IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Sigtia, S., Benetos, E., Boulanger-Lewandowski, N., Weyde, T., Garcez, A. &
Dixon, S. (2015). A Hybrid Recurrent Neural Network For Music Transcription. Paper
presented at the 40th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 2015, 19-04-2015 - 24-04-2015, Brisbane, Australia.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4678/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

arXiv:1411.1623v1 [cs.LG] 6 Nov 2014

A HYBRID RECURRENT NEURAL NETWORK FOR MUSIC TRANSCRIPTION
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ABSTRACT acoustic and language models and then renormalizing fi&grod-

uct of experts, suffers from tHabel bias problem for low entropy
We investigate the problem of incorporating higher-leyghbolic  sequence$T11].

score-like information into Automatic Music Transcripti¢AMT)
systems to improve their performance. We use recurrenthaat-
works (RNNs) and their variants as music language modeld\sJL
and present a generative architecture for combining thesgeln
with predictions from a frame level acoustic classifier. Wé@a@om-
pare different neural network architectures for acoustadefing.
The proposed model computes a distribution over possitfipubu
sequences given the acoustic input signal and we presergan a
rithm for performing a global search for good candidate gcaip-
tions. The performance of the proposed model is evaluatepi-on
ano music from the MAPS dataset and we observe that the mdpos
model consistently outperforms existing transcriptiorthods.

Recently, there have been a few studies that try to incotpora
symbolic priors into AMT systems. The model proposed_in [¢],
an input-output variant of the RNN-RBM model for music trerig-
tion. Although the model performs well on several datasessiffers
from the problem oteacher forcing, where the acoustic and sym-
bolic information are incorrectly weighted. The systeniif]} uses
a family of Dynamic Bayesian Network (DBN) language models t
complement the acoustic model, though the search spacessi-po
ble transcriptions must be constrained in order for the otetb be
tractable. In[[19], the authors propose a novel dynamicstiesy for
incorporating symbolic information into a non-negativettaisation
based transcription model. The method proposed_ih [18brpw

Index Terms— Recurrent Neural Networks, Polyphonic Music rates symbolic information into a PLCA based transcripggatem
Transcription, Music Language Models using Dirichlet priors. Although the model performs well,can

only be used when the acoustic model is based on spectrogam f
torisation techniques. Another shortcoming of the moddlLBj is
1. INTRODUCTION that the acoustic and language models are trained indepiy thy
optimising different objectives.

The popular technique of superposing a Hidden Markov Model
(HMM) to the outputs of a frame-level classifier, like in gtaif-the-
art speech recognition systern$ [9] is intractable for AMSk&a This
is because the outputs of the acoustic classifier at any tienkigh-
dimensional binary vectors. Consequently, the number ddédm

Automatic Music Transcription (AMT) involves identifyinghe
pitches present in a given polyphonic acoustic signal ame:geing
a corresponding symbolic, score-like transcription [2dhst AMT
systems focus primarily on modeling the acoustic signatlémiify
the pitches present as a function of time. Music exhibitscstrral

rggglarity much like Ianguage, and therefore symbolic mse- .. HMM states is exponential in the number of output variablBsis
diction systems or Music Language Models (MLMs) can prOVIdemakes the parameter estimation problem for the HMM inttzeta

accurate symbolic priors and have the potential to sigmifigam- ) ) )
prove AMT systems. However, MLMs have not been extensivelym\/"vIS can be applied to polyphonic AMT systems under the as

aoplied to AMT because polvohonic svmbolic music predictio sumption that each pitch is independent of all the othehpid14].
appiie S polypho y P However this assumption is violated by polyphonic music tede-
is quite a difficult problem and simple models such as n-gram

which are used in speech are insufficient for modeling sexpegeof Tore the method Is unsatisfactory. ) ] ) .
polyphonic music/[3]. In this paper we employ the architecturelin [5], which wag/ori

Recurrent neural networks (RNNs) are powerful temporal-modinally proposed for modelling sequences of phonemes incspee
els that can, in theory, capture long-term dependenciesepetin-  '€cognition. The architecture provides a principled way so-
puts because of their powerful hidden representation. Rags PerPosing an RNN to the predictions of arbitrary frame level
their more complex variants][3], have recently been appligttess- clq53|f|er and.comblnes the two models under a common tgﬁlnln
fully to the problem of symbolic music prediction. This heslito ~ OPjective. It is advantageous to use RNNs for high-dimeralio
a revival of interest in the problem of incorporating prigmbolic ~ Problems like AMT, since the outputs of the RNN form a disitéxl
knowledge to improve AMT systems. Although RNNs achieve rea feéPresentation, which makes the parameter estimatioriggromore
sonable accuracy at symbolic music prediction tasks, ipisab-  tractable compared to an HMM. Additionally, the predicgasf an
vious how these priors can be incorporated into music triptamn ~~ RNN are conditioned on the entire sequence history whictgesn
systems. The obvious strategy of multiplying the predittiof the eralisation over the HMM transitions which are conditiormuy

on the previous time-step. We also compare performanceceetw

SSis supported by a City University London Pump-Primingr@reBis ~ USing Deep Neural Network (DNN) and RNN acoustic models. We
supported by a City University London Research Followstibis currently ~ present an efficient high-dimensional beam-search atgoritor
working at Google Inc, Mountain View, California, USA decoding and compare the performance of tiylsrid architecture
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to existing AMT systems.

The rest of the paper is organised as follows. Section 2-intro
duces RNNs. Section 3 describes the hybrid architectur&antion
4 discusses the inference algorithm that is used for tesSegtion
5 describes the experimental setup and details of traitf8egtion 6
discusses the results and the paper is concluded in Section 7

2. RECURRENT NEURAL NETWORKS

An RNN is a powerful discrete-time dynamical system that ican
principle, capture complex long term dependencies betvtsen-
puts. An RNN, when used as a generative model, defines ahdistri
tion over a sequencein the following manner:

Fig. 1. Proposed hybrid architecture.

T
= [[ Pzl A) (1)
t=1
where A, = {z,|7 < t} is the sequence history at timeThe hid-
den state of an RNN with a single layer of hidden units is deffine P(z,z) = P(z1...2r,21...2T) 4
the following recurrence relation: T
ht = c(Wenzt—1 + Whnhe—1 + br) 2) - Plzilz) tzl_[Q (2} Ae) P(we]z2). ©)

whereW;,, are the weights from the inputs at- 1 to the hidden
units att, Wp, are the recurrent weights between hidden units at
¢t — 1 andt andby, are the hidden biases. . In the above factorisation, the symbolic prediction teffs;|.A;)
The output vector at time; is obtained in the following way: can be obtained from an RNN, while thi&(z;|z:) terms areemis-
sion probabilities of observing the acoustic vectargiven a state
20 = f(Whhe +b) @3) P 9 9

z:. The above factorisation makes the following independence
where f is some function applied to each element. The choicg of @SSumption for an emitted acoustic vecter
depends on the outputs that are being modeled. If the ougiit v
ables form a one-of-K representation, theiis a softmax function P(xi|z, {zr, 7 < t}) = P(xe|2e). (6)
that yields a multinomial distribution at the outputs. Whgiis a
sigmoid function, then the outputs represent the indepgnaeba-  Using Bayes'’ rule, the joint probability can be reformuthie terms
bilities of occurrence of each output variable. of the scaled likelihood:

The fact that the output variables are independent of edwdr ot
is a very restrictive assumption when used for modeling prodyic
music. This is because musical notes appear in highly ctec! Z1I:C1 T P(z|xe)
patterns where the presence or absence of a note influerckieeth P(z,x) o< P(21;01) H (2| Ae) PG (7)
lihood of occurrence of all other notes. Therefore, instefdsing t=2 ¢
the RNN to predict the probabilities of pitches directly, ean use
the RNN to predict the parameters of a high-dimensionalidigion =~ Where ©, are the parameters of the language model. The term
estimator like the Restricted Boltzmann Machine (RBM) @ Meu-  £(z:|+) can be obtained from the output of an arbitrary frame-level
ral Autoregressive Density Estimator (NADE) [3]. The RNMDE cIaSS|f|er,P(.zt) is the marginal dlstrlbupqn of target vectors which
is a natural choice for a language model since it is tractabth- ~ c@n be easily calculated from the training set and constamst
tain probabilities from the conditional NADES at each stepichis ~ involving z; have been removed by introducing the proportionality
necessary during inference. Another advantage of usingi-  Symbol.

NADE is that the gradients of the objective function can bielwca We train the model by maximising the log-likelihood of occur
lated exactly and therefore we can make use of more powepfisl o rence of pairs of training examples z. The model can be eas-
misers like Hessian Free (HFE)Y[12]. ily trained with gradient descent because the gradient efldg-

likelihood splits up into terms associated with the acauatid lan-

3. HYBRID ARCHITECTURE guage models in the following way:

In this section we describe the architecture used to conasifRNN- Olog P(z, 2)
based MLM with an arbitrary frame level classifier. The aretiure 90, ~ 90, Z log P(zt]at) ®)
is a generative graphical model that generalises the HMMitee =1
ture by conditioning predictions at some timeon all previous pre-
dictions7 < ¢, as opposed to the HMM, where= ¢ — 1. Figure 1 Olog P(x, 2
is a graphical representation of the architecture. # ~ 90, ZIOg P(ze]Ar) ©)
The hybrid architecture factorises the joint probabilifyte se- =1
quence of acoustic vectossand their corresponding labeisn the  where©,, ©; are the parameters of the acoustic and language mod-
following way: els respectively.
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In the hybrid architecture, the predictian at timet is conditioned
upon the entire sequence histoty due to the RNN language model.
This enforces successive frames to be coherent and thusrmerf
temporal smoothing. In addition to temporal smoothing, ecua
rate language model can impose musicological rules andaest
tions on the output transcriptions. While decoding, prdaeg in
a greedy chronological manner yields sub-optimal reswdtsabse

the sequence histotd: has not been optimally determined. At the

same time, exhaustively searching for the globally optisegjluence
is intractable since each non-leaf node in the search grapb™
descendants. Instead, we perform a global search for thelikelg
sequence using beam search, a breadth-first tree searchihetgo
that keeps track of only the most promising paths at any depth
[8l14.[5]. In the search graph, a node at deptbrresponds to a sub-

5. EXPERIMENTS

5.1. Acoustic Modelling

We experiment with using 3 different neural network arattitees
for learning relevant features from spectrogram inputsstlyi we
use a deep, feed-forward neural network (DNN) as the aaocisis-
sifier. DNNs currently form the state of the art for acoustad®lling
in speech([9] and have been successfully applied to musisdrgp-
tion in the past([18.]3]. The ability of DNNs to learn a hieftayof
increasingly complex features makes them an ideal chorcacfuus-
tic modelling.

Despite being powerful frame-level classifiers, DNN ouspare
often noisy because they do not account for dependencieséet
input frames. In order to avoid this issue, we also expertmetin
using an RNN acoustic model. DNNs base their predictionsiupo
a single frame of input, while the predictions of an RNN ateim

sequence of lengthand the log-likelihood of each sub-sequence ist are conditioned on all frames for time < ¢. Previous work

the heuristic that guides search.

In addition to the beam widtty, the high-dimensional variant of
the beam-search algorithm outlinedlin [4] requires an aultht pa-
rameter, the branching factéf. When using complex distribution
estimators like the NADE, deterministically enumeratinigpassi-
ble configurations in order of decreasing probability igantable.
In such situations, the algorithm proceeds by making a pbthe

on using RNNs as acoustic models for transcription dematestr
that RNNs are very good at predicting note-onsels [2]. Wethise
stacked RNN architecture, where several recurrent hidalgrs are
stacked in order to encourage each recurrent layer to @patad
different timescale[[17]. One limitation of using the RNN the
acoustic model is that it violates the independence assompitade

in Equatior[ 6. The RNN predictions aare conditioned on all past
inputs forr < ¢ through the hidden layers. Since the language model

top K candidate solutions by sampling. Random sampling from the, the acoustic model are trained separately, combinigig phe-

conditional distribution of the language model is slow amefficient
and limits the size of the beam width during search.

Algorithm 1 High Dimensional Beam Seardh [4]

Find the most likely sequencegiven z with a beam widthw.
q < min-priority queue
g.inser(0, {}, Mim, Mam)
fort=1toT do
q' + min-priority queue of capacity *
while ¢".len() < w do
for 1, s, mim, Mam iN g dO
2 = mam.nextmostprobable()
' = log Pim (2'8) Pam (7' |x) — log P(2")
MYy < Mim With 2 1= 2/
My <= Mam WIth 2 1= 2441
g.insert(+ 1, {s, 2"} , My, Mam)

q+q
return g.pop()
x A min-priority queue of capacityw maintains thev highest val-
ues at all times.

dictions leads to certain factors being counted twice. @ith in
theory, this makes it hard to use RNN acoustic models, in xpere
iments we discovered that this difficulty does not affect@enance.

Finally, we experiment with using the features learnt by a\DN
as inputs to an RNN. The motivation for doing this is that #etfires
learnt by the DNN are believed to disentangle the factorsaofv
tion present in the inputs [7]. It is easier for the RNN to diger
relationships between frames of disentangled featuresrapared
to the original spectrogram inputs. We use the activatidniseohid-
den units of all the layers of a DNN as input features to a g@dck
RNN.

5.2. Language Modelling

As mentioned in Section 2, the RNN can be used as a generative
model to define distributions over sequences. Unlike spesmbg-
nition, where the language model computes a multinomiatidis

tion over a discrete set of phoneme labels, the MLM has to coenp
distributions over high-dimensional binary vectors. Idarto cap-

ture the interactions between the output variables at eahdtep,

we prefer to use the RNN-NADE over the RNN as the MLM. At
each step, the conditional NADE defines a joint distributiwar the
space of high-dimensional binary output vectors. At tasetithe

Instead of pooling the to configurations by drawing samples conditional NADE at time provides the likelihood of observing the
from the language model at each time step, we propose using tiYECtors predicted by the acoustic model, conditioned othelpre-

acoustic model to enumerate the most likely predictionse ioti-
vation for doing so is twofold. Firstly, using the most likedolutions
from the acoustic model to direct search avoids cases whereaun-

dictions so far.

5.3. Experimental Setup

guage model makes mistakes early on in a sequence and can neve

recover from them. Secondly, the outputs of the acoustigsdiar
are independent of each other. Enumerating the most likdlyiens
with a DP algorithm is more efficient than stochastic sangp|ii.
Unlike [4], the high-dimensional beam search algorithrmined in
algorithm 1 does not require the branching fadidto be specified
in advance and allows the use of much larger beam widths.

We perform experiments on the MAPS datasét [6] to test the per
formance of the hybrid architecture and compare its perémice
to other models. The MAPS dataset consists of 270 pieces-of pi
ano music along with their ground truth MIDI transcription210
of these are rendered by software synthesisers, while 6played
on real pianos. For our experiments, we randomly select 2@bg



Post Processing None Thresholding HMM Hybrid Architecture

Acoustic Model | Frame Note| Frame Note| Frame Note| Frame Note
DNN 66.33 56.09| 67.95 59.58| 68.16 62.50| 69.25 62.90
RNN 66.83 61.48| 67.92 62.40| 67.27 65.36| 68.24 67.4

DNN + RNN 68.83 62.41] 69.30 61.35| 68.60 63.45| 69.62 64.69
Table 1. F-measures for multiple pitch detection on the MAPS datase

_ Precision Recall Accuracy processing. We report F-measures for both frame-based a@ted n
Acoustic Model | Frame _ Note| Frame Note| Frame Note| g6t hased evaluation metrics [1]. The best DNN acoustideino
DNN 66.61 6137] 7212 64.52] 5297 4588 consists of3 layers with100 units each. The RNN acoustic models
RNN 62.41 66.25| 75.28 68.6 | 51.79 50.83 . . .
DNNTRNN 6316 6557 7751 63841 5339 4751 have two staqked hidden Ia}yers with0 hidden units each. For lan-
guage modelling, the conditional NADEs hawv& hidden units and
the RNN hasl00 hidden units. Four types of post-processing are
considered in the experiments. No post processing, wheretist
likely outputs from the classifiers are chosen; learningpehdent
thresholds for each classifier output based on the trairghd-#vM
post processing assuming each pitch-class is independedtfi-
nally the proposed hybrid architecture with a beam widtk= 100.

Table 2. Additional evaluation metrics for the hybrid architeeur

for training, 20 for validation and 50 for testfhgWe use the en-
tire length of the training and validation tracks and usefits: 30
seconds of the tracks for testing. Pre-processing the detsisted . . S .
of downsampling the tracks tt6 kHz and calculating the magni- The pqst processing alsc,) includes minimum .durat|on pruifitg
tude spectrogram. Spectrograms were computed with a wisdmy ms) to improve the model’'s accuracy at detecting note-enset

of 64 ms and a hop size df2 ms for the training and validation From Table 1, we observe that the hybrid architecture censis
tracks. For the test tracks, spectrograms were computed evens  tently outperforms other methods. The best F-measure om bot
[1J The Spectrograms were further preprocessed by subtgalhe frame-based and note-onset based metrics is achieved hyh)hd
mean and dividing by the standard deviation of each frequeiry, ~ architecture. The note-onset based F-measure is compdtatiie
calculated over the training set. frame-based F-measure which demonstrates the abilityeahtidel

to accurately identify note onsets. Beam search post-psoug
leads to 8% increase in frame-based F-measure agfidncrease

in note-onset F-measure over greedy seatch= 1) for the DNN

The acoustic and language models were trained by gradisnede  acoustic model. The RNN acoustic models are better at aetyra
according to Equatioris 8 afifl 9. The output layers of both tRBID  predicting note-onsets because they implicitly performgeral

and RNN acoustic models consisted of sigmoid units. Eacpubut smoothing. In our experiments we discovered that the noisyND

of the acoustic model can be interpreted as the independeht p outputs when smoothed with a median filter, performed eguadl|
ability of a pitch being present in that frame. The acoustas¢  as the RNN acoustic models on the note-based metrics. Tétéveel
sifiers were trained by minimising a cross entropy cost,esithe  improvement in performance when using the hybrid architect
target vectors for all frames are high-dimensional binaegters.  is maximum for the DNN acoustic models, which is probably due
For both DNN and RNN models, weights were randomly initedis  to the fact that they do not violate the independence assomist

by sampling values from a Gaussian distribution witmean and Equatior 6. Table 2 shows additional metrics for the 3 hybridiels

0.01 standard deviation. We also used a momentuth®fvhile up-  that perform best. It is clear that most of the errors are dualse
dating the weights. The DNN models were trained on indep&nde alarms, which can be attributed to the error in accuratelgetimg
frames of spectrograms extracted from the training settrfdoring  note durations. However this error is not unique to thisipalar

the stacked RNN models, the training tracks were furtheidddy ~ system and persists even in the ground truth transcriptiofise

into sub-sequences of length 200 and the models were trdiped beam search takes 20 hours on a CPU to decode the first 30 second
Back-Propagation Through Time (BPTT) [16]. The RNN-NADE of all the test tracks.
language models were trained on the ground truth MIDI data@s

ated with the training data. The RNN-NADE models were opgdi

with Hessian Free (HF) optimisation.

5.4. Training

7. CONCLUSION

5.5. Evaluation Metrics We present a hybrid RNN-based architecture for includimgtsylic

We evaluate the performance of our system using the evafuatet-  priors in an automatic music transcription system. Theitecture
rics used in MIREX[[1]. We present F-measures for both frame-combines acoustic and high-level symbolic predictions priaci-

based and onset-only note-based tracking evaluationasetkiddi-  pled manner and we propose an efficient algorithm for infezen
tionally, we report precision, recall and accuracy meastoethe 3  The model generalises the popular technique of using inmii=pe
best performing models. HMMs to smooth the predictions of acoustic classifiers. Eatbn
on the MAPS dataset suggests that the model outperformzdela
6. RESULTS music transcription systems. In the future, we plan to workm-

proving the individual components of the architecture, egnthe

In Table 1, we present F-measures for the different systemis e acoustic and language modeling. We would also like to inyats

uated using different combinations of acoustic models apst-p Ways to improve beam search to make it feasible for real-tpmi-
cations. Finally, we would like to expand our evaluationslatasets

Training/testing data info at: www.eecs.gmul.ac.uk/33ss with multiple instruments.
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