

City, University of London Institutional Repository

Citation: Bailey, T. M. & Pothos, E. M. (2008). AGL StimSelect: Software for automated

selection of stimuli for artificial grammar learning. Behavior Research Methods, 40(1), pp.
164-176. doi: 10.3758/brm.40.1.164

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4681/

Link to published version: https://doi.org/10.3758/brm.40.1.164

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

AGL StimSelect 1

AGL StimSelect: Software for automated

selection of stimuli for Artificial Grammar

Learning

Todd M. Bailey

School of Psychology

Cardiff University

Emmanuel M. Pothos

Department of Psychology

Swansea University

Please address correspondence to Todd Bailey, School of Psychology, Cardiff University,

Cardiff CF10 3AT, UK, or Emmanuel Pothos, Department of Psychology, Swansea

University, Swansea SA2 8PP, UK. Electronic mail may be sent at baileytm1@cardiff.ac.uk

or e.m.pothos@swansea.ac.uk

Running head: AGL StimSelect; Word count: 7,865 (including abstract)

mailto:baileytm1@cardiff.ac.uk
mailto:e.m.pothos@swansea.ac.uk

AGL StimSelect 2

Abstract

Artificial Grammar Learning (AGL) is an experimental paradigm that has been used

extensively in cognitive research for many years to study implicit learning, associative

learning, and generalization based either on similarity or rules. Without computer assistance

it is virtually impossible to generate appropriate grammatical training stimuli along with

grammatical or non-grammatical test stimuli that control relevant psychological variables.

We present the first flexible, fully automated software for selecting AGL stimuli. The

software allows users to specify a grammar of interest, and to manipulate characteristics of

training and test sequences, and their relationship to each other. The user thus has direct

control over stimulus features that may influence learning and generalization in AGL tasks.

The software enables researchers to develop AGL designs that would not be feasible without

automatic stimulus selection. It is implemented in Matlab.

AGL StimSelect 3

Artificial Grammar Learning (AGL) experiments test people’s sensitivity to sequential

dependencies. In its most common form, an AGL study involves letter strings (e.g. XVSX)

which do or do not conform to some simple set of rules (a finite state grammar). Strings that

conform to the rules are grammatical (G strings), and strings that do not conform are

ungrammatical (NG strings). Without knowing anything about rules, participants study a

sample of strings that conform to the rules. After being told that the studied stimuli all

conformed to an unspecified set of rules, participants are then asked to observe a set of novel

strings and decide which are G and which are NG. The first AGL study was presented in

1967 (A. Reber, 1967) and since then there have been more than 125 studies, spanning

research themes as diverse as implicit cognition (Berry & Dienes, 1993; Pothos, 2007; A.

Reber, 1993; Shanks, 2005), associative learning (Boucher & Dienes, 2003; Perruchet et al.,

2002; Servan-Schreiber & Anderson, 1990), rules vs. similarity (Ashby et al., 1988; Pothos,

2005), and cognitive neuropsychology (including amnesia, Alzheimer’s disease, and

Parkinson’s disease; Knowlton & Squire, 1996; Poldrack et al., 2001; P. Reber & Squire,

1999; Witt, Nuehsman, & Deuschl, 2002). The AGL paradigm has also been used recently to

study the psychopathology associated with dyslexia (Pothos & Kirk, 2004), and to examine

cognitive processes supporting the maladaptive behavior of alcohol abuse (Pothos & Cox,

2002).

In principle, the structural properties of AGL stimuli can be controlled to a high

degree of specificity to allow rigorous examination of different theories of learning. For

example, Vokey and Brooks (1992; Brooks & Vokey, 1991) manipulated the similarity of

test strings to training strings, across both G and NG test items. Knowlton and Squire (1996)

factorially combined test string grammaticality with “chunk strength” to test effects of the

relative familiarity of subsequences within the test strings (pairs or triplets of letters, called

chunks or fragments). Others have combined grammaticality with both similarity and chunk

AGL StimSelect 4

strength (e.g. Meulemans & van der Linden, 2003). Another possibility is to experimentally

control some properties (particularly grammaticality), and then analyze the effects of other

properties through mathematical modeling (Johnstone & Shanks, 1999; Pothos & Bailey,

2000).

The research above took great care to control important stimulus properties. It is far

from trivial to construct AGL stimulus sets that simultaneously control multiple

psychologically relevant factors. At present, AGL researchers employ trial-and-error methods

to identify appropriate stimuli, with more or less assistance from whatever software tools

they develop themselves on an ad hoc basis. These informal methods are perhaps sufficient to

control two or three key stimulus properties across small stimulus sets with fewer than about

50 test items. However, these methods do not scale up well to more complex designs. Also,

although AGL studies typically aim to draw general conclusions, they usually rely on a single

set of stimuli on which all participants are tested. Although it would often be preferable to

test each participant on a different set of stimuli (Dienes & Altmann, 2003; R. Reber &

Perruchet, 2003; Redington & Chater, 1996), it is not usually feasible to identify more than

one suitable set of stimuli for a given study using the present trial-and-error methods. Thus,

the lack of an automated procedure to generate AGL stimuli is a major limitation in AGL

research.

In this paper we present AGL StimSelect, a software package that automatically

generates training and test strings that embody structural properties that can be selected by

the user from a flexible and extendable set of parameterized constraints. With StimSelect, a

user can quickly generate AGL stimuli, while controlling multiple variables that are likely to

influence performance on an AGL task.

Program Design

AGL StimSelect 5

The StimSelect software is written in the Matlab programming language, which is available

for Windows, Macintosh, and Unix computing environments. Matlab is particularly suitable

for mathematical and computational modeling in a variety of disciplines, including

psychology and cognitive science. The base Matlab system is required, as well as the

Statistics toolbox. Matlab and all its toolboxes are frequently available in many academic

departments and, where they are not, individual licenses can be purchased from the

MathWorks (www.mathworks.com).

StimSelect consists of a set of parameterized functions that may be called manually

from Matlab’s command window, or from within scripts or other functions written by the

user. The software is designed to be easy to use, and requires only an elementary familiarity

with Matlab programming. A great deal of flexibility is built into StimSelect in the form of

optional arguments for the various functions to specify constraints on a wide range of

stimulus properties. More advanced users can extend the range of stimulus properties

controlled by StimSelect, by writing additional functions that interface with the lower level

StimSelect functions and data structures. However, the present paper focuses on the basic

aspects of StimSelect that will be of interest to most users.

Finite state grammars.

A user-specified finite state grammar is central to the operation of StimSelect. In AGL

studies the training strings conform to some set of rules, and these rules are most often

specified as finite state grammars. An example grammar, from Knowlton and Squire (1996,

Exp. 1), is shown in Figure 1. In general, a finite state grammar identifies beginning and end

states (indicated as IN and OUT in Figure 1), and defines continuation relations among

elementary symbols, allowing certain sequences of symbols to be constructed (Chomsky &

Miller, 1958). Letter sequences are either G or NG, according to whether or not they can be

constructed by the finite state grammar of interest.

http://www.mathworks.com/

AGL StimSelect 6

------------------------FIGURE 1 ABOUT HERE----------------------

StimSelect allows the user to specify a finite state grammar of their choice, or to

simply select one of two widely used grammars that are built in (Knowlton and Squire, 1996,

Exp. 1; A. Reber & Allen, 1978). StimSelect requires a deterministic grammar, so that no

state of the grammar can have two outward transitions labeled with the same letter. Because

any non-deterministic finite state grammar can readily be converted into an equivalent

deterministic one, this is a restriction on form but not substance.

The grammar specifies which letters are relevant to a particular study, and determines

which sequences of those letters are G and which are NG. If the number of either G or NG

strings is large, StimSelect will operate on a random subset of those strings (by default, the

limit is 10,000 G and NG strings combined). Training strings are always chosen from among

the G items. Test strings may be either G or NG, unless restricted to one or the other by user-

specified constraints. The sets of training and test strings are strictly non-overlapping, so any

given string can be chosen as a training string, a test string, or neither, but not both.

Properties of test strings that can be controlled in StimSelect include grammaticality,

similarity, chunk strength, chunk novelty, and rule strength. The following sections introduce

these properties in relation to the AGL literature, and then outline the selection strategy used

by StimSelect to identify training and test strings that have the combinations of properties

desired by the user.

Grammaticality.

Most AGL studies manipulate the grammaticality of test strings relative to the rules of the

finite state grammar employed, so that some test strings are G and some are NG. This makes

it possible to assess how well participants discriminate between test strings that do or do not

AGL StimSelect 7

follow the rules exemplified by the training strings. Originally, the ability to distinguish G

from NG strings, even to a limited degree, was argued to indicate knowledge of the

underlying finite state grammar (e.g., A. Reber, 1976). However, later investigators have

rejected this interpretation, including the original proponent himself (e.g., Dulany et al.,

1984; Pothos & Bailey, 2000; A. Reber, 1993). There is currently some controversy about the

appropriate psychological interpretation of participants’ partial ability to discriminate

between G and NG strings (Pothos, 2007). Nevertheless, the grammaticality of test strings is

easy to establish and provides a highly intuitive relation between test strings and training

strings. Perhaps for these reasons, as well as its historical importance in the origins of AGL,

grammaticality continues to feature prominently in AGL studies.

Similarity.

The similarity of test strings to training strings is one property of AGL stimuli that might be

psychologically relevant (Vokey & Brooks, 1992). According to exemplar theories of

categorization (e.g., Nosofsky, 1988), classification of a new instance as a member of this or

that category depends on the overall perceived similarity between the new instance and

familiar members of each category. In AGL, Vokey and Brooks (1992) used edit distance to

determine relative similarities between any two test and training strings. In its simplest form,

the edit distance between two letter strings is the number of letter substitutions, insertions and

deletions required to convert one string into the other. In addition to its use in some AGL

studies, edit distance has also been used widely in psycholinguistics (e.g., Luce & Pisoni,

1998), where there is some evidence that people are more sensitive to substitutions than to

insertions or deletions of phonemes within words (Bailey & Hahn, 2001; Hahn & Bailey,

2005).

The default similarity function in StimSelect is based on edit distance, normalized by

the maximum possible distance for strings of the same length. This normalized distance

AGL StimSelect 8

ranges from 0 to 1, and is subtracted from 1 to arrive at a measure of similarity between 0

(maximally dissimilar, given the lengths of each string) and 1 (identical). By default,

StimSelect assigns somewhat greater importance to substitutions than to insertions and

deletions in its calculation of edit distance, so that a cost of 1 is assigned to each substitution

and a cost of 0.7 to each insertion or deletion (cf. Bailey & Hahn, 2001). Different costs for

these operations can be specified by the user. StimSelect also allows the user to specify an

alternative similarity function altogether.

Chunk strength.

After participants study the training strings in an AGL task, they may be more or less familiar

with subsequences of those strings, depending on how many times each subsequence

occurred within the training set. Then, when participants classify test strings, their responses

may be influenced by the perceived familiarity of the various subsequences within each test

string (Servan-Schreiber & Anderson, 1990; Perruchet & Pacteau, 1990; Knowlton & Squire,

1994). The subsequences usually considered in AGL research are pairs or triplets of letters,

called fragments or chunks. This theory of AGL performance derives from general principles

of associative learning theory, according to which the cognitive system learns by gradually

combining elementary units that co-occur frequently into a single representational unit (e.g.

Wasserman and Miller, 1997).

In StimSelect, chunk familiarity is operationalized by defining the strength of a chunk

as the ratio
EF

F


, where F is the frequency of the chunk across all training strings, and E is

the expected frequency for a chunk of that size (basically, the average frequency across all

chunks of that size in training). Chunk strength can range from 0 to 1; a chunk that occurs

with average frequency will have a chunk strength of 0.5, and if F>>E then 1
 EF

F
. The

AGL StimSelect 9

chunk strength of a test string is the average strength of all its chunks from bigrams up to any

user-specified chunk size.

The definition of chunk strength in StimSelect is obviously related to, but slightly

different from, the measure of global associative chunk strength used by Knowlton and

Squire (1996). They defined chunk strength in terms of the absolute frequency of a chunk,

that is, the number of times that chunk appeared in the training strings. In general, Knowlton

and Squire’s measure of chunk strength is sensitive to the number of training strings, and also

the number of times the same training strings are shown to the participant. Because

StimSelect’s measure of chunk strength takes into account the expected frequency as well as

the raw frequency of a chunk, it does not depend on the number of times the same training

strings are shown, and is generally independent of the number of training strings. This allows

users to change the number of training strings independently of the target chunk strength

values. Also, for a given number of training strings, Knowlton and Squire’s measure of chunk

strength varies across different grammars depending on the number of different symbols

employed. StimSelect’s measure of chunk strength does not. This should facilitate

comparisons across different grammars. Finally, it would be difficult, if not impossible, to do

incremental selection of training and test items using Knowlton and Squire’s measure of

chunk strength, since the final chunk frequencies would depend on both the number and

length of training items yet to be chosen. For these reasons, StimSelect adopts a new measure

of chunk strength rather than that of Knowlton and Squire. Nevertheless, the two measures

would typically correlate very highly with each other.

Chunk novelty.

There is some evidence that participants in AGL studies are sensitive to the presence of novel

chunks within test strings, that is, chunks that did not appear in any of the training strings

(e.g., Johnstone & Shanks, 1999; Meulemans & van der Linden, 1997, 2003). Sensitivity to

AGL StimSelect 10

chunk novelty may be independent of sensitivity to relative familiarity (which is measured by

chunk strength). In StimSelect, a test string’s level of chunk novelty is determined by

counting how many novel bigrams (or chunks of some user-specified size) are contained

within the string. In effect, chunk novelty is a measure of how surprising a given test item is,

in light of the training strings.

Rule strength.

Sensitivity to novel subsequences in an AGL study relies on knowledge about which chunks

did or did not appear in the training strings. Pothos (2007) has recently argued that such

frequency-independent knowledge amounts to knowledge of certain kinds of rules. This

proposal derives from earlier discussions of what might constitute knowledge of rules in

AGL (e.g., Dulany et al., 1984), as well as considerations of when it is meaningful to

distinguish between rules and similarity (Pothos, 2005; Sloman & Rips, 1998; Smith,

Langston, & Nisbett, 1992; Smith, Patalano, & Jonides, 1998).

In accordance with the above, StimSelect defines the rule strength of a test item as the

proportion of chunks it contains that have been observed in training. Rule strength is

computed across all chunks from bigrams up to a user-specified maximum chunk size. In

some ways, rule strength is a conceptual inverse of chunk novelty, but is based on the

proportion of chunks within a test item that are or are not novel rather than the absolute

number of novel chunks.

Selection of training and test strings.

Initially, the training and test sets are empty. A few strings are added to the training

set, choosing them carefully to control the overall frequency with which each letter, bigram,

and trigram occurs in the training set. Only G strings are eligible for inclusion in the training

set, as is the case with the vast majority of AGL studies. After making a start on the training

set, stimulus selection alternately adds strings to the various test sets and further strings to the

AGL StimSelect 11

training set. Strings are chosen for various test sets in order to achieve different combinations

of various attributes, like G versus NG, high versus low average similarity to the training

strings, high versus low chunk strength, and so on. Further training strings are chosen

according to the effect they have on the various test sets, so that the final combination of

training and test sets has the desired combination of attributes. The program aims to fully

counterbalance the attributes of interest (however, if attributes are highly correlated within

the strings generated by a particular grammar, there will be a limited range of values over

which it is possible to vary them independently). Stimulus selection stops when the training

and test sets contain the desired number of strings. At that point, StimSelect displays a list of

the selected training and test strings. Test strings are reported with categorical information for

each attribute (e.g. high vs. low similarity), along with the actual numerical measure of each

attribute.

Program Use

As mentioned above, StimSelect consists of a set of functions, distributed as Matlab source

code. We describe here the highest-level functions, which support the stimulus constraints

most commonly of interest to AGL researchers. If necessary, users with advanced Matlab

programming skills can readily extend the set of constraints by analogy with those described

here. In that event, a fuller understanding of the program should be pursued through the

examples distributed with the documentation, as well as the comments provided within the

various Matlab files.

A list of the high level StimSelect functions is given in Table 1, with an example

function call for each. The text below describes how to use these functions to identify stimuli

AGL StimSelect 12

for an AGL study, and covers the most common variations available through the function

arguments. A complete list of arguments for each function is given in the Appendix.

------------------------TABLE 1 ABOUT HERE----------------------

The basic idea of StimSelect is to identify a large number of potential stimulus

strings, and then identify appropriate strings to include in a training set as well as in various

test sets. There are six basic steps in using StimSelect. First, the user selects one of the pre-

defined grammars, or specifies the finite state grammar of interest. Second, the grammar is

embedded within an AGLSS data object to identify potential stimulus strings as G or NG.

Third, the user specifies the factors required to control various properties of the desired test

strings, including the number of levels of each factor. Fourth, the user specifies how the

different levels of the selected factors combine to define different sets of test strings. Fifth, a

constraint satisfaction function is run to choose the desired number of training and test

strings. Finally, the training and test strings are displayed, together with statistics that indicate

how well the selected strings achieve the desired properties. These six steps are described and

illustrated below.

1. Selecting the finite state grammar

We have provided functions specifying two frequently used grammars (Knowlton &

Squire, 1996, Exp. 1., and A. Reber & Allen, 1978). Alternatively, users wishing to specify

their own finite state grammar can easily do so. StimSelect includes a ‘grammars’ folder that

contains several functions defining finite state grammars. The grammar first used by

Knowlton and Squire (1996, Exp. 1) is defined by the function

knowlton_squire_grammar. The grammar of A. Reber and Allen (1978) is defined by the

AGL StimSelect 13

function reber_grammar. There are also some trivial ‘toy’ grammars, as examples of how

finite state grammars are defined.

In StimSelect, information defining a finite state grammar is stored in an FSG data

object. Two functions are provided to allow the user to easily define a finite state grammar

from scratch: FSG and LINK. The FSG function creates a new FSG data object corresponding

to a degenerate finite state grammar with a specified number of states but no transitions

between them. It also specifies the set of letters to be used by the grammar. Transitions

between states are added using the LINK function. For example, the grammar shown in

Figure 1 uses the letters ‘J’, ‘T’, ‘V’, and ‘X’, and requires five states. To create an

appropriate FSG data object, execute the expression:

g = fsg([], 'JTVX', 5);

The first argument to FSG (given as [] above) potentially allows the user to provide a

matrix defining transitions between states, but it is usually simpler to specify transitions

afterwards using the LINK function. The grammar in Figure 1 has two transitions out of state

1, one of which returns to state 1 and one of which goes to state 2. To add these transitions to

the FSG data object created above:

g = link(g, 1, 'XV', [1 2]);

The arguments to LINK respectively specify the FSG data object to be modified, the

state from which the specified links originate, the letters labeling the specified links, and the

states to which the links lead, given in the same order as the letters. The beginning state of a

grammar is always state 1. The end state is -1. As shown in Figure 1, transitions to the end

state are not labeled with letters of the grammar, but instead the symbol ‘.’ is used to refer to

AGL StimSelect 14

these transitions in calls to LINK. The remaining links of Figure 1 can be added using the

following expressions:

g = link(g, 2, 'JXT', [3 4 5]);

g = link(g, 3, 'T.', [1 -1]);

g = link(g, 4, 'J.', [4 -1]);

g = link(g, 5, 'V.', [4 -1]);

For convenience, the user would usually create a Matlab function containing the

expressions that define the grammar of interest.

2. Creating an AGLSS data object

The many working variables of StimSelect are organized within a specialized data structure

that has been defined specifically for this purpose. We refer to this data structure here as an

AGLSS data object, and most of the high level StimSelect functions operate on this object.

The function AGLSS creates a new AGLSS data object, and embeds the user’s finite state

grammar within it (in Matlab terminology, the AGLSS function is a class constructor

method). In addition to the user’s grammar, the AGLSS data object also contains a large set

of potential stimulus strings, based on the letters used in the specified grammar. Each

potential stimulus string is classified as G or NG by the grammar. Eventually, training and

test strings will be chosen from the potential stimulus strings. An argument to the AGLSS

function specifies the range of string lengths to be considered. By way of example, suppose

an AGL study is going to employ the grammar of A. Reber and Allen (1978), henceforth

simply the Reber grammar. To embed this pre-defined grammar in an AGLSS data object

and consider strings of lengths 3 to 7, execute the Matlab expression:

s = aglss(reber_grammar, [3 7]);

AGL StimSelect 15

This expression creates a new AGLSS data object, assigns it to the variable ‘s’, and

produces the output below:

Potential items:

 Grammar involves 5 symbols (MRSVX)

 97625 possible strings of length 3-7

 68 grammatical strings (0.07%)

 97557 ungrammatical strings (99.93%)

 Using all 68 grammatical strings

 Using sample of 9932 ungrammatical strings

The user must give some thought to the relevant range of string lengths. In general,

the range of string lengths must be determined primarily by the psychological hypotheses of

interest to the researcher, but the ability of StimSelect to efficiently identify appropriate

stimuli depends both on the particular grammar specified and on the range of string lengths of

interest. For example, with the Reber grammar, if the minimum length of strings is 3 and the

maximum is 7, then there are just 68 possible G strings and 97,557 NG ones. The small

number of G strings here will make it difficult to find a stimulus set for an AGL study that

simultaneously controls more than two or three key properties of the test items. By contrast,

if the maximum length of strings is increased to 11 then there are 388 possible G strings (and

61,034,737 NG ones). The greater number of possible G strings will make it easier to control

more properties of the stimuli, but at the same time there is probably a limit to the extent to

which participants in AGL studies are sensitive to sequential dependencies in very long

strings.

By default, out of all the possible G and NG strings, the AGLSS function ordinarily

selects at most 10,000 of these for subsequent processing as potential stimulus strings. The

AGL StimSelect 16

user can specify a different limit with an argument to the AGLSS function. To consider

30,000 potential stimulus strings the expression below could be used:

s = aglss(reber_grammar, [3 7], 30000);

In terms of obtaining the best possible stimuli, the more potential strings, the better.

However, with very large numbers Matlab may run out of memory, or program completion

times may be prohibitively long. In our simulations, searching in a set of 20,000 strings was

reasonably fast and typically led to the identification of highly acceptable training and test

sets.

If the number of possible G strings is less than half the specified limit, then all of

them will be potential stimulus strings. Otherwise, a random sample of them will be selected.

Similarly, a random sample of NG strings will be selected if necessary. The selection process

sometimes results in the number of potential strings being slightly less than the specified

limit, but never more.

The AGLSS data object variable (‘s’ in the examples above) will typically be

successively modified by subsequent calls to various StimSelect functions. Generally, before

starting another search for a new stimulus set users should be careful either to clear the

variables in Matlab memory (using the ‘Clear all’ command; see also later), or use different

variables for AGLSS objects corresponding to different searches.

3. Factors

The highly modular structure of StimSelect means that the user specifies as many factors as

required, in a straightforward ‘pick and mix’ manner. We describe here the basic options for

the available factors, only briefly mentioning additional advanced options where available

AGL StimSelect 17

(also see the Appendix). We anticipate that many users will not require these advanced

options, which are described in detail in the program documentation.

3.1 gram_factor

Grammaticality is the simplest factor, because it just distinguishes between the G and NG

strings. This distinction is made when the potential stimulus strings are originally selected by

the AGLSS function, so the grammaticality factor contributes very little to the time required

to run the final stimulus selection constraint satisfaction process. To specify the

grammaticality factor and assign it the name gram, execute the expression:

[s, levels] = gram_factor(s, 'gram');

This expression modifies the AGLSS data object ‘s’, and also creates the variable ‘levels’

which contains the names of the two levels of grammaticality, ‘G’ and ‘NG’. These level

names will be used later when combinations of factors are defined, and they will also appear

eventually in the lists of stimuli chosen. Here and elsewhere, the ‘levels’ variable is an

optional value returned by the function, and may be omitted if not needed, as in some

examples discussed below in the section on combining factors. Thus, the expression

s = gram_factor(s, 'gram');

has exactly the same effect as the previous one, but does not create the ‘levels’ variable.

An advanced option for the grammaticality factor allows the user to specify other

names for the grammaticality levels (e.g., ‘Good’ and ‘Bad’ instead of ‘G’ and ‘NG’; here

and elsewhere, for any advanced options not fully covered in text, please refer to the

Appendix). A similar option is available for all the factors, but will not be explicitly

mentioned for each.

3.2 sim_factor

AGL StimSelect 18

The similarity factor controls the average similarity of test strings to training strings. To

specify the default similarity factor and assign it the name Sim:

[s, levels, targets] = sim_factor(s, 'Sim');

In addition to modifying the AGLSS data object ‘s’, this expression creates the variables

‘levels’ and ‘targets’. The ‘levels’ variable contains names for the different levels of

similarity. Here, those will be ‘LowSim’ and ‘HighSim’, but in general the number of factor

levels and their names depend on the arguments specified for the sim_factor function. The

‘targets’ variable contains the actual values of similarity desired for test strings assigned to

the various levels of the similarity factor.

By default, two levels of similarity are specified based on the distribution of pairwise

similarities of the potential G items to each other. The 25
th

 and 75
th

 percentile values of these

similarities are the respective default target similarities for low similarity and high similarity

test strings. Different percentile values can be specified by an additional argument. The

expression

[s, levels, targets] = sim_factor(s, 'Sim', [20 80]);

assigns low similarity and high similarity values based on the 20
th

 and 80
th

 percentile values

of similarities between potential G strings. The user can specify more than two percentile

values to obtain any number of different levels of similarity. Alternatively, the user can

specify absolute similarity values rather than percentile values.

If levels of similarity are specified in terms of percentiles, the user can be reasonably

certain that the specified levels will be feasible, regardless of the grammar that is being used.

However, the same percentile for two different grammars might represent very different

levels of absolute similarity. If results are to be compared across different grammars, it may

be more appropriate to use absolute levels of similarity than percentiles. Note that a given

AGL StimSelect 19

level of absolute similarity may be feasible with some grammars and impossible to achieve

with others.

The 100
th

 percentile represents the similarity between the two most similar G items.

Usually this would not be a useful or attainable level of similarity to aim for among a set of

test strings. Indeed, the reported average high versus low values of similarity in the literature

are generally only marginally different from each other (e.g., Knowlton & Squire, 1994,

1996; Johnstone & Shanks, 1999; Pothos & Bailey, 2000; Vokey & Brooks, 1992).

Other advanced options allow the user to specify the relative cost of insertions,

deletions and substitutions in computing edit distances between strings, or to specify a

different similarity function altogether.

3.3 chstr_factor

The chunk strength factor controls degrees of familiarity of the subsequences in test strings.

To specify the default chunk strength factor and assign it the name ChStr:

[s, levels, targets] = chstr_factor(s, 'ChStr');

The return values on the left hand side of this expression, and others below, are just like those

of sim_factor, discussed above.

By default, two levels of chunk strength are specified, based on the frequency of

bigrams and trigrams in training strings (see the discussion of chunk strength in the program

logic section above). High chunk strength test strings will contain chunks occurring about

twice as often in training strings as the chunks within low chunk strength strings. This is a

somewhat more ambitious target than that typically employed in the literature. For example,

in Knowlton and Squire’s (1996) study the chunk strength manipulation varied the average

frequency of chunks only by a ratio of 1.54 to 1. The average global associative chunk

strength of the ‘low chunk strength’ items in their study was 5.6. Whereas the default

AGL StimSelect 20

criterion employed in StimSelect would produce high chunk strength items whose average

global associative chunk strength was twice as high (2 x 5.6 = 11.2), the average in Knowlton

and Squire’s stimuli was only 8.6.

Different relative frequencies can be specified by an additional argument. The

expression

[s, levels, targets] = chstr_factor(s, 'MegaChStr', [1 3]);

assigns more extreme low and high chunk strength levels, where high chunk strength test

strings contain chunks occurring, on average, three times as often in training as the chunks in

low chunk strength strings. The user can specify any number of relative frequency values, to

obtain as many levels of chunk strength as are required. Alternatively, the user can directly

specify the absolute target chunk strength for the chunks in the strings in each category.

An advanced option allows the user to control the variability in frequency allowed

among chunks within a single test string. Ideally, every chunk within a test string would have

the desired overall level of chunk strength for that string. However, it is not feasible to

achieve this level of zero variability if chunk strength is to be combined with other factors.

By default, frequencies are controlled so that strings can achieve their target chunk strength

by containing a mixture of 80% of chunks of the correct frequency and 20% of chunks at the

opposite end of the frequency spectrum. For example, a low chunk strength string of length

six could contain four low frequency bigrams and one high frequency bigram. The default

values of 80% and 20% can be altered, if necessary, to obtain the best feasible stimulus set.

An additional advanced option allows the user some control over the size of chunks

used to compute chunk strength. To date, all AGL research has used chunks of length two

and/or three (bigrams and trigrams). There are some theoretical justifications for doing so

(e.g., Cabrera, 1995; Dirlam, 1972; Servan-Schreiber, 1991), but the main reason for

restricting investigations to bigrams and trigrams has been ease of computation. The chunk

AGL StimSelect 21

strength factor allows consideration of chunk strength when the maximum chunk size is

arbitrarily large. For example, if a maximum chunk length of four is chosen, then chunk

strength computations will involve bigrams, trigrams, and 4-grams.

3.4 chnov_factor

The chunk novelty factor controls the number of novel chunks within test strings. Eligible

potential stimulus strings are identified ahead of time, so chunk novelty is computed very

efficiently and adds relatively little to the amount of time required by the constraint

satisfaction process used to select training and test strings. To specify the default chunk

novelty factor and assign it the name ChNov:

[s, levels, targets] = chnov_factor(s, 'ChNov');

By default, two levels of chunk novelty are specified, based on the number of bigrams within

a test string that appear in no training strings. Low novelty test strings will contain only

bigrams that also appear somewhere in the training strings. Each high novelty test string will

contain exactly one bigram that does not appear in any of the training strings. Note that

chnov_factor operates on chunks of just one size, unlike chstr_factor which by

default takes into account both bigrams and trigrams.

Any number of different novelty levels can be specified by an additional argument.

There is also an argument that controls the size of chunks on which chunk novelty operates,

allowing the user to control trigram novelty rather than bigram novelty, for example. A

further optional argument allows the user to control how many different chunks are to be

avoided in training strings to act as novel chunks in test strings. By default, two chunks that

occur in the fewest possible G strings are reserved in this way. Potential stimulus strings

containing these particular chunks will not be selected as training strings. Usually, any test

AGL StimSelect 22

string that contains a novel chunk will either contain one of these reserved chunks or an

ungrammatical chunk that does not appear in any G strings.

3.5 rulestr_factor

The rule strength factor controls the proportions of chunks in a test string that are familiar

from training. To specify the default rule strength factor and assign it the name RuleStr:

[s, levels, targets] = rulestr_factor(s, 'RuleStr');

By default, two levels of rule strength are specified, based on proportions of familiar

bigrams and trigrams. High rule strength test strings will contain 100% familiar bigrams and

trigrams. Low rule strength test strings will contain 75% familiar bigrams and trigrams (that

is, 75% of the chunks in each string will be familiar, and 25% will be novel). Different

proportions can be specified by an additional argument. The expression

[s, levels, targets] = rulestr_factor(s, 'RuleStr', [.5 .8]);

assigns low and high rule strength levels based on 50% and 80% familiar chunks. The user

can specify more than two proportions to obtain any number of different levels of chunk

strength. Note, however, that if chunk strength were to be used in combination with rule

strength, it would be difficult to find strings that have both high chunk strength and very low

rule strength.

An advanced option controls the maximum size of chunks on which rule strength

should operate. For example, if a maximum chunk length of four is chosen, then rule strength

will be computed over bigrams, trigrams, and 4-grams.

A further argument allows the user to control how many different chunks are to be

avoided in training strings to act as novel chunks in test strings. This option is just like the

corresponding one discussed above for chunk novelty.

4. Combining factors

AGL StimSelect 23

After specifying the individual factors of interest, the user must specify which levels of which

factors are to be combined with each other to create sets of test strings with particular

combinations of properties. The user is cautioned that, except where noted, the examples

below are not intended to be run one after the other. In general, each factor of interest should

be specified just once. To change the specification of a factor, the user should start again

from the first step, with a call to the AGLSS function, and proceed from there. The use of the

Matlab command ‘Clear all’ (which eliminates all variables in the Matlab workspace) is

advised before starting the process.

Suppose that grammaticality and chunk strength factors are specified as:

[s, glevs] = gram_factor(s, ‘gram’);

[s, chlevs] = chstr_factor(s, ‘ChStr’);

Then, to factorially combine grammaticality and chunk strength:

s = factorial_testsets(s, {'gram', glevs{:}},

{'ChStr', chlevs{:}});

The arguments to factorial_testsets specify an AGLSS data object plus one or

more bracketed lists (cell arrays, in Matlab terminology), each of which names a factor and

whichever of its levels are to be combined factorially with specified levels of other factors.

The order of factors in the arguments to factorial_testsets is irrelevant. In the

expression above, glevs{:} specifies all levels of the grammaticality factor (‘G’ and ‘NG’).

Similarly, chlevs{:} specifies all levels of chunk strength (‘LowChStr’ and ‘HighChStr’).

Alternatively, the user could spell out the factor levels explicitly:

s = factorial_testsets(s, {'gram', 'G', 'NG'},

{'ChStr', 'LowChStr', 'HighChStr'});

AGL StimSelect 24

To factorially combine similarity as well as grammaticality and chunk strength, the

expressions below could be used:

[s, glevs] = gram_factor(s, ‘gram’);

[s, chlevs] = chstr_factor(s, ‘ChStr’);

[s, slevs] = sim_factor(s, ‘Sim’);

s = factorial_testsets(s, {'gram', glevs{:}},

{'ChStr', chlevs{:}}, {‘Sim’, slevs{:}});

As a degenerate case, to control a single factor on its own, factorial_testsets

can be passed a single bracketed list naming the factor and levels of interest. For example, to

manipulate the grammaticality of test items:

s = gram_factor(s, ‘gram’);

s = factorial_testsets(s, {'gram', 'G', 'NG'});

An advanced option also allows non-factorial combinations of factors to be specified.

This would allow a user to, e.g., specify just three of the four possible combinations of two

binary variables, for example, omitting contradictory or infeasible combinations like low rule

strength – high chunk strength. In general, the feasibility of simultaneously controlling

multiple factors will depend on the length and number of potential strings to be considered,

the particular options specified for the factors of interest, and the finite state grammar.

5. Choosing the training and test strings

Once the desired combinations of factors are specified, the AGLSS data object is ready for

stimulus selection. The choose_items function runs a constraint satisfaction process to

identify the desired number of training and test strings. For example, to identify 10 training

strings plus five strings for each set of test strings:

s = choose_items(s, 10, 5);

AGL StimSelect 25

The number of test sets corresponds to the number of different combinations of

factors and factor levels. Thus, if only grammaticality is specified via the

factorial_testsets function, then choose_items will find five test strings for the ‘G’

category and five for the ‘NG’ one. If binary categories of grammaticality, chunk strength,

and similarity are combined factorially, then there will be eight test sets of five strings each,

for a total of 40 test strings.

The choose_items function dynamically displays a summary of its progress to give

the user an indication of how long the search for stimulus strings will take. On a Pentium

Duo IBM compatible computer, creating a stimulus set with 10 training strings and five

strings in each test set, balancing grammaticality and chunk strength, requires just a few

seconds (using the Reber grammar, with the default option of searching in a set of 10,000

potential items). By default, choose_items identifies an initial set of three training strings,

based on how well they represent the target distribution of chunk frequencies. Thereafter,

each selection round identifies an additional training string, then one test string for each set,

until the desired number of strings are selected. An advanced option allows the user to

specify how many training strings should be chosen initially, before selection of test strings

begins.

6. Displaying the training and test strings

After stimulus strings have been selected, the function format_train_items lists the

training strings in a formatted text string. This can be displayed in Matlab’s output window,

and copied and pasted into other applications as desired. Table 2 shows 10 training strings

that were selected based on the Reber grammar, and displayed using the expression below

(with no trailing semicolon):

AGL StimSelect 26

format_train_items(s)

--------------TABLE 2 ABOUT HERE-----------------

The first column of output from format_train_items enumerates the strings, and the

second column lists the strings themselves.

The function format_test_items lists test strings in a formatted text string, as

illustrated in Table 3. These test strings were selected to factorially control grammaticality

and chunk strength, and were displayed using the expression:

format_test_items(s)

--------------TABLE 3, 4 ABOUT HERE-----------------

Table 3 shows four test sets (two levels of grammaticality by two levels of chunk

strength), with five strings in each set. The first column, Tset_num, enumerates the different

test sets. The next two columns (gram_cat and ChStr_cat) list the names of the factor levels

that define each set of test strings. The Itm_num column enumerates the training strings

within each set, and the Itm_name column lists the test strings themselves. The last two

columns list the actual chunk strength for each string, and then the target chunk strength

corresponding to whichever test set the string is in.

Consider the first test string, VXRRM, which is in the set of G and LowChStr strings.

Its chunk strength is 0.367, which seems reasonably close to the target value for LowChStr

strings, 0.400. There is no such information for the grammaticality factor, because the

grammaticality of each potential stimulus string is defined ahead of time, and the selection of

AGL StimSelect 27

strings appropriate to each level of grammaticality does not require dynamic checking of

string properties against target factor levels.

For a quick, informal assessment of the extent to which the test strings are suitable or

not, summary information for each test set can be obtained by giving ‘summary’ as an

additional argument to the function format_test_items:

format_test_items(s, 'summary')

This expression lists average factor values for each test set, as illustrated in Table 4. The

columns are the same as in Table 3, except that item numbers and item strings themselves are

omitted. In evaluating the extent to which selected strings have the desired properties, the

user may wish to check whether the various properties of individual strings are closer to their

target values than to the target values of other levels of the same factor. Also, various authors

have used statistical tests to evaluate the collective appropriateness of AGL test sets (e.g.,

Brooks & Vokey, 1991; Knowlton & Squire, 1996; Vokey & Brooks, 1992). It is

straightforward to carry out such tests from the output produced by StimSelect.

Note that if the finite state grammar defines only a small number of G items, it may

be difficult or impossible to find suitable test strings that combine several other factors with

grammaticality. In that case, the properties of some test strings may be far away from the

specified factor levels. If this does occur, the user may wish to increase the maximum length

of the items in the first instance, and possibly experiment with some of the advanced options.

Program installation

The software is distributed as a .zip file. Users running Mac OS-X can unpack this file simply

by opening it with the Finder. Users running Windows XP can unpack this file by selecting it

in Windows Explorer and then choosing File > Extract All from the command menu. Users

AGL StimSelect 28

running Unix can unpack the .zip file using the unzip command. It does not matter where the

contents of the .zip file are extracted, but a Matlab path must be specified to that location so

that Matlab knows where to look for the StimSelect functions. The Matlab path can be

modified using the File > Set Path menu option in the Matlab command window. The ‘Set

Path with Subfolder’ button will allow the user to browse to the directory containing the

unpacked StimSelect files.

Summary

StimSelect allows the user to create AGL stimulus sets based on a particular finite state

grammar, so that the test strings are balanced across any combination of the following

factors: Grammaticality, similarity, chunk strength, chunk novelty, and rule strength. These

factors represent by far the most common stimulus properties in AGL studies (Pothos, 2007).

A number of advanced options allow the user to alter the specification of all these factors in

theoretically interesting ways (including, in particular, the use of larger chunk sizes for

chunk-based factors). Additional factors can be defined by analogy with the specification of

the existing ones.

To achieve flexible and efficient stimulus selection, the mathematical specifications

of some factors have been slightly refined relative to traditional definitions in the AGL

literature. We have altered the definition of chunk strength to obtain a more robust measure

in which chunk strength is scaled relative to expected chunk frequencies, so that chunk

strength values do not depend on training item repetitions or the number of training items.

Also, we have generalized the definition of similarity to allow differential weighting of

insertions, deletions and substitutions (such flexibility will be desirable for some research

projects). Finally, we have implemented for the first time a measure of rule strength,

AGL StimSelect 29

consistent with a recent proposal of what rules are (Pothos, 2005). Associating rules

knowledge with grammaticality has been highly problematic (e.g., A. Reber, 1993), therefore

providing an alternative conception of what would constitute rules knowledge in AGL would

enable new research possibilities.

The appeal of AGL has been recognized in that AGL designs allow the concurrent

examination of several hypotheses about learning. Researchers in the past have relied on

informal methods to balance the postulated influence of different stimulus attributes. With

such methods it is difficult, if not impossible, to balance arbitrarily many factors for stimulus

sets of arbitrary size. StimSelect allows AGL designs that are much more sophisticated than

was possible previously, including factorial manipulations of four or five stimulus properties

simultaneously. By greatly expanding the range of feasible AGL designs, StimSelect has the

potential to significantly aid further progress in AGL and learning research more generally.

AGL StimSelect 30

Appendix: Parameters for high level StimSelect functions.

fsg([], ‘L’, N)

 | |

 | Number of states in grammar

 |

 Letters used in grammar

link(F, S0, ‘L’, [S…])

 | | | |

 | | | States to which transitions go

 | | |

 | | Letters labeling links from S0 to S
 | |

 | State from which links originate

 |

 FSG data object; required

gram_factor(S, ‘F’, {‘L’…})

 | | |

 | | Level names, one per factor level; default {‘G’, ‘NG’}
 | |

 | Factor name; required

 |

 AGLSS data object; required

chstr_factor(S, ‘F’, [T…], {‘L’…}, [p P], Z)

 | | | | | | |

 | | | | | | Maximum chunk size to control; default 3

 | | | | | |

 | | | | | Fraction of high chunk strength string’s chunks at highest frequency level; default p
 | | | | |

 | | | | Fraction of low chunk strength string’s chunks at lowest frequency level > 0; default 0.8

 | | | |

 | | | Level names, one per factor level; defaults depend on number of levels

AGL StimSelect 31

 | | |

 | | Chunk strength targets (relative or absolute), one per level; default [1 2]

 | |

 | Factor name; required
 |

 AGLSS data object; required

rulestr_factor(S, ‘F’, [T…], {‘L’…}, [X G], Z)

 | | | | | | |

 | | | | | | Maximum chunk size to control; default 3

 | | | | | |

 | | | | | Minimum number of grammatical chunks of size Z to exclude from training strings; default 2

 | | | | |

 | | | | Minimum number of chunks (grammatical or not) to exclude from training strings; default G
 | | | |

 | | | Level names, one per factor level; defaults depend on number of levels

 | | |

 | | Rule strength targets, one per level; default [1 2]

 | |

 | Factor name; required

 |

 AGLSS data object; required

chnov_factor(S, ‘F’, [T…], {‘L’…}, [X G], Z)

 | | | | | | |

 | | | | | | Chunk size to control; default 2

 | | | | | |

 | | | | | Minimum number of grammatical chunks of size Z to exclude from training strings; default 2

 | | | | |

 | | | | Minimum number of chunks (grammatical or not) to exclude from training strings; default G

 | | | |

 | | | Level names, one per factor level; defaults depend on number of levels

 | | |

 | | Chunk novelty targets, one per level; default [0 1]
 | |

 | Factor name; required

AGL StimSelect 32

 |

 AGLSS data object; required

sim_factor(S, ‘F’, [T…], {‘L’…}, @M, {P…}, @N)

 | | | | | | |

 | | | | | | Scaling function; default XX

 | | | | | |

 | | | | | Parameters to similarity function; default {0.7,0.7,1} for @EditSim, else {}

 | | | | |

 | | | | Similarity function; default @EditSim

 | | | |

 | | | Level names, one per factor level; defaults depend on number of levels

 | | |

 | | Similarity targets (percentile or absolute), one per level; default [25 75]
 | |

 | Factor name; required

 |

 AGLSS data object; required

factorial_testsets(S, {‘F’, ‘L’…}, …)

 | | |

 | | Names of levels of F to be included; required

 | |

 | Name of factor to be combined factorially with others; required
 |

 AGLSS data object; required

factorial_testsets(S, {{‘F’, ‘L’…}, {…}}, …)

 | | |

 | | Names of levels of F to combine pairwise with corresponding levels of other factors; required

 | |

 | Name of factor to combine pairwise with other factors; required

 |

 AGLSS data object; required

AGL StimSelect 33

choose_items(S, N, M, N0)

 | | | |

 | | | Number of head start training items; default XX
 | | |

 | | Number of test strings desired per combination of factor levels; required (XX?)

 | |

 | Number of training strings desired; required

 |

 AGLSS data object; required

format_train_items(S)

 |

 AGLSS data object; required

format_test_items(S, ‘P’)

 | |

 | ‘detail’ or ‘summary’; default ‘detail’

 |

 AGLSS data object; required

Artificial Grammar Learning 34

Acknowledgments

This research was partly supported by ESRC grant R000222655 and EC Framework 6

grant contract 516542 (NEST).

References

Ashby, G. F., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A

Neuropsychological Theory of Multiple Systems in Category Learning.

Psychological Review, 105, 442-481.

Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or

lexical neighborhoods? Journal of Memory and Language, 44, 568-591.

Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and empirical issues.

Hove, England: Lawrence Erlbaum Associates.

Boucher, L., & Dienes, Z. (2003). Two ways of learning associations. Cognitive

Science, 27, 807-842.

Brooks R. L., & Vokey, R. J. (1991). Abstract Analogies and Abstracted Grammars:

Comments on Reber (1989) and Mathews et al. (1989). Journal of

Experimental Psychology: Learning, Memory and Cognition, 120, 316-323.

Cabrera, A (1995). The "Rational" Number e: A Functional Analysis of

Categorization. In Proceedings of the 17th Annual Conference of the

Cognitive Science Society, Mahwal, NJ: Lawrence Erlbaum Associates.

Chomsky, N., & Miller, G. A. (1958). Finite State Languages. Information and

Control, 1, 91-112.

Dienes, Z., & Altmann, G. (2003). Measuring learning using an untrained control

group: Comment on R. Reber and Perruchet. The Quarterly Journal of

Experimental Psychology, 56A, 117-123.

Artificial Grammar Learning 35

Dirlam, D. K. (1972). Most Efficient Chunk Sizes. Cognitive Psychology, 3, 355-

359.

Dulany, D. E., Carlson, R. A., & Dewey, G. I. (1984). A case of syntactical learning

and judgment: How conscious and how abstract? Journal of Experimental

Psychology: General, 113, 541-555.

Hahn, U., & Bailey, T. M. (2005). What makes words sound similar? Cognition,

97(3), 227-267.

Johnstone, T., & Shanks, D. R. (1999). Two Mechanisms in Implicit Grammar

Learning? Comment on Meulemans and Van der Linden (1997). Journal of

Experimental Psychology: Leaning, Memory, and Cognition, 25, 524-531.

Knowlton, B. J., & Squire, L. R. (1994). The Information Acquired During Artificial

Grammar Learning. Journal of Experimental Psychology: Learning, Memory

and Cognition, 20, 79-91.

Knowlton, B. J., & Squire, L. R. (1996). Artificial Grammar Learning Depends on

Implicit Acquisition of Both Abstract and Exemplar-Specific Information.

Journal of Experimental Psychology: Learning, Memory and Cognition, 22,

169-181.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood

activation model. Ear and Hearing, 19, 1-36.

Meulemans, T., & van der Linden, M. (1997). Associative Chunk Strength in

Artificial Grammar Learning. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 23, 1007-1028.

Meulemans, T., & Van der Linden, M. (2003). Implicit learning of complex

information in amnesia. Brain and Cognition, 52, 250-257.

Artificial Grammar Learning 36

Nosofsky, R. M. (1988). Similarity, Frequency, and Category Representation. Journal

of Experimental Psychology: Learning, Memory and Cognition, 14, 54-65.

Perruchet, P., & Pacteau, C. (1990). Synthetic Grammar Learning: Implicit Rule

Abstraction or Explicit Fragmentary Knowledge? Journal of Experimental

Psychology: General, 119, 264-275.

Perruchet, P., Vinter, A., Pacteau, C., & Gallego, J. (2002). The formation of

structurally relevant units in artificial grammar learning. Quarterly Journal of

Experimental Psychology, 55A, 485-503.

Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyana, J.,

Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human

brain. Nature, 414, 546-550.

Pothos, E. M. (2007). Theories of Artificial Grammar Learning. Psychological

Bulletin, 133, 227-244.

Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral & Brain

Sciences, 28, 1-49.

Pothos, E. M., & Bailey, T. M. (2000). The Importance of Similarity in Artificial

Grammar Learning. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 26, 847-862.

Pothos, E. M., & Cox, W. M. (2002). Cognitive bias for alcohol-related information

in inferential processes. Drug and Alcohol Dependence, 66, 235-241.

Pothos, E. M. & Kirk, J. (2004). Investigating learning deficits associated with

dyslexia. Dyslexia, 10, 61-76.

Reber, A. S. (1967). Implicit Learning of Artificial Grammars. Journal of Verbal

Learning and Verbal Behavior, 6, 855-863.

Artificial Grammar Learning 37

Reber, A. S. (1976). Implicit learning of synthetic language. Journal of Experimental

Psychology: Human Learning and Memory, 2, 88-94.

Reber, A. S. (1993). Implicit learning and tacit knowledge. New York: Oxford

University Press.

Reber, A. S., Allen, R. (1978). Analogic and abstraction strategies in synthetic

grammar learning: A functional interpretation. Cognition, 6, 189-221.

Reber, P. J., & Squire, L. R. (1999). Intact Learning of Artificial Grammars and Intact

Category Learning by Patients with Parkinson’s Disease. Behavioral

Neuroscience, 113, 235-242.

Reber, R., & Perruchet, P. (2003). The use of control groups in artificial grammar

learning. The Quarterly Journal of Experimental Psychology, 56A, 97-115.

Redington, F. M., & Chater, N. (1996). Transfer in Artificial Grammar Learning:

Methodological Issues and Theoretical Implications. Journal of Experimental

Psychology: General, 125, 123-138.

Servan-Schreiber, E. (1991). The Competitive Chunking Theory: Models of

Perception, Learning, and Memory. Doctoral Dissertation, Department of

Psychology, Carnegie- Mellon University.

Servan-Schreiber, E., & Anderson, J. R. (1990). Learning Artificial Grammars With

Competitive Chunking. Journal of Experimental Psychology: Learning

Memory and Cognition, 16, 592-608.

Shanks, D. R. (2005). Implicit learning. In K. Lamberts and R. Goldstone (Eds.),

Handbook of Cognition (pp. 202-220). London: Sage.

Sloman, S. A. & Rips, L. J. (1998). Similarity as an explanatory construct. Cognition,

65, 87-101.cc

Artificial Grammar Learning 38

Smith, E. E., Langston, C., & Nisbett, R. E. (1992). The case for rules in reasoning.

Cognitive Science, 16, 1-40.

Smith, E. E., Patalano, A. L., & Jonides, J. (1998). Alternative strategies of

categorization. Cognition, 65, 167-196.

Vokey, J. R., & Brooks, L. R. (1992). Salience of Item Knowledge in Learning

Artificial Grammar. Journal of Experimental Psychology: Learning, Memory

& Cognition, 20, 328-344.

Wasserman, E. A., & Miller, R. R. (1997). What’s elementary about associative

learning? Annual Review of Psychology, 48, 573-607.

Witt, K., Nuehsman, A., & Deuschl, G. (2002). Intact artificial grammar learning in

patients with cerebellar degeneration and advanced Parkinson’s disease.

Neuropsychologia, 40, 1534-1540.

Artificial Grammar Learning 39

Table 1. High level StimSelect functions, showing output arguments (returned

values). The function Groups are: 1) defining a grammar; 2) creating an AGLSS data

object; 3) specifying factors and factor levels; 4) combining factors; 5) constraint

satisfaction to choose stimulus strings; 6) displaying chosen strings.

Group Function and example

1 fsg – Create an FSG data object

F = fsg([], 'xy', 3)

 link – Add links to an FSG data object

F = link(F, 1, ‘xy.’, [2 1 -1])

2 aglss – Create an AGLSS data object

S = aglss(G, [4 8])

3 gram_factor – Add a grammaticality factor to an AGLSS data object

[S, levNames] = gram_factor(S, ‘Gram’)

 chstr_factor – Add a chunk strength factor to an AGLSS data object

[S, levNames, tgts] = chstr_factor(S, ‘MyChStr’)

 rulestr_factor – Add a rule strength factor to an AGLSS data object

[S, levNames, tgts] = rulestr_factor(S, ‘MyRuleStr’)

 chnov_factor – Add a chunk novelty factor to an AGLSS data object

[S, levNames, tgts] = chnov_factor(S, ‘MyChNov’)

 sim_factor – Add a similarity factor to an AGLSS data object

[S, levNames, tgts] = sim_factor(S, ‘MySimStr’)

4 factorial_testsets – Specify combinations of factors for an AGLSS data object

S = factorial_testsets(S, {‘Gram’, ‘G’, ‘NG’})

5 choose_items – Identify training and test strings that satisfy constraints in an AGLSS

data object

S = choose_items(S, 20, 6)

6 format_train_items – Format training strings in an AGLSS data object, ready for

display

format_train_items(S)

Artificial Grammar Learning 40

 format_test_items – Format test strings in an AGLSS data object, ready for display

format_train_items(S)

Artificial Grammar Learning 41

Table 2. Ten training strings selected based on the Reber and Allen (1978) finite state

grammar.

 Itm_num Itm_name

 01 VXM

 02 MSVRXM

 03 MSV

 04 MVRXRRM

 05 VXVRXSV

 06 VXSSV

 07 VXSSSVS

 08 VXV

 09 MSSVRXR

 10 MSSVRXV

Artificial Grammar Learning 42

Table 3. Displaying the test strings identified for a particular stimulus set, with the

Reber and Allen (1978) finite state grammar. This test set has been created with a

view to balance grammaticality and chunk strength.

 Tset_num gram_cat ChStr_cat Itm_num Itm_name ChStr ChStr_tgt

 01 G LowChStr 01 VXRRM 0.367 0.400

 01 G LowChStr 02 VXRR 0.358 0.400

 01 G LowChStr 03 VXVS 0.450 0.400

 01 G LowChStr 04 VXRRRRM 0.293 0.400

 01 G LowChStr 05 VXRRRM 0.323 0.400

 02 NG LowChStr 01 RRXRXSR 0.377 0.400

 02 NG LowChStr 02 XXSVVXS 0.391 0.400

 02 NG LowChStr 03 SVRMVSS 0.405 0.400

 02 NG LowChStr 04 SVSM 0.358 0.400

 02 NG LowChStr 05 VMMRVRX 0.379 0.400

 03 G HighChStr 01 VXVRXRR 0.566 0.571

 03 G HighChStr 02 VXVRXRM 0.555 0.571

 03 G HighChStr 03 MSSSSVS 0.573 0.571

 03 G HighChStr 04 VXVRXV 0.591 0.571

 03 G HighChStr 05 MSSSSSV 0.589 0.571

 04 NG HighChStr 01 MVXVRX 0.565 0.571

 04 NG HighChStr 02 MSVXSVR 0.575 0.571

 04 NG HighChStr 03 RXSSVRR 0.581 0.571

 04 NG HighChStr 04 SVRXVRV 0.576 0.571

 04 NG HighChStr 05 SVXVRXS 0.577 0.571

Artificial Grammar Learning 43

Table 4. A summary of the properties of the stimulus set identified.

Test item summary:

 Tset_num gram_cat ChStr_cat ChStr ChStr_tgt

 01 G LowChStr 0.358 0.400

 02 NG LowChStr 0.382 0.400

 03 G HighChStr 0.575 0.571

 04 NG HighChStr 0.575 0.571

Artificial Grammar Learning 44

Figures

Figure 1. The finite state grammar used by Knowlton and Squire (1996, Exp. 1).

1

3

2 5

4

IN

OUT

OUT

OUT

T

X

J

VX

T

V

J

Artificial Grammar Learning 45

