

City, University of London Institutional Repository

Citation: van der Meulen, M., Riddle, S., Strigini, L. & Jefferson, N. (2005). Protective

wrapping of off-the-shelf components. COTS-based Software Systems, 3412, pp. 168-177.
doi: 10.1007/978-3-540-30587-3_27

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/470/

Link to published version: https://doi.org/10.1007/978-3-540-30587-3_27

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Protective Wrapping of O�-the-Shelf Components

Meine van der Meulen1, Steve Riddle2, Lorenzo Strigini1, and Nigel Je�erson2

1 Centre for Software Reliability, City University, London, U.K.

E-mail:{mjpm,strigini}@csr.city.ac.uk
2 School of Computing Science, University of Newcastle upon Tyne, U.K.

E-mail:{steve.riddle,n.p.jefferson}@ncl.ac.uk

Abstract. System designers using o�-the-shelf components (OTSCs),

whose internals they cannot change, often use add-on �wrappers� to

adapt the OTSCs' behaviour as required. In most cases, wrappers are

used to change �functional� properties of the components they wrap. In

this paper we discuss instead protective wrapping, the use of wrappers to

improve the dependability � i.e., �non-functional� properties like avail-

ability, reliability, security, and/or safety � of a component and thus of a

system. Wrappers can improve dependability by adding fault tolerance,

e.g. graceful degradation, or error recovery mechanisms. We discuss the

rational speci�cation of such protective wrappers in view of system de-

pendability requirements, and highlight some of the design trade-o�s and

uncertainties that a�ect system design with OTSCs and wrappers, and

that di�erentiate it from other forms of fault-tolerant design.

1 Introduction

As building �component-based� software systems becomes more common, it be-

comes more often necessary to combine existing o�-the-shelf (OTS for brevity)

components � hardware as well as software � that were not necessarily designed

to work together. Wrapping is a popular, often cost-e�ective technique for inte-

grating pre-existing components into a system. When designing a new system,

ad hoc �wrappers� are developed, i.e. new, small components that will be inter-

posed between the others, reading and sometimes altering the contents of the

communications they exchange. Wrapping has the advantage of not requiring

detailed knowledge of the internal structure of the components being wrapped.

In most cases, wrappers are used to adapt the functionality of a component

to the requirements set for it by the system's design: they often perform simple

functions like translation between the argument formats used by two commu-

nicating components. In this paper we look instead at the use of wrappers for

improving dependability. We call such wrappers protective wrappers. Protective

wrapping is a way of structuring the provision of standard fault tolerance ca-

pabilities, like error detection, con�nement and recovery, plus the less common

This work was supported in part by the U.K. Engineering and Physical Sciences Re-

search Council through project DOTS (Diversity with O�-The-Shelf Components),

grants GR/N23912/01 and GR/N24056/01.

capability of preventing component failures, in a component-based design where

dependability is a concern. We wish to clarify how these wrappers can be ra-

tionally speci�ed, the trade-o�s facing system designers (simply �designers� for

the rest of the paper), and the peculiarities of this form of fault-tolerant design,

compared to the general case.

When designing a system with o�-the-shelf components (OTSCs), it is often

the case that an OTSC's functionality, and even more often its dependability, is

insu�ciently documented. Both these de�ciencies are threats to system depend-

ability: wrong assumptions about how an OTSC is intended to behave lead to

system design faults; optimistic assumptions about an OTSC's probability of be-

having as intended may lead to overestimating the dependability levels achieved

by the chosen system design. Wrapping can help a designer to compensate for

this lack of information.

Wrapping for dependability has been addressed by other authors. Wrappers

are used to transform or �lter unwanted communications that may cause fail-

ures. Fault injection may be used to identify such failure-causing values [7,3,5].

Wrappers are proposed to protect OTS applications that do not deal properly

with kernel-raised exceptions, by transforming these into other exceptions or er-

ror return codes [7]; or to protect OTS kernels against inappropriate requests

([3]; here, an extended notion of wrappers is proposed that can access the ker-

nel's internal data). In [5], the goal is automatic protection of library components

against failure-causing parameter values, submitted by accident or malice. In [4],

wrappers protect name servers from receiving unveri�able requests. A somewhat

general approach to wrappers for common security concerns is described in [6].

Most of this previous work assumes that a good knowledge can be gained

about which communications will cause OTSC failure. We have argued for a more

general view of protective wrapping [9], to take into account the fact that this

knowledge is usually de�cient, the speci�cation of the OTSC may be incomplete,

and designers need to be concerned with failures of both the OTSC and the rest

of the system. Here, we discuss issues of design, veri�cation and quantitative

dependability trade-o�s that arise in protective wrapping.

In the rest of this paper, Section 2 introduces terminology and an illustrative

example. Section 3 introduces the speci�cations of components in relation to

system-level requirements, including those concerning fault tolerance. Sections 4

and 5 discuss the options for the actual semantics of wrappers, i.e. the cues that

can trigger their intervention and the forms of these interventions. Section 6 sets

the previous discussion of wrapper speci�cations in the context of probabilistic

system dependability requirements and discusses the important design trade-o�s

that arise. Our conclusions follow.

2 System Model and Example

Throughout this paper, we will use a simple example to clarify the concepts

introduced. The example system (Fig. 1) is a water boiler. We focus on a single

OTSC, in this case a PID (Proportional-Integral-Derivative) controller which

Fig. 1. The boiler control system used as an example.

Rest of the
System
(ROS)
Boiler

Wrapper
OTSC

PID controller

T

BC’

p p'

E

T'

BC

Boiler System

E
n

vi
ro

nm
en

t

Reset

provides feed-back control for the burner of the boiler, and on its communica-

tions with the rest of the system (�ROS�), seen as a single black box; the ROS

may contain other OTSCs. This example omits some of the possible complica-

tions of a real system (an OTSC may have direct communication links with the

environment around the system, or communications with the ROS that cannot

be intercepted by a wrapper) but will su�ce for this brief discussion. The OTSC,

ROS and wrapper may be hardware or software or any combination of the two.

The ROS outputs readings (p, T) of pressure and temperature in the boiler,

and accepts a burner control input, BC, and an exception signal, E, which

causes an alarm signal to a human operator. The OTSC accepts as inputs two

real numbers (p′, T ′) and a reset signal, and outputs a (real-valued) control

signal for the burner, BC′.
The designer is concerned with the dependability of this system: how fre-

quently the components will behave abnormally (will fail), whether these com-

ponent failures will cause system failure, and whether the frequency and severity

of these failures will be acceptably low. Because of this concern, instead of con-

necting the ROS outputs directly to the OTSC's inputs and vice versa, the

designer introduces a protective wrapper between the ROS and the OTSC, as

depicted, which transforms p into p′, etc.
The wrapper monitors communications between the ROS and OTSC, and

possibly changes the values transmitted to the ROS or the OTSC. The ROS

sees the combination of the OTSC and wrapper as one component, which we

call the �wrapped OTSC� (WOTSC); likewise, the OTSC sees a �wrapped ROS�

(WROS).

For the sake of simplicity, we assume here that the OTS and ROS, if con-

nected without the protective wrapper, would, in the absence of failures, produce

the combined behaviour required from the system. So, the OTSC in Fig. 1 does

not need �functional� wrapping, limiting our discussion to protective wrapping.

3 Roles of Components and Protective Wrappers

3.1 System Requirements, Components and Interfaces

The designer's problem is how to ensure the required behaviour of the whole

system, using a given OTSC. When considering dependability, a designer usu-

ally deals with multiple sets of requirements on system behaviour. First, there is

a speci�ed nominal behaviour: what the system ought to do, at least if none of

its components fail. The designer usually has an understanding of a nominal be-

haviour for each component, and makes sure that if all components exhibit their

nominal behaviours, then so will the system. Making the system fault-tolerant

means ensuring that even if components violate their nominal behaviours (they

fail), the system will still exhibit nominal behaviour (failure masking) or some

degraded but acceptable behaviour (graceful degradation), or at least will re-

main within an envelope of safe behaviours; the choice being determined by the

system dependability requirements and by the costs of these various options.

The complete dependability requirements will inevitably be probabilistic: in

addition to de�ning a nominal behaviour and zero or more degraded behaviours

(ormodes of operation) it will include required upper bounds on the probabilities

of the system operating in the degraded modes 1. A similar hierarchy of a nominal

behaviour and more or less acceptable failure behaviours applies to dependability

requirements for any component or subsystem.

In this and the next two sections, we will discuss the deterministic part of

these dependability properties. In a proper design, the speci�ed system-level

properties need to be veri�able, in the sense that, given clear descriptions of how

the various components will behave (in their nominal and degraded modes) and

of their connections, one can deduce that the requirements for the whole system

(for a nominal or degraded mode, as speci�ed) are satis�ed. The expected or re-

quired behaviours (models and speci�cations in what follows) of the components

and of the system need to be described in some unambiguous language, e.g.,

preconditions and postconditions characterising the relation between sequences

of their inputs and outputs [8].

These descriptions need not specify all details of behaviour of a component,

i.e. they may be partial speci�cations. We might for instance describe a compo-

nent in a numerical library as computing a certain �oating-point result with a

relative error of less than 1%, although in reality the relative error is smaller, and

variable; or, rather than trying to describe in detail what a component would do

if it failed, we would rather describe an envelope of plausible behaviours it may

exhibit, and prove that some system-level requirement will be satis�ed provided

the component remains within that envelope.

The behaviour that the designer expects the OTSC, as procured, to exhibit

can be described abstractly as pairs of pre and post-conditions [8]. The looser

the postconditions (the fewer the restrictions assumed on the behaviour of the

OTSC), the more arbitrary behaviours of the OTSC one will need to require

the wrapper and ROS to cope with in order to guarantee any given system-level

1 It is true that such a formal way of specifying dependability requirements is only

in common use for a few categories of systems. For many everyday systems, prob-

abilities may not be mentioned at all. Yet, we think that any rational de�nition of

requirements will include some idea of what probabilities would be unacceptably

high for each given failure (i.e., degraded behaviour) mode, and a partial ordering

between more and less acceptable modes.

requirement. This may make the system more robust, but at a cost, which will be

the more acceptable, the more likely the extra erroneous behaviours allowed by

the less restrictive model of the OTSC are in reality. Symmetrical considerations

apply to the designer's expectations about the behaviour of the ROS.

3.2 The Models of the OTSC and ROS

We assume that the designer has chosen a particular OTSC, either procured on

the market or already available within the same company. For an OTSC from

the commercial market, the documentation will often be of lower quality and

procuring extra information is often cumbersome and expensive; on the other

hand, if the component is in frequent use, the supplier may have reliable data on

its dependability. Any publicly available, dependability-relevant data can also

be valuable, e.g., collections of bug reports for software packages, or information

about maintenance requirements, failure modes and their failure rates.

The documentation of the OTSC may not specify its behaviour in certain

circumstances, and the designer's most prudent approach would then be to as-

sume that it is completely undetermined. At the opposite extreme, designers

may choose to guess the OTSC's behaviour, based on previous experience, ex-

pert knowledge or other information.

By contrast, the designer may have a more precise model of the ROS, if

custom-designed or if it also uses wrapping to ensure predictable behaviour.

Boiler example A speci�c PID controller has been chosen as the OTSC.

Suppose that its documentation is unclear about what happens when either p
or T is negative. The designer's model of the OTSC may then prudently assume

its behaviour as unde�ned when these preconditions are violated. There may be

other preconditions, documented or suspected, for the PID controller to behave

properly, e.g., upper bounds on the values and rates of change of p′ and T ′.
As for the model of the ROS, to prove that the system has correct (nominal)

behaviour if no component fails, the designer will use a model that includes the

sensors and actuators, the physical properties of the burner, the �uid in the

boiler, etc. This alone may not guarantee the above preconditions for nominal

behaviour of the OTSC. It will then be the wrapper's task to guarantee them.

3.3 Requirements on the Wrapped OTSC and ROS

The designer's speci�cation for the WOTSC may di�er from the model of the

OTSC even in its nominal behaviour, e.g. by hiding some of the functions o�ered

by the OTSC. In addition, it has to describe dependability requirements, which

determine the fault tolerance provisions needed in the wrapper.

Boiler example The boiler needs from the PID controller a control signal,

BC, derived from the pressure and the temperature of the boiler according

to a PID control law. A degraded, safe behaviour from the system viewpoint

is to switch o� the boiler (BC = 0). Knowing that the OTSC's behaviour is

unde�ned for negative p′ or T ′, the designer may then specify that the WOTSC

must behave like the OTSC, if p ≥ 0 and T ≥ 0, but if not, it must set BC to 0.

In addition, since the precondition for nominal behaviour of the OTSC re-

quires p′ ≥ 0 and T ′ ≥ 0, the designer might specify that the WROS must

guarantee these properties (e.g. if p < 0, p′ will be 0), All these speci�cations

together de�ne the speci�cations of the wrapper. Since the wrapper alters the

interface behaviour of the ROS and OTSC, the designer needs to verify that

these modi�ed behaviours imply the required system behaviour. For instance,

at the interface of the ROS with the wrapper, the ROS sees a WOTSC that

behaves (nominally) as a PID controller but with the important change that, if

p or T is negative, its inputs and output are clamped to zero.

4 Specifying the Protective Wrapper: Cues for

Intervention

Usually, designers of fault-tolerant systems use the detection of errors to trigger

defensive actions. This relies on a fairly accurate knowledge of the behaviour of all

components when failure-free. In designing with OTSCs, though, this knowledge

cannot be assumed. Furthermore, the design of an OTSC often makes it di�cult

to monitor it closely for early error detection. So, designers may want their

wrappers to react to a pattern of component behaviour that merely suggests a

failure, although it may be correct, especially if the type and circumstances of

the suspected failure would cause severe consequences to the system.

So, designers may take an attitude similar to that frequently taken in de-

signing for safety: aiming more at keeping the behaviour of components within

an envelope of behaviours that prevent unacceptable damage at system level,

than at guaranteeing their correct (nominal) behaviour. They also face the same

kind of trade-o�s: the interventions of the wrapper will usually prevent some

requested operation of the OTSC, possibly providing in its place a safe failure,

or an alternative, degraded or less e�cient service. Designers thus know that the

more cues they decide to react to, the less likely the system will be to fail in

unpredictable ways, but also the more likely for wrapper interventions to be the

result of false alarms, and the more degradation in performance or availability.

The wrapper, as depicted in Fig. 1, monitors the outputs of the ROS and of

the OTSC for cues, and can manipulate their values before forwarding them to

the corresponding inputs of the OTSC and of the ROS, respectively. It can also

insert communications not initiated by the ROS or OTS, for instance exception

signals in response to cues it has detected.

In the wrapper's speci�cations, preconditions about the possible cues will be

matched with postconditions about actions for the wrapper to take in response.

5 Examples of Speci�cations for Wrapper Actions

For any given cue, the designer may choose among various possible reactions by

the wrapper, depending on the system's architecture and dependability require-

ments. A few possible reactions were described in Sect. 3. We now discuss other

possibilities for providing fault tolerance via the wrapper. Some of these have

been applied in our project in a case study in a simulated environment [1].

For instance, let us consider the case in which the ROS fails and issues a

suspicious p value, e.g. a negative value, violating a precondition for the PID

controller, whose behaviour is then unspeci�ed. As in Sect. 3, the wrapper could

mitigate the consequences of such a failure by substituting this erroneous, danger-

ous or suspicious signal value with other values. This keeps the PID controller in

a region of operation for which its behaviour is predictable. This may not ensure

correct system behaviour, but it may be su�cient protection e.g. against noise

spikes on sensor readings, given the robustness of the PID control law. With a

slight complication, the wrapper could be speci�ed to set p to its last previous

value, rather than 0, to reduce the step change in the input to the OTSC.

If correcting a suspicious input value (to the ROS or the OTSC) is not a

solution, harm can still be prevented by checking and if necessary correcting their

subsequent outputs. If, e.g., a failure causes suspicious values of p., the designer
can specify that the wrapper will then perform additional plausibility checks on

the output of the PID controller. If the checks fail, the wrapper could ensure

graceful degradation by providing a simpler version of the OTSC's (or ROS's)

function. The designer might specify this kind of switch if the degraded control

were proven to keep the boiler in an acceptable degraded mode of operation for

as long as the OTSC cannot be trusted to perform correctly.

All these palliative measures may only be acceptable for a short time. If they

persist, a reaction can be for the wrapper to enforce at least safe system-level

behaviour, by switching the burner o� (BC = 0): an extreme form of graceful

degradation suitable for all undesired situations.

Another possibility is error recovery. In many OTSCs, after most failures a

reset is su�cient to restore an internal state such that the OTSC will subse-

quently exhibit correct (nominal) behaviour. In our example, the wrapper could

reset the PID controller (OTSC) if its output is clearly out of bounds. Reset

erases the OTSC's memory of previous history: it does not generally guarantee

that its future behaviour will be appropriate from a system viewpoint, but it

may in a control system like our example, if the designer can demonstrate that

the internal state of the OTSC will then return to a correct state (through the

OTSC reading and processing its inputs) quickly enough.

More complex recovery actions can be speci�ed. If, for instance, an OTSC has

an �undo� operation, the wrapper could use it for backward recovery and retry ; a

wrapper could store sequences of input messages to an OTSC and replay them

after recovery, possibly even with slight variations to reduce the risk of repeated

failure (�retry blocks� architecture [2]). The possibilities here are bounded by the

risk implicit in increasing the complexity of the wrapper, and thus the risk of

speci�cation or implementation errors. For instance, designers may often limit

themselves to stateless wrappers.

The case of reset is an example of a wrapper generating exception signals

rather than just manipulating the normal ROS-OTSC communications. As an-

other example, the wrapper can generate an exception signal to the ROS, E,

when e.g. the OTSC's BC′ output, or the T reading, exceeds speci�ed bounds.

Last, many of the actions described so far may not be e�ective, e.g. if the

cue to which they react is caused by a permanent or recurrent fault. If this is

considered too likely, wrappers may be designed to escalate to more drastic and

safer actions (multi-level recovery). E.g., once it has entered a �graceful degra-

dation� state, a wrapper could become sensitive to cues that it would otherwise

ignore, and trigger a more drastic action if any of these cues occurs. After the

wrapper has reset the PID controller, it may set a time-out after which it will

shut down the boiler if normal control has not resumed. Again, designers need

to judge at which point the added complexity becomes counterproductive.

6 Probabilistic Dependability Properties

Up to this point, we have approached wrapper design mostly from a determin-

istic viewpoint: the designer considers the possibility of certain unplanned-for

sequences of actions of the OTSC or ROS, and speci�es the wrapper so that it

will mask or alter those behaviours in ways that appear desirable, to achieve one

of the speci�ed nominal or degraded modes of operation. This desirability must

be determined in view of the system-level dependability requirements, which are

inevitably, in their general form, probabilistic, as outlined in Sect. 3.

A wrapper's role may be to avoid or mask certain component failures, or to

mitigate them; it may improve system dependability by avoiding certain system

failures (increasing the probability of nominal behaviour), or by mitigating them

(shifting probability from more severely to less severely degraded behaviours).

As always with fault tolerance, wrapping faces two kinds of trade-o�s, i.e.

between, on the plus side, the improvement in dependability that it produces

by avoiding or mitigating some failures, and, on the minus side, (i) its direct

costs (in terms of development e�ort and of run-time resources); and (ii) the

dependability loss due to wrappers causing failures or making them more severe.

Direct costs are generally the easiest factor to estimate. Estimating depend-

ability improvements may be di�cult. In some cases, speci�c failure modes of

OTSCs cause frequent enough system failures that it is easy to predict the ef-

fect of avoiding them (and to determine how to). But if a system is already

reasonably dependable without wrapping, the dependability gain will be uncer-

tain. Even so, designers will think it reasonable to provide abilities at least to

deal with predictable component failures that have a clear potential for severe

e�ects and can be avoided or tolerated at low cost. This appears to be the ap-

proach, for instance, of the HEALERS project [5]. However, this common sense

approach, when extended to less obvious failures, is not guaranteed to improve

dependability, due to di�culties with the second trade-o�.

Interventions by wrappers generally substitute a controlled degraded system

behaviour (a more acceptable failure) for a potentially uncontrolled failure (cf

Sect. 4). The designers decide to which cues the wrapper reacts. Including more

cues avoids more uncontrolled failures, but also causes more wrapper interven-

tions on �false alarms�, causing degraded behaviour when nominal behaviour

would otherwise occur. Designers cannot a priori judge which occurrences of a

given cue are false alarms, and thus whether, statistically, wrapper intervention

on that cue improves dependability. Besides, in many systems the e�ects of wrap-

per interventions on the behaviour of the whole system will be more complex to

trace than in our boiler example.

A wrapper may also cause system failures in the obvious way, because of

bugs or physical faults, and deliver, for instance, a wrong input for the ROS

despite having received a correct OTSC output; or, for the same reason, not

react to a cue as speci�ed. For many systems this risk will be negligible, however,

because the wrappers will be simple and easy to verify, compared to the risk of

either false alarms or failures to intervene that are directly due to the designers'

choices. That is, most wrapper failures will be due to the inherent limits of the

algorithms that a designer can feasibly apply. Error detection, for example, often

depends on reasonableness checks, which cannot �ag values that are erroneous

but �reasonable�. They can be made more stringent at the cost of using cues

that are not sure indications of errors. Designers thus know how to shift the

balance between false alarms and uncontrolled failures, and can even choose

which component failure modes the wrappers will not detect or tolerate, and in

which circumstances they may produce false alarms. Unfortunately, they still do

not usually know the frequency of these events, so that the uncertainty on the

actual dependability improvement achieved by wrapping is not resolved.

Design faults in wrappers remain a potential problem in the case of more

complex wrappers. Designers must decide how sophisticated a wrapper they can

specify before this very sophistication becomes counterproductive. This tran-

sition may be made less sharp if a designer �nds wrapper design techniques

that bias wrappers towards benign failures, whose consequences can be assessed,

rather than uncontrolled ones, like injecting arbitrary values into a communica-

tion stream.

7 Conclusion

We have tried to clarify some issues concerning protective wrapping. Protective

wrappers are components that monitor and ensure the non-functional properties

at interfaces between components. We have described the role that protective

wrapping may play as a special case of fault-tolerant design, from both the

viewpoints of deterministic and of probabilistic dependability properties.

These considerations should help designers in specifying wrappers, using the

spectrum of fault-tolerance techniques within the special constraints of wrapping

as a design structuring scheme. These peculiarities are not always acknowledged

in previous literature. Our main considerations are: wrappers can be rigorously

speci�ed on the basis of the designers' speci�cation of the OTSC's behaviours

in its possibly multiple modes of operation: from nominal, correct behaviour to

manageable, non catastrophic failure modes; due to poor documentation and

poor ability to detect run-time errors inside OTSCs, protective wrappers may

have to act on cues of potentially erroneous and/or error-causing communications

between components; all of this increases the importance of design trade-o�s

between reducing the probabilities of the more dangerous system failure modes

and avoiding too frequent false alarms leading to degraded service or �safe�

system failures.

Research developments that appear desirable concern formal proof, proba-

bilistic modelling and experimental evaluation. Formal proof methods, tailored

to the restricted sets of structures de�ned by wrapping and the kinds of prop-

erties it involves, are desirable to support the veri�cation steps described in

Sect. 3. Probabilistic modelling should support designers in choosing trade-o�s

as discussed here; it must cover both the structural aspects of how component

failures cause system failure, aspects that are well developed in modelling of

fault tolerance, and the uncertainty on the reliability of the individual compo-

nents and their probabilities of failing together, as studied in software reliability

research and the assessment of software diversity. Last, experimental evaluation

of systems using protective wrapping is required, to document the ranges of er-

ror coverage levels, �false alarm� rates and system dependability achieved with

various classes of wrapper designs and of OTSC components, and thus give some

basis for informing probabilistically based decisions.

References

1. T. Anderson, M. Feng, S. Riddle, A. Romanovsky, Protective Wrapper Develop-

ment, Proc. 2nd Int. Conf. on COTS-Based Software Systems, Ottawa, Canada,

2003.

2. P. E. Ammann, J. C. Knight, Data Diversity: An Approach to Software Fault

Tolerance, IEEE Transactions on Computers, C-37, pp. 418-25, 1988.

3. J. Arlat, J.-C. Fabre, M. Rodriguez, F. Salles, Dependability of COTS Microkernel-

Based Systems, IEEE Transactions on Computers, C-51, pp. 138-63, 2002.

4. S. Cheung, K. N. Levitt, A Formal-Speci�cation Based Approach for Protecting the

Domain Name System, Proc. DSN 2000, International Conference on Dependable

Systems and Networks, New York, USA, 2000.

5. C. Fetzer, Z. Xiao, HEALERS: A Toolkit for Enhancing the Robustness and Se-

curity of Existing Applications, Proc. DSN 2003, International Conference on De-

pendable Systems and Networks, San Francisco, U.S.A., 2003.

6. T. Fraser, L. Badger, M. Feldman, Hardening COTS Software with Generic Soft-

ware Wrappers, Proc. 1999 IEEE Symp. on Security and Privacy, Oakland, CA,

USA, 1999.

7. A. K. Ghosh, M. Schmid, F. Hill, Wrapping Windows NT Software for Robustness,

Proc. 29th IEEE International Symp. on Fault-Tolerant Computing (FTCS-29),

Madison, USA, 1999.

8. B. Meyer, Applying "Design by Contract", IEEE Computer, 25, pp. 40-51, 1992.

9. P. Popov, L. Strigini, S. Riddle, A. Romanovsky, Protective Wrapping of OTS

Components, Proc. 4th ICSE Workshop on Component-Based Software Engineer-

ing: Component Certi�cation and System Prediction, Toronto, 2001.

