthis calculated from the asymptotic expression of the MISE-optimal bandwidth,

hMISE ≈
(

R(K)

μ2
2(K)R(f ′′)

)1/5

n−1/5, where R(K) and μ2(K) are known, whereas R(f ′′)

has to be estimated. We now describe the estimator R̂f ′′ that we used. In a first step

we calculate a kernel density estimator of f ′′ with bandwidth gp. For the choice of

gp we take Silverman’s rule of thumb bandwidth for Gaussian kernels, see Silverman

(1986, page 48). In our implementation the standard deviation of X is estimated

by the minimum of two methods: the empirical standard deviation sn and the in-

terquartile range IRX divided by 1.34, i.e. gS = 1.06 min{IRX1.34−1, sn}n−1/5. As

the quartic kernel KQ comes close to the Epanechnikov but allows for estimating the

second derivative, we normalize gS by the factors of the canonical kernel (Gaussian to

quartic) and adjust for the slower rate (n−1/9) needed to estimate second derivatives,

i.e.

gp = gS
2.0362

0.7764
n1/5−1/9 .
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Next,

R̂f ′′ =

∫
f̂ ′′2 − 1

ng5
p

∫
K ′′2

Q

to correct for the bias inherited by

f̂ ′′(x) =
1

ng3
p

n∑
i=1

K ′′
Q

(
Xi − x

gp

)
.

In simulation studies not shown here this prior choice turned out to perform better

than any of the many other plug-in estimators we tried, at least for the densities

considered in our simulations.

Our selected data generating processes are the following six densities (see also Figure

2):

1. a simple normal distribution, N(0.5, 0.22),

2. a bimodal mixture of two normals which were N(0.35, 0.12) and N(0.65, 0.12),

3. a mixture of three normals, namely N(0.25, 0.0752), N(0.5, 0.0752) and N(0.75, 0.0752)

giving three clear modes,

4. a gamma distribution, Gamma(a, b) with b = 1.5, a = b2 applied on 5x with

x ∈ IR+, i.e.

f(x) = 5
ba

Γ(a)
(5x)a−1e−5xb,

5. a mixture of two gamma distributions, Gamma(aj, bj), j = 1, 2 with aj = b2
j ,

b1 = 1.5, b2 = 3 applied on 6x, i.e.

f(x) =
6

2

2∑
j=1

b
aj

j

Γ(aj)
(6x)aj−1e−6xbj

giving one mode and a plateau,
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6. and a mixture of three gamma distributions, Gamma(aj, bj), j = 1, ..., 3 with

aj = b2
j , b1 = 1.5, b2 = 3, and b3 = 6 applied on 8x giving two bumps and one

plateau.

0 0.25 0.5 0.75 1
 

0.
5

1
1.

5
2

 

0 0.25 0.5 0.75 1
 

0
1

2
 

0 0.25 0.5 0.75 1
 

1
 

0 0.25 0.5 0.75 1
 

0
0.

5
1

1.
5

 
0 0.25 0.5 0.75 1

 

0
0.

5
1

1.
5

 

0 0.25 0.5 0.75 1
 

0
0.

5
1

1.
5

 
Figure 2: The six data generating densities: Designs 1 to 6 from the upper left to the

lower right.

Our set of densities contains density functions with one, two or three modes, some

being asymmetric. They all have exponentially falling tails, because otherwise one

has to work with boundary correcting kernels. The main mass is always in [0, 1]. We

use the following measures to summarize the stochastic performance of the bandwidth

selectors:

m1 = mean(ISE(ĥ)), m2 = std(ISE(ĥ))

m3 = mean(ĥ − hISE), m4 = std(ĥ − hISE).

The simulated kernel density estimators use the Epanechnikov kernel. The sample

sizes are n = 50, n = 100, and 200 as examples for moderate and large samples. The
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onesided cross-validation presented here is the left-onesided. The original simulation

study comprised more designs, kernels, and samples sizes, but the findings were all

in line with the here presented results. The results given in Tables 1 to 3 and 4 were

calculated from 250 repetitions for each model and each sample size. Note that the

standard deviations of the Monte Carlos means m1 and m3 in Tables 1-4 are simply

m2/
√

250 ≈ 0.06 m2 and m4/
√

250, respectively.

Design 1 Design 2

ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2 ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2

n = 50

m1 .047 .083 .051 .049 .049 .049 .115 .111 .106 .103 .130 .083
m2 .033 .100 .043 .036 .033 .037 .023 .114 .033 .034 .025 .032
m3 .047 -.011 .032 .034 .059 .018 .117 .018 .092 .090 .138 .067
m4 .054 .095 .066 .064 .053 .069 .044 .078 .076 .072 .047 .054

n = 100

m1 .029 .049 .031 .030 .031 .030 .077 .063 .049 .049 .091 .052
m2 .020 .059 .021 .020 .021 .020 .017 .055 .027 .026 .017 .024
m3 .035 -.016 .019 .019 .046 .010 .098 .010 .035 .035 .116 .054
m4 .047 .078 .057 .056 .046 .058 .024 .059 .048 .046 .022 .039

n = 200

m1 .017 .026 .018 .018 .018 .018 .049 .043 .034 .030 .059 .033
m2 .012 .029 .014 .014 .012 .013 .013 .054 .041 .017 .012 .016
m3 .029 -.005 .010 .011 .036 .012 .075 .000 .014 .015 .091 .037
m4 .036 .064 .045 .044 .045 .047 .019 .044 .035 .031 .017 .029

Table 1: Criteria m1, m2, m3 and m4 for Designs 1 and 2.

As mentioned above the performance of cross-validation compared to plug-in can

be used to classify the difficulty of data adaptive bandwidth choice. It has been

argued that cross-validation performs relatively well in harder estimation problems.

Using the relative performance of cross-validation to rank the difficulty of bandwidth

selection in our different settings, we get Design 1 as the easiest problem, Designs
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Design 3 Design 4

ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2 ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2

n = 50

m1 .158 .130 .156 .156 .163 .126 .130 .138 .114 .109 .144 .105
m2 .011 .117 .015 .016 .011 .024 .063 .124 .061 .060 .067 .058
m3 .163 .036 .154 .154 .189 .099 .095 .007 .063 .056 .114 .051
m4 .026 .080 .039 .037 .028 .047 .054 .074 .060 .057 .057 .057

n = 100

m1 .142 .070 .115 .115 .153 .091 .087 .078 .072 .068 .099 .066
m2 .008 .057 .042 .036 .009 .019 .042 .054 .038 .037 .047 .035
m3 .146 .007 .104 .106 .175 .076 .075 -.006 .037 .030 .092 .035
m4 .012 .042 .067 .059 .012 .025 .042 .050 .049 .045 .046 .041

n = 200

m1 .120 .042 .039 .038 .136 .063 .053 .049 .048 .040 .062 .039
m2 .006 .032 .024 .021 .008 .015 .023 .046 .054 .021 .026 .021
m3 .127 .000 .018 .018 .154 .064 .062 -.007 .026 .019 .077 .027
m4 .010 .030 .034 .029 .010 .019 .027 .038 .042 .033 .030 .029

Table 2: Criteria m1, m2, m3 and m4 for Designs 3 and 4.

2 and 4 as harder problems and Design 3 as a very hard estimation problem. For

Designs 5 and 6 the difficulty depends on the sample size and it increases with sample

size. We conjecture that for these two designs accurate estimation of the small wiggles

of the underlying density is impossible for small sample sizes but it requires a fine

tuning of the bandwidths for larger sample sizes.

The cross-validation bandwidth ĥCV and the asymptotically optimal combination

ĥmix1 of ĥCV and ĥPI show the poorest behaviour in the simulations. They have

in all designs and for all sample sizes the largest expected ISE m1. For ĥCV this is

mainly caused by the large variance of this bandwidth selector, see the outcomes of

m2 and m4. This is a well known phenomen that motivated the study of asymptotical

MISE optimal bandwidths which have smaller variances, at least asymptotically. To
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Design 5 Design 6

ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2 ĥPI ĥCV ĥOSCV ĥDO ĥmix1 ĥmix2

n = 50

m1 .063 .093 .064 .064 .066 .061 .073 .090 .070 .070 .081 .063
m2 .023 .097 .025 .025 .024 .027 .020 .076 .027 .027 .018 .026
m3 .078 .008 .069 .064 .092 .043 .104 .015 .074 .071 .122 .060
m4 .057 .099 .064 .067 .057 .073 .036 .093 .065 .066 .033 .061

n = 100

m1 .046 .055 .045 .044 .049 .040 .056 .058 .049 .048 .062 .045
m2 .013 .045 .015 .015 .014 .015 .015 .045 .018 .019 .014 .017
m3 .074 -.002 .059 .051 .090 .036 .096 .005 .057 .053 .115 .051
m4 .045 .072 .055 .056 .047 .052 .028 .068 .051 .052 .026 .044

n = 200

m1 .034 .033 .032 .029 .037 .027 .042 .035 .033 .031 .048 .031
m2 .008 .020 .010 .010 .009 .010 .009 .031 .012 .012 .009 .010
m3 .077 .000 .055 .045 .094 .039 .093 .001 .048 .041 .113 .047
m4 .032 .057 .047 .044 .033 .040 .023 .050 .044 .041 .022 .034

Table 3: Criteria m1, m2, m3 and m4 for designs 5 and 6.

understand the poor behaviour of ĥmix1 we have carried out additional simulations

where we replaced ĥPI in the definition of ĥmix1 by hMISE. In Table 4 we compare the

theoretical bandwidth hmix1 = 1.2116hMISE − 0.2116ĥCV with the MISE minimizer

hMISE. When looking at Table 4 one immediately notes that all differences between

the performance hMISE and hmix1 are insignificant. Mostly, the two methods give

exactly the same values in the table. We conjecture that the second term in the

asymptotic variance of the plug-in method already is so small that it is irrelevant to

improve more on it from a practical point of view. Finally, we also see how far the

plug-in estimates are from hMISE, and so is ĥmix1 from hmix1. The difference of the

latter is even much larger. This may be explained by the larger weight that is given

to hMISE and ĥPI in the definitions of ĥmix1 or hmix1, respectively.
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

hMISE Mix1 hMISE Mix1 hMISE Mix1 hMISE Mix1 hMISE Mix1 hMISE Mix1

n = 50

m1 .040 .039 .059 .059 .074 .075 .083 .083 .055 .054 .054 .053
m2 .033 .032 .037 .039 .036 .039 .049 .049 .025 .025 .026 .026
m3 .009 .014 -.007 -.012 -.001 -.008 .007 .007 .007 .007 .006 .004
m4 .035 .030 .034 .036 .026 .028 .028 .026 .048 .045 .036 .033

n = 100

m1 .026 .025 .036 .035 .046 .046 .055 .055 .037 .037 .039 .038
m2 .019 .019 .020 .020 .025 .025 .032 .032 .015 .015 .016 .016
m3 .003 .007 .006 .005 -.002 -.004 .002 .004 .000 .000 -.003 -.004
m4 .032 .029 .017 .015 .012 .012 .024 .023 .038 .039 .028 .026

n = 200

m1 .016 .015 .025 .024 .030 .029 .034 .034 .024 .024 .025 .025
m2 .011 .011 .014 .014 .013 .013 .019 .019 .010 .010 .010 .010
m3 .003 .005 .005 .006 -.001 -.002 .006 .008 .003 .003 -.002 -.003
m4 .026 .023 .014 .012 .009 .008 .018 .018 .027 .027 .023 .022

Table 4: Values of m1, m2, m3 and m4 for hMISE and hmix1.

In the simulation, with respect to m1, the winners are ĥmix2 and ĥDO. The pragmatic

average ĥmix2 of classical cross-validation and plug-in beats each of its two compo-

nents for almost every design and sample size (with the only exemption of Design 1).

Therefore, from a practical point of view this simple average is much better than its

two well known alternatives. We can get a hint of what is going on when looking

on the bias m3 and the volatility measures m2 and m4. We see that the stability of

the plug-in method comes with the cost of a clear tendency to oversmoothing and

that the unbiasedness of cross-validation comes with the cost of volatility. The simple

average provides a good compromise between these two very different bandwidth se-

lection methods. The selector ĥmix2 works very well and probably is better than most

published bandwidth selectors so far. Do-validation is quite similar to ĥmix2 and it is
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only marginally better - measured by m1 and m2 - than one-sided cross-validation on

most of the designs. But for the asymmetric density design 4 it is clearly better. For

the bimodal density 2 and the trimodal density 3 ĥmix2 outperforms ĥDO whereas for

the trimodal density with larger sample size 200, ĥmix2 has an increase in the expected

ISE of 66 %. The simplicity of do-validation, no need of the choice of pilot band-

width and its overall excellent performance in this simulation make do-validation a

very promising bandwidth selector. To conclude again from this study, classical cross-

validation is a crystal clear loser of this test. It is almost unbiased and that is good,

but volatility just kills its overall performance. Therefore we suggest that practition-

ers leave classical cross-validation and start to use do-validation. Do-validation is

just another cross-validation technique, it is relatively simple to carry out, it is well

defined without ambiguities and does not need complicated pilot estimation.

6 Conclusions

In this paper we have studied the use of combined bandwidth selectors for kernel den-

sity estimation. We have compared averages of indirect cross-validation bandwidth

together with and without asymptotical MISE optimal selectors. The study was led

by an asymptotic theory for this class of bandwidth selectors but we also pointed

out the limitations of asymptotics in the study of bandwidth selectors. We showed

that there is some potential in this class for outperforming plug-in and classical cross-

validation. Our practical recommendation is do-validation, a bandwidth selector that

is comparable to plug-in in its asymptotic properties but that showed a much better

and more stable performance in our simulation study. Do-validation is also a very
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simple procedure that does not need any pilot estimation and that is to implement

as simple as classical cross-validation.

We think that there is some further need for research on the use of indirect cross-

validation, in kernel density estimation and in other smoothing problems, maybe

even in other smoothing parameter and model choice problems. For kernel density

estimation there are some more interesting results on indirect cross-validation in the

recent papers of Savchuk, Hart and Sheather (2010a,b). In their asymptotic ap-

proach they compare bandwidths with the MISE optimal bandwidth hMISE. This

differs from our asymptotic study where we compare bandwidths with the ISE opti-

mal bandwidth hISE. They showed that one can use indirect cross-validation to get

a bandwidth selector that is asymptotically equivalent to the MISE optimal band-

width hMISE. Thus their estimator competes with plug-in estimators as the Sheather

and Jones (1991) plug-in bandwidth, but it does not need any pilot estimation. The

key idea of their paper is to do indirect cross-validation using an selection kernel

depending on two parameters, one of which is a function of n. While this pilot-free

MISE optimal estimation does not need any pilot density, it does need to determine

somehow a good trade off between these two parameters. The paper Savchuk, Hart

and Sheather (2010a) does contain some practical proposals but we think the choice

of these parameters and the comparison with other selection-kernels in the indirect

cross-validation needs some further research. We think that the asymptotic result of

Savchuk, Hart and Sheather (2010a) is also very interesting from a purely theoretic

point of view. Indeed, if one plugs their bandwidth selector into our combined for-

mula for ĥmix1 one gets a bandwidth selector that is purely based on cross-validation
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principles and beats plug-in asymptotically.

We consider pilot-free MISE optimal estimation and pilot-free MISE near optimal

estimation an important area of future research in kernel density bandwidth selec-

tion. The key research element of pilot-free MISE optimal estimation seems to be to

determine a practical solution to the trade off between the two entering components

in the indirect kernel. The discussion on pilot-free MISE optimal estimation also

gives us some intuition to why onesided cross-validation and do-validation work so

well. While both of these two latter methods are practical and easy to implement,

they are a first step towards a pilot-free MISE optimal estimator. In the first step it

does blow up variance to some extent while keeping bias relatively stable. However,

it does not bother to optimize this idea asymptotically by blowing up the variance

indefinitely in the indirect step with all the practical problems this implies. One-sided

cross-validation and do-validation are practical and pragmatic first steps towards pi-

lot free MISE optimal estimation, but with easy stable implementations that work

extremely well in practice.

Appendix

Proof of Theorem 1.
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For L = K and L = Lj (j = 1, . . . , J) we use the following notation. Define

ΔL(h) =

∫ (
f̂L,h(x) − f(x)

)2

dx (ISE),

ML(h) = E [ΔL(h)] (MISE),

DL(h) = ΔL(h) − ML(h),

δL(h) = 2

∫
f(x)f̂L,h(x)dx − 2n−1

n∑
i=1

f̂L,h(Xi).

Here f̂L,h(x) denotes the kernel density estimator with bandwidth h and kernel L.

Define

hL,0 = arg min
h

ML(h),

ĥL,0 = arg min
h

ΔL(h),

ĥL,c = arg min
h

(
ΔL(h) + δL(h) −

∫
f(x)2dx

)
(CV-bandwidths).

Under our conditions it holds that

hL,0 =

(
R(L)

μ2
2(L)R(f ′′)

)1/5

n−1/5 + o
(
n−3/10

)
.

Proceeding as in Hall and Marron (1987) one can show that for L = K, L1, . . . , LJ :

ĥL,0 − hL,0 = −M
′′
L(hL,0)

−1
D

′
L(hL,0) + op

(
n−3/10

)
, (14)

ĥL,c − hL,0 = −M
′′
L(hL,0)

−1 (D
′
L(hL,0) + δ′L(hL,0)) + op

(
n−3/10

)
. (15)

For the proof of these statements it can be checked that it is not needed that L is

symmetric and continuous at the point 0. Furthermore, we will argue now that one

can allow that the kernels are only piecewise differentiable, as assumed in Assumption

(A1). The first step for getting the expansions (14)-(15) for differentiable kernels is
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to note that:

M
′
L(hL,0) = 0, (16)

Δ′
L(ĥL,0) = 0, (17)

Δ′
L(ĥL,c) + δ′L(ĥL,c) = 0. (18)

Equation (16) still holds under Assumption (A1). We now argue that equations (17)-

(18) remain to hold under Assumption (A1) if the right hand sides of the equations

are replaced by OP (n−2h−2) = OP (n−8/5). To see this one has to note that for a finite

set T ⊂ IR the following event has probability zero: there exists an h > 0 such that

for two pairs (i, j) and (i′, j′) it holds that h−1(Xi −Xj) ∈ T and h−1(Xi′ −Xj′) ∈ T .

This statement follows easily because the observations have a density. Thus we have

that with probability equal to one for all h > 0 at most for one pair (Xi, Xj) it holds

that h−1(Xi − Xj) lies on a point where the kernel L is not differentiable. Consider

now ΔL(ĥL,0) and ΔL(ĥL,c) + δL(ĥL,c). These are double sums over indices (i, j).

Using our considerations we get that with probability one the left- and right-sided

derivatives of the summands differ only for at most one double index (i, j). Now one

uses a simple bound for the one-sided derivatives of the summands that is of the order

O(n−2h−2). Thus we have that (17)-(18) hold with the right hand sides replaced by

OP (n−8/5). One can check that this change does not affect the lines of proof used in

Hall and Marron (1987).

One can show that for L = K, L1, . . . , LJ with h = hL,0:

D
′
L(h) = n−2

∑
i<j

WL,i,j + n−1
∑

i

WL,i + op

(
n−7/10

)
(19)
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with W ∗
L,i,j = −h−2HL

(
Xi − Xj

h

)
,

HL(u) = 2

∫
L(u+v)L(v)dv+2

∫
L(−u+v)L(v)dv+2

∫
L(u+v)vL′(v)dv+2

∫
L(−u+v)vL′(v)dv,

WL,i,j = W ∗
L,i,j − E

[
W ∗

L,i,j|Xi

] − E
[
W ∗

L,i,j|Xj

]
+ E

[
W ∗

L,i,j

]
,

W ∗
L,i = 2h

√
μ2

2(L)f ′′(Xi),

WL,i = W ∗
L,i − E

[
W ∗

L,i

]
.

For a proof of (19) note that D′
L(h) is a U-statistic with quadratic terms W ∗

L,i,j.

We replace W ∗
L,i,j by WL,i,j to have that E [WL,i,j|Xi] = E [WL,i,j|Xj] = 0, a.s. The

remaining terms are sums of independent mean zero variables. By standard smoothing

theory expansions it can be shown that these summands are asymptotically equivalent

to WL,i.

Furthermore, we have for h = hL,0 and L = L1, . . . , LJ

δ′L(h) = n−2
∑
i<j

VL,i,j − n−1
∑

i

WL,i + op

(
n−7/10

)

with V ∗
L,i,j = h−2GL

(
Xi − Xj

h

)
, GL(u) = 2 [L(u) + uL′(u) + L(−u) − uL′(−u)] .

We now use

hK,0 =

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

hLj ,0 + o
(
n−3/10

)
=

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

hLj ,0 + o
(
n−3/10

)
.
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This gives together with the above expansions:

ĥ − hISE =
J∑

j=1

wj

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

(ĥLj ,c − hLj ,0) − (hISE − hK,0) + o
(
n−3/10

)
=

J∑
j=1

wjM
′′
Lj

(hLj ,0)
−1

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5
[
−n−2

∑
i<k

(
WLj ,i,k + VLj ,i,k

)]

−M ′′
K(hMISE)−1

[
−n−2

∑
i<k

WK,i,k − n−1
∑

i

WK,i

]
+ op

(
n−3/10

)
.(20)

Now

M ′′
L(hL,0) = 2

R(L)

nh3
L,0

+ 3μ2
2(L)R(f ′′)h2

L,0 + o
(
n−2/5

)
= n−2/55R(L)2/5R(f ′′)3/5μ

6/5
2 (L) + o

(
n−3/5

)
With the above expansion this gives

ĥ − hISE = M ′′
K(hMISE)−1n−1

∑
i

WK,i

+M ′′
K(hMISE)−1n−2

∑
i<k

Zik + op

(
n−3/10

)
with Zik = Z∗

ik − E [Z∗
ik|Xi] − E [Z∗

ik|Xj] + E [Z∗
ik],

Z∗
ik = −h−2

0,K

[
HK

(
Xi − Xk

hMISE

)
−

J∑
j=1

wj

(
R(K)

R(Lj)

)(
HLj

(
Xi − Xk

h0,Lj

)
+ GLj

(
Xi − Xk

h0,Lj

))]

Note that we collect in the definition of Z∗
ik all quadratic terms in the right hand side

of (20). These are the terms: −n−2wjM
′′
Lj

(hLj ,0)
−1

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

WLj ,i,k, −n−2wj

M ′′
Lj

(hLj ,0)
−1

(
R(K)

μ2
2(K)

μ2
2(Lj)

R(Lj)

)1/5

VLj ,i,k and n−2M ′′
K(hMISE)−1WK,i,k.

The variance of the asymptotic expansion of ĥ − hISE can be easily calculated. Fur-

thermore, using a central limit theorem for U-statistics (e.g. Hall, 1984) one gets the

asymptotic result for ĥ− hISE in our theorem. The second statement of the theorem

can be proved similarly.

30



References

Ahmad, I.A. and Ran, I.S., 2004, Data based bandwidth selection in kernel density

estimation with parametric start via kernel contrasts, Journal of Nonparametric

Statistics. 16, 841–877.

Bowman, A., 1984, An alternative method of cross-validation for the smoothing of

density estimates. Biometrika, 71, 353–360.

Cao, R., 1993, Bootstrapping the Mean Integrated Squared Error, Journal of Mul-

tivariate Analysis, 45, 137–160.

Chaudhuri, P. and Marron, J.S., 1999, SiZer for Exploration of Structures in Curves.

Journal of the American Statistical Association, 94, 807–823.

Cheng, M.Y., 1997a, Boundary-aware estimators of integrated squared density deriva-

tives. Journal of the Royal Statistical Society Ser. B, 50, 191–203.

Cheng, M.Y., 1997b, A bandwidth selector for local linear density estimators. The

Annals of Statistics, 25, 1001–1013.

Chiu, S.T., 1991, Bandwidth selection for kernel density estimation. The Annals of

Statistics, 19, 1883–1905.

Godtliebsen, F.; Marron, J.S. and Chaudhuri, P., 2002, Significance in Scale Space

for Bivariate Density Estimation. Journal of Computational and Graphical

Statistics, 11, 1–21.

31
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