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Abstract 

 

Artificial Grammar Learning (AGL) is an experimental paradigm that has been used 

extensively in cognitive research for many years to study implicit learning, associative 

learning, and generalization based either on similarity or rules. Without computer assistance 

it is virtually impossible to generate appropriate grammatical training stimuli along with 

grammatical or non-grammatical test stimuli that control relevant psychological variables. 

We present the first flexible, fully automated software for selecting AGL stimuli. The 

software allows users to specify a grammar of interest, and to manipulate characteristics of 

training and test sequences, and their relationship to each other. The user thus has direct 

control over stimulus features that may influence learning and generalization in AGL tasks. 

The software enables researchers to develop AGL designs that would not be feasible without 

automatic stimulus selection. It is implemented in Matlab.  
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Artificial Grammar Learning (AGL) experiments test people’s sensitivity to sequential 

dependencies. In its most common form, an AGL study involves letter strings (e.g. XVSX) 

which do or do not conform to some simple set of rules (a finite state grammar). Strings that 

conform to the rules are grammatical (G strings), and strings that do not conform are 

ungrammatical (NG strings). Without knowing anything about rules, participants study a 

sample of strings that conform to the rules. After being told that the studied stimuli all 

conformed to an unspecified set of rules, participants are then asked to observe a set of novel 

strings and decide which are G and which are NG. The first AGL study was presented in 

1967 (A. Reber, 1967) and since then there have been more than 125 studies, spanning 

research themes as diverse as implicit cognition (Berry & Dienes, 1993; Pothos, 2007; A. 

Reber, 1993; Shanks, 2005), associative learning (Boucher & Dienes, 2003; Perruchet et al., 

2002; Servan-Schreiber & Anderson, 1990), rules vs. similarity (Ashby et al., 1988; Pothos, 

2005), and cognitive neuropsychology (including amnesia, Alzheimer’s disease, and 

Parkinson’s disease; Knowlton & Squire, 1996; Poldrack et al., 2001; P. Reber & Squire, 

1999; Witt, Nuehsman, & Deuschl, 2002). The AGL paradigm has also been used recently to 

study the psychopathology associated with dyslexia (Pothos & Kirk, 2004), and to examine 

cognitive processes supporting the maladaptive behavior of alcohol abuse (Pothos & Cox, 

2002).  

In principle, the structural properties of AGL stimuli can be controlled to a high 

degree of specificity to allow rigorous examination of different theories of learning. For 

example, Vokey and Brooks (1992; Brooks & Vokey, 1991) manipulated the similarity of 

test strings to training strings, across both G and NG test items. Knowlton and Squire (1996) 

factorially combined test string grammaticality with “chunk strength” to test effects of the 

relative familiarity of subsequences within the test strings (pairs or triplets of letters, called 

chunks or fragments). Others have combined grammaticality with both similarity and chunk 
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strength (e.g. Meulemans & van der Linden, 2003). Another possibility is to experimentally 

control some properties (particularly grammaticality), and then analyze the effects of other 

properties through mathematical modeling (Johnstone & Shanks, 1999; Pothos & Bailey, 

2000).  

The research above took great care to control important stimulus properties. It is far 

from trivial to construct AGL stimulus sets that simultaneously control multiple 

psychologically relevant factors. At present, AGL researchers employ trial-and-error methods 

to identify appropriate stimuli, with more or less assistance from whatever software tools 

they develop themselves on an ad hoc basis. These informal methods are perhaps sufficient to 

control two or three key stimulus properties across small stimulus sets with fewer than about 

50 test items. However, these methods do not scale up well to more complex designs. Also, 

although AGL studies typically aim to draw general conclusions, they usually rely on a single 

set of stimuli on which all participants are tested. Although it would often be preferable to 

test each participant on a different set of stimuli (Dienes & Altmann, 2003; R. Reber & 

Perruchet, 2003; Redington & Chater, 1996), it is not usually feasible to identify more than 

one suitable set of stimuli for a given study using the present trial-and-error methods. Thus, 

the lack of an automated procedure to generate AGL stimuli is a major limitation in AGL 

research.  

In this paper we present AGL StimSelect, a software package that automatically 

generates training and test strings that embody structural properties that can be selected by 

the user from a flexible and extendable set of parameterized constraints. With StimSelect, a 

user can quickly generate AGL stimuli, while controlling multiple variables that are likely to 

influence performance on an AGL task.  

Program Design 
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The StimSelect software is written in the Matlab programming language, which is available 

for Windows, Macintosh, and Unix computing environments. Matlab is particularly suitable 

for mathematical and computational modeling in a variety of disciplines, including 

psychology and cognitive science. The base Matlab system is required, as well as the 

Statistics toolbox. Matlab and all its toolboxes are frequently available in many academic 

departments and, where they are not, individual licenses can be purchased from the 

MathWorks (www.mathworks.com).  

StimSelect consists of a set of parameterized functions that may be called manually 

from Matlab’s command window, or from within scripts or other functions written by the 

user. The software is designed to be easy to use, and requires only an elementary familiarity 

with Matlab programming. A great deal of flexibility is built into StimSelect in the form of 

optional arguments for the various functions to specify constraints on a wide range of 

stimulus properties. More advanced users can extend the range of stimulus properties 

controlled by StimSelect, by writing additional functions that interface with the lower level 

StimSelect functions and data structures. However, the present paper focuses on the basic 

aspects of StimSelect that will be of interest to most users. 

Finite state grammars. 

A user-specified finite state grammar is central to the operation of StimSelect. In AGL 

studies the training strings conform to some set of rules, and these rules are most often 

specified as finite state grammars. An example grammar, from Knowlton and Squire (1996, 

Exp. 1), is shown in Figure 1. In general, a finite state grammar identifies beginning and end 

states (indicated as IN and OUT in Figure 1), and defines continuation relations among 

elementary symbols, allowing certain sequences of symbols to be constructed (Chomsky & 

Miller, 1958). Letter sequences are either G or NG, according to whether or not they can be 

constructed by the finite state grammar of interest.  

http://www.mathworks.com/
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------------------------FIGURE 1 ABOUT HERE---------------------- 

 

StimSelect allows the user to specify a finite state grammar of their choice, or to 

simply select one of two widely used grammars that are built in (Knowlton and Squire, 1996, 

Exp. 1; A. Reber & Allen, 1978). StimSelect requires a deterministic grammar, so that no 

state of the grammar can have two outward transitions labeled with the same letter. Because 

any non-deterministic finite state grammar can readily be converted into an equivalent 

deterministic one, this is a restriction on form but not substance.  

The grammar specifies which letters are relevant to a particular study, and determines 

which sequences of those letters are G and which are NG. If the number of either G or NG 

strings is large, StimSelect will operate on a random subset of those strings (by default, the 

limit is 10,000 G and NG strings combined). Training strings are always chosen from among 

the G items. Test strings may be either G or NG, unless restricted to one or the other by user-

specified constraints. The sets of training and test strings are strictly non-overlapping, so any 

given string can be chosen as a training string, a test string, or neither, but not both. 

Properties of test strings that can be controlled in StimSelect include grammaticality, 

similarity, chunk strength, chunk novelty, and rule strength. The following sections introduce 

these properties in relation to the AGL literature, and then outline the selection strategy used 

by StimSelect to identify training and test strings that have the combinations of properties 

desired by the user.  

Grammaticality. 

Most AGL studies manipulate the grammaticality of test strings relative to the rules of the 

finite state grammar employed, so that some test strings are G and some are NG. This makes 

it possible to assess how well participants discriminate between test strings that do or do not 
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follow the rules exemplified by the training strings. Originally, the ability to distinguish G 

from NG strings, even to a limited degree, was argued to indicate knowledge of the 

underlying finite state grammar (e.g., A. Reber, 1976). However, later investigators have 

rejected this interpretation, including the original proponent himself (e.g., Dulany et al., 

1984; Pothos & Bailey, 2000; A. Reber, 1993). There is currently some controversy about the 

appropriate psychological interpretation of participants’ partial ability to discriminate 

between G and NG strings (Pothos, 2007). Nevertheless, the grammaticality of test strings is 

easy to establish and provides a highly intuitive relation between test strings and training 

strings. Perhaps for these reasons, as well as its historical importance in the origins of AGL, 

grammaticality continues to feature prominently in AGL studies. 

Similarity. 

The similarity of test strings to training strings is one property of AGL stimuli that might be 

psychologically relevant (Vokey & Brooks, 1992). According to exemplar theories of 

categorization (e.g., Nosofsky, 1988), classification of a new instance as a member of this or 

that category depends on the overall perceived similarity between the new instance and 

familiar members of each category. In AGL, Vokey and Brooks (1992) used edit distance to 

determine relative similarities between any two test and training strings. In its simplest form, 

the edit distance between two letter strings is the number of letter substitutions, insertions and 

deletions required to convert one string into the other. In addition to its use in some AGL 

studies, edit distance has also been used widely in psycholinguistics (e.g., Luce & Pisoni, 

1998), where there is some evidence that people are more sensitive to substitutions than to 

insertions or deletions of phonemes within words (Bailey & Hahn, 2001; Hahn & Bailey, 

2005).  

The default similarity function in StimSelect is based on edit distance, normalized by 

the maximum possible distance for strings of the same length. This normalized distance 
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ranges from 0 to 1, and is subtracted from 1 to arrive at a measure of similarity between 0 

(maximally dissimilar, given the lengths of each string) and 1 (identical). By default, 

StimSelect assigns somewhat greater importance to substitutions than to insertions and 

deletions in its calculation of edit distance, so that a cost of 1 is assigned to each substitution 

and a cost of 0.7 to each insertion or deletion (cf. Bailey & Hahn, 2001). Different costs for 

these operations can be specified by the user. StimSelect also allows the user to specify an 

alternative similarity function altogether. 

Chunk strength. 

After participants study the training strings in an AGL task, they may be more or less familiar 

with subsequences of those strings, depending on how many times each subsequence 

occurred within the training set. Then, when participants classify test strings, their responses 

may be influenced by the perceived familiarity of the various subsequences within each test 

string (Servan-Schreiber & Anderson, 1990; Perruchet & Pacteau, 1990; Knowlton & Squire, 

1994). The subsequences usually considered in AGL research are pairs or triplets of letters, 

called fragments or chunks. This theory of AGL performance derives from general principles 

of associative learning theory, according to which the cognitive system learns by gradually 

combining elementary units that co-occur frequently into a single representational unit (e.g. 

Wasserman and Miller, 1997).  

In StimSelect, chunk familiarity is operationalized by defining the strength of a chunk 

as the ratio 
EF

F


, where F is the frequency of the chunk across all training strings, and E is 

the expected frequency for a chunk of that size (basically, the average frequency across all 

chunks of that size in training). Chunk strength can range from 0 to 1; a chunk that occurs 

with average frequency will have a chunk strength of 0.5, and if F>>E then 1
 EF

F
. The 
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chunk strength of a test string is the average strength of all its chunks from bigrams up to any 

user-specified chunk size.  

The definition of chunk strength in StimSelect is obviously related to, but slightly 

different from, the measure of global associative chunk strength used by Knowlton and 

Squire (1996). They defined chunk strength in terms of the absolute frequency of a chunk, 

that is, the number of times that chunk appeared in the training strings. In general, Knowlton 

and Squire’s measure of chunk strength is sensitive to the number of training strings, and also 

the number of times the same training strings are shown to the participant. Because 

StimSelect’s measure of chunk strength takes into account the expected frequency as well as 

the raw frequency of a chunk, it does not depend on the number of times the same training 

strings are shown, and is generally independent of the number of training strings. This allows 

users to change the number of training strings independently of the target chunk strength 

values. Also, for a given number of training strings, Knowlton and Squire’s measure of chunk 

strength varies across different grammars depending on the number of different symbols 

employed. StimSelect’s measure of chunk strength does not. This should facilitate 

comparisons across different grammars. Finally, it would be difficult, if not impossible, to do 

incremental selection of training and test items using Knowlton and Squire’s measure of 

chunk strength, since the final chunk frequencies would depend on both the number and 

length of training items yet to be chosen. For these reasons, StimSelect adopts a new measure 

of chunk strength rather than that of Knowlton and Squire. Nevertheless, the two measures 

would typically correlate very highly with each other.  

Chunk novelty. 

There is some evidence that participants in AGL studies are sensitive to the presence of novel 

chunks within test strings, that is, chunks that did not appear in any of the training strings 

(e.g., Johnstone & Shanks, 1999; Meulemans & van der Linden, 1997, 2003). Sensitivity to 
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chunk novelty may be independent of sensitivity to relative familiarity (which is measured by 

chunk strength). In StimSelect, a test string’s level of chunk novelty is determined by 

counting how many novel bigrams (or chunks of some user-specified size) are contained 

within the string. In effect, chunk novelty is a measure of how surprising a given test item is, 

in light of the training strings.  

Rule strength. 

Sensitivity to novel subsequences in an AGL study relies on knowledge about which chunks 

did or did not appear in the training strings. Pothos (2007) has recently argued that such 

frequency-independent knowledge amounts to knowledge of certain kinds of rules. This 

proposal derives from earlier discussions of what might constitute knowledge of rules in 

AGL (e.g., Dulany et al., 1984), as well as considerations of when it is meaningful to 

distinguish between rules and similarity (Pothos, 2005; Sloman & Rips, 1998; Smith, 

Langston, & Nisbett, 1992; Smith, Patalano, & Jonides, 1998).  

In accordance with the above, StimSelect defines the rule strength of a test item as the 

proportion of chunks it contains that have been observed in training. Rule strength is 

computed across all chunks from bigrams up to a user-specified maximum chunk size. In 

some ways, rule strength is a conceptual inverse of chunk novelty, but is based on the 

proportion of chunks within a test item that are or are not novel rather than the absolute 

number of novel chunks. 

Selection of training and test strings. 

Initially, the training and test sets are empty. A few strings are added to the training 

set, choosing them carefully to control the overall frequency with which each letter, bigram, 

and trigram occurs in the training set. Only G strings are eligible for inclusion in the training 

set, as is the case with the vast majority of AGL studies. After making a start on the training 

set, stimulus selection alternately adds strings to the various test sets and further strings to the 
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training set. Strings are chosen for various test sets in order to achieve different combinations 

of various attributes, like G versus NG, high versus low average similarity to the training 

strings, high versus low chunk strength, and so on. Further training strings are chosen 

according to the effect they have on the various test sets, so that the final combination of 

training and test sets has the desired combination of attributes. The program aims to fully 

counterbalance the attributes of interest (however, if attributes are highly correlated within 

the strings generated by a particular grammar, there will be a limited range of values over 

which it is possible to vary them independently). Stimulus selection stops when the training 

and test sets contain the desired number of strings. At that point, StimSelect displays a list of 

the selected training and test strings. Test strings are reported with categorical information for 

each attribute (e.g. high vs. low similarity), along with the actual numerical measure of each 

attribute.  

 

 

Program Use 

As mentioned above, StimSelect consists of a set of functions, distributed as Matlab source 

code. We describe here the highest-level functions, which support the stimulus constraints 

most commonly of interest to AGL researchers. If necessary, users with advanced Matlab 

programming skills can readily extend the set of constraints by analogy with those described 

here. In that event, a fuller understanding of the program should be pursued through the 

examples distributed with the documentation, as well as the comments provided within the 

various Matlab files.  

A list of the high level StimSelect functions is given in Table 1, with an example 

function call for each. The text below describes how to use these functions to identify stimuli 
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for an AGL study, and covers the most common variations available through the function 

arguments. A complete list of arguments for each function is given in the Appendix. 

 

------------------------TABLE 1 ABOUT HERE---------------------- 

 

The basic idea of StimSelect is to identify a large number of potential stimulus 

strings, and then identify appropriate strings to include in a training set as well as in various 

test sets. There are six basic steps in using StimSelect. First, the user selects one of the pre-

defined grammars, or specifies the finite state grammar of interest. Second, the grammar is 

embedded within an AGLSS data object to identify potential stimulus strings as G or NG. 

Third, the user specifies the factors required to control various properties of the desired test 

strings, including the number of levels of each factor. Fourth, the user specifies how the 

different levels of the selected factors combine to define different sets of test strings. Fifth, a 

constraint satisfaction function is run to choose the desired number of training and test 

strings. Finally, the training and test strings are displayed, together with statistics that indicate 

how well the selected strings achieve the desired properties. These six steps are described and 

illustrated below.  

1. Selecting the finite state grammar 

We have provided functions specifying two frequently used grammars (Knowlton & 

Squire, 1996,  Exp. 1., and A. Reber & Allen, 1978). Alternatively, users wishing to specify 

their own finite state grammar can easily do so. StimSelect includes a ‘grammars’ folder that 

contains several functions defining finite state grammars. The grammar first used by 

Knowlton and Squire (1996, Exp. 1) is defined by the function 

knowlton_squire_grammar. The grammar of A. Reber and Allen (1978) is defined by the 
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function reber_grammar. There are also some trivial ‘toy’ grammars, as examples of how 

finite state grammars are defined.  

In StimSelect, information defining a finite state grammar is stored in an FSG data 

object. Two functions are provided to allow the user to easily define a finite state grammar 

from scratch: FSG and LINK. The FSG function creates a new FSG data object corresponding 

to a degenerate finite state grammar with a specified number of states but no transitions 

between them. It also specifies the set of letters to be used by the grammar. Transitions 

between states are added using the LINK function. For example, the grammar shown in 

Figure 1 uses the letters ‘J’, ‘T’, ‘V’, and ‘X’, and requires five states. To create an 

appropriate FSG data object, execute the expression: 

g = fsg([], 'JTVX', 5); 

 

The first argument to FSG (given as [] above) potentially allows the user to provide a 

matrix defining transitions between states, but it is usually simpler to specify transitions 

afterwards using the LINK function. The grammar in Figure 1 has two transitions out of state 

1, one of which returns to state 1 and one of which goes to state 2. To add these transitions to 

the FSG data object created above: 

g = link(g, 1, 'XV', [1 2]); 

 

The arguments to LINK respectively specify the FSG data object to be modified, the 

state from which the specified links originate, the letters labeling the specified links, and the 

states to which the links lead, given in the same order as the letters. The beginning state of a 

grammar is always state 1. The end state is -1. As shown in Figure 1, transitions to the end 

state are not labeled with letters of the grammar, but instead the symbol ‘.’ is used to refer to 
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these transitions in calls to LINK. The remaining links of Figure 1 can be added using the 

following expressions: 

g = link(g, 2, 'JXT', [3 4 5]); 

g = link(g, 3, 'T.', [1 -1]); 

g = link(g, 4, 'J.', [4 -1]); 

g = link(g, 5, 'V.', [4 -1]); 

 

For convenience, the user would usually create a Matlab function containing the 

expressions that define the grammar of interest. 

 

2. Creating an AGLSS data object 

The many working variables of StimSelect are organized within a specialized data structure 

that has been defined specifically for this purpose. We refer to this data structure here as an 

AGLSS data object, and most of the high level StimSelect functions operate on this object. 

The function AGLSS creates a new AGLSS data object, and embeds the user’s finite state 

grammar within it (in Matlab terminology, the AGLSS function is a class constructor 

method). In addition to the user’s grammar, the AGLSS data object also contains a large set 

of potential stimulus strings, based on the letters used in the specified grammar. Each 

potential stimulus string is classified as G or NG by the grammar. Eventually, training and 

test strings will be chosen from the potential stimulus strings. An argument to the AGLSS 

function specifies the range of string lengths to be considered. By way of example, suppose 

an AGL study is going to employ the grammar of A. Reber and Allen (1978), henceforth 

simply the Reber grammar. To embed this pre-defined grammar in an AGLSS data object 

and consider strings of lengths 3 to 7, execute the Matlab expression:  

s = aglss(reber_grammar, [3 7]); 
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This expression creates a new AGLSS data object, assigns it to the variable ‘s’, and 

produces the output below:  

Potential items: 

 Grammar involves 5 symbols (MRSVX) 

 97625 possible strings of length 3-7 

 68 grammatical strings ( 0.07%) 

 97557 ungrammatical strings (99.93%) 

 Using all 68 grammatical strings 

 Using sample of 9932 ungrammatical strings 

 

The user must give some thought to the relevant range of string lengths. In general, 

the range of string lengths must be determined primarily by the psychological hypotheses of 

interest to the researcher, but the ability of StimSelect to efficiently identify appropriate 

stimuli depends both on the particular grammar specified and on the range of string lengths of 

interest. For example, with the Reber grammar, if the minimum length of strings is 3 and the 

maximum is 7, then there are just 68 possible G strings and 97,557 NG ones. The small 

number of G strings here will make it difficult to find a stimulus set for an AGL study that 

simultaneously controls more than two or three key properties of the test items. By contrast, 

if the maximum length of strings is increased to 11 then there are 388 possible G strings (and 

61,034,737 NG ones). The greater number of possible G strings will make it easier to control 

more properties of the stimuli, but at the same time there is probably a limit to the extent to 

which participants in AGL studies are sensitive to sequential dependencies in very long 

strings.  

By default, out of all the possible G and NG strings, the AGLSS function ordinarily 

selects at most 10,000 of these for subsequent processing as potential stimulus strings. The 
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user can specify a different limit with an argument to the AGLSS function. To consider 

30,000 potential stimulus strings the expression below could be used: 

s = aglss(reber_grammar, [3 7], 30000); 

 

In terms of obtaining the best possible stimuli, the more potential strings, the better. 

However, with very large numbers Matlab may run out of memory, or program completion 

times may be prohibitively long. In our simulations, searching in a set of 20,000 strings was 

reasonably fast and typically led to the identification of highly acceptable training and test 

sets.  

If the number of possible G strings is less than half the specified limit, then all of 

them will be potential stimulus strings. Otherwise, a random sample of them will be selected. 

Similarly, a random sample of NG strings will be selected if necessary. The selection process 

sometimes results in the number of potential strings being slightly less than the specified 

limit, but never more. 

The AGLSS data object variable (‘s’ in the examples above) will typically be 

successively modified by subsequent calls to various StimSelect functions. Generally, before 

starting another search for a new stimulus set users should be careful either to clear the 

variables in Matlab memory (using the ‘Clear all’ command; see also later), or use different 

variables for AGLSS objects corresponding to different searches. 

 

3. Factors 

The highly modular structure of StimSelect means that the user specifies as many factors as 

required, in a straightforward ‘pick and mix’ manner. We describe here the basic options for 

the available factors, only briefly mentioning additional advanced options where available 
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(also see the Appendix). We anticipate that many users will not require these advanced 

options, which are described in detail in the program documentation.  

3.1 gram_factor  

Grammaticality is the simplest factor, because it just distinguishes between the G and NG 

strings. This distinction is made when the potential stimulus strings are originally selected by 

the AGLSS function, so the grammaticality factor contributes very little to the time required 

to run the final stimulus selection constraint satisfaction process. To specify the 

grammaticality factor and assign it the name gram, execute the expression:  

[s, levels] = gram_factor(s, 'gram'); 

 

This expression modifies the AGLSS data object ‘s’, and also creates the variable ‘levels’ 

which contains the names of the two levels of grammaticality, ‘G’ and ‘NG’. These level 

names will be used later when combinations of factors are defined, and they will also appear 

eventually in the lists of stimuli chosen. Here and elsewhere, the ‘levels’ variable is an 

optional value returned by the function, and may be omitted if not needed, as in some 

examples discussed below in the section on combining factors. Thus, the expression 

s = gram_factor(s, 'gram'); 

has exactly the same effect as the previous one, but does not create the ‘levels’ variable.  

An advanced option for the grammaticality factor allows the user to specify other 

names for the grammaticality levels (e.g., ‘Good’ and ‘Bad’ instead of ‘G’ and ‘NG’; here 

and elsewhere, for any advanced options not fully covered in text, please refer to the 

Appendix). A similar option is available for all the factors, but will not be explicitly 

mentioned for each.  

3.2 sim_factor 
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The similarity factor controls the average similarity of test strings to training strings. To 

specify the default similarity factor and assign it the name Sim:  

[s, levels, targets] = sim_factor(s, 'Sim'); 

 

In addition to modifying the AGLSS data object ‘s’, this expression creates the variables 

‘levels’ and ‘targets’. The ‘levels’ variable contains names for the different levels of 

similarity. Here, those will be ‘LowSim’ and ‘HighSim’, but in general the number of factor 

levels and their names depend on the arguments specified for the sim_factor function. The 

‘targets’ variable contains the actual values of similarity desired for test strings assigned to 

the various levels of the similarity factor.  

By default, two levels of similarity are specified based on the distribution of pairwise 

similarities of the potential G items to each other. The 25
th

 and 75
th

 percentile values of these 

similarities are the respective default target similarities for low similarity and high similarity 

test strings. Different percentile values can be specified by an additional argument. The 

expression 

[s, levels, targets] = sim_factor(s, 'Sim', [20 80]); 

assigns low similarity and high similarity values based on the 20
th

 and 80
th

 percentile values 

of similarities between potential G strings. The user can specify more than two percentile 

values to obtain any number of different levels of similarity. Alternatively, the user can 

specify absolute similarity values rather than percentile values.  

If levels of similarity are specified in terms of percentiles, the user can be reasonably 

certain that the specified levels will be feasible, regardless of the grammar that is being used. 

However, the same percentile for two different grammars might represent very different 

levels of absolute similarity. If results are to be compared across different grammars, it may 

be more appropriate to use absolute levels of similarity than percentiles. Note that a given 
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level of absolute similarity may be feasible with some grammars and impossible to achieve 

with others. 

The 100
th

 percentile represents the similarity between the two most similar G items. 

Usually this would not be a useful or attainable level of similarity to aim for among a set of 

test strings. Indeed, the reported average high versus low values of similarity in the literature 

are generally only marginally different from each other (e.g., Knowlton & Squire, 1994, 

1996; Johnstone & Shanks, 1999; Pothos & Bailey, 2000; Vokey & Brooks, 1992). 

Other advanced options allow the user to specify the relative cost of insertions, 

deletions and substitutions in computing edit distances between strings, or to specify a 

different similarity function altogether. 

3.3 chstr_factor 

The chunk strength factor controls degrees of familiarity of the subsequences in test strings. 

To specify the default chunk strength factor and assign it the name ChStr:  

[s, levels, targets] = chstr_factor(s, 'ChStr'); 

 

The return values on the left hand side of this expression, and others below, are just like those 

of sim_factor, discussed above.  

By default, two levels of chunk strength are specified, based on the frequency of 

bigrams and trigrams in training strings (see the discussion of chunk strength in the program 

logic section above). High chunk strength test strings will contain chunks occurring about 

twice as often in training strings as the chunks within low chunk strength strings. This is a 

somewhat more ambitious target than that typically employed in the literature. For example, 

in Knowlton and Squire’s (1996) study the chunk strength manipulation varied the average 

frequency of chunks only by a ratio of 1.54 to 1. The average global associative chunk 

strength of the ‘low chunk strength’ items in their study was 5.6. Whereas the default 
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criterion employed in StimSelect would produce high chunk strength items whose average 

global associative chunk strength was twice as high (2 x 5.6 = 11.2), the average in Knowlton 

and Squire’s stimuli was only 8.6.  

Different relative frequencies can be specified by an additional argument. The 

expression 

[s, levels, targets] = chstr_factor(s, 'MegaChStr', [1 3]); 

assigns more extreme low and high chunk strength levels, where high chunk strength test 

strings contain chunks occurring, on average, three times as often in training as the chunks in 

low chunk strength strings. The user can specify any number of relative frequency values, to 

obtain as many levels of chunk strength as are required. Alternatively, the user can directly 

specify the absolute target chunk strength for the chunks in the strings in each category.  

An advanced option allows the user to control the variability in frequency allowed 

among chunks within a single test string. Ideally, every chunk within a test string would have 

the desired overall level of chunk strength for that string. However, it is not feasible to 

achieve this level of zero variability if chunk strength is to be combined with other factors. 

By default, frequencies are controlled so that strings can achieve their target chunk strength 

by containing a mixture of 80% of chunks of the correct frequency and 20% of chunks at the 

opposite end of the frequency spectrum. For example, a low chunk strength string of length 

six could contain four low frequency bigrams and one high frequency bigram. The default 

values of 80% and 20% can be altered, if necessary, to obtain the best feasible stimulus set. 

An additional advanced option allows the user some control over the size of chunks 

used to compute chunk strength. To date, all AGL research has used chunks of length two 

and/or three (bigrams and trigrams). There are some theoretical justifications for doing so 

(e.g., Cabrera, 1995; Dirlam, 1972; Servan-Schreiber, 1991), but the main reason for 

restricting investigations to bigrams and trigrams has been ease of computation. The chunk 
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strength factor allows consideration of chunk strength when the maximum chunk size is 

arbitrarily large. For example, if a maximum chunk length of four is chosen, then chunk 

strength computations will involve bigrams, trigrams, and 4-grams. 

3.4 chnov_factor   

The chunk novelty factor controls the number of novel chunks within test strings. Eligible 

potential stimulus strings are identified ahead of time, so chunk novelty is computed very 

efficiently and adds relatively little to the amount of time required by the constraint 

satisfaction process used to select training and test strings. To specify the default chunk 

novelty factor and assign it the name ChNov:  

[s, levels, targets] = chnov_factor(s, 'ChNov'); 

 

By default, two levels of chunk novelty are specified, based on the number of bigrams within 

a test string that appear in no training strings. Low novelty test strings will contain only 

bigrams that also appear somewhere in the training strings. Each high novelty test string will 

contain exactly one bigram that does not appear in any of the training strings. Note that 

chnov_factor operates on chunks of just one size, unlike chstr_factor which by 

default takes into account both bigrams and trigrams.  

Any number of different novelty levels can be specified by an additional argument. 

There is also an argument that controls the size of chunks on which chunk novelty operates, 

allowing the user to control trigram novelty rather than bigram novelty, for example. A 

further optional argument allows the user to control how many different chunks are to be 

avoided in training strings to act as novel chunks in test strings. By default, two chunks that 

occur in the fewest possible G strings are reserved in this way. Potential stimulus strings 

containing these particular chunks will not be selected as training strings. Usually, any test 
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string that contains a novel chunk will either contain one of these reserved chunks or an 

ungrammatical chunk that does not appear in any G strings. 

3.5 rulestr_factor  

The rule strength factor controls the proportions of chunks in a test string that are familiar 

from training. To specify the default rule strength factor and assign it the name RuleStr:  

[s, levels, targets] = rulestr_factor(s, 'RuleStr'); 

 

By default, two levels of rule strength are specified, based on proportions of familiar 

bigrams and trigrams. High rule strength test strings will contain 100% familiar bigrams and 

trigrams. Low rule strength test strings will contain 75% familiar bigrams and trigrams (that 

is, 75% of the chunks in each string will be familiar, and 25% will be novel). Different 

proportions can be specified by an additional argument. The expression 

[s, levels, targets] = rulestr_factor(s, 'RuleStr', [.5 .8]); 

assigns low and high rule strength levels based on 50% and 80% familiar chunks. The user 

can specify more than two proportions to obtain any number of different levels of chunk 

strength. Note, however, that if chunk strength were to be used in combination with rule 

strength, it would be difficult to find strings that have both high chunk strength and very low 

rule strength.  

An advanced option controls the maximum size of chunks on which rule strength 

should operate. For example, if a maximum chunk length of four is chosen, then rule strength 

will be computed over bigrams, trigrams, and 4-grams.  

A further argument allows the user to control how many different chunks are to be 

avoided in training strings to act as novel chunks in test strings. This option is just like the 

corresponding one discussed above for chunk novelty. 

 

4. Combining factors 
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After specifying the individual factors of interest, the user must specify which levels of which 

factors are to be combined with each other to create sets of test strings with particular 

combinations of properties. The user is cautioned that, except where noted, the examples 

below are not intended to be run one after the other. In general, each factor of interest should 

be specified just once. To change the specification of a factor, the user should start again 

from the first step, with a call to the AGLSS function, and proceed from there. The use of the 

Matlab command ‘Clear all’ (which eliminates all variables in the Matlab workspace) is 

advised before starting the process.  

Suppose that grammaticality and chunk strength factors are specified as: 

[s, glevs] = gram_factor(s, ‘gram’); 

[s, chlevs] = chstr_factor(s, ‘ChStr’); 

 

Then, to factorially combine grammaticality and chunk strength: 

s = factorial_testsets(s, {'gram', glevs{:}},  

{'ChStr', chlevs{:}}); 

 

The arguments to factorial_testsets specify an AGLSS data object plus one or 

more bracketed lists (cell arrays, in Matlab terminology), each of which names a factor and 

whichever of its levels are to be combined factorially with specified levels of other factors. 

The order of factors in the arguments to factorial_testsets is irrelevant. In the 

expression above, glevs{:} specifies all levels of the grammaticality factor (‘G’ and ‘NG’). 

Similarly, chlevs{:} specifies all levels of chunk strength (‘LowChStr’ and ‘HighChStr’). 

Alternatively, the user could spell out the factor levels explicitly: 

s = factorial_testsets(s, {'gram', 'G', 'NG'},  

{'ChStr', 'LowChStr', 'HighChStr'}); 
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To factorially combine similarity as well as grammaticality and chunk strength, the 

expressions below could be used:  

[s, glevs] = gram_factor(s, ‘gram’); 

[s, chlevs] = chstr_factor(s, ‘ChStr’); 

[s, slevs] = sim_factor(s, ‘Sim’); 

s = factorial_testsets(s, {'gram', glevs{:}},  

{'ChStr', chlevs{:}}, {‘Sim’, slevs{:}}); 

 

As a degenerate case, to control a single factor on its own, factorial_testsets 

can be passed a single bracketed list naming the factor and levels of interest. For example, to 

manipulate the grammaticality of test items: 

s = gram_factor(s, ‘gram’); 

s = factorial_testsets(s, {'gram', 'G', 'NG'}); 

 

An advanced option also allows non-factorial combinations of factors to be specified. 

This would allow a user to, e.g., specify just three of the four possible combinations of two 

binary variables, for example, omitting contradictory or infeasible combinations like low rule 

strength – high chunk strength. In general, the feasibility of simultaneously controlling 

multiple factors will depend on the length and number of potential strings to be considered, 

the particular options specified for the factors of interest, and the finite state grammar.  

 

5. Choosing the training and test strings 

Once the desired combinations of factors are specified, the AGLSS data object is ready for 

stimulus selection. The choose_items function runs a constraint satisfaction process to 

identify the desired number of training and test strings. For example, to identify 10 training 

strings plus five strings for each set of test strings: 

s = choose_items(s, 10, 5); 
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The number of test sets corresponds to the number of different combinations of 

factors and factor levels. Thus, if only grammaticality is specified via the 

factorial_testsets function, then choose_items will find five test strings for the ‘G’ 

category and five for the ‘NG’ one. If binary categories of grammaticality, chunk strength, 

and similarity are combined factorially, then there will be eight test sets of five strings each, 

for a total of 40 test strings.  

The choose_items function dynamically displays a summary of its progress to give 

the user an indication of how long the search for stimulus strings will take. On a Pentium 

Duo IBM compatible computer, creating a stimulus set with 10 training strings and five 

strings in each test set, balancing grammaticality and chunk strength, requires just a few 

seconds (using the Reber grammar, with the default option of searching in a set of 10,000 

potential items). By default, choose_items identifies an initial set of three training strings, 

based on how well they represent the target distribution of chunk frequencies. Thereafter, 

each selection round identifies an additional training string, then one test string for each set, 

until the desired number of strings are selected. An advanced option allows the user to 

specify how many training strings should be chosen initially, before selection of test strings 

begins. 

 

6. Displaying the training and test strings 

After stimulus strings have been selected, the function format_train_items lists the 

training strings in a formatted text string. This can be displayed in Matlab’s output window, 

and copied and pasted into other applications as desired. Table 2 shows 10 training strings 

that were selected based on the Reber grammar, and displayed using the expression below 

(with no trailing semicolon): 



AGL StimSelect   26 

format_train_items(s) 

 

--------------TABLE 2 ABOUT HERE----------------- 

 

The first column of output from format_train_items enumerates the strings, and the 

second column lists the strings themselves. 

The function format_test_items lists test strings in a formatted text string, as 

illustrated in Table 3. These test strings were selected to factorially control grammaticality 

and chunk strength, and were displayed using the expression: 

format_test_items(s) 

 

--------------TABLE 3, 4 ABOUT HERE----------------- 

 

Table 3 shows four test sets (two levels of grammaticality by two levels of chunk 

strength), with five strings in each set. The first column, Tset_num, enumerates the different 

test sets. The next two columns (gram_cat and ChStr_cat) list the names of the factor levels 

that define each set of test strings. The Itm_num column enumerates the training strings 

within each set, and the Itm_name column lists the test strings themselves. The last two 

columns list the actual chunk strength for each string, and then the target chunk strength 

corresponding to whichever test set the string is in.  

Consider the first test string, VXRRM, which is in the set of G and LowChStr strings. 

Its chunk strength is 0.367, which seems reasonably close to the target value for LowChStr 

strings, 0.400. There is no such information for the grammaticality factor, because the 

grammaticality of each potential stimulus string is defined ahead of time, and the selection of 
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strings appropriate to each level of grammaticality does not require dynamic checking of 

string properties against target factor levels.  

For a quick, informal assessment of the extent to which the test strings are suitable or 

not, summary information for each test set can be obtained by giving ‘summary’ as an 

additional argument to the function format_test_items: 

format_test_items(s, 'summary') 

 

This expression lists average factor values for each test set, as illustrated in Table 4. The 

columns are the same as in Table 3, except that item numbers and item strings themselves are 

omitted. In evaluating the extent to which selected strings have the desired properties, the 

user may wish to check whether the various properties of individual strings are closer to their 

target values than to the target values of other levels of the same factor. Also, various authors 

have used statistical tests to evaluate the collective appropriateness of AGL test sets (e.g., 

Brooks & Vokey, 1991; Knowlton & Squire, 1996; Vokey & Brooks, 1992). It is 

straightforward to carry out such tests from the output produced by StimSelect.   

Note that if the finite state grammar defines only a small number of G items, it may 

be difficult or impossible to find suitable test strings that combine several other factors with 

grammaticality. In that case, the properties of some test strings may be far away from the 

specified factor levels. If this does occur, the user may wish to increase the maximum length 

of the items in the first instance, and possibly experiment with some of the advanced options.  

 

Program installation 

The software is distributed as a .zip file. Users running Mac OS-X can unpack this file simply 

by opening it with the Finder. Users running Windows XP can unpack this file by selecting it 

in Windows Explorer and then choosing File > Extract All from the command menu. Users 
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running Unix can unpack the .zip file using the unzip command. It does not matter where the 

contents of the .zip file are extracted, but a Matlab path must be specified to that location so 

that Matlab knows where to look for the StimSelect functions. The Matlab path can be 

modified using the File > Set Path menu option in the Matlab command window. The ‘Set 

Path with Subfolder’ button will allow the user to browse to the directory containing the 

unpacked StimSelect files. 

 

Summary 

StimSelect allows the user to create AGL stimulus sets based on a particular finite state 

grammar, so that the test strings are balanced across any combination of the following 

factors: Grammaticality, similarity, chunk strength, chunk novelty, and rule strength. These 

factors represent by far the most common stimulus properties in AGL studies (Pothos, 2007). 

A number of advanced options allow the user to alter the specification of all these factors in 

theoretically interesting ways (including, in particular, the use of larger chunk sizes for 

chunk-based factors). Additional factors can be defined by analogy with the specification of 

the existing ones. 

To achieve flexible and efficient stimulus selection, the mathematical specifications 

of some factors have been slightly refined relative to traditional definitions in the AGL 

literature. We have altered the definition of chunk strength to obtain a more robust measure 

in which chunk strength is scaled relative to expected chunk frequencies, so that chunk 

strength values do not depend on training item repetitions or the number of training items. 

Also, we have generalized the definition of similarity to allow differential weighting of 

insertions, deletions and substitutions (such flexibility will be desirable for some research 

projects). Finally, we have implemented for the first time a measure of rule strength, 
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consistent with a recent proposal of what rules are (Pothos, 2005). Associating rules 

knowledge with grammaticality has been highly problematic (e.g., A. Reber, 1993), therefore 

providing an alternative conception of what would constitute rules knowledge in AGL would 

enable new research possibilities.  

The appeal of AGL has been recognized in that AGL designs allow the concurrent 

examination of several hypotheses about learning. Researchers in the past have relied on 

informal methods to balance the postulated influence of different stimulus attributes. With 

such methods it is difficult, if not impossible, to balance arbitrarily many factors for stimulus 

sets of arbitrary size. StimSelect allows AGL designs that are much more sophisticated than 

was possible previously, including factorial manipulations of four or five stimulus properties 

simultaneously. By greatly expanding the range of feasible AGL designs, StimSelect has the 

potential to significantly aid further progress in AGL and learning research more generally.  
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Appendix: Parameters for high level StimSelect functions.  

fsg([], ‘L’, N) 

         |   | 

         |   Number of states in grammar 

         | 

         Letters used in grammar 
 

 

link(F, S0, ‘L’, [S…]) 

     |  |    |    | 

     |  |    |    States to which transitions go 

     |  |    | 

     |  |    Letters labeling links from S0 to S 
     |  | 

     |  State from which links originate 

     | 

     FSG data object; required 
 

 

gram_factor(S, ‘F’, {‘L’…}) 

            |   |     | 

            |   |     Level names, one per factor level; default {‘G’, ‘NG’} 
            |   | 

            |   Factor name; required 

            | 

            AGLSS data object; required 
 

 

chstr_factor(S, ‘F’, [T…], {‘L’…}, [p P], Z) 

             |   |    |      |      | |   | 

             |   |    |      |      | |   Maximum chunk size to control; default 3 

             |   |    |      |      | | 

             |   |    |      |      | Fraction of high chunk strength string’s chunks at highest frequency level; default p 
             |   |    |      |      | 

             |   |    |      |      Fraction of low chunk strength string’s chunks at lowest frequency level > 0; default 0.8 

             |   |    |      | 

             |   |    |      Level names, one per factor level; defaults depend on number of levels 
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             |   |    | 

             |   |    Chunk strength targets (relative or absolute), one per level; default [1 2] 

             |   | 

             |   Factor name; required 
             | 

             AGLSS data object; required 

 

 
rulestr_factor(S, ‘F’, [T…], {‘L’…}, [X G], Z) 

               |   |    |      |      | |   | 

               |   |    |      |      | |   Maximum chunk size to control; default 3 

               |   |    |      |      | | 

               |   |    |      |      | Minimum number of grammatical chunks of size Z to exclude from training strings; default 2 

               |   |    |      |      | 

               |   |    |      |      Minimum number of chunks (grammatical or not) to exclude from training strings; default G 
               |   |    |      | 

               |   |    |      Level names, one per factor level; defaults depend on number of levels 

               |   |    | 

               |   |    Rule strength targets, one per level; default [1 2] 

               |   | 

               |   Factor name; required 

               | 

               AGLSS data object; required 

 

 
chnov_factor(S, ‘F’, [T…], {‘L’…}, [X G], Z) 

             |   |    |      |      | |   | 

             |   |    |      |      | |   Chunk size to control; default 2 

             |   |    |      |      | | 

             |   |    |      |      | Minimum number of grammatical chunks of size Z to exclude from training strings; default 2 

             |   |    |      |      | 

             |   |    |      |      Minimum number of chunks (grammatical or not) to exclude from training strings; default G 

             |   |    |      | 

             |   |    |      Level names, one per factor level; defaults depend on number of levels 

             |   |    | 

             |   |    Chunk novelty targets, one per level; default [0 1] 
             |   | 

             |   Factor name; required 
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             | 

             AGLSS data object; required 

 

 
sim_factor(S, ‘F’, [T…], {‘L’…}, @M, {P…}, @N) 

           |   |    |      |      |   |     | 

           |   |    |      |      |   |     Scaling function; default XX 

           |   |    |      |      |   | 

           |   |    |      |      |   Parameters to similarity function; default {0.7,0.7,1} for @EditSim, else {} 

           |   |    |      |      | 

           |   |    |      |      Similarity function; default @EditSim 

           |   |    |      | 

           |   |    |      Level names, one per factor level; defaults depend on number of levels 

           |   |    | 

           |   |    Similarity targets (percentile or absolute), one per level; default [25 75] 
           |   | 

           |   Factor name; required 

           | 

           AGLSS data object; required 

 

 
factorial_testsets(S, {‘F’, ‘L’…}, …) 

                   |    |    | 

                   |    |    Names of levels of F to be included; required 

                   |    | 

                   |    Name of factor to be combined factorially with others; required 
                   | 

                   AGLSS data object; required 

 

 
factorial_testsets(S, {{‘F’, ‘L’…}, {…}}, …) 

                   |     |    | 

                   |     |    Names of levels of F to combine pairwise with corresponding levels of other factors; required 

                   |     | 

                   |     Name of factor to combine pairwise with other factors; required 

                   | 

                   AGLSS data object; required 
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choose_items(S, N, M, N0) 

             |  |  |  | 

             |  |  |  Number of head start training items; default XX 
             |  |  | 

             |  |  Number of test strings desired per combination of factor levels; required (XX?) 

             |  | 

             |  Number of training strings desired; required 

             | 

             AGLSS data object; required 

 

 
format_train_items(S) 

                   | 

                   AGLSS data object; required 

 

 
format_test_items(S, ‘P’) 

                  |   | 

                  |   ‘detail’ or ‘summary’; default ‘detail’ 

                  | 

                  AGLSS data object; required 
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Table 1. High level StimSelect functions, showing output arguments (returned 

values). The function Groups are: 1) defining a grammar; 2) creating an AGLSS data 

object; 3) specifying factors and factor levels; 4) combining factors; 5) constraint 

satisfaction to choose stimulus strings; 6) displaying chosen strings. 

Group Function and example 

1 fsg – Create an FSG data object 

F = fsg([], 'xy', 3) 

 link – Add links to an FSG data object 

F = link(F, 1, ‘xy.’, [2 1 -1]) 

2 aglss – Create an AGLSS data object 

S = aglss(G, [4 8]) 

3 gram_factor – Add a grammaticality factor to an AGLSS data object 

[S, levNames] = gram_factor(S, ‘Gram’) 

 chstr_factor – Add a chunk strength factor to an AGLSS data object 

[S, levNames, tgts] = chstr_factor(S, ‘MyChStr’) 

 rulestr_factor – Add a rule strength factor to an AGLSS data object 

[S, levNames, tgts] = rulestr_factor(S, ‘MyRuleStr’) 

 chnov_factor – Add a chunk novelty factor to an AGLSS data object 

[S, levNames, tgts] = chnov_factor(S, ‘MyChNov’) 

 sim_factor – Add a similarity factor to an AGLSS data object 

[S, levNames, tgts] = sim_factor(S, ‘MySimStr’) 

4 factorial_testsets – Specify combinations of factors for an AGLSS data object 

S = factorial_testsets(S, {‘Gram’, ‘G’, ‘NG’}) 

5 choose_items – Identify training and test strings that satisfy constraints in an AGLSS 

data object 

S = choose_items(S, 20, 6) 

6 format_train_items – Format training strings in an AGLSS data object, ready for 

display 

format_train_items(S) 
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 format_test_items – Format test strings in an AGLSS data object, ready for display 

format_train_items(S) 
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Table 2. Ten training strings selected based on the Reber and Allen (1978) finite state 

grammar.  

  Itm_num  Itm_name 

       01       VXM 

       02    MSVRXM 

       03       MSV 

       04   MVRXRRM 

       05   VXVRXSV 

       06     VXSSV 

       07   VXSSSVS 

       08       VXV 

       09   MSSVRXR 

       10   MSSVRXV 
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Table 3. Displaying the test strings identified for a particular stimulus set, with the 

Reber and Allen (1978) finite state grammar. This test set has been created with a 

view to balance grammaticality and chunk strength.  

 

 Tset_num      gram_cat     ChStr_cat  Itm_num  Itm_name      ChStr  ChStr_tgt 

       01             G      LowChStr       01     VXRRM      0.367      0.400 

       01             G      LowChStr       02      VXRR      0.358      0.400 

       01             G      LowChStr       03      VXVS      0.450      0.400 

       01             G      LowChStr       04   VXRRRRM      0.293      0.400 

       01             G      LowChStr       05    VXRRRM      0.323      0.400 

       02            NG      LowChStr       01   RRXRXSR      0.377      0.400 

       02            NG      LowChStr       02   XXSVVXS      0.391      0.400 

       02            NG      LowChStr       03   SVRMVSS      0.405      0.400 

       02            NG      LowChStr       04      SVSM      0.358      0.400 

       02            NG      LowChStr       05   VMMRVRX      0.379      0.400 

       03             G     HighChStr       01   VXVRXRR      0.566      0.571 

       03             G     HighChStr       02   VXVRXRM      0.555      0.571 

       03             G     HighChStr       03   MSSSSVS      0.573      0.571 

       03             G     HighChStr       04    VXVRXV      0.591      0.571 

       03             G     HighChStr       05   MSSSSSV      0.589      0.571 

       04            NG     HighChStr       01    MVXVRX      0.565      0.571 

       04            NG     HighChStr       02   MSVXSVR      0.575      0.571 

       04            NG     HighChStr       03   RXSSVRR      0.581      0.571 

       04            NG     HighChStr       04   SVRXVRV      0.576      0.571 

       04            NG     HighChStr       05   SVXVRXS      0.577      0.571 
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Table 4. A summary of the properties of the stimulus set identified.  

 

Test item summary: 

 Tset_num      gram_cat     ChStr_cat      ChStr  ChStr_tgt 

       01             G      LowChStr      0.358      0.400 

       02            NG      LowChStr      0.382      0.400 

       03             G     HighChStr      0.575      0.571 

       04            NG     HighChStr      0.575      0.571 
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Figures  

Figure 1. The finite state grammar used by Knowlton and Squire (1996, Exp. 1).  
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