
              

City, University of London Institutional Repository

Citation: Visser, I., Raijmakers, M. E. J. & Pothos, E. M. (2009). Individual strategies in 

artificial grammar learning. American Journal of Psychology, 122(3), pp. 293-307. doi: 
10.2307/27784404 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/4689/

Link to published version: https://doi.org/10.2307/27784404

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


INDIVIDUAL STRATEGIES IN AGL  1 

 

Running head: Individual Strategies in AGL 

 

Individual Strategies in Artificial Grammar Learning 

 

Ingmar Visser and Maartje E. J. Raijmakers  

Department of Psychology, University of Amsterdam 

 

Emmanuel M. Pothos 

Department of Psychology, Swansea University  

 

in press: American Journal of Psychology  

 

Please address correspondence to: 

Ingmar Visser 

Department of Psychology 

University of Amsterdam 

Roetersstraat 15 

1018 WB Amsterdam 

The Netherlands 

i.visser@uva.nl 

fax: +31-20-6390279 

 

mailto:i.visser@uva.nl


INDIVIDUAL STRATEGIES IN AGL  2 

Abstract 

Artificial Grammar Learning (AGL) has been used extensively to study theories of 

learning. We argue that compelling conclusions cannot be forthcoming without an 

analysis of individual strategies. We describe a new statistical method for doing so, 

based on the increasingly popular framework of latent variable models, which is 

especially suited to capture heterogeneity in participants’ responses. In the current 

study, we apply the method of latent class regression models, in which the intercept 

and regression coefficients can have different values in different latent groups of 

participants; each latent group represents different reliance on the (potentially) 

available sources of knowledge in AGL, such as grammaticality and fragment 

overlap. The results indicate that grammaticality and fragment overlap can be 

understood as distinct aspects of learning performance, as evidenced by different 

groups of participants adopting predominantly one or the other strategy in a series of 

comparable datasets from AGL studies.  
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Individual Strategies in Artificial Grammar Learning 

In an Artificial Grammar Learning (AGL) experiment, participants are first asked to 

study a set of training stimuli, usually sequences of letters. Subsequently, they are 

presented with some test stimuli and they have to decide which of these are 

compatible with the training ones. This simple learning task seems to embody the 

main elements of human learning, that is, the extraction of some knowledge from a set 

of stimuli, which can subsequently guide generalization performance to other, novel 

ones.  

AGL has been employed in learning research for more than five decades 

(Miller, 1958; Reber, 1967). One of the reasons for the popularity of the AGL 

paradigm is that it allows a precise instantiation and comparison of different theories 

of learning. For example, AGL stimuli are typically created on the basis of a finite 

state language, so that only certain symbols can follow other symbols (Figure 1 

depicts the finite state language that was used in the experiments that are reanalyzed 

in the current paper). Stimuli consistent and inconsistent with the finite state language 

are called grammatical (G) and ungrammatical (NG) respectively. Various AGL 

investigators have suggested that participants develop a representation of the finite 

state language employed, in terms of either a tacit network of rules (Reber, 1967) or 

explicit tests for deciding whether a stimulus is G or NG (Dulany, Carlson, & Dewey, 

1984; cf. Dienes, 1992). Vokey and Brooks (1992) advocated an exemplar similarity 

view, according to which test items for which there is a highly similar training item 

are more likely to be endorsed as grammatical. Perruchet and Pacteau (1990) and 

Knowlton and Squire (1996) observed that participants sometimes base their 

grammaticality judgments on whether a test item would contain many parts (pairs or 

triplets of symbols) that have been frequently observed in training (‘fragment 
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overlap’; see also Boucher & Dienes, 2003, Tunney & Altmann, 2001). Such views of 

AGL are, in principle, distinct and map onto more general debates in cognitive 

science (Pothos, 2005, 2007).  

It is important to note that all the above AGL accounts consider regularity that 

can only be evident if the training items are considered relative to each other. In other 

words, chunk strength takes into account co-occurrence statistics across all training 

items and knowledge of grammaticality constraints likewise arises from a 

consideration of the commonalties between training items. However, as Jamieson and 

Mewhort (2005) pointed out, AGL knowledge may well reflect local constraints (that 

is, regularity within strings; cf. Tunney & Altmann, 2001). These authors have 

proposed alternative forms of grammars that unconfound possible sources of 

regularity. In this research, we wanted to carry out an analysis with AGL stimulus sets 

that were as standard as possible, but with future work we hope to apply our approach 

to more carefully controlled stimulus sets, as proposed by Jamieson and Mewhort.  

 

------------------------------INSERT FIGURE 1 ABOUT HERE-------------------------- 

 

The key issue regarding the utility of the AGL paradigm is whether it is 

possible to specify methodologies and analytical techniques that allow researchers to 

examine the particular source(s) of knowledge (e.g., in principle, grammaticality, 

fragment overlap etc.) that drives performance. The main premise of this work is that 

this is not possible, unless a measure of individual strategy is incorporated in AGL 

analyses. Note that this issue is distinct from the problem of whether AGL knowledge 

is implicit or explicit. The implicit/explicit debate in AGL has led to intense 

controversy (e.g., Dienes & Perner, 1999; Shanks & St. John, 1994; Tunney & 
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Shanks, 2003), which is unlikely to be resolved without either radical reformulations 

of the implicit/explicit distinction (Dulany, 1997; 2003; cf. Cleeremans, 2005; Pothos, 

2007) or cognitive neuroscience data (e.g., Eldridge et al., 2002; Knowlton, 1999). 

The latter is assuming, of course, that such data can in principle be brought to bear on 

problems in cognition (for discussion see e.g. Henson, 2006; Kim, 1992; Poldrack, 

2006).  We believe that the problem of determining the type of knowledge guiding 

performance in test is more tractable and we proceed to describe our method of 

addressing it.  

 

Knowledge Sources in AGL 

Empirically disambiguating the possible influence of different sources of knowledge 

in AGL has historically taken the following form: the test stimuli in an AGL task are 

created in a way that selection of different test stimuli indicates an influence from 

different sources of knowledge. For example, suppose that grammaticality and 

exemplar similarity are counterbalanced, so that the average similarity between the G 

test items and the training ones is the same as the average similarity of the NG test 

items and the training ones; likewise, the test items which are ‘highly similar’ to the 

training ones are equally likely to be G and NG, and the same would apply to the 

training items ‘not similar’ to the training ones. Therefore, for example, if participants 

are influenced primarily by grammaticality they should be selecting as G the G items, 

irrespective of their similarity to the training items. Several studies have adopted this 

approach (e.g., Higham, 1997; Knowlton & Squire, 1996; Vokey and Brooks, 1992). 

More recently, regression techniques have been employed to examine the 

influence of different sources of knowledge on each grammaticality selection. For 

example, suppose we are examining exemplar similarity, fragment overlap, and 
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grammaticality. Each test item would be associated with three numbers: one 

corresponding to its exemplar similarity, another to its fragment overlap, and a third 

to whether it is G or NG. Then, a regression analysis can be constructed to predict the 

probability with which the item is endorsed or not, as a function of grammaticality, 

exemplar similarity, and fragment overlap. Johnstone and Shanks (1999) first applied 

this technique in AGL, using the repeated measures regression method of Lorch and 

Myers (1990). Conducting regression analyses in this way allows an item-based 

analysis, but in a way that individual participant variance is correctly taken into 

account (cf. Raaijmakers, Schrijnemakers, & Gremmen, 1999). Kinder and Assman 

(2000) employed a similar approach to conclude that similarity based measures have 

the strongest influence on performance. Pothos and Bailey (2000) extended these 

analyses by considering the variance accounted for in grammaticality selections, from 

each possible predictor, independent of the other predictors. In this way, for example, 

in some conditions it was found that grammaticality status could explain a unique 

portion of variance in participants’ performance, over and above exemplar similarity 

or fragment overlap.  

It is worth noting that there is a technique alternative to regression analysis for 

investigating the type of knowledge acquired in AGL (and whether there is a single 

type of knowledge or multiple types). This is based on receiver-operating 

characteristic (ROC) curves, as used, for example, by Kinder and Assmann (2000). 

While this approach is very promising, there are two potentially limiting factors in its 

applicability. First, a ROC analysis depends on particular assumptions about the way 

putative rules and similarity influences manifest themselves in AGL. Specifically, 

rules are assumed to reflect an all-or-none influence, while similarity is assumed to 

reflect a continuous influence. However plausible these assumptions, ideally an 
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analysis would proceed in a less theory-laden way, that is, without requiring a 

particular commitment to the form of rules/ similarity influences in AGL. Second, 

ROC curves require ‘confidence’ responses on some appropriate scale, rather than the 

typical binary responses. Accordingly, a ROC analysis would be less applicable to 

results from the standard AGL paradigm (and indeed Kinder and Assmann, 2000, had 

to modify the standard AGL procedure for their analytical approach to be applicable). 

 

Individual Differences in AGL Performance 

We believe that a measure of individual strategy is needed to understand whether 

grammaticality and fragment overlap are really distinct aspects of AGL performance. 

Averaged participant data can reflect (seemingly) distinct influences of (for example) 

grammaticality and fragment overlap in either of two ways. First, it could be the case 

that for each participant both grammaticality and fragment overlap influence his/ her 

performance. Second, it could be the case that some participants employ primarily 

grammaticality in their selections, while others use fragment overlap (in such a case 

we would expect to find categorical individual differences). Crucially, only the 

second possibility allows us to infer (reasonably) unambiguously that in AGL there 

are distinct influences on performance from both fragment overlap and 

grammaticality. By contrast, in the first case it could be that grammaticality and 

fragment overlap are simply epiphenomenal to another knowledge influence, which 

happens to partially correlate with both. Such an argument requires some additional 

assumptions to work (e.g., a noise signal), however, its validity has been 

demonstrated several times, both in AGL (in relation to the implicit/explicit 

distinction; e.g., Berry, Shanks, & Henson, 2008; Kinder & Shanks, 2001; Shanks & 
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Perruchet, 2002), and more generally (Juola & Plunkett, 1998; Plunkett & Bandelow, 

2006).  

The issue of individual strategies in AGL has been particularly, and 

surprisingly, under-researched
1
. Trivially, for example, one could compare the 

grammaticality and fragment overlap scores of each participant. However, such 

comparisons are meaningless since the effect size is small and an individual’s 

performance could vary for all sorts of random reasons. An analysis is needed which 

would allow us to establish whether there is an overall trend for some participants to 

generalize on the basis of grammaticality vs. fragment overlap. Clearly, generalization 

strategies might depend on task demands and stimulus characteristics, and the 

analytical procedure should be sensitive to such variability; particularly so because 

groups of participants following different strategies, as we propose, cannot be 

observed directly; instead, the division in groups is a latent variable. 

McAndrews and Moscovitch (1985) are the first researchers we are aware of 

who attempted to study individual strategies in AGL in a quantitative way. They 

examined grammaticality and exemplar similarity. They divided their sample into two 

groups, by performing a median split on the basis of average grammaticality accuracy. 

In this way, they observed that some participants’ performance reflected a very strong 

influence from grammaticality knowledge and little influence of exemplar similarity, 

while for other participants the converse pattern held. This result is interesting, but 

establishing its robustness is problematic: it would be possible to carry out such a 

median split of participants’ performance under any circumstances. Therefore, ideally, 

we would have some statistical measure of whether it is appropriate to distinguish 

participants in high/low achievers. The objective of the present work is exactly to 

provide such a statistical measure.  
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In other related work, Shanks, Johnstone, and Staggs (1997) observed 

individual strategies with a task involving biconditional grammars (first used by 

Mathews et al., 1989). In biconditional grammars each stimulus is composed of two 

groups of four letters. A letter in the first group predicts another one in the second 

group. In this way, stimuli in a biconditional grammar can be fully specified on the 

basis of a simple set of rules. Shanks et al. (1997) used two training procedures, after 

Mathews et al. (1989). One emphasized the surface properties of the stimuli, the other 

forced participants to process the structural regularities in the stimuli. Some 

participants in the latter group displayed a performance accuracy of nearly 100%, but 

the rest of the participants failed to learn. Such results are highly suggestive of two 

learning processes. However, biconditional grammars are very different from the 

standard finite state languages typically employed in AGL. Therefore, the results of 

Shanks et al. (1997) and Mathews et al. (1989) cannot be assumed to readily 

generalize to AGL.  

The regression analysis technique of Johnstone and Shanks (1999) could, in 

principle, be modified to examine individual strategies, in two ways. First, interaction 

terms with the ‘participants’ variable could be examined, but no such results were 

reported by either Johnstone and Shanks (1999) or Pothos and Bailey (2000). 

Interaction terms in regression analyses involving 1000+ values per variable are 

somewhat cumbersome to investigate. Second, Johnstone and Shanks (1999) carried 

out regression analyses for each participant individually. In this way, by examining 

the standardized beta coefficient corresponding to different knowledge influences, one 

could decide whether the performance of a particular participant is, for example, 

primarily determined by grammaticality vs. fragment overlap. However, in practice 

this approach fails: as Johnstone and Shanks reported, the coefficients for the 
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(individual) regression analyses were hardly ever significant (cf. Tunney & Altmann, 

2001).  

 

Establishing Individual Strategies in AGL 

We propose and illustrate a novel technique for examining individual strategies in 

AGL. This technique, latent class regression analysis (Huang & Bandeen-Roche, 

2004), combines key aspects of two techniques that have been applied earlier: 

regression analysis and individual regression analysis. Latent class regression belongs 

to the family of latent structure models (Lazarsfeld & Henry, 1968). The main aim of 

these types of models is to explain correlations between responses to different items 

by introducing a latent variable. In our case, the items are AGL test stimuli; but the 

same method could be applied, for example, in questionnaire analysis. For example, 

standard analysis of personality scales involves the factor model: the correlation 

among several personality scale items is explained by introducing a latent factor, e.g. 

extraversion. In such a case, the latent variable is continuous. By contrast, in latent 

class models, the latent variable is nominal, indicating the existence of a number of 

different types of people rather than a dimension (such as extraversion) on which 

people vary continuously, as is the case in the factor model of personality scales. 

Finally, in latent class regression models, the assumption is that there are a number of 

types of people, each having a unique set of regression coefficients (and intercepts).   

As is the case in normal regression analysis, in latent class regression models, 

performance is modeled as a function of predictors, such as grammaticality and 

fragment overlap. The assumption in standard regression analysis is that the same 

regression coefficients apply to each participant. However, in latent class regression 

analysis, participants belong to a particular group, and the regression coefficients are 
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the same only for those in the same group. Importantly, group membership is not a 

manifest variable, but only assigned as a result of the statistical procedure. Thus, 

latent class regression analysis is in-between standard regression analysis and the 

individual participant regression analyses carried out by Johnstone and Shanks 

(1999). In sum, latent class regression models are suitable to model heterogeneity in 

responses, without going as far as modeling each individual participant separately. As 

a consequence, latent class regression does not suffer from the problem that Johnstone 

and Shanks ran into, which was that individual regression coefficients were hardly 

ever significant.   

Finally, although we are presently interested in AGL, the above discussion 

hopefully illustrates that latent regression analysis has a very wide scope of 

applicability.  Bouwmeester, Sijtsma and Vermunt (2004) have applied it in cognitive 

development, to model how reasoning strategies depend on age, school grades and 

task demands. Schmitz et al. (2007) employed the method to differentiate between 

groups of psychotic patients. Yamaguchi (2000) identified groups of people having 

qualitatively different gender-role attitudes. Finally, Wang and colleagues have 

reported a series of applications in biology (Wang & Puterman, 1998; Wang, 

Puterman, & Cockburn, 1996). The interested reader is referred to McLachlan & Peel 

(2000; specifically chapter 5) for a general introduction into such models. 

 

Data Sets 

We analyzed the data of Pothos and Bailey (2000) and Pothos, Chater, and Ziori 

(2006). In both these studies data were collected (and compared) for three types of 

stimuli. A factor that is very likely to affect style of responding in AGL is stimulus 

format. Therefore these data sets afford ample potential for observing possible 
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individual strategies. Also, both studies employed the same finite state grammar and 

stimulus set (the one of Knowlton and Squire, 1996, Experiment 1; Figure 1), so that 

the results of these studies are highly comparable. 

In the letters condition, participants memorized letter strings generated from 

the finite state grammar. In the ‘shapes’ stimulus set of Pothos and Bailey (2000) the 

letters of a standard finite state language were mapped to simple geometric shapes 

(e.g., a square, a diamond, etc.), arranged so that the shapes corresponding to later 

letters in a stimulus enclosed all earlier ones. Thus, each stimulus in the shapes 

condition looked like an embedded arrangement of shapes and would so give an 

impression of a single object, rather than an arbitrary collection of distinct elements. 

In the ‘lines’ stimulus set stimuli consisted of lines arranged at different angles 

relative to each other; each symbol in the finite state language corresponded to a 

different angle. The lines stimuli were constructed to confuse information about 

individual symbols or pairs of symbols, since the particular form of a symbol would 

depend on its context. In the ‘routes’ stimulus set the letters of the finite state 

grammar were mapped onto names of major cities, suggesting a travel itinerary. 

Finally, in the ‘sequences’ stimulus set geometric shapes were arranged next to each 

other, on a straight line. This stimulus set was meant to be most equivalent to standard 

AGL studies, yet still have a perceptual gestalt, intended to allow similarity judgments 

(for more information see Pothos & Bailey, 2000). Examples of the letters, shapes and 

routes stimuli are given in Figure 2 (from Pothos et al., 2006). 

 

------------------------------INSERT FIGURE 2 ABOUT HERE-------------------------- 
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Using the repeated measures regression analysis technique of Lorch and 

Myers (1990), Pothos and Bailey (2000) reported significant effects of 

grammaticality, fragment overlap, and exemplar similarity for the shapes and the lines 

stimuli. For the sequences stimuli significant effects were observed only for exemplar 

similarity and grammaticality. (Grammaticality performance was computed as the 

proportion of G items in test correctly identified as G and NG ones correctly rejected 

as NG; fragment overlap performance was computed as the proportion of high 

fragment overlap items endorsed as G and low fragment overlap items rejected as 

NG.) 

Pothos et al. (2006, Experiment 3; in the other two experiments only 

grammaticality was examined) also ran a condition with the shapes stimulus set. 

Additionally, they employed standard letter strings (‘letters’) and, finally, stimuli as 

sequences of cities, so that each sequence was meant to correspond to a ‘route’ of an 

airline company. With the routes stimuli it was hypothesized that general knowledge 

expectations of which routes were more or less plausible would impair processing of 

the structural properties of the stimuli. Pothos et al. examined grammaticality and 

fragment overlap. For the letters stimuli there was a significant effect of both (as 

indeed was found by Knowlton and Squire, 1996). For shapes and cities there were 

significant effects of fragment overlap; however, grammaticality only approached 

significance.  

Pooling together, the The results of Pothos et al. (2006) and Pothos and Bailey 

(2000) together, provides five distinct AGL conditions: the letters, shapes, lines, 

routes, and sequences conditions. These conditions are rather closely matched, in that 

the same finite state grammar was employed and the training/test stimuli had the same 

abstract structure (that of Knowlton and Squire, 1996, Experiment 1). (The data from 



INDIVIDUAL STRATEGIES IN AGL  14 

the two shapes experiments, one in Pothos & Bailey, 2000, and the other in Pothos et 

al., 2006, were combined, since these two experiments were methodologically 

identical and latent regression analysis works better with larger sample sizes.) They 

differ in terms of stimulus format and so allow us the opportunity to examine the 

effect of stimulus format on participant strategy. Other researchers have examined the 

potential effect of stimulus format on AGL (e.g., Altmann, Dienes, & Goode, 1995; 

Chan, 1992; Conway & Christiansen, 2005, 2006). It is not relevant for our purposes 

to fully review this important research. Our aim presently was to seek a set of 

matched AGL conditions, varying only in terms of stimulus format. Hence, the 

conditions of Pothos et al. (2006) and Pothos and Bailey (2000) were considered most 

appropriate for inclusion in our analyses.   

There were data from 20 participants with the letters stimuli, 20 with the 

routes stimuli, 36 with the shapes stimuli (20 from Pothos et al., 2006; 16 from Pothos 

& Bailey, 2000), 16 with the lines stimuli, and 16 with the sequences stimuli. We 

examined individual strategies primarily on the basis of two possible influences on 

performance, grammaticality and fragment overlap (in an additional set of analyses 

we included some further predictors). The reason is that Knowlton and Squire (1996) 

created this stimulus set with a view to specifically balance grammaticality and 

fragment overlap. In other words, the average chunk strength of the G items in test 

was the same as the average chunk strength of the NG ones. Accordingly, a 

participant responding perfectly on the basis of grammaticality would demonstrate 

chance chunk strength performance, and vice versa. Therefore, in principle, there 

could be exactly equal possible influences of grammaticality and fragment overlap, 

making it more likely to observe interesting differences in individual strategy. Note 

that a few corrections had to be made to the fragment overlap (chunk strength) values 
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reported by Knowlton and Squire (1996); the corrected values are shown in the 

Appendix.  

 Finally, Pothos et al. (2006) and Pothos and Bailey (2000) closely observed 

the standard procedure in AGL experiments. Before the start of the training phase, 

participants were instructed that they were about to see a set of stimuli and that they 

would only need to observe these (in the routes experiment, some additional 

instructions were provided to allow participants to make sense of the stimuli). Then, 

participants were presented with the training stimuli. Subsequently, they were told 

that all the training stimuli had been created on the basis of a complex set of rules, 

that participants would see novel stimuli which either complied or violated these 

rules, and that they would have to decide which stimuli were legal and which illegal. 

Participants did not receive corrective feedback, nor were specifically told whether 

the numbers of legal and illegal stimuli conformed to a certain proportion (although 

most participants probably did make this assumption).  

 

Latent Class Regression Models 

Latent class regression models were fitted to the above datasets. The main goal of the 

analysis was to examine the influence of grammaticality and fragment overlap on 

participants’ performance (i.e. whether they judged a particular test item to be 

grammatical or non-grammatical), in a way that would take into account possible 

heterogeneity in individual strategies. Such putative heterogeneity was assessed 

statistically, against a null hypothesis of no (robust) heterogeneity in participant 

strategies.  

The fitted model is a mixture of logistic regressions; more formally, assume 

there are Nc latent classes, that is, participants can be divided into Nc groups, such that 
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participants within each group can be said to have adopted the same strategy of 

responding. For our purposes, a strategy is a particular way to take into account 

grammaticality and fragment overlap in responding. For example, one latent class 

might reflect a predominant influence of grammaticality, while another relatively 

equal influences of grammaticality and fragment overlap. The model does not specify 

in advance the form of a strategy; rather, this is determined in a way analogous to how 

regression coefficients are determined. More formally, the specified model had the 

form:  

 logit(p(yi)) = c + gc*G + fc*F,  c=1 … Nc , i=1 … n,   (1) 

where p(yi) is the probability of judging a test item to be grammatical, and logit is the 

logistic function, log (p/(1-p)); c is the intercept (specific to the particular latent 

class; the same applies to all the other coefficients, which have a ‘c’ index); gc is the 

regression coefficient for the grammaticality (G) of an item; fc is the regression 

coefficient for the fragment overlap value (F) of an item (as computed by Knowlton 

& Squire, 1996, and subsequently slightly corrected); Nc is the number of latent 

classes and n is the number of participants. Note that if the number of classes equals 

1, an ordinary logistic regression results; on the other hand, if the number of classes is 

set equal to n, the number of participants, the individual regression analysis of 

Johnstone and Shanks (1999) results (in the latter case, the classes are not latent 

anymore because each participant has his/ her own class).  

Before fitting the model, the variables grammaticality and fragment overlap 

were centered, so that grammatical items were coded as 1, and ungrammatical items 

were coded as -1, and fragment overlap was normalized to have zero mean and unit 

variance. Centering was carried out to ensure that the intercept c could be interpreted 

as the average rate of endorsing items as grammatical in the latent class, as is 
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frequently done in normal regression analyses. Note that it is hard to provide rules-of-

thumb about the number of cases needed to carry out latent class regression analysis 

as this depends largely on the magnitudes of the differences between classes, i.e. in 

terms of the values of the coefficients (and of course on the number of classes). 

However, in the applications mentioned earlier, sample sizes were at least 100 (and 

would be as high as 800 when different age groups were included in the studies as 

well).  

 

Results  

Models were fitted to the entire dataset, consisting of the 108 participants in the 

experiments of Pothos and Bailey (2000) and Pothos et al. (2006). Note that the latent 

class regression analysis is best carried out in the aggregate dataset, because it is a lot 

more robust with greater sample size. Information about each of the data sets 

separately, and about each of the conditions can readily be obtained by examining 

posterior estimates, as is done below. Each participant responded to the 32 test items 

(see Appendix A for details of the items). Models with an increasing number of latent 

classes, up to 4, were fitted. As latent variable models tend to have more than one 

local maximum of the log-likelihood function, multiple sets of starting values are used 

to ensure stability of the results. Models were fitted using the flexmix package 

(Leisch, 2004) for the R statistical programming environment (R Development Core 

Team, 2007; see also Grün & Fleisch, 2007, for an example of fitting mixtures of 

logistic regressions in R). In Table 1, the goodness-of-fit measures of the models with 

1 through 4 classes are provided.  

 

------------------------------INSERT TABLE 1 ABOUT HERE-------------------------- 
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The Akaike and Bayesian Information Criteria (AIC and BIC respectively), 

are commonly used in comparing non-nested competing models (Akaike, 1973; 

Schwarz, 1978), in this case between models with an increasing number of latent 

classes (see Lin, 1997, for details on the specific uses of AIC and BIC in latent class 

models). In the case of non-nested models, traditional tests for comparing models 

such as the log likelihood ratio test,test are not applicable. Both AIC and BIC provide 

a trade-off between goodness-of-fit, in this case the log likelihood, and the number of 

parameters in the models; note that for each added latent class, 4 extra parameters 

need to be estimated, i.e., the intercept and regression coefficients of that class and the 

proportion of participants that it contains. Lower values of each of these criteria 

denote better models, in which goodness-of-fit and parsimony are balanced. As can be 

seen from Table 1, the 3-class model fits the data optimally, according to both AIC 

and BIC criteria. The regression coefficients of this model are provided in Table 2.  

 

------------------------------INSERT TABLE 2 ABOUT HERE-------------------------- 

 

It can be readily seen that the three classes are associated with different 

regression coefficients, reflecting differences in response strategies. In Class 1, there 

is a significant coefficient for grammaticality, but the fragment overlap coefficient is 

not significant. Accordingly, participants in Class 1 would be the ones who relied 

primarily on grammaticality for their responses; we will refer to Class 1 as the 

‘grammaticality’ class. In Class 2 we have significant coefficients for both the 

intercept and fragment overlap; we will refer to this class as the ‘fragment overlap’ 

class. The significant intercept in the ‘fragment overlap’ class indicates that 
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participants in that class had an overall higher rate of endorsing test items as 

grammatical. The significant coefficient for ‘fragment overlap’ indicates that these 

participants are strongly influenced by this factor in judging test items. Finally, 

participants in Class 3 do not appear to be influenced by either grammaticality or 

fragment overlap; accordingly, Class 3 will be referred to as ‘neither’. Such a class is 

consistent with the research of Johnstone and Shanks (1999) and Pothos and Bailey 

(2000), which showed that factors other than fragment overlap or grammaticality 

could influence performance. Class 3 participants might have picked up on 

idiosyncratic strategies, such as the length of the stimuli (although note that the 

Knowlton and Squire, 1996, stimuli were specifically balanced only for 

grammaticality and chunk strength; therefore, it is with respect to the study of these 

influences that an analysis of performance is most appropriate).  

Table 2 also contains the class sizes. As can be seen, the ‘grammaticality’ and 

‘fragment overlap’ classes each contain about 44% of the participants, and the 

‘neither’ class contains the remaining 12%. Accordingly, the latent class analysis 

replicates the commonly reported finding that the influences of grammaticality and 

fragment overlap are roughly equivalent (e.g., Higham, 1995; Knowlton & Squire, 

1996). There is a key difference: we show that different participants rely on 

grammaticality and different participants rely on fragment overlap. This is a very 

distinct conclusion from one whereby each participant would rely to an equivalent 

degree on grammaticality and fragment overlap. The latter conclusion cannot be used 

to corroborate a view of grammaticality and fragment overlap as distinct influences on 

performance. The former conclusion, the one that was possible with latent class 

modeling, does.  
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Clearly, of interest to researchers is not only the relative influence of 

grammaticality and fragment overlap on performance in the aggregate data (that is, 

data from the entire set of 108 participants), but also how this relative influence might 

vary with stimuli of different types. This can be examined by considering assignments 

of participants to latent classes. Based on the responses that a participant has 

provided, it is possible to compute the probability that s/he belongs to each of the 

latent classes. These probabilities are so-called posterior probabilities. Participants 

can then be assigned to the class corresponding to their highest posterior probability. 

This was done for the 3-class model that was described earlier. Table 3 contains a 

cross-tabulation of the number of participants in each of the three classes and the 

stimulus format condition that they were in.  

 

------------------------------INSERT TABLE 3 ABOUT HERE-------------------------- 

   

 Differences in stimulus format did not appear to lead to systematic, 

interpretable variations in individual strategy. Possibly, the open-ended nature of the 

AGL task leads to different participants simply adopting different strategies in an 

idiosyncratic manner. Despite this somewhat disappointing conclusion, some broad 

observations are worth making. First, the letters and sequences conditions were the 

ones that were most equivalent to the standard AGL paradigm. For these conditions, 

one would anticipate the influence of grammaticality and fragment overlap to be 

roughly equal, as has been the intention of Knowlton and Squire (1996). Our analyses 

showed that this was indeed the case. Second, the routes stimuli were effectively 

sequences of words. Accordingly, there would be less scope for a similarity process to 

operate, as opposed to a symbolic process (which can be assumed to broadly 
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correspond to grammaticality, regardless of the exact interpretation of 

grammaticality). Correspondingly, Table 3 shows that most participants with the 

routes stimuli were assigned in the grammaticality class. Finally, the shapes and the 

lines stimuli were created to provide particularly compelling perceptual Gestalts and 

so encourage a mode of responding based on similarity; our analyses show that this 

was clearly the case for one of the shapes conditions, however, the evidence was 

ambivalent in the other shapes condition and the lines condition (i.e., as said, 

idiosyncrasies in response strategies probably overrode perceptual biases). Apart from 

idiosyncratic strategies, participants also differ with respect to an overall bias in 

endorsing test items; this is evidenced by a significant intercept term in the ‘fragment 

overlap’ class (and possibly by the intercept term in the ‘neither’ class which tends to 

significance).  

With respect to the ‘neither’ participants, Table 2 indicates that they do 

respond with above chance grammaticality accuracy. This is not surprising. There are 

several performance factors that somewhat covary with grammaticality performance 

(e.g., the length of the stimuli; Pothos & Bailey, 2000). Indeed, AGL researchers have 

tried very hard to eliminate such factors, so that performance could be driven by only 

the putative influences of interest (e.g., Redington & Chater, 1996; Tunney & 

Altmann, 2001).  

A methodological point is worth making about the cross-tabulation in Table 3: 

In dataset 2, participants provided two responses to each test item, whereas in dataset 

1 participants provided only one response to each of the test items. As a consequence, 

it is expected that the classification of participants from dataset 2 into the latent 

classes could be made more reliable than for participants from dataset 1. Assigning 

participants to latent classes is not error-free; each participant has a certain probability 
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of belonging to each of the latent classes. This can be tested by computing the mean 

of the maximum posterior probabilities for the participants from each of the datasets; 

for dataset 1 this turns out to be 0.749, whereas in dataset 2 this turns out to be 0.858. 

This confirms that indeed the posterior assignment of participants in dataset 2 is more 

reliable than the assignment of participants from dataset 1. The straightforward 

implication of this demonstration is that multiple responses per participant are 

desirable when the object of the analyses is to reliably detect individual differences in 

response strategies.  

 

Other influences in AGL 

In the analyses carried out so far, we have only considered grammaticality and 

fragment overlap, as possible sources of information that participants could base their 

judgments upon. Grammaticality and fragment overlap were the performance factors 

balanced by Knowlton and Squire (1996) in their stimulus set that we used and are 

two of the most widely used measures of AGL performance. We carried out a second 

set of analyses including a number of other predictors as well, in particular anchor 

chunk strength, length of the AGL strings, and edit distance. It is important to note 

that the results from this second set of analyses would be less reliable: Knowlton and 

Squire ensured that grammaticality and fragment overlap did not correlate with each 

other in their stimulus set, but this is not necessarily the case for these additional 

performance factors. The modeling approach is identical to the one described earlier, 

the only difference being that now there are five predictors included in the analyses: 

grammaticality, fragment overlap, anchor chunk strength, length, and edit distance. 

Before presenting the analyses, we briefly discuss each of the new predictors in turn.  
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Several investigators (for an early examination see Reber & Allen, 1978) have 

pointed out that the beginning and end parts of a stimulus (anchor points) are 

particularly salient to participants. Accordingly, knowledge of anchor bigrams and/or 

trigrams may well have an influence on participants’ classifications. Anchor chunk 

strength is computed in the same way as chunk strength, but taking into account the 

frequency of only beginning and final bigrams and trigrams. Additionally, we have 

found length to be a useful predictor variable of participants’ performance in earlier 

research of ours (Pothos & Bailey, 2000). The motivation for including length is that 

it is a particularly salient feature of stimuli (especially graphical ones). Note that 

where stimuli are presented as embedded shapes, the length variable effectively 

corresponds to size. Finally, edit distance between two strings is the measure of 

similarity adopted by Vokey and Brooks (1992). The edit distance between two 

strings is computed as the as the number of insertions and deletions that are required 

to map one string to another, in which substitutions are treated as an insertion and a 

deletion. Vokey and Brooks advocated a similarity view of AGL based on edit 

distance and, also, edit distance corresponds well to some algorithmic views of 

similarity (e.g., Chater & Hahn, 1997).  

Clearly, additional predictors of AGL performance could have been included. 

A problem with AGL is that there is  nois no limit to the kind of statistics 

whichstatistics that can be computed for the items. However, even if a particular 

statistic correlates highly with performance, this does not necessarily enhance our 

insight of psychological process. Accordingly, we restricted ourselves to including 

possible predictors which have (a) been used in the past in AGL (since the purpose of 

our study is primarily to illustrate the latent class regression technique), and (b) can 

have a clear psychological interpretation.  
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 As in the above presented analyses, we fitted latent class regression models 

with an increasing number of latent classes on participants’ responses, with the only 

difference that now five predictors were included. The results broadly corroborate the 

earlier findings. A four-class model turned out to be the best model, although the 

three- and four-class model had very similar goodness-of-fit statistics (log-likelihood 

and BIC). The four-class model had one class in which fragment overlap was the only 

significant predictor, one class in which grammaticality was the best predictor, 

although only marginally significant (p=0.06), and two classes which had no 

significant predictors. The proportion of participants in the grammaticality class was 

0.29, which is slightly less than the 0.44 found in the first analysis. The proportion of 

participants in the fragment overlap class was 0.44, which is identical to what was 

found in the first analysis.  

 In order to better compare the results from the first and second analysis, we 

also inspected the three-class solution in the second analysis. Statistically, this is 

justified because the goodness-of-fit statistics of the three-class solution were very 

close to that of the four-class one. The three-class solution had the same structure as 

in the first analysis, with a grammaticality class, a fragment overlap class and a 

‘neither’ class. Relative to the first analysis, the only difference was that in the 

fragment overlap class, string length also had a significant influence on participants’ 

endorsement of items. In the grammaticality class, both string length and anchor 

chunk strength were found to have marginally significant influences.  

In none of the solutions did edit distance have any  influenceany influence, 

significant nor marginally significant, on participants’ responses. Therefore, we reran 

the second analysis without edit distance included. This enabled us to check the 

effects of adding/removing a predictor from the analysis which highly correlated with 
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the other predictors. In particular, the correlation between fragment overlap and edit 

distance was -0.68. As expected, results were similar, with the three-class solution 

being the best fitting model. Again, this model had a grammaticality class, a fragment 

overlap class, and a neither class as in our first analysis. The only difference relative 

to the first analysis, is that length was an additional significant predictor in the 

grammaticality class.  

Overall, despite including three additional predictors of performance, the 

results of the second analysis were highly similar to the results of the first analysis. 

Moreover, even though length and anchor chunk strength emerged as somewhat 

important predictors of performance in the second analysis, some caution is required 

in interpreting this result. Both length and anchor chunk strength correlate with 

fragment overlap, and, albeit to a lesser extent, with grammaticality. This obviously 

makes it harder to separate the importance of each of these influences on participants’ 

performance. Grammaticality and fragment overlap, on the other hand, do not 

correlate, and hence their influences can be analyzed independently. Avoiding 

colinearity problems in regression analyses such as the above is only possible if 

putative influences on AGL performance are balanced in an a priori way. 

 

Discussion 

In this paper we analyzed data from several AGL experimental conditions, with a 

view to determine whether there is heterogeneity in the strategies participants employ 

in responding to test items. Response strategies primarily concerned grammaticality 

and fragment overlap. By using latent class regression models, we were able to 

achieve conclusions well beyond previous similar approaches, such as those of Pothos 

and Bailey (2000) and Johnstone and Shanks (1999). The key reason is that standard 
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regression analyses assume a single set of coefficients for all participants. By contrast, 

latent class regression models introduce a (nominal) latent class variable, and compute 

a different set of regression coefficients for the participants in each class.  

Why is this distinction important? Consider a situation where a regression 

analysis reveals significant effects of chunk strength and grammaticality. It is possible 

that participants’ performance is really driven by a third factor, call it X, which 

happens to partly correlate with both grammaticality and similarity; if this is true, then 

it is X we should be studying, rather than grammaticality and chunk strength (cf. 

Kinder & Shanks, 2001; Plunkett & Bandelow, 2006). By contrast, if we identify 

some participants to be responding predominantly on the basis of grammaticality and 

some on chunk strength, then we are a lot more certain that grammaticality and chunk 

strength are correctly understood as separate influences on participants’ performance 

on AGL. This is the conclusion from the present analyses.  

More specifically, the starting point in our analyses was that a single class 

model would be the best model, that is, there would be no variation in response 

strategies between individual participants. The analyses showed otherwise by 

identifying three classes, one showing a predominant influence of grammaticality on 

responses, one showing a predominant influence of fragment overlap, and one where 

responses could not be readily assigned to either grammaticality or fragment overlap. 

This result also provides further confirmation for the long AGL research tradition 

which assumes grammaticality to be separate from fragment overlap (Higham, 1997; 

Knowlton & Squire, 1996; Pothos & Bailey, 2000). 

 Furthermore, an examination of posterior probabilities enabled us to assign 

participants in the different experimental conditions to each of the three latent classes. 

Such an analysis could, in principle, reveal systematic influences of stimulus format 
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on response strategies. However, beyond some general conclusions, this approach did 

not reveal any further structure in our data. This indicates that participants appear to 

use individual strategies based on known or unknown stimulus characteristics, rather 

than been uniformly biased by particular characteristics of the stimuli (such as 

stimulus format).  

Similar remarks could apply when different grammars are involved rather than 

just different stimulus formats, and when different training sets of stimuli are used. 

For example, Meulemans and Van der Linden (1997) showed that with few training 

examples, participants based their responses predominantly on chunk strength (or 

fragment overlap). On the other hand, when given more training examples, 

participants based their responses relatively more on grammaticality. Latent class 

regression analysis could confirm such differences in representational format between 

the different conditions, while at the same time assess whether there are individual 

differences with respect to the strategies that participants used; that is, it could be the 

case that even in the many-training-examples-condition, some participants still 

predominantly used chunk strength and vice versa in the other condition. With future 

work we hope to analyze more datasets with the promising latent regression method.  

Another issue concerns the development of classification strategies. In order to 

study the development of classification strategies, one would need to have participants 

carry out several judgments on the same test stimuli. However, a potential 

complication with such a procedure is that successive judgments would not reflect 

application of knowledge acquired from training, but rather memory of the previous 

judgment. In an early investigation, Reber and Allen (1978) had test stimuli presented 

twice in order to examine consistency of responses; they measured the frequency of 

CC (correct—correct responses for two presentations of the same test item), EE 
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(erroneous—erroneous response), CE, and EC. One of their findings was that the 

combined frequency of CC, EE was much higher than that of CE, EC, showing that 

participants were consistently correct or wrong in the test part. Later investigations 

(including our own) replicated this finding. With respect to how the current statistical 

approach could deal with this issue, one could have participants make several 

responses for the same test stimuli and then analyze the response patterns for each set 

of responses separately. We could then find that the characterization of a participant 

relative to his/her first set of responses is different relative to his/her second set of 

responses. While on paper such an approach appears plausible, we believe one would 

require a much greater sample size before it is viable. Note that in categorization a 

corresponding analysis with latent regression models has already been carried out, by 

Raijmakers and Visser (submitted), who analyzed the data of Johansen and Palmeri 

(2002). Johansson and Palmeri created a task which involved successive 

classifications of the same stimuli, so as to study the evolution of category 

representation. Such data are suitable for the so-called latent Markov analysis (which 

is an extension of the latent class analysis in repeated measurements, cf. Visser, 

Schmittmann, & Raijmakers, 2007). Whether the approach of Raijmakers and Visser 

(submitted) might be a suitable way to address the problem of repeated measurements 

in AGL as well is an interesting topic for future research.  

In sum, we hope to have illustrated the utility of our approach. A clear 

prescription for further research is greater sample sizes. The latent modeling approach 

to regression analysis, for all its additional explanatory power, is ideally applied to 

large sample sizes. We hope that there will be opportunities to apply our method to 

more extensive datasets in the future, and so corroborate the current conclusions.  



INDIVIDUAL STRATEGIES IN AGL  29 

References 

Akaike, H. (1973). Information theory and an extension of the maximum likelihood 

principle. In Petrov, B. N. and Csaki, F., (Eds.), Second international 

symposium on information theory, 267–281. Budapest: Academiai Kiado. 

Altmann, G. T. M., Dienes, Z., & Goode, A. (1995). Modality Independence of 

Implicitly Learned Grammatical Knowledge. Journal of Experimental 

Psychology: Learning, Memory and Cognition, 21, 899-912. 

Berry, C. J., Shanks, D. R., & Henson, R. N. A. (2008). A single-system account of 

the relationship between priming, recognition, and fluency. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 34, 97-111. 

Boucher, L. & Dienes, Z. (2003). Two ways of learning associations. Cognitive 

Science, 27, 807-842. 

Bouwmeester, S., Sijtsma, K., & Vermunt, J.K. (2004). Latent Class Regression 

Analysis to Describe Cognitive Developmental Phenomena: An Application to 

Transitive Reasoning. European Journal of Developmental Psychology, 1, 67-

86.  

Chan, C. (1992). Implicit Cognitive Processes: Theoretical Issues and Applications in 

Computer Systems Design. Unpublished DPhil thesis, University of Oxford. 

Chater, N. & Hahn, U. (1997). Representational distortion, similarity and the 

Universal Law of generalization. In Proceedings of the Similarity and 

Categorization Workshop 97, 31-36, University of Edinburgh. 

Cleeremans, A. (2005). Computational correlates of consciousness. Progress in Brain 

Research, 150, 81-98. 



INDIVIDUAL STRATEGIES IN AGL  30 

Conway, C. & Christiansen, M. H. (2005). Modality constrained statistical learning of 

tactile, visual, and auditory sequences. Journal of Experimental Psychology: 

Learning, Memory & Cognition, 31, 24-39. 

Conway, C. M. & Christiansen, M. H. (2006). Statistical learning within and between 

modalities: Pitting abstract against stimulus specific representations. 

Psychological Science, 17, 905-912. 

Dienes, Z. (1992). Connectionist and Memory-Array Models of Artificial Grammar 

Learning. Cognitive Science, 16, 41-79. 

Dienes, Z., & Perner, J. (1999). A theory of implicit and explicit knowledge. 

Behavioral and Brain Sciences, 22, 735-808. 

Dulany, D. E. (1997). Consciousness in the Explicit (Deliberative) and Implicit 

(Evocative). In J.D. Cohen, & J. W. Schooler (Eds.), Scientific approaches to 

consciousness. (pp. 179-211). Mahwah, NJ: Lawrence Erlbaum Associates. 

Dulany, D. E. (2003). Strategies for putting consciousness in its place. Journal of 

Consciousness Studies, 10, 33-43. 

Dulany, D. E., Carlson, R. A., & Dewey, G. I. (1984). A case of syntactical learning 

and judgment: How conscious and how abstract? Journal of Experimental 

Psychology: General, 113, 541-555. 

Eldridge, L. L., Masterman, D., & Knowlton, B. J. (2002). Intact implicit habit 

learning in Alzheimer’s disease. Behavioral Neuroscience, 116, 722-726. 

Gebauer, G. F. and Mackintosh, N. J. (2007). Psychometric intelligence dissociates 

implicit and explicit learning. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 33(1): 34–54. 



INDIVIDUAL STRATEGIES IN AGL  31 

Grün, B. and Leisch, F. (2007). Fitting finite mixtures of generalized linear 

regressions in R. Computational Statistics and Data Analysis, 51(11): 5247–

5252.  

Henson, R. (2006). Forward inference using functional neuroimaging: dissociations 

versus associations. TRENDS in Cognitive Sciences, 10(2):64–69. 

Higham, P. A. (1997). Dissociations of grammaticality and specific similarity effects 

in artificial grammar learning. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 23, 1029-1045. 

Huang, G-H., & Bandeen-Roche, K. (2004). Building an Identifiable Latent Class 

Model with Covariate Effects on Underlying and Measured Variables. 

Psychometrika, 69(1), 5-32.  

Jamieson, R. K. & Mewhort, D. J. K. (2005). The influence of grammatical, local, and 

organizational redundancy on implicit learning: an analysis using information 

theory. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 31, 9-23. 

Johansen, M. K., & Palmeri, T. J. (2002). Are there representational shifts during 

category learning? Cognitive psychology, 45, 482-553. 

Johnstone, T. & Shanks, D. (1999). Two Mechanisms in Implicit Grammar Learning? 

Comment on Meulemans and Van der Linden (1997). Journal of Experimental 

Psychology: Learning, Memory, & Cognition, 25, 524-531. 

Juola, P., & Plunkett, K. (1998). Why double dissociations don't mean much. In M.A. 

Gernsbacher & S.J. Derry (Eds.), Proceedings of the Twentieth Annual 

Conference of the Cognitive Science Society (pp. 561-566). Mahwah, NJ: 

Lawrence Erlbaum Associates. 



INDIVIDUAL STRATEGIES IN AGL  32 

Kim, J. (1992). Multiple realization and the metaphysics of reduction. Philosophy and 

Phenomenological Research, 52(1):1–26. 

Kinder, A., & Assmann, A. (2000). Learning artificial grammars: No evidence for the 

acquisition of rules. Memory & Cognition, 28, 1321-1332. 

Kinder, A., & Shanks, D. R. (2001). Amnesia and the declarative/nondeclarative 

distinction: A recurrent network model of classification, recognition, and 

repetition priming. Journal of Cognitive Neuroscience, 13, 648-669. 

Knowlton, B. J. (1999). What can neuropsychology tell us about category learning? 

Trends in Cognitive Sciences, 3, 123-124. 

Knowlton, B. J., & Squire, L. R. (1996). Artificial Grammar Learning Depends on 

Implicit Acquisition of Both Abstract and Exemplar-Specific Information. 

Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 

169-181. 

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton 

Mifflin. 

Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent 

class regression in R. Journal of Statistical Software, 11(8). 

http://www.jstatsoft.org/v11/i08/ 

Lorch Jr., R. F. & Myers, J. L. (1990). Regression Analyses of Repeated Measures 

Data in Cognitive Research. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 16, 149-157. 

Lotz, A., & Kinder, A. (2006). Transfer in artificial grammar learning: The role of 

repetition information. Journal of Experimental Psychology: Learning, 

Memory & Cognition, 32, 707-715. 

McLachlan, G.J., & Peel, D. (2000). Finite Mixture Models. Wiley. 



INDIVIDUAL STRATEGIES IN AGL  33 

Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard-Fields, F., Cho, J. R., & 

Druhan, B. (1989). Role of Implicit and Explicit Processes in Learning From 

Examples: A Synergistic Effect. Journal of Experimental Psychology: 

Learning, Memory and Cognition, 15, 1083-1100. 

Meulemans, T., Van der Linden, M. (1997). Associative Chunk Strength in Artificial 

Grammar Learning. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 23, 1007-1028. 

Meulemans, T., van der Linden, M., and Perruchet, P. (1998). Implicit sequence 

learning in children. Journal of Experimental Child Psychology, 199–221. 

Lin, T. H. and Dayton, C. M. (1997). Model selection information criteria for non-

nested latent class models. Journal of Educational and Behavioral Statistics, 

22(3):249–264. 

McAndrews, M. P. & Moscovitch, M. (1985). Rule-based and exemplar-based 

classification in artificial grammar learning. Memory & Cognition, 13, 469-

475. 

Miller, G. A. (1958). Free Recall of Redundant Strings of Letters. Journal of 

Experimental Psychology, 56, 485-491. 

Perruchet, P., & Pacteau, C. (1990). Synthetic Grammar Learning: Implicit Rule 

Abstraction or Explicit Fragmentary Knowledge? Journal of Experimental 

Psychology: General, 119, 264-275. 

Plunkett, K. & Bandelow, S. (2006). Stochastic approaches to understanding 

dissociations in inflectional morphology. Brain and Language, 98, 194-209. 

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? 

TRENDS in Cognitive Sciences, 10(2):59–63. 



INDIVIDUAL STRATEGIES IN AGL  34 

Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral & Brain 

Sciences, 28, 1-49. 

Pothos, E. M. (2007). Theories of Artificial Grammar Learning. Psychological 

Bulletin, 133, 227-244. 

Pothos, E. M., & Bailey, T. M. (2000). The Importance of Similarity in Artificial 

Grammar Learning. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 26, 847-862. 

Pothos, E. M., Chater, N., & Ziori, E. (2006). Does stimulus appearance affect 

learning? The American Journal of Psychology, 119, 277-301. 

R Development Core Team (2007). R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0. 

Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal 

with the “the language-as-fixed-effect fallacy”: common misconceptions and 

alternative solutions. Journal of Memory and Language, 41, 416-426. 

Raijmakers, M.E.J. & Visser, I. (submitted). Statistical models of intra- and inter-

individual differences and errors in category learning. Manuscript submitted for 

publication.  

Redington, F. M., & Chater, N. (1996). Transfer in Artificial Grammar Learning: 

Methodological Issues and Theoretical Implications. Journal of Experimental 

Psychology: General, 125, 123-138. 

Reber, A. S. (1967). Implicit Learning of Artificial Grammars. Journal of Verbal 

Learning and Verbal Behavior, 6, 855-863. 

Reber, A. R., Allen, R. (1978). Analogic and abstraction strategies in synthetic 

grammar learning: A functional interpretation, Cognition, 6, 189-221. 



INDIVIDUAL STRATEGIES IN AGL  35 

Schmitz, N., Malla, A., Norman, R., Archie, S., & Zipursky, R. (2007). Inconsistency 

in the relationship between duration of untreated psychosis (DUP) and 

negative symptoms: Sorting out the problem of heterogeneity. Schizophrenia 

Research, 93, 152-159.  

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 

461–464. 

Shanks, D. R., St. John, M. F. (1994). Characteristics of dissociable human learning 

systems. Behavioral and Brain Sciences, 17, 367-447. 

Shanks, D. R., & Perruchet, P. (2002). Dissociation between priming and recognition 

in the expression of sequential knowledge. Psychonomic Bulletin & Review, 

9, 362-367. 

Shanks, D. R., Johnstone, T., & Staggs, L. (1997). Abstraction processes in artificial 

grammar learning. Quarterly Journal of Experimental Psychology, 50A, 216-

252. 

Tunney, R. J. & Altmann, G. T. M. (2001). Two models of transfer in artificial 

grammar learning. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 27, 614-639. 

Tunney, R. J. & Shanks, D. R. (2003). Subjective measures of awareness and implicit 

cognition. Memory & Cognition, 31, 1060-1071. 

Visser, I., Schmittmann, V. D., and Raijmakers, M. E. J. (2007). Markov process 

models for discrimination learning. In van Montfort, K., Oud, H., and Satorra, 

A., editors, Longitudinal models in the behavioral and related sciences, 

chapter 14, pages 337–365. Lawrence Erlbaum Associates, Mahwah (NJ). 



INDIVIDUAL STRATEGIES IN AGL  36 

Vokey, J. R., & Brooks, L. R. (1992). Salience of Item Knowledge in Learning 

Artificial Grammar. Journal of Experimental Psychology: Learning, Memory 

& Cognition, 20, 328-344. 

Wang P., Puterman M. L. (1998). Mixed Logistic Regression Models. Journal of 

Agricultural, Biological, and Environmental Statistics, 3(2), 175- 200. 

Wang P., Puterman M. L., Cockburn IM, Le ND (1996). Mixed Poisson regression 

models with covariate dependent rates. Biometrics, 52, 381-400. 

Yamaguchi, K. (2000). Multinomial Logit Latent-Class Regression Models: An 

Analysis of the Predictors of Gender-Role Attitudes among Japanese Women. 

American Journal of Sociology, 105(6), 1702-1740.  

 

 

 



INDIVIDUAL STRATEGIES IN AGL  37 

Appendix 

The stimulus set of Knowlton and Squire (1996, Experiment 1), used by Pothos and 

Bailey (2000) and Pothos et al. (2006, Experiment 3). The letters correspond to the 

ones employed by Knowlton and Squire. vtvjjSec indicates the second instance of 

vtvjj (Knowlton and Squire accidentally repeated in their test set one item). Finally, 

higher fragment overlap values indicate higher similarity to the training items.  

item Grammaticality  Fragment overlap  

vjtvt    G 6 

vjtxvx   G 6.777778 

vtv      G 5 

vtvj     G 5.6 

vtvjj    G 5.142857 

vtvjjSec G 5.142857 

vx       G 12 

vxj      G 9.333333 

xvjtvt   G 6.666667 

xvjtvx   G 7.444444 

xvtv     G 6.8 

xvtvj    G 6.714286 

xvtvjj   G 6.111111 

xxvtv    G 7.857143 

xxvtvj   G 7.555556 

xxvxj    G 10.28571 

jxvt     NG 5 

tvj      NG 6.666667 

vjjxvt   NG 4.888889 

vjtv     NG 7 

vxjjx    NG 5.857143 

vxjtj    NG 4.857143 
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vxvj     NG 8.2 

xjj      NG 7 

xvxt     NG 7 

xvxv     NG 10 

xvxvj    NG 9.142857 

xxjj     NG 6.8 

xxtx     NG 2.8 

xxv      NG 12 

xxvjjj   NG 7.666667 

xxvvjj   NG 6.111111 
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Footnote 

1
Note that there is a related but different discussion in the implicit learning literature 

on individual differences in implicit learning abilities. In this case, the question of 

interest is whether participants reliably differ in their ability to judge novel items as 

grammatical or not, and most importantly whether this ability covaries with other 

cognitive abilities, e.g. IQ (cf. Gebauer & Mackintosh, 2007). In such studies 

individual differences are considered to be quantitative, whereas in the current paper 

it is examined whether there are qualitative (i.e., categorical) individual differences.  
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Table 1. Goodness of fit for latent class regression models with 1 through 4 classes. 

classes loglik* AIC BIC 

1 -3041.3 6088.6 6096.6 

2 -3003.9 6021.8 6040.6 

3 -2993.7 6009.5 6038.9 

4 -2991.1 6012.1 6052.4 

*loglik refers to the log likelihood of the models.  
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Table 2. Regression coefficients for the best, 3-class, model.  

class size intercept gram  

g (se) 

frag  

f (se) 

correct 

1 0.44 -0.02 (0.11) 

p=0.84 

0.25 (0.11)  

p<0.05*  

0.10 (0.12) 

p=0.39 

0.572* 

2 0.44 0.32 (0.12) 

p<0.01* 

0.13 (0.12) 

p=0.28 

0.51 (0.13) 

p<0.001* 

0.524* 

3 0.12 1.35 (0.79) 

p=0.09 

0.39 (0.79) 

p=0.61 

-0.09 (0.75) 

p=0.91 

0.560* 

Note: gram denotes the ‘grammaticality’ coefficient; frag denotes the ‘fragment 

overlap’ coefficients; *’s indicate the  significant coefficients. Standard errors (se) of 

parameters are shown in parentheses. The final column provides the proportion of 

correctly judged items for participants in each of the classes (all three proportions are 

significantly above chance level, as assessed with single-sample t-tests).  

 



INDIVIDUAL STRATEGIES IN AGL  43 

 Table 3. Distribution of participants over the latent classes and stimulus format 

conditions. 

Dataset Condition Neither Fragment Grammaticality Total 

1 Letter 2  8 10 20 

 Routes 3 5 12 20 

 Shapes 9 9 2  20 

2 Shapes 1  7  8  16 

 Lines 0  10  6  16 

 Sequences 1  6  9  16 

 Total 16 45  47  108 

Note: Dataset 1 refers to the conditions of Pothos et al. (2006), dataset 2 to the ones of 

Pothos and Bailey (2000).  
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Figure Captions 

Figure 1. An example of a finite state language (from Knowlton & Squire, 1996), 

where the symbols corresponding to the different transitions are letters and therefore 

the resulting sequences letter strings. The circles are the states of the language. Every 

time a legal transition is made between states, the letter corresponding to this 

transition is added, until a transition is made to one of the OUT states. For example, 

while string XXVT is G, string XT is not. 

 

Figure 2. Examples of the types of stimuli used in the letters, shapes, and routes 

conditions respectively (from Pothos et al., 2006). 
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Figure 1 
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Figure 2 

 
 


