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We focus on automatic strategies to optimize life cycle savings and investment. Classical optimal savings theory establishes that,
given the level of risk aversion, a saver would keep the same relative amount invested in risky assets at any given time. We show
that, when optimizing lifecycle investment, performance and risk assessment have to take into account the investor’s risk aversion
and the maximum amount the investor could lose, simultaneously. When risk aversion and maximum possible loss are considered
jointly, an optimal savings strategy is obtained, which follows from constant rather than relative absolute risk aversion.This result is
fundamental to prove that if risk aversion and themaximumpossible loss are both high, then holding a constant amount invested in
the risky asset is optimal for a standard lifetime saving/pension process and outperforms some other simple strategies. Performance
comparisons are based on downside risk-adjusted equivalence that is used in our illustration.

1. Introduction

We study long term investment strategies characterised by a
first period of savings followed by a period of consumption
after retirement. This is the most common form of optimiza-
tion problem that is faced by most citizens, who seek a way to
build up a pension payment stream that provides a balance
between risk and reward. Most investors request downside
protection and desire upside potential.

There are two competing magnitudes related to risk in
classical optimality theory when studying lifetime savings
and retirement investments.One is themaximumamount the
saver is allowing to lose during his life cycle. The other is his
risk aversion, a parameter that is linked to the power of a
power utility function. However, risk aversion andmaximum
possible loss have not been studied together. Most articles
focus on one and consider the other parameter as fixed.When
looking at the distribution of terminal wealth, our results
show that those two parameters should not be considered
separately when optimizing long-term expected returns,
while controlling for downside risk.

In this paper, we use the risk adjusted ad hoc performance
measure recently developed in [1, 2] to evaluate the conse-
quences of choosing a given combination of maximum loss

and risk aversion. We study optimality of a constant absolute
risk aversion investment strategy that differs slightly from but
is reminiscent of standard Constant Proportion Portfolio
Insurance (CPPI), which was introduced by [3] (see also,
[4–6]). It is unsurprising that combining a high maximum
possible long-term loss with a high risk aversion, that is, a
lower power in the power utility function, will be superior in
the long run to the risk-adjusted equivalent with a lower long-
termmaximumpossible loss and a lower risk aversion, that is,
higher power in the utility function. However, the first com-
bination is a good deal better than the second when studying
the distribution of terminal wealth, leading us to further
investigations in this direction. We take this point of view to
its logical extreme and let the maximum loss go to infinity at
the same time as the power in the utility function goes to zero,
which means that we also raise risk aversion to infinity. Our
limit behaviour is carried out in such a way that the limit of
power utility functions is also a utility function, which hap-
pens to be the exponential utility and which gives a fixed con-
stant absolute risk aversion. It turns out that both the optimal
strategy in the constant relative risk aversion and the perfor-
mancemeasures converge smoothly to the equivalent entities
derived directly from the exponential utility.
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Our contribution is to establish the link between risk
aversion and maximum possible loss in some classical utility
function optimization. We also show that performance anal-
ysis in terms of downside protection and risk/return trade-off
enhances the understanding of lifetime investment strategies.

In Section 2, we provide some background and notation.
In Section 3, we introduce the market model and the opti-
misation problem which will be used to illustrate the results
on power utility functions.The optimal strategy prescribes an
initial investment in the risky asset proportional to the ratio
between maximum possible loss and risk aversion, which is a
principal reason for keeping this quantity fixed when passing
to the limit. We demonstrate that the optimal strategy for
the generalized shifted utility that is defined when wealth can
be negative (as is permitted, up to a certain maximum loss)
converges to a limiting strategy, and that is indeed the
optimal strategy under the limiting utility function. Section 4
discusses the risk and performance measures of lifetime in-
vestment plans and the approach to the comparison of dif-
ferent strategies. We use risk measure tools that are generally
accepted in this context.

Our focus here is the expected shortfall risk measures
[7, 8] such as downside value at risk [9, 10] and tail conditional
expectation [11–13] which are widely accepted in financial
economics. The probability of a lifetime ruin is already
studied by [14], as well as optimal portfolio selection terminal
wealth problems (see [15]). Lifetime ruin has received
increased attention (see, [16]).

We use simulations to evaluate the expected shortfall for
“benchmark” strategies; that is, those which prescribe that a
constant proportion of the wealth should be invested in the
risky asset. We call these “benchmark” strategies because this
type of strategies is frequently recommended by investment
advisors [17–19]. Similar questions have been investigated by
many authors [20–29]. More recently, reference [30] contri-
buted to the analysis of investment strategies thatmeet certain
targets (see also [31]). In our presentation, we fix a constant
proportion and then we calculate the value of the maximum
possible loss such that the generalized power utility-optimal
strategy produces the same expected shortfall and proceed to
compare the two strategies in terms of the internal rate of
return (IRR).We also investigate whether it is possible to find
a benchmark strategy which can give the same IRR as the
shifted power utility-optimal strategy, or special CPPI. The
discussion of the results which takes place in Section 5 is
followed by Section 6 which concludes.

2. Background and Preliminaries

It is well documented in the finance literature that, under very
general conditions, the power utility function leads to con-
stant relative risk exposure; that is, a constant proportion of
the wealth is invested in risky assets, with the remainder in
risk-free assets. An investment strategy that maximizes the
power utility function is called constant relative risk aversion
(CRRA). See [32] for one of the more compact and general
introductions. So, in practice, an investor maximizing power
utility would invest a fixed proportion of his wealth in the

stock market and the remainder in bonds. He would revise
his positions about once a year, as the stock prices and returns
are known. Then gains would be accumulated to previous
year’s wealth. The outcomes are such that each year’s wealth
distribution depends on the previous year’s outcome. So,
yearly gains (or losses) matter a lot to the next period invest-
ment balance between risk-free and risky assets.

Alternatively, another investor may prefer to fix an
amount of his wealth to be invested in the stock market. That
would correspond to a strategy called constant absolute risk
aversion (CARA). In other words, this investor would take
a constant amount and would invest that in the risky assets,
keeping the rest of his wealth in risk-free investment. Gen-
erally, after one year, no matter what the gains are, he would
again invest the same constant amount in stocks. In a pure
CPPI strategy, the investor would have defined a floor and a
multiplier and then his exposure to the risky assets would be a
constantmultiple of the cushion, which is the excess of wealth
over the floor. Our investor however does not establish a floor
nor a cushion and does not need to look into yearly gains (or
losses) to tune the next period’s investment balance. This
investor does not have a downside protection; however, we
will require for him an immense risk aversion. Then, we will
find out that he can outperform the risk-adjusted equivalent
strategy followed by the first investor.

Investment strategies resulting from a constant relative
risk exposure and from a constant absolute risk exposure cor-
respond to the maximization of utility functions that are
related. We provide the theory to show that investors choos-
ing a constant absolute risk exposure can outperform those
that use a constant relative risk exposure approach. Indeed,
those two strategies correspond to the optimization of two
different utility functions, that can be written in such a way
that the constant absolute risk exposure is obtained as the
optimumof the utility functionwhich is the limit of the utility
that has the optimum in the constant relative risk exposure.

The practical consequences of this general theory when it
comes to analysing the distribution of finalwealth andoptimal
long-term savings have not received much coverage in the
literature, but recently some papers have started to look into
stochastic dominance, downside risk and performance eval-
uation of portfolio insurance strategies. Unfortunately, these
contributions look closely into most popular products like
stop-loss, synthetic put, and constant proportion portfolio
insurance techniques (see, [33–36]).These strategies produce
wealth processes that depend on the previous year’s wealth,
which are known to be suboptimal in the usual market
hypothesis [37–39].

2.1. Time Framework and Terminal Wealth Distribution. In
our paper, we study long-term investment, because we think
thatmany savings investors consider optimal investment stra-
tegies on the basis of having a long period of savings and then
a retirement phase when they need a stream of income for
consumption or a pension. So, we focus on long periods of at
least sixty years.

Lifetime savings are difficult to study because each person
has a particular cash flow pattern. We will consider a simple



The Scientific World Journal 3

payment stream, since we will not assume inflation, then we
can assume that saving/consumption payments are constant
and periodical during a life cycle. Typically, a pension plan
establishes a period of many years of savings, for instance,
from age 35 to age 65 (retirement age).Then, after retirement,
the saver needs to withdraw money from his investment
account on a regular basis for about another period of 30
years, until time 𝑇. This setting is similar to the time frame-
work chosen for other authors who address retirement in-
come (see [40]). Moreover, to simplify our setting, we do not
consider mortality uncertainty (A recent discussion on mor-
tality risk transfer can be found in [41].), as our time horizon
𝑇 is fixed.

Anobvious question is to find an optimalway to invest the
initial stream of payments that will accumulate wealth in the
savings period and also to keep the remaining investment
during the withdrawal time. Any investor would prefer a
strategy that will ultimately provide him with the highest
return. However, the uncertainty about the evolution of the
returns makes prediction impossible. We can only work with
assumptions on the returns process and study the wealth dis-
tribution at time 𝑇. The wealth distribution is the set of pos-
sible returns together with the odds to achieve them. In this
paper, instead of limiting our study to fixed terminal wealth
distribution we will rather fix its downside risk level. There is
a risk that the investor does not have enough resources to be
able towithdraw a pension during retirement.Many investors
could be enormously averse to the risk of ruin, or even to the
risk that wealth at time 𝑇 falls below a certain level if they are
interested in leaving a bequest to their heirs. The utility func-
tion captures the preference, from the investor’s point of view,
of the final wealth outcome (see, e.g., [6, 42, 43]).

Investment planning is a central topic, for pension funds
[44, 45], formutual funds and also for individuals.Themodel
by [44] uses a multiperiod stochastic linear programming
framework with a flexible number of time periods of varying
length. Not many researchers deal with the whole lifespan
investment horizon. The work by [46] looks at similar prob-
lems, but they rather focus on the fluctuations of income
streams and on portfolio choice [47] rather than on propor-
tion versus constant wealth in the bond versus stock combi-
nation. Our study uses a timing for lifetime savings similar to
the one proposed by [48] or the one used by [49] for illus-
trative purposes. Both establish about thirty years of savings
followed by about thirty more years of retirement.

Performance evaluation of portfolio insurance strategies
using stochastic dominance criteria was studied by [33] who
found that in typical CPPI strategies, a higher CPPI multiple
enhances the upward potential but harms the protection level.
They also indicated that choosing a different floor value or
relaxing the rebalancing discipline substantially harms the
strategies’ performance. Our approach is similar to theirs but
compares strategies that vary in terms of the combination of
risk aversion and maximum possible loss.

2.2. The Power Utility Function and the Optimisation of Life-
long Savings. Utility functions are widely used by financial
economists because they measure the “value” of wealth to

investors. Concave utility functions are preferred because
they reflect risk-aversion; that is, the utility of potential wealth
increase does not compensate the risk or the utility of wealth
loss.

In the simplest possible case we define the power utility
function by

𝑢𝛾 (𝑐) = 𝛾
−1
𝑐
𝛾
, (1)

where 𝑐 and 1−𝛾 are positive real numbers.The value of 1−𝛾
is known as relative risk aversion or simply risk aversion.The
larger it is, the larger is risk aversion and the flatter is the
utility shape as 𝑐 increases. Central features of utility func-
tions are their relative and absolute risk aversions (see, [50]).
Note that this utility is only defined for positive wealth and
thus losses or negative wealth are not allowed.

In this case the relative risk aversion is given by

𝑅 (𝑐) = −𝑐

𝑢
󸀠󸀠

𝛾
(𝑐)

𝑢󸀠
𝛾
(𝑐)

= 1 − 𝛾, (2)

and the absolute risk aversion is

𝐴 (𝑐) = −

𝑢
󸀠󸀠

𝛾
(𝑐)

𝑢󸀠
𝛾
(𝑐)

=
1 − 𝛾

𝑐
. (3)

In a power utility function, there is a constant relative risk
aversion (CRRA), while absolute risk aversion decreases
when 𝑐 increases.

Now let us introduce a second parameter𝐾 so that

𝑢𝛾,𝐾 (𝑐) = 𝛾
−1
(𝑐 + 𝐾)

𝛾
, (4)

where 𝑐 > −𝐾 and 1 − 𝛾 > 0. Now, we can accept having
negative wealth and the utility is defined in the interval
(−𝐾, 0] aswell as in the positive real line, as the standard power
utility function. Then we have that relative risk aversion is

𝑅 (𝑐) = −𝑐

𝑢
󸀠󸀠

𝛾,𝐾
(𝑐)

𝑢
󸀠

𝛾,𝐾
(𝑐)
= (1 − 𝛾)

𝑐

𝑐 + 𝐾
, (5)

and absolute risk aversion is

𝐴 (𝑐) = −

𝑢
󸀠󸀠

𝛾,𝐾
(𝑐)

𝑢
󸀠

𝛾,𝐾
(𝑐)
= (1 − 𝛾)

1

𝑐 + 𝐾
. (6)

For this extended power utility, neither CRRA nor CARA
hold. Under this setting that allows for the existence of losses,
risk aversion depends on the two parameters 𝛾 and𝐾.

2.3. Limiting Utility Function. One of the features of interest
of the present paper is the investigation of the limiting case,
where𝐾 → ∞ and 𝛾 → −∞ in such a way that𝐾/(1−𝛾) is
equal to a constant, Λ. This corresponds to a balanced situa-
tion, where an increasing maximum possible allowed loss 𝐾
and an increasing risk aversion (1−𝛾) tend to an equilibrium
in the limit.

Although the utility functions 𝑢𝛾,𝐾 do not converge in a
formal sense, we may make use of the fact that, if one utility
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function is a linear function of another, then the maximiza-
tion of the two utility functions will give rise to identical
strategies. Let us then renormalize 𝑢𝛾,𝐾(𝑐) in such a way that
𝑢
󸀠

𝛾,𝐾
(0) = 1. This produces a new utility function:

𝑢𝛾,𝐾 (𝑐) =
1

𝛾𝐾𝛾−1
(𝑐 + 𝐾)

𝛾
. (7)

Now, we set 𝐾 = Λ(1 − 𝛾) to obtain

𝑢𝛾,𝐾 (𝑐) =
Λ (1 − 𝛾)

𝛾
(1 +

𝑐

Λ(1 − 𝛾)
)

𝛾

. (8)

As 𝛾 → −∞, the limit of this is

𝑢 (𝑐) = −Λ𝑒
−𝑐/Λ

. (9)

Theutility function𝑢produced by this limiting procedure has
constant absolute risk aversion, 𝐴(𝑐) = −𝑢󸀠󸀠(𝑐)/𝑢󸀠(𝑐) = Λ−1.
So, an investment strategy that maximizes this utility has the
constant absolute risk aversion property.

This result shows that there is a continuous and smooth
transition from the power utility function with constant rel-
ative risk aversion to the constant absolute risk aversion case.
Below, we will investigate this transition by employing a risk
measure to determine the behaviour of the process under
optimal control when utility function 𝑢𝛾,𝐾 is used and to take
the limit of this as 𝛾 → −∞. We will finally compare the
limiting results with those derived directly in the constant
absolute risk aversion case.

We will see that having an adequate combination of huge
risk aversion and enormous maximum loss under the power
utility function leads to the constant absolute utility function
of the exponential utility in (9).

3. The Optimisation Problem

In this paper, we address the problem of choosing a strategy
for the selection of an asset mix in such a way as to maximize
the expected utility of terminal value at time 𝑇 of an invest-
ment consisting of a sequence of annual premiums of size 𝑎
paid into an account at times 0, 1, . . . , 𝑇/2 − 1, followed by a
sequence of annual withdrawals of benefits, also of size 𝑎, at
times 𝑇/2, 𝑇/2 + 1, . . . , 𝑇 − 1. This is a continuous time
investigation, in the sense that the investment portfolio can be
adjusted at any time, not just at the times when payments
occur.

The setting corresponds to a lifecycle investment scheme
aimed at planning for retirement in the absence of longevity
risk, which means that we have a fixed time horizon 𝑇, which
does not depend on the investor’s survival. Therefore, no
mortality projection needs to be assumed. We also have the
hypothesis of no inflation or financial interest rate. We will
consider the risk-free rate to be the basis and therefore wewill
fix it equal to zero. This allows us to concentrate on the pure
structure of the investment strategy and savings manage-
ment.

We assume that themarket consists of a risky asset, whose
value evolves as a geometric Brownian motion with drift

(excess return) equal to 𝛼 and diffusion coefficient (volatility)
equal to 𝜎 as well as a riskless asset, which has a constant
return of zero. In other words, we are carrying out the analysis
net of risk-free interest rates. This ensures that any positive
amount of money left in the fund at time 𝑇 represents a gain
in comparison with investing solely in the riskless asset
throughout the time period, whereas a negative amount at
time 𝑇 represents a loss.

Define 𝐶(𝑡) to be the net sum of all payment and
withdrawal transactions by time 𝑡 so that𝐶(𝑡) changes only by
means of jumps, equal to

Δ𝐶 (𝑡) = {
+𝑎 for 𝑡 = 0, 1, . . . , 𝑇/2 − 1
−𝑎 for 𝑡 = 𝑇/2, 𝑇/2 + 1, . . . , 𝑇 − 1 .

(10)

The dynamics of 𝑋(𝑡), which is the total wealth accumulated
at time 𝑡, are given by

𝑑𝑋 (𝑡) = 𝛼𝜋 (𝑡)𝑋 (𝑡) 𝑑𝑡 + 𝜎𝜋 (𝑡)𝑋 (𝑡) 𝑑𝑊 (𝑡) + 𝑑𝐶 (𝑡) , (11)

where 𝑊(𝑡) is a standard Brownian motion and 𝜋(𝑡) is the
proportion of𝑋(𝑡) invested in stocks.

The investor can, at any time 𝑡 ∈ [0, 𝑇), choose the pro-
portion𝜋(𝑡)of the totalwealth𝑋(𝑡) to invest in the risky asset.
This is the more general setting where we believe in a con-
tinuous rebalancing assumption, meaning that at any time 𝑡,
the desired proportion of wealth invested in the risky asset
can be chosen and is available in themarket.This assumption
is also known as dynamic allocation.

We concentrate on 𝑋(𝑇), which is the so-called termi-
nal wealth or the resulting outcome of a lifelong saving/
consumption plan (The model is pretty restrictive and styl-
ized; the income/consumption streams as well as the time
horizon are deterministic. However, the main optimality
result is not dependent on the nature of the payment stream,
as long as the timings of the payments are deterministic. The
only reason for specifying a particular form for the payment
stream is so that the simulations for comparisons can be
carried out in the performance illustrations).

In this setting, it is easily shown (see Appendix A) that the
problem of maximizing the expected utility of terminal
wealth for the utility function 𝑢𝛾,𝐾,

max
𝜋

E [
1

𝛾
(𝑋 (𝑇) + 𝐾)

𝛾
] , (12)

is solved by a strategy which invests an amount in the risky
asset at time 𝑡 equal to

𝜋 (𝑡)𝑋 (𝑡) = 𝐴 (𝐾 + 𝑋 (𝑡) + 𝑔 (𝑡)) , (13)

where 𝑔(𝑡) = ∑𝑇
𝑙=𝑡
Δ𝐶(𝑙) indicates the future payment stream

that for sure must be taken into account to measure wealth at
any time 𝑡, because it is a compromised payment/refund
structure. In a continuous time payment stream, we would
have𝑔(𝑡) = ∫𝑇

𝑡
𝑑𝐶(𝑠). A simple version of this particular opti-

misation problem was already solved by [6] with no consum-
ption process 𝐶(𝑡).

Note that strategy (13) consist in investing 𝐴 times
the accumulated wealth, where the leverage corresponds to
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𝐴 = (𝛼/𝜎
2
(1 − 𝛾)), which is proportional to the inverse of

(1−𝛾), a parameter associatedwith risk aversion.This optimal
strategy is similar to a constant proportion portfolio insur-
ance (CPPI) strategy with multiplier 𝐴. The CPPI strategy
guarantees a minimum level of wealth at some specified
horizon, −𝐾 < 𝑋(𝑇), and the exposure to the risky asset is a
multiplier,𝐴, times the cushion. In our problem, the cushion
is the difference between wealth at time 𝑡, which is equal to
𝑋(𝑡)+𝑔(𝑡), and a floor, which for us is not a given proportion
of wealth as usual, but it is rather equal to −𝐾.

This strategy gives rise to the identity:

𝑋 (𝑡) + 𝑔 (𝑡) + 𝐾 = 𝑍 (𝑡) , (14)

where 𝑍(𝑡) is a geometric Brownian motion of the form:

𝑍 (𝑡) = 𝑍 (0) exp {(𝛼𝐴 − 1
2
𝜎
2
𝐴
2
) 𝑡 + 𝐴𝜎𝑊(𝑡)} , (15)

with𝑊 being a standardBrownianmotion and𝐴 = 𝛼/(𝜎2(1−
𝛾)). Further details can be found in [51]. The positivity of
the geometric Brownian motion, together with the fact that
𝑔(𝑇) = 0, proves that our lower bound for𝑋(𝑇) is effectively
−𝐾.

3.1. The Limiting Strategy. As we allow both 𝐾 → ∞ and
𝛾 → −∞ in such a way that𝐾 = Λ(1−𝛾), the amount inves-
ted in the risky asset according to (13) converges to 𝛼Λ/𝜎2.
In other words, when taking the limit in (13), we see that the
limiting optimal strategy is one in which a constant amount is
invested in the risky asset. Additionally, we can prove this
limiting optimal result from a direct optimisation of the
exponential utility.

Proposition 1. The optimal strategy under the exponential
utility 𝑢 is to invest a constant amount 𝛼Λ/𝜎2 in the risky asset.

The proof of the CARA optimality can be found in
Appendix B.

The consequence of Proposition 1 is that the optimal strat-
egy for the limiting utility function is the limit of the optimal
strategies, something which is not guaranteed to be the case
in all optimisation problems.

If the limiting strategy is used, we have

𝑑𝑋 (𝑡) =
𝛼
2
Λ

𝜎2
𝑑𝑡 +

𝛼Λ

𝜎
𝑑𝑊(𝑡) , (16)

resulting in the identity

𝑋(𝑡) =
𝛼
2
Λ

𝜎2
𝑡 +
𝛼Λ

𝜎
𝑊(𝑡) . (17)

The limiting strategy has many interesting properties. For
instance, the distribution of terminal wealth is easily obtained
using the fact that 𝑊 is a standard Brownian motion. As a
consequence, typical downside risk measures of the terminal
wealth distribution can be obtained analytically. This partic-
ular feature makes the limiting strategy very interesting from
the point of view of investigating its performance compared

to other standard product insurance investment strategies.
Moreover, since we will concentrate on the yearly returns that
provide exactly the median terminal wealth value for this
strategy or internal return rates, wewill explore how to appro-
ximate IRRs in a one-step formula. This will indeed speed up
computations that are usually rather time consuming when
addressing the performance of sophisticated investment
strategies, especially if outcomes are path dependent.

4. Performance Measurement Methodology

In this section we illustrate the limiting strategy and compare
it to other popular schemes, such as holding a constant pro-
portion invested in stocks. We follow the performance mea-
surementmethodology of [1] when analysing life cycle invest-
ments, and in particular, we study the stochastic behaviour of
terminal wealth distribution.

The performance measurement methodology is a tool
which allows to compare products with different risks. To
evaluate an investment plan, we search for its equivalent ben-
chmark strategy. We consider two strategies equivalent if they
have the same downside risk.

We have chosen to work with the expected shortfall as
downside risk measure. Sometimes it is referred to as condi-
tional tail expectation or tail value at risk.We denote expected
shortfall (See more information on risk measures at [52].)
with tolerance 𝜃 as ES𝜃 and define

ES𝜃 = E [𝑋 (𝑇) | 𝑋 (𝑇) < V𝜃] , (18)

where V𝜃 is the value at risk with the same tolerance, that is,
the (1 − 𝜃)% quantile of the distribution of𝑋(𝑇):

P [𝑋 (𝑇) > V𝜃] = 𝜃. (19)

The tolerance level is fixed at 95%. The benchmark strategy is
often called the trivial strategy with a constant stock propor-
tion 𝜋𝑏 for all 𝑡 ∈ [0, 𝑇].

For any investment plan, and for its equivalent strategy,
the internal interest rate (𝑟int) is calculated; that is,

𝑇−1

∑

𝑡=0

Δ𝐶 (𝑡) (1 + 𝑟int)
𝑇−𝑡
− 𝑋𝑚 (𝑇) = 0, (20)

where 𝑋𝑚(𝑇) is the median of the final wealth distribution;
that is, P(𝑋(𝑇) > 𝑋𝑚(𝑇)) = 0.5. Intuitively, a higher median
is associated with a higher internal interest rate. The internal
interest rate is the exact yearly rate of return that would lead
to the median final wealth 𝑋𝑚(𝑇) given the structure of
payments and withdrawals from initial wealth.

The difference between the internal interest rate of a CPPI
(or any other) strategy 𝑟𝑝int and that of the benchmark strategy
𝑟
𝑝

int, is called the yearly financial gain (whenever positive) or
loss (whenever negative).The difference indicates whether or
not the plan beats its risk-equivalent benchmark.

4.1. Calculation of the Expected Shortfall for the CPPI Strategy.
From (14) and 𝑔(𝑇) = 0, it can be proved (see Appendix C)
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that the value at risk at the 𝜃th percentile for theCPPI strategy
is given by

V𝜃 = 𝐾{exp ((𝛼𝐴 −
1

2
𝐴
2
𝜎
2
)𝑇 + Φ

−1
(1 − 𝜃)𝐴𝜎√𝑇) − 1} ,

(21)

where Φ represents the standard Normal distribution func-
tion.

The expected shortfall is given by

ES𝜃 = −𝐾 +
1

1 − 𝜃
𝐾𝑒
𝛼𝐴𝑇
Φ(Φ
−1
(1 − 𝜃) − 𝐴𝜎√𝑇) , (22)

as proved in Appendix C.
This means that, if ES𝑏

𝜃
for the benchmark strategy 𝜋𝑏 is

known, then the value of 𝐾𝑏 which gives an equivalent
expected shortfall is

𝐾𝑏 =
ES𝑏
𝜃

−1 + (1 − 𝜃)
−1
𝑒𝛼𝐴𝑇Φ(Φ−1 (1 − 𝜃) − 𝐴𝜎√𝑇)

. (23)

We will call 𝐾𝑏/ES
𝑏

𝜃
the factor that relates the maximum

possible loss in the CPPI strategy to the expected shortfall of
the benchmark. This means that one can compare the max-
imum possible loss to the expected loss of the benchmark
product beyond some value at risk with a given tolerance.

4.2. Median Terminal Value for the Limiting Strategy. The
median value of 𝑋(𝑇) corresponds to the median value of
𝑍(𝑇), which in turn corresponds to themedian value of𝑊(𝑇)
which is 0, by symmetry. We therefore see that the median
value of𝑋(𝑇) is

𝑋𝑚 (𝑇) = −𝐾 + 𝐾 exp {(𝛼𝐴 − 1
2
𝜎
2
𝐴
2
)𝑇} . (24)

From (17), it clearly follows that the median value of 𝑋(𝑇)
when we use the limiting strategy of investing a constant
amount in the risky asset is equal to

𝑋𝑚 (𝑇) =
𝛼
2
Λ

𝜎2
𝑇. (25)

This result indicates that in the limit, the only factor that alters
the long-term median returns, given the market parameters,
is the difference between initial and terminal time 𝑇. So, the
obvious way to increase terminal wealth median returns is to
widen life cycle asmuch as possible, thusmaking𝑇 large.This
means that investors aiming at an optimal lifelong investment
strategy should not delay the decision to start the savings
phase.

4.3. Internal Rate of Return. The internal rate of return or
internal interest rate is the value 𝑟 which makes the dis-
counted value of the payment stream 𝐶(𝑡) equal to 0. In this
simple situation, it means that

𝑇/2−1

∑

𝑠=0

𝑎(1 + 𝑟)
𝑇−𝑠
−

𝑇−1

∑

𝑠=𝑇/2

𝑎(1 + 𝑟)
𝑇−𝑠
− 𝑋 (𝑇) = 0, (26)

which is equivalent to

𝑎((1 + 𝑟)
𝑇/2
− 1)
2

= (1 − (1 + 𝑟)
−1
)𝑋 (𝑇) , (27)

as proved in Appendix D.
This equation defines 𝑋(𝑇)/𝑎 in terms of 𝑟 and the pay-

ment stream mechanism considered in the previous section;
its inverse is the definition of 𝑟 as a function of𝑋(𝑇)/𝑎.

Proposition 2. For any given terminal wealth distribution
𝑋(𝑇) and consumption as in (10), 𝑋(𝑇)/𝑎 is an increasing
function of 𝑟 over the range 𝑟 > 0.

The proof of Proposition 2 can be found in Appendix D.
Moreover, it immediately follows from Proposition 2 that the
median value of 𝑟 corresponds to the median value of𝑋(𝑇).

Finally, as shown in Appendix E, the internal interest rate
can be approximated by

𝑟 ≈
1

𝑇
(−1 + √1 +

8𝑋𝑚 (𝑇)

𝑐𝑇
) . (28)

4.4. A Benchmark Strategy Providing an Equivalent Internal
Rate of Return. All our performance evaluations will be con-
nected to a benchmark strategy. We fix a simple, straightfor-
ward benchmark strategy. We have chosen to work with the
investment that implies constant relative risk aversion, while
wealth can fall below zero. This benchmark strategy implies
that the investment is designed so that a constant proportion
𝜋
𝑏 of the wealth is exposed to the risky assets at any time 𝑡.We

can thenwrite an expression for terminal wealth, so that𝑋(𝑇)
is given by

𝑋 (𝑇) = 𝑎

𝑇/2−1

∑

𝑠=0

𝑒
(𝛼𝜋
𝑏
−(1/2)𝜎

2
𝜋
𝑏2
)(𝑇−𝑠)+𝜎𝜋

𝑏
(𝑊(𝑇)−𝑊(𝑠))

− 𝑎

𝑇−1

∑

𝑠=𝑇/2

𝑒
(𝛼𝜋
𝑏
−(1/2)𝜎

2
𝜋
𝑏2
)(𝑇−𝑠)+𝜎𝜋

𝑏
(𝑊(𝑇)−𝑊(𝑠))

.

(29)

This enables us to calculate its expectation;

E [𝑋 (𝑇)] = 𝑎

𝑇/2−1

∑

𝑠=0

𝑒
𝛼𝜋
𝑏
(𝑇−𝑠)

− 𝑎

𝑇−1

∑

𝑠=𝑇/2

𝑒
𝛼𝜋
𝑏
(𝑇−𝑠)

= 𝑎𝑒
𝛼𝜋
𝑏
(𝑒
𝛼𝜋
𝑏
𝑇/2
− 1)

2

𝑒𝛼𝜋
𝑏

− 1
.

(30)

This would correspond to an internal rate of return of 𝑟 =
𝑒
𝛼𝜋
𝑏

−1. Looking at it in another way, the value of 𝜋𝑏 required
to achieve an internal rate of return equal to 𝑟 would be 𝜋𝑏 =
𝛼
−1 log(1 + 𝑟).
The positive skewness of the distribution of 𝑋(𝑇) means

that the value of 𝜋𝑏 calculated by this formula will always be
an underestimate of the true value of 𝜋𝑏 required to achieve
this return. Indeed, it may be the case that there is no value of
𝜋
𝑏 which gives an equivalent median return at this level.
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5. Illustration

In our illustration, we are calculating the median of the final
wealth, rather than the mean, and the corresponding internal
interest rate based on the simulated distribution of the final
wealth.

5.1. The Strategies and the Parameters. We set a time horizon
of 𝑇 = 60 years. We use 𝑎 = 10 in our payment/consumption
stream process. The risk-free rate of interest is set equal to
zero because we are only interested in seeing the return that
exceeds the risk-free rate. This obviously affects the choice of
the excess interest rate return, 𝛼.

The constant proportion portfolio insurance (CPPI) strat-
egywith a certainmultiplier𝐴 guarantees aminimum level of
wealth at some specified horizon.The investmentmechanism
is to invest 𝐴 times 𝑋(𝑡) + 𝑔(𝑡) + 𝐾 in risky assets, where
𝑋(𝑡) is wealth at time 𝑡, 𝑔(𝑡) is the discounted future payment
stream,𝐾 is the guaranteed maximum possible loss, and 𝑇 is
the ultimate time horizon. In this model setup, the amount
invested in risky assets at time 𝑡 is equal to

𝛼

(1 − 𝛾) 𝜎2
(𝑋 (𝑡) + 𝑔 (𝑡) + 𝐾) , (31)

and the terminal wealth after 𝑇 = 60 years never falls below
the guaranteed level −𝐾.

In the benchmark strategy, a proportion of wealth is
invested in stocks every period 𝑡 and the wealth 𝑋(𝑡) is a
path-dependent process that we need to simulate in order to
examine its terminal distribution after 𝑇 = 60 years.

Setting the risk-free rate equal to zero has also been done
in [1]. The choice of the risk-free rate does not affect the
results, as has been investigated in [51]. With regard to the
remaining parameters, we have estimated the yearly excess
stock return to be equal to 𝛼 = 3.43% and the volatility 𝜎 =
15.44%. Similar levels have recently been used by [1, 33, 53].

5.2. Values of the CPPI Leverage. Tables 1, 2, and 3 present
the equivalent CPPI plan product for a variety of benchmark
strategies corresponding to leverage values of 𝐴 equal to 0.5,
1, and 2, respectively. Together with the value of 𝐴 in each
table, we also indicate the value of the corresponding factor
from expression (23) that allows us to calculate themaximum
possible loss 𝐾 as a function of the downside risk measure,
that is, the expected shortfall at the 95% level, of the bench-
mark strategy.

In each case, the first column indicates the percentage
invested in stocks in the benchmark strategy.The second col-
umn corresponds to its expected shortfall at the 95% toler-
ance level, which is the left tail conditional expectation of
wealth at 𝑇. The third column shows the value of 𝐾 which
would be required in our CPPI strategy to achieve the same
median risk, derived from (23). The rest of columns are
obtained by Monte Carlo simulation. Columns four and five
are the internal interest rates for the benchmark and the CPPI
strategies, respectively. Column six is the difference between
internal interest rate returns. A positive sign indicates that the
CPPI is better in comparison with the benchmark strategy

with exactly the same expected shortfall. The last column
shows the percentage which needs to be invested in stocks in
a benchmark strategy plan in order to reach the same internal
interest rate as theCPPI in the same row. If the sixth column is
positive, then the final column is larger than the first column
and the final column benchmark strategy would have more
risk than the corresponding CPPI.

We see that the value of the factor is negative for the three
tables and increases as 𝐴 increases. This results in larger
values of𝐾 as𝐴 decreases; for example, the value of𝐾 for the
CPPI strategy equivalent to investing 10% in stocks is 42 for
𝐴 = 0.5 and 13 for 𝐴 = 2. We also observe that the CPPI
strategy is better than the benchmark strategy for𝐴 no higher
than 1. Moreover, in several cases the CPPI strategy is
considerably outperforming the benchmark strategy; for
example, the yearly financial gain in terms of internal interest
rate is higher than 0.2% for 𝐴 = 0.5 and 𝐴 = 1, when
compared to the benchmark strategy, and increases as the
percentage invested in stocks increases. It reaches the value
1.10% when 100% is invested in stocks and 𝐴 = 0.5. For
𝐴 = 2, the CPPI plan underperforms the trivial strategy
when the constant percentage invested in stocks is lower than
50% and performs equally at the level of 50%. This means
that for 𝐴 = 2 investing 50% in stocks in the benchmark
strategy is equivalent to fixing the value of 𝐾 = 83 in the
CPPI strategy, both in terms of risk and performance as
measured by the internal interest rate. For 𝐴 lower than 2,
there is no such equivalent investment in stocks compared
to the CPPI plan. Finally, we also see that for 𝐴 = 2 and a
percentage higher than 50% invested in stocks, the CPPI
plan again outperforms the trivial strategy but the financial
gain is not so high as for lower values of 𝐴. In this sense, it
would be interesting to find analytically a critical value of 𝐴
for which the CPPI plan underperforms the trivial strategy.

In conclusion, in order to improve the typical fixed
proportion invested in stocks that is a very common lifetime
investment strategy, one should lower leverage 𝐴, which also
implies raising 𝐾 in the CPPI strategy. Recall that, as 𝐴 is
proportional to the reciprocal of the coefficient of risk
aversion, lowering𝐴 is equivalent to increasing risk aversion.

In summary, our results show that whenever leverage 𝐴
decreases, and we find the risk-adjusted equivalent to the
benchmark strategy for a fixed 𝜋𝑏, then the maximum possi-
ble loss 𝐾 increases. This indicates that, indeed, there exists
a balance between risk aversion and the CPPI multiple.
Moreover, CPPI is better than the trivial strategy for 𝐴 ≤ 1 if
we look at the yearly internal rates of return difference, but
notably the performance of CPPI becomes much better than
the benchmark when𝐴 diminishes as we approach the limit-
ing optimal strategy. In several cases, the CPPI is quite con-
siderably outperforming the benchmark strategy.

5.3. Graphical Display When Varying A. Figure 1 shows the
proportion invested in stocks that the benchmark strategy
requires in order to have the same median return as the
equivalent CPPI plan that has the same risk as the benchmark
that invests 20% in stocks. We study variations of CPPI as a
function of 𝐴. We can see that it increases as 𝐴 gets close to
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Table 1: Equivalence between lifetime benchmark investment strategy (a fixed percentage 𝜋𝑏 is invested in stocks) and the CPPI (fixed 𝐾).
We set 𝑇 = 60, 𝜇 = 3.43%, and 𝜎 = 15.44%. Here, we consider 𝐴 = 0.5, so, the factor derived from (23) is equal to −3.255.

𝜋
𝑏 ES (95%) 𝐾 𝑟

𝑏

int 𝑟
𝑝

int 𝑟
𝑝

int − 𝑟
𝑏

int Equivalent 𝜋𝑏

10% −12.82 42 0.33% 0.53% 0.20% 16%
20% −27.34 89 0.64% 0.98% 0.34% 32%
30% −43.43 141 0.93% 1.37% 0.44% 48%
40% −61.03 199 1.19% 1.73% 0.54% 64%
50% −80.12 261 1.43% 2.04% 0.62% 82%
60% −100.73 328 1.64% 2.34% 0.69% 107%
70% −123.16 401 1.84% 2.61% 0.77% ∗

80% −147.67 481 2.01% 2.87% 0.86% ∗

90% −174.85 569 2.16% 3.12% 0.97% ∗

100% −205.36 668 2.27% 3.37% 1.10% ∗

∗Themaximum internal interest rate for the bechmarks is 2.5014% for 152% invested in stocks.

Table 2: Equivalence between lifetime benchmark investment strategy (a fixed percentage 𝜋𝑏 is invested in stocks) and the CPPI (fixed 𝐾).
We set 𝑇 = 60, 𝜇 = 3.43%, and 𝜎 = 15.44%. Here, we consider 𝐴 = 1.0, so, the factor derived from (23) is equal to −1.532.

𝜋
𝑏 ES (95%) 𝐾 𝑟

𝑏

int 𝑟
𝑝

int 𝑟
𝑝

int − 𝑟
𝑏

int Equivalent 𝜋𝑏

10% −12.82 20 0.33% 0.53% 0.20% 16%
20% −27.34 42 0.64% 0.97% 0.33% 32%
30% −43.43 67 0.93% 1.37% 0.44% 47%
40% −61.03 93 1.19% 1.70% 0.51% 63%
50% −80.12 123 1.43% 2.03% 0.60% 81%
60% −100.73 154 1.64% 2.31% 0.67% 104%
70% −123.16 189 1.84% 2.59% 0.76% ∗

80% −147.67 226 2.01% 2.85% 0.84% ∗

90% −174.85 268 2.16% 3.10% 0.95% ∗

100% −205.36 315 2.27% 3.35% 1.08% ∗

∗Themaximum internal interest rate for the bechmarks is 2.5014% for 152% invested in stocks.

Table 3: Equivalence between lifetime benchmark investment strategy (a fixed percentage 𝜋𝑏 is invested in stocks) and the CPPI (fixed 𝐾).
We set 𝑇 = 60, 𝜇 = 3.43%, and 𝜎 = 15.44%. Here, we consider 𝐴 = 2.0, so, the factor derived from (23) is equal to −1.033.

𝜋
𝑏 ES (95%) 𝐾 𝑟

𝑏

int 𝑟
𝑝

int 𝑟
𝑝

int − 𝑟
𝑏

int Equivalent 𝜋𝑏

10% −12.82 13 0.33% 0.32% −0.02% 10%
20% −27.34 28 0.64% 0.62% −0.02% 19%
30% −43.43 45 0.93% 0.91% −0.02% 29%
40% −61.03 63 1.19% 1.17% −0.01% 39%
50% −80.12 83 1.43% 1.43% 0.00% 50%
60% −100.73 104 1.64% 1.66% 0.02% 61%
70% −123.16 127 1.84% 1.89% 0.05% 73%
80% −147.67 153 2.01% 2.11% 0.11% 87%
90% −174.85 181 2.16% 2.33% 0.17% 106%
100% −205.36 212 2.27% 2.54% 0.27% ∗

∗Themaximum internal interest rate for the bechmarks is 2.5014% for 152% invested in stocks.
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Figure 1: For different values of 𝐴 (ranging from 0 to 2) dots
indicate the equivalent proportion of wealth invested in stocks for
the benchmark strategy which has the same median return as the
CPPI which is exactly risk-equivalent to 𝜋𝑏 = 20%.
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Figure 2: For different values of 𝐴 (ranging from 0 to 2) dots
indicate the equivalent proportion of wealth invested in stocks for
the benchmark strategy which has the same median return as the
CPPI which is exactly risk-equivalent to 𝜋𝑏 = 40%.

zero and reaches a value around 35%. We also observe that it
diminishes after 𝐴 = 1. Figure 2 shows the same graph but
for an initial level proportion of 40% in stocks. Again, we see
that it increases for small values of𝐴 and it is around 70% for
𝐴 close to zero and again diminishes after 𝐴 = 1.

Since 𝐴 is proportional to the reciprocal of risk aversion,
these figures mean that, as the multiplier goes to zero, risk
aversion increases, and as risk aversion is very large, the CPPI
can allow the maximum possible loss amount 𝐾 to increase.
So, the CPPI strategy can produce returns that can be about
the same as those obtained with a constant proportional
strategy, but using 𝐴 = 2.

6. Discussion and Conclusion

As a result of our investigation, we conclude that an investor
should put at risk “whatever he can afford to lose,” 𝐾, and
not just a positive cushion as in standard CPPI products. The

investment should be leveraged with some constant 𝐴, and
then in the limit, the resulting constant amount should be
invested in the risky asset.

If the investor decides that he does not want to lose
anything (compared to the short interest rate) then he cannot
gain either, so that case is trivial. So, let us say that if a lifelong
investor is not afraid of losing up to 𝐾, then the optimal
strategy is to invest 𝐴 times the accumulated wealth; that is,
𝐴 ∗ (𝐾 + gains), where 𝐴 is proportional to the inverse of
the power of the utility function, that is, risk aversion. This is
exactly the principle of CPPI strategies.

In one particular limit, if we let 𝐴 and 𝐾 act together
increasing risk aversion and 𝐾 to infinity, then we can reach
the limiting optimal strategy that corresponds unsurprisingly
to the constant absolute risk utility function.

This limiting optimality is a beautiful result, that has prob-
ably escaped the analysis because of the difficulties arising
when studying lifetime investment strategies. The literature
has mostly overlooked the fact that the floor that is used to
talk about the investment cushion could be fixed below zero,
in order to accept losses.

We have aimed at showing the inherent interaction bet-
ween risk aversion and maximum possible loss, a topic that
has not been treated in such away before and that can perhaps
explain why risk aversion is so difficult to communicate or
even measure in real life.

We conclude that absolute relative risk aversion might be
worth considering for long term savings.

We claim that the optimal strategy for long-term investors
is to keep a constant amount invested in the risky assets
throughout the whole investment horizon. The constant
amount is equal to the product of the maximum possible loss
times a multiple, which we can also call a leverage. Unlike
other popular products, the optimal allocation does not need
to be recalculated based on the performance of the markets.
Thus, dynamic investment allocation is automatic and simple
for our proposed strategy. Finally, and most importantly, it
turns out that in the limit of our suitable combination ofmax-
imum possible loss and infinite risk aversion, wealth and
accumulated returns do not determine the definition of the
constant amount optimal strategy.

Our recommendation is not delaying or postponing
decisions on lifetime savings/pension plans, because arising
from the optimal limiting strategy of having a large constant
amount invested in the risky assets combinedwith a large risk
aversion, it follows that the longer the investment period, the
larger the expected returns at the terminal time.

Appendices

A. Optimal Strategy in the CRRA Case

This proof is an adapted version of the one presented by [6]
and it is also been revised from [51].

The control problem of choosing a strategy 𝜋 = 𝜋(𝑡, 𝑥) to
maximize, for each 0 ≤ 𝑡 < 𝑇 and for each 𝑥,

J (𝑡, 𝑥, 𝜋)
def
= E [𝑢 (𝑋 (𝑇)) | 𝑋 (𝑡) = 𝑥 ,

strategy 𝜋 is used] ,
(A.1)
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is a familiar one and is treated by, for example, [54]. The
ingredients of the problem are the utility function 𝑢 and the
dynamical process 𝑋(𝑡), which in our case evolve according
to the stochastic differential equation:

𝑑𝑋 (𝑡) = 𝛼𝜋 (𝑡)𝑋 (𝑡) 𝑑𝑡 + 𝜎𝜋 (𝑡)𝑋 (𝑡) 𝑑𝑊 (𝑡) + 𝑑𝐶 (𝑡) ,

(A.2)

where 𝜋(𝑡) represents for each time 𝑡 the proportion of the
total wealth which is invested in the risky asset.

The optimal value function 𝑉(𝑡, 𝑥) is defined as

𝑉 (𝑡, 𝑥) = sup
𝜋

J (𝑡, 𝑥, 𝜋) . (A.3)

The Hamilton-Jacobi-Bellman methodology (HJB) allows us
to write the optimality equation in the form

sup
𝜋

[𝑉𝑡 + 𝛼𝜋𝑥𝑉𝑥 +
1

2
𝜋
2
𝜎
2
𝑥
2
𝑉𝑥𝑥] = 0, (A.4)

for each 𝑡 such that Δ𝐶(𝑡) = 0, where 𝑉𝑡, 𝑉𝑥, and 𝑉𝑥𝑥 denote
partial derivatives of 𝑉. If Δ𝐶(𝑡) ̸= 0, the corresponding
requirement is

𝑉 (𝑡−, 𝑥) = 𝑉 (𝑡, 𝑥 + 𝑑𝐶 (𝑡)) . (A.5)

As a function of 𝜋, this is quadratic, so the maximum is
achieved at

�̂� = −
𝛼

𝜎2𝑥
⋅
𝑉𝑥

𝑉𝑥𝑥

, (A.6)

as long as 𝑉𝑥𝑥 < 0 (a condition which needs to be checked
separately for each application of the theory). Substituting
this into the optimality equation gives

𝑉𝑡 −
𝛼
2

2𝜎2

𝑉
2

𝑥

𝑉𝑥𝑥

= 0, (A.7)

where Δ𝐶(𝑡) = 0.
In this case the terminal utility function 𝑢 is 𝑢(𝑥) =

𝛾
−1
(𝑥 + 𝐾)

𝛾. This prompts us to investigate solutions of the
form

𝑉 (𝑡, 𝑥) =
1

𝛾
𝑝(𝑡)
1−𝛾
(𝑥 + 𝑞 (𝑡))

𝛾
, (A.8)

which satisfy the boundary condition

𝑉 (𝑇, 𝑥) = 𝑢 (𝑥) =
1

𝛾
(𝑥 + 𝐾)

𝛾
. (A.9)

We find that

𝑉 (𝑡, 𝑥) =
1

𝛾
(𝑥 + 𝐾 + 𝑔 (𝑡))

𝛾 exp(
𝛼𝛾

2𝜎2 (1 − 𝛾)
(𝑇 − 𝑡)) ,

(A.10)

where 𝑔(𝑡) = ∫𝑇
𝑡
𝑑𝐶(𝑠), with corresponding strategy

�̂� (𝑡, 𝑥) =
𝛼

𝜎2 (1 − 𝛾)

𝑥 + 𝐾 + 𝑔 (𝑡)

𝑥
. (A.11)

It is elementary to verify that 𝑉𝑥𝑥 < 0 when 𝛾 < 1.
As we have found a strategy �̂� whose value function 𝑉

satisfies both the optimality equation and the boundary con-
dition, the verification theorem in [54] allows us to conclude
that the strategy is optimal.

The resulting optimal strategy, characterised by the form
�̂�(𝑡)𝑋(𝑡) = 𝐴(𝐾 + 𝑋(𝑡) + 𝑔(𝑡)) is known as the constant pro-
portion portfolio insurance (CPPI) strategy with multiplier
𝐴.TheCPPI strategy guarantees aminimum level of wealth at
some specified horizon,𝑋(𝑇) > −𝐾.

B. Optimal Strategy in the CARA Case

This investigation proceeds as in Appendix A, except that
now the utility function is 𝑢(𝑥) = −Λ𝑒−𝑥/Λ.

We seek a solution of the form

𝑉 (𝑡, 𝑥) = −𝐽 (𝑡) exp (− 𝑥
Λ
) . (B.1)

Then

𝑉𝑡 = −𝐽
󸀠
(𝑡) exp(− 𝑥

Λ
) ,

𝑉𝑥 =
𝐽 (𝑡)

Λ
exp(− 𝑥

Λ
) ,

𝑉𝑥𝑥 = −
𝐽 (𝑡)

Λ2
exp(− 𝑥

Λ
) .

(B.2)

For this to be a solution of (A.7) at times when Δ𝐶(𝑡) ̸= 0, we
must have

[𝐽
󸀠
(𝑡) −

𝛼
2

2𝜎2
𝐽 (𝑡)] exp(− 𝑥

Λ
) = 0, (B.3)

which has solution proportional to exp(−(𝛼2/2𝜎2)(𝑇−𝑡)).The
behaviour at the times when Δ𝐶(𝑡) ̸= 0 is accounted for by a
factor exp(−(1/Λ) ∫𝑇

𝑡
𝑑𝐶(𝑠)) = exp(−𝑔(𝑡)/Λ). Along with the

boundary condition 𝐽(𝑇) = Λ, the solution is therefore

𝑉 (𝑡, 𝑥) = −Λ exp(− 1
Λ
[𝑥 + 𝑔 (𝑡)] −

𝛼
2

2𝜎2
(𝑇 − 𝑡)) ,

𝑥�̂� (𝑡, 𝑥) =
𝛼

𝜎2
Λ.

(B.4)

Again, the verification theorem (see, e.g., [54]) enables us to
deduce that this strategy is optimal.
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C. Calculation of the Expected Shortfall for
the CPPI Strategy

The value at risk at the 𝜃th percentile for the CPPI strategy is
the value V𝜃 such that

(1 − 𝜃)

= P [𝑋 (𝑇) < V𝜃]

= P [𝑍 (𝑇) < V𝜃 + 𝐾]

= P [
𝑊 (𝑇)

√𝑇
<

1

𝐴𝜎√𝑇

× [log (V𝜃 + 𝐾) − log (𝑍 (0)) − (𝛼𝐴 −
1

2
𝐴
2
𝜎
2
)𝑇]].

(C.1)

Since 𝑊(𝑇)/√𝑇 is a standard Normal random variable, we
can work out the value of V𝜃 explicitly in terms of the other
parameters, noting that 𝑍(0) = 𝑋(0−) + 𝑔(0−) + 𝐾 = 𝐾:

V𝜃 = 𝐾{exp ((𝛼𝐴 −
1

2
𝐴
2
𝜎
2
)𝑇 + Φ

−1
(1 − 𝜃)𝐴𝜎√𝑇) − 1} ,

(C.2)

where Φ represents the standard Normal distribution func-
tion.

The conditional tail expectation corresponding to a left-
tail probability of (1 − 𝜃)% is given by

E [𝑋 (𝑇) | 𝑋 (𝑇) < V𝜃]

= E [−𝐾 + 𝐾 exp((𝛼𝐴 − 1
2
𝐴
2
𝜎
2
)𝑇)

× 𝑒
𝐴𝜎√𝑇𝑌

| 𝑋 (𝑇) < V𝜃]

= −𝐾 + 𝐾 exp((𝛼𝐴 − 1
2
𝐴
2
𝜎
2
)𝑇)

× E [𝑒
𝐴𝜎√𝑇𝑌

| 𝑌 < Φ
−1
(1 − 𝜃)] .

(C.3)

In this expression,𝑌 stands for the ratio𝑊(𝑇)/√𝑇, which we
know to have a standard Normal distribution.

By definition, P(𝑌 < Φ
−1
(1 − 𝜃)) = (1 − 𝜃). We may

therefore write the expected shortfall as

ES𝜃 = −𝐾 +
1

1 − 𝜃
𝐾 exp((𝛼𝐴 − 1

2
𝐴
2
𝜎
2
)𝑇)

× ∫

Φ
−1
(1−𝜃)

−∞

𝑒
𝐴𝜎√𝑇𝑦

×
1

√2𝜋
exp(−

𝑦
2

2
)𝑑𝑦

= −𝐾 +
1

1 − 𝜃
𝐾 exp ((𝛼𝐴 − 1

2
𝐴
2
𝜎
2
)𝑇)

× ∫

Φ
−1
(1−𝜃)

−∞

𝑒
𝐴𝜎√𝑇𝑦 1

√2𝜋
exp(−

𝑦
2

2
)

= −𝐾 +
1

1 − 𝜃
𝐾 exp (𝛼𝐴𝑇)

× ∫

Φ
−1
(1−𝜃)

−∞

1

√2𝜋
exp(−1

2
(𝑦 − 𝐴𝜎√𝑇)

2

)

= −𝐾 +
1

1 − 𝜃
𝐾𝑒
𝛼𝐴𝑇
Φ(Φ
−1
(1 − 𝜃) − 𝐴𝜎√𝑇) .

(C.4)

D. Proof of Proposition 2

We have to prove that

1 + 𝑟

𝑟
((1 + 𝑟)

𝑇/2
− 1)
2

(D.1)

is increasing in 𝑟 for 𝑟 > 0. Proving that its logarithm is
increasing will be sufficient. Differentiating the logarithm
gives

1

1 + 𝑟
−
1

𝑟
+ 𝑇

(1 + 𝑟)
𝑇/2−1

(1 + 𝑟)
𝑇/2
− 1

, (D.2)

which can also be written as

1 + (𝑟𝑇 − 1) (1 + 𝑟)
𝑇/2

𝑟 (1 + 𝑟) ((1 + 𝑟)
𝑇/2
− 1)

. (D.3)

The denominator is positive for 𝑟 > 0, as the first, second, and
third terms are positive. As for the numerator, it is an
increasing function of 𝑟, since it has derivative (1/2)𝑇(1 +
𝑟)
(𝑇/2−1)

(1 + (𝑇 + 2)𝑟), and its value at 𝑟 = 0 is 𝑇 > 0.

E. Approximating the Internal Rate of Return

Theinternal rate of return, or internal interest rate, is the value
𝑟 which makes the discounted value of the payment stream
𝐶(𝑡) equal to 0. In this simple situation, it means that

𝑇/2−1

∑

𝑠=0

𝑎(1 + 𝑟)
𝑇−𝑠

−

𝑇−1

∑

𝑠=𝑇/2

𝑎(1 + 𝑟)
𝑇−𝑠
− 𝑋 (𝑇) = 0.

(E.1)

Summing,

𝑎
(1 + 𝑟)

𝑇
− (1 + 𝑟)

𝑇/2

1 − (1 + 𝑟)
−1

− 𝑎
(1 + 𝑟)

𝑇/2
− 1

1 − (1 + 𝑟)
−1
= 𝑋 (𝑇) , (E.2)

which is equivalent to

𝑎((1 + 𝑟)
𝑇/2
− 1)
2

= (1 − (1 + 𝑟)
−1
)𝑋 (𝑇) . (E.3)
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If𝑋(𝑇) = 0 it is clear that the internal rate of return is 0.When
𝑋(𝑇) is not too large, we can use an asymptotic expansion to
derive an approximate value for 𝑟:

((1 + 𝑟)
𝑇/2
− 1)
2

= (1 +
𝑇

2
𝑟 +

1

8
𝑇 (𝑇 − 2) 𝑟

2
+ 𝑂 (𝑟

3
) − 1)

2

=
𝑇
2
𝑟
2

4
(1 +

1

2
(𝑇 − 2) 𝑟 + 𝑂 (𝑟

2
)) .

(E.4)

Multiplying this by (1 − (1 + 𝑟)−1), we obtain

4𝑋𝑚 (𝑇)

𝑐𝑇2
= 𝑟 (1 +

1

2
𝑇𝑟 + 𝑂 (𝑟

2
)) . (E.5)

This means that the value 4𝑋𝑚(𝑇)/(𝑐𝑇
2
) will provide a good

approximation to themedian value of 𝑟 as long as 𝑟𝑇/2 is quite
close to 0, and in other cases we can use the quadratic derived
from this expression to find a closer approximation,

𝑟 ≈
1

𝑇
(−1 + √1 +

8𝑋𝑚 (𝑇)

𝑐𝑇
) . (E.6)
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“The connection between distortion risk measures and ordered
weighted averaging operators,” Insurance:Mathematics andEco-
nomics, vol. 52, no. 2, pp. 411–420, 2013.

[8] B. Abbasi andM.Guillén, “Bootstrap control charts inmonitor-
ing value at risk in insurance,”Expert SystemsWith Applications,
vol. 40, no. 15, pp. 6125–6135, 2013.

[9] C.-D. Fuh, I. Hu, Y.-H. Hsu, and R.-H. Wang, “Efficient simu-
lation of value at risk with heavy-tailed risk factors,”Operations
Research, vol. 59, no. 6, pp. 1395–1406, 2011.
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