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Abstract

Purpose: The rectal tube (RT) is a common source of false positives (FPs) in

computer-aided detection (CAD) systems for CT colonography. A robust and efficient

detection of RT can improve CAD performance by eliminating such “obvious” FPs

and increase radiologists’ confidence in CAD.

Methods: In this paper, we present a novel and robust bottom-up approach

to detect the RT. Probabilistic models, trained using kernel density estimation on

simple low-level features, are employed to rank and select the most likely RT tube

candidate on each axial slice. Then, a shape model, robustly estimated using Random

Sample Consensus (RANSAC), infers the global RT path from the selected local

detections. Subimages around the RT path are projected into a subspace formed from

training subimages of the RT. A quadratic discriminant analysis (QDA) provides a

classification of a subimage as RT or non-RT based on the projection. Finally, a

bottom-top clustering method is proposed to merge the classification predictions

together to locate the tip position of the RT.

Results: Our method is validated using a diverse database, including data from

five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated

RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused

by the RT have been detected and removed without any loss of sensitivity.

Conclusion: The proposed method demonstrates a high detection rate of the RT

path, and when tested in a CAD system, reduces FPs caused by the RT without the

loss of sensitivity.

Keywords: Rectal Tube, RANSAC, CAD, eigenspace, CT colonography

a)Electronic mail: Xiaoyun.Yang@medicsight.com.
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I. INTRODUCTION

A. Motivation

Colorectal cancer is the second leading cause of cancer related death in western countries

and the third most common human malignancy in the United States1. Most colorectal

cancers arise from pre-malignant adenomatous polyps in the colon that develop into cancer

over time. The progression from polyp to cancerous lesion takes more than ten years for

most patients. Because of this slow growth rate, colorectal screening2 is an effective method

for polyp detection, and subsequent removal reduces the risk of colorectal cancer by up to

90 percent3. Colonoscopy, the endoscopic examination of the colon using a flexible video

camera, is the standard approach to colorectal screening; however, in recent years there has

been much interest in CT Colonography (CTC), which uses CT images of the cleansed and

insufflated colon4. Polyps can then be detected by a clinical reader who examines the CT

data using advanced visualization software that provides both 3D endoluminal views of the

colon as well as 2D multi-planar reformatted slices.

Although CTC has been demonstrated to be an effective colorectal screening approach5,

it is possible for the clinical reader to fail to detect lesions, due to the large quantity of

data generated (typically 800 - 2000 images per patient). Computer-aided detection (CAD)

software assists the clinical reader by automatically analyzing the CT data and highlighting

potential lesions. CAD may detect lesions that would have otherwise been missed by the

reader, and may give the reader more confidence that lesions were not missed during the

read. It has been demonstrated that the use of CAD leads to improvements in reader

performance (at all levels of experience) in detecting lesions in CTC data6,7.

It has been reported that tagged stool, ileocecal valve, thick folds, extra-colonic structures

and the RT or RT balloon are common sources of false positives (FPs)6–8 in CTC CAD

systems. The RT has a (potentially bent) cylindrical shape and includes a hemispherical tip

that often has a polyp-mimicking appearance. As such, the rectal tube generates “obvious”

CAD FPs8–11 that can be easily dismissed by the clinical reader. However, radiologists may

lose confidence in the CAD system when presented such “obvious” FPs. To improve the

overall CAD performance and increase radiologists’ confidence, it is therefore desirable to

have a robust and efficient way to identify the RT and remove its resulting FPs from the
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CAD marks presented to the reader.

FIG. 1: Rectal Tube Detection Scheme.

Some research has been proposed9–11 to address this problem. Iordanescu et al.9 developed

an image segmentation based method that detects, via template matching, the air inside the

RT in the first nine CT slices, tracks the tube, and performs segmentation using morpho-

logical operations. The template is generated in a fixed definition of shape. It is a relatively

rigid method for detection, and may fail to take account of the shape variability by tracking

2D slices. It assumes that the RT can be detected by a set of fixed-shape template matching

continuously during tracking, which could be too strong of an assumption. Suzuki et al.10

employed a Massive Training Artificial Neural Network (MTANN) to distinguish between

polyps and FPs due to the RT. In the 73 patient data (146 volumes), MTANN detected

all 20 RT FPs as well as 53 FPs due to other sources among the 224 FPs in total, without

removal of any true positives. The method requires manual selection of representative train-

ing samples. Imperfect selection of training samples could degrade the performance10. This

could introduce uncertainty to the performance. Barbu et al.11 designed a method to detect

the RT with the assumption that the RT can have large variable shape and appearance,

which increased the complexity of their method. They first started detecting 3D circles

using voting and Probabilistic Boosting Tree (PBT) methods, with a feature set consisting

of 6720 features computed from gradient, curvatures, etc. A second classifier trained with

PBT is used to detect short tubes from the detected 3D circles. Dynamic programming is

employed to find the best RT segmentation from the detected parts.

B. Our contribution

In this paper, we present a novel method to detect the RT using a global shape model,

unlike the methods discussed above. A quadratic 3D space curve models the global rectal

tube path, and is robustly estimated using RANSAC12 from local (and potentially outlier) 2D

detections of the air in the rectal tube on axial slices. These 2D detections are made through
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a probabilistic model learned through kernel density estimation (KDE) on simple low-level

features. With the rectal tube path robustly estimated, the RT tip is then estimated using

a classifier trained on projection coefficients in an eigen-subspace of rectal tube subimages.

The classifier provides a label for each axial slice if it contains the RT or not. From these

outputs, a bottom-top clustering method merges the labels predicted by the classifier into

a few major clusters, from which the position of the RT tip can be localized.

We note that this paper extends our preliminary work on RT detection presented in13

by inferring the RT tip location using the eigen-subspace, classifier, and clustering method

mentioned above. Accurate tip estimation improves the FP detections per volume and

reduces the likelihood that the method would produce a false negative when used in a CAD

system to reduce false positives.

Our method is computationally inexpensive and reliable. The experimental results

demonstrate a high detection rate in a diverse dataset, and when evaluated by a CAD

system, achieve a good reduction of FPs caused by the RT without any loss of sensitivity.

II. METHODS

A. Overview

We present a learning framework to combine probabilistic models for low level detection

of the air in the rectal tube with a global shape model of the RT path. The overview of the

system is presented in Figure 1.

We start with simple image processing, applied to each 2D axial slice, to detect air regions

(RT candidates) within the body in the most caudad slices, starting at the anal verge and

moving up the abdomen towards the lungs. For each RT candidate, three simple low level

features are computed: the normalized spatial position x and y of the centroid and the size

h of the region.

A probabilistic model using KDE is trained for prone and supine data respectively and

then used to rank the RT candidates. In each slice, the most probable tube candidate is

selected and the others are discarded. From these 2D detections, RANSAC fits a global

3D shape model representing the RT path. RANSAC is a robust statistical technique that

can infer the real RT path even in the presence of strong outliers resulting from incorrect
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(a) (b)

FIG. 2: The probability distributions of normalized candidate position x-direction,

y-direction. (a) supine, (b) prone.

KDE predictions. We have two assumptions in this paper. First, the spatial distribution

of the RT within the body can be approximately described by a probabilistic model built

from training data. Intuitively, this assumes that the candidate is more likely selected if its

position is close to the mean position of training samples. With an additional constraint

that the RT must located within or near the colon mask, we can further remove the bad

(false) candidates if a colon mask is provided. Second, the RT is a possibly bent cylindrical

structure placed on the bottom of body. With this knowledge, by seeking a quadratic path

supported by maximum number of candidates, we can differentiate good candidates and bad

ones selected by the probabilistic model. The RT path can thus be estimated from good

candidates.

Once the RT path is located, we search for the RT tip with a prior knowledge that

the RT is less than 140mm in the body. Firstly, for each slice, centering around the path

point at that slice, a set of 2D sub-images is extracted and projected into a eigen-subspace;

and a quadratic discriminant classifier is applied on the projected subspace to make the

RT/non-RT prediction; a bottom-up clustering approach is then proposed to apply on those

predictions to merge them iteratively into a small number of clusters, the position of the RT

tip can then be located. The details are discussed in the following subsections.

B. Probabilistic models for 2D candidate detection of RT regions

In this subsection we demonstrate how we generate local 2D RT candidates, and train a

probabilistic model from simple low-level features. The generated model is then employed
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(a) (b) (c)

FIG. 3: Examples of the candidate selected by KDE. (a) the CT image, (b) the candidate

regions, and (c) the region selected by KDE. This region corresponds to the air in the RT.

for selection of the most probable candidate on a given slice.

The air region in the RT can be identified on an axial image slice using standard im-

age processing techniques. For each slice, we apply simple thresholding using a threshold

value ranged between [−700,−850]9,14, e.g. −750 HU. All the air pixels then belong to the

background and all the remaining pixels are assigned to the foreground pixels; the largest

foreground region is morphologically filled and then regarded as the body region at that

slice. The air regions located within this body region are then kept as inside-body air and

the others are discarded as outside-body air. A 3D minimum bounding box rect to enclose

all the 2D body regions can be uniquely determined with simple boolean min or max opera-

tions on the x-y-z coordinates of all the pixels in body regions, where the x-y-z coordinates

of the bounding box is denoted to be (rectx1, rectx2, recty1, recty2, rectz1, rectz2).

Each candidate is represented by its centroid (Ci
x, C

i
y, C

i
z). Three low level features,

(V i
x , V

i
y , V

i
s ), for each candidate are computed: the normalized spatial position (V i

x) and

(V i
y ) in the x and y direction, and the region size (V i

s ). The normalized spatial positions are

determined as V i
x = (Ci

x − rectx1)/(rectx2 − rectx1), V
i
y = (C i

y − recty1)/(recty2 − recty1).

In the training stage, each candidate is sorted by the distance from its centroid (Ci
x, C

i
y, C

i
z)

to the annotated RT center point in the same slice. The candidate with the smallest dis-

tance (the distance must be very small, e.g. less than 6 mm) can be considered as a good

candidate to represent RT, and selected as training data to build a probabilistic model. If

the candidate’s size is too large (e.g. above 130 mm2, the candidate may come from non-RT

air regions or connected with them. If the size is too small (e.g. one or two pixels with area

less than 0.5 mm2), it may come from CT noise. Therefore we limit the set of admissible
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candidates to have area in the range [0.5, 130]mm2, which we set empirically. A kernel

density function (KDE) can be built by summing a set of kernels15 with the selected feature

data (V i
x , V

i
y , V

i
s ), as shown in Equation 1. From the constructed KDE, the probability of a

given candidate V being RT can be estimated as

P (RT |V ) =


1
T

∑N
i=1 e

− (Vx−V i
x)2

2h2x

∑n
i=1 e

−
(Vy−V i

y )2

2h2y

if Vs ∈ [0.5, 130]mm2

0 otherwise

(1)

where P (RT |V ) represents the probability of a given candidate being RT, (Vx, Vy, Vs) is

the feature vector of the candidate V . (V i
x , V

i
y , V

i
s ) (i = 1, .., N), as defined earlier, is the

ith example used for training. If Vs is too big or too small, a penalty is given and the

probability is zero, and T is a normalization factor so that the probability sums to 1. The

KDE model is generated from prone and supine data separately using Gaussian kernels with

bandwidth hx, hy in x and y direction with value 0.25 for both. In this function, each data

point has a contribution to the probability controlled by a Gaussian function. Figure 2

gives the probability distributions of normalized spatial position of RT for prone and supine

respectively. With a large bandwidth value, the distribution behaves as a single Gaussian,

where the candidates located near the center of body are more likely to be selected than the

candidates at the border of body, particularly in the x-direction. In the y-direction, the RT

candidates at the supine position are located relative closer to the bottom than the ones at

the prone position. These reflect the anatomical knowledge of the RT position in the CT

scan.

In the testing stage, we apply the appropriate (prone or supine) probabilistic model to

the candidate’s feature vector. A probability can then be estimated for each RT candidate.

The candidates are ranked by the estimated probability and only the one with the maximum

probability in each slice will be selected. Figure 3 (a) shows an example CT image, (b) the

candidate regions and (c) most likely candidate selected by the KDE model.

The length of the RT within the body may vary depending upon how deeply the RT is

inserted. We use the most 140mm caudad of CT slices as our processing range which are

enough to cover the RT in our experimental data. The majority of RTs are located in the

most 90mm caudad CT slices. An example of RT detections (prone position) is shown by

Figure 4, where the depth resolution is 1mm and the slice range is [1, 140]. In the figure,
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(a) (b)

FIG. 4: Examples of RANSAC fitting for two volumes data in the xz and yz planes. Red

circles represent inliers, blue crosses represent outliers, the black dotted line is the fitted

path using RANSAC, and the black dotted line indicates the end of the RT.

the red circles (inliers, usually corresponding to the RT) and blue crosses (outliers, typically

not corresponding to the RT) illustrate the selected candidate centroids, plotted separately,

i.e., in the xz and yz planes. The tube is present in the patient for the most caudad slices

with lower z value (here, the tip of the RT is located at slice 81 indicated by black dot line).

Ideally, the KDE would predict all the air regions of the RT; however, KDE can wrongly

pick up the candidates from other structures. To reduce the number of outliers, we add a

constraint using a colon segmentation generated by the algorithm described by Slabaugh8.

At each slice, if there are candidate regions partially or fully covered by a morphological

hole-filled colon segmentation (filling holes16 in the colon segmentation if there is any), the

KDE model only operates on those covered regions and chooses the one with maximum

likelihood. If there are no regions covered by the colon segmentation, the KDE model

operates on all candidates. The colon segmentation and KDE model together can reliably

choose good candidates especially in the rectum, as shown by Figure 4a) (slice ranges [1, 65]).

Most outliers appear near the RT tip or beyond (slice ranges [65, 140] in Figure 4a). A few

outliers appear in the rectum near the anal verge (around slice 20 in Figure 4a), where the

RT air regions may connect with the colon air and the centroid can deviate away from the

true locations.
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C. RT path estimation using a global shape model

In this subsection we describe how the underlying RT path is inferred from the RT

candidate centroids selected in the previous step.

The RT is a cylindrical tube placed in the patient’s colon, and once the colon is insufflated

with room air and there is no force to twist the RT. The path of the RT can be approximated

as a quadratic curve (which includes a straight line as a special case). While there may

occasionally be some other air-filled structure or noise giving a quadratic path, the RT is

easily identified as the longest path along a smooth and continuous quadratic curve starting

at the bottom of the patient. To estimate the correct RT path, one must differentiate the

outliers from the inliers that represent the true locations of the RT. From the inliers, we can

infer the other 2D RT locations missed by KDE. With the prior model of the global shape

information that the RT path is a quadratic curve and continuously appears in the most

caudad slices, we use that as a criteria to seek a maximum set of inlier points that can fit

the quadratic curve which can be resolved by RANSAC12, as shown in Equation 2:

θ̂ = argmax
θ

n∑
i=1

f(e2i |θ) (2)

where

f(e2i |θ) =

 1 e2i < δ2

0 otherwise
(3)

where θ is the quadratic model to be estimated, ei is the error or the distance between the

data Vi and the estimated curve. δ is a threshold under the hypothesis that the error is

generated by a true inlier contaminated with a Gaussian noise P [ei ≤ δ], where we expect

the value of P is 0.95. The estimation of 3 parameters for a quadratic curve requires 3 points

at least; and RANSAC adopts a random selection process to choose any 3 points to estimate

a quadratic model θ, this process is repeated k times. And the one with the maximum

number of inliers shown in Equation 2 is chosen. Let Pk be probability that the points

selected to estimate the model are all inliers (n is total number of selected points). p is the

probability that any selected point is inliers (p = numberofinliersindata
numberofpointsindata

). Their relationship can

be characterized as follows12:

1− Pk = (1− pn)k (4)
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the required number of trials is

k =
log(1− Pk)

log(1− pn)
(5)

From Equation 5, assuming that the percentage of inliers in the data is p = 0.5, and we

know the required number of points for the estimation of quadratic model is 3 (n = 3), to

attain a 0.99 probability of success (Pk = 0.99), it only requires only 35 (k=35) times to

repeat this process, which can be computed quickly.

A 3D space curve quadratic in z models the path as [Cx(z), Cy(z), z]
T = [θ0x + θ1xz +

θ2xz
2, θ0y + θ1yz + θ2yz

2, z]T , where the estimation of [θ0x, θ1x, θ2x] and [θ0y, θ1y, θ2y] is per-

formed separately in the xz and yz planes respectively using RANSAC.

As shown in Figure 4, the black line illustrates the inferred RT path from the inliers (red

circles). Even in the presence of large outliers (non-RT locations), the estimated RT path

estimated by RANSAC is quite reliable. After RANSAC fitting, given a slice number, we

can predict the RT path location. RANSAC can be viewed as a method to achieve a robust

regression to fit the global shape model to data containing outliers.

D. RT Tip Detection

In this subsection we describe how to efficiently detect the RT tip along the RT path

given by the previous step.

1. Eigentubes: Eigenspace of the RT

Kirby and Sirovich17 first proposed to represent an arbitrary face with a set of eigenvectors

using principal component analysis. Turk and Pentland18 further developed this idea to

construct a fast matching algorithm to recognize the face with the coefficients of eigenfaces.

Under a much smaller subspace constructed by the first few eigenvectors, the classification

of new samples by computing its distance to the training samples of different classes can be

efficiently solved. We propose to use such an eigen-picture method for the detection the RT

region along the estimated path, forming a subspace of RT images we call eigentubes.

To add robustness to localisation errors along the path, for each location (Cx, Cy, Cz)

on the estimated RT path, we shifted it by moving 5 pixels around in the x-direction and

y-directions within the plane, and extracted a sub-image with a 2D window 21×21 centered

10
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

FIG. 5: Eigentubes: the images of the first 18 eigenvectors.

on each position (Cx + {−5, 0, 5}, Cy + {−5, 0, 5}, Cz). Thus, we gathered in total of 9 sub-

images for each given location (Cx, Cy, Cz). We then have a set of representative images

with a [ ˆ⃗x1, ..., ˆ⃗xn], where the image ˆ⃗xi is a d × 1 dimension vector (d = r × c, r (r = 21))

represents the number of rows and c (c = 21) represents the number of columns of the 2D

image) formed by appending each row of the image into the vector sequentially. Any image

can be represented in such a form:

x⃗i = Uqλ⃗i (6)

and

x⃗i = ˆ⃗xi − µ⃗ (7)

where µ⃗ (dimension d×1) is a mean image of the set images, x⃗i is the observation of data ˆ⃗xi

centered at µ⃗. We define a matrix X = (x⃗1...x⃗n), where x⃗i is the ith column of the matrix.

To best represent the n images of this set X, each of the image is d × 1 dimension with a

much smaller dimension q, the problem of seeking such subspace is formulated as minimizing

the reconstruction error:

Uq = argmin
Uq

n∑
i=1

∥x⃗i − Uqλ⃗i∥ (8)

where Uq is a d × q (q ≪ n) matrix and it defines a subspace spanned by its column,

each column vector of Uq is a basis vector of this space which is orthogonal to each other. λ⃗
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(q×1) is a vector of coefficients, and this can be obtained by projecting x⃗i onto the subspace

defined by Uq. Since the column of Uq is orthogonal, the coefficients can be obtained by

using product of each basis vector with x⃗i, λ⃗ = UT
q x⃗i, Equation 8 can then be represented

as:

Uq = argmin
Uq

n∑
i=1

∥x⃗i − UqU
T
q x⃗i∥ (9)

where UqU
T
q acts as a projection matrix and maps each image x⃗i into its rank q. This can

be solved by a singular value decomposition of X:

Xq = UqΣV
T

where Xq is the approximate representation of X using the first q eigenvectors; Uq is d× q

matrix, the column of Uq is a eigenvector of XXT , Σ is a diagonal matrix, the value is

its square of eigenvalue in a decreasing order to the covariance matrix XXT . The first

eigenvector of covariance XXT can be intuitively explained as the direction that the data

set has maximal variance.

Figure 5 illustrates the first 18 eigenvectors, each of which is a column of Uq (if q = 18).

The appearance of the eigenvectors includes more ring-like shapes due to the round shape

of RT at each section. The first eigenvector (a) is a bright disk surrounded by dark areas,

which is similar to the top (near the tip) part of the RT. The second eigenvector (b) is dark

inside and bright outside, which is similar to the bottom (near the anal verge) part of the

RT. The fifth eigenvector (e) is dark inside, bright in the middle and gray outside, which

is similar to some middle part of the RT. In the third eigenvector (c), there is half dark

outside the RT, which behaves like a colon air on the top of the RT. Figure 6 illustrates the

distribution of each candidate ROI image by projecting them into the subspace spanned by

the first three eigenvectors. The red points represent the samples from a RT image, and

the blue points represent the samples from a non-RT image. It shows a certain degree of

separation between the two classes even in a three-dimensional subspace.
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FIG. 6: PCA (3D) mapping of 2D candidate image for RT, red dots represent RT

candidate, blue dots represent non-RT candidates.

2. Classification and Clustering

In the constructed eigenspace, each sub-image is represented as a data point. Quadratic

discriminant analysis (QDA) is applied on the eigen-subspace for the detection/classification

of the RT. Figure 7 illustrates a 5-fold validation result by projecting into a different number

of subspace dimensions. We use the first 17 eigenvectors to construct the subspace since

there is no clear additional gain in the performance with more dimensions.

FIG. 7: RT classification, 5 fold cross validation.

For each slice z, the predictions above a certain confidence threshold (0.85) are labeled

as positive (1) representing RT, otherwise labeled as negative (0) representing non-RT. We

first group neighbors with the same label value together to form a set of clusters. The

clusters are sequentially arranged in order of z values. Starting from the cluster with the

smallest size, its two neighbor clusters which both have larger or equal size must have the

13
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(a) (b) (c)

(d) (e) (f)

FIG. 8: Examples of detected RTs scanned from three hospitals, (a-b), (c-d), (e-f) are from

the same hospital respectively.

same label value differing from the label in the middle (the cluster with the smallest size).

We merge the three clusters into a new cluster: the label of the newly merged cluster is then

the label of its neighbor clusters, and the size is the sum of the three clusters. The three

clusters should be replaced by this newly merged cluster, and this merging process may be

iteratively continued until there are two clusters left. As shown in Table I, 10 clusters (at

the first row) are formed initially. We can see the first cluster at the second row is grouped

from the first three clusters from the first row. Ideally, we could continue this process until

we have only two clusters, one being the RT cluster and the other being non-RT. However,

since we consider there could be a middle part of the RT which can be misclassified as

non-RT with some length, the merging process is stopped when only four clusters are left

or the minimum cluster size exceeding a threshold (25). The pseudocode of this clustering

14
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TABLE I: A table demonstrating grouping process.

Cluster No 1 2 3 4 5 6 7 8 9 10

label 1 0 1 0 1 0 1 0 1 0

size 29 1 2 3 1 20 12 1 12 59

Cluster No 1 2 3 4 5 6 7 8

label 1 0 1 0 1 0 1 0

size 32 3 1 20 12 1 12 59

...

Cluster No 1 2 3 4

label 1 0 1 0

size 32 24 25 59

algorithm is shown in Figure 9.

FIG. 9: Pseudocode of the RT clustering.

Once the grouping finished, we choose the last positive cluster with label size greater than

10% of the total length. We also choose the first negative cluster with label size greater than

10% of the total length. If the last z value of the chosen positive cluster is greater than the

first z value of the chosen negative cluster, the z value of the positive cluster is determined

as the top of the RT, otherwise, the first z value of the negative cluster. The estimated RT

path below this chosen z value is the final RT path, and the rest is discarded.
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III. RESULTS

The data are collected from five institutions. CT images were generated using scanners

from all the major manufacturers, including Siemens, GE, Philips, and Toshiba, with 4,

8, 16, 32, and 64 multi-slice configurations, KVp ranged from 120 − 140, and exposure

ranged from 29 - 500 mAs. All subjects were scanned within the years between 1999 and

2008, and roughly 80% were administered fluid and fecal tagging. The RTs from those

data were manufactured by Bracco and VMPAP, with or without hemispherical tip. The

diameter ranged within 6 − 11mm, the maximum intensity of the RT wall can be 550HU

approximately, and the maximum intensity at tip position can be approximately 3072.

In the first experiment, we annotated the tube location (approximate center point) for

86 volumes of prone and supine data from 43 patients from five different hospitals. The

data is divided 50% (44 volumes of 22 patient) for training and 50% (42 volumes of 21

patient) for testing by patient. Using KDE, separate probabilistic models for the prone and

supine data were trained using the training data. During testing, we used the probabilistic

models as a ranking method for the selection of the most probable candidate from each

slice. If the in-plane distance between the prediction of KDE model and the corresponding

annotated RT position is less than 5mm, that annotated RT position is viewed as being

correctly detected by KDE, otherwise, the prediction given by KDE is viewed as a false

location. In this experiment, the KDE method alone detected 83.7% of annotated RT centers

but with 72.3 false locations (the location belonging to the non-RT mistakenly predicted

as belonging to the RT by the algorithm) per volume in average. The center points of

the selected candidates were then used by RANSAC to estimate the RT path using the

global shape model, followed by the tip detection. With the estimation of the RT path

and tip, the proposed approach detected 99.5% of annotated RT positions with only 1.21

false locations per volume in average. Figure 8 shows diverse examples of RT detection for

different positions and patients using our approach. The red cross is the predicted center

point. Figure 10 further illustrates a 3D view of the estimated RT path in the colon. Each

row of Figure 10 shows a patient respectively, the first two columns (prone position) and

the last two columns (supine position). The first and third column illustrates the estimated

RT path (red line), rendered directly through a segmented colon. The second and fourth

column illustrates the estimated RT path (red line) and circular path along the axial plane

16



A Robust and Efficient Approach to Detect 3D Rectal Tubes from CT Colonography

(white circle), rendered directly through the gray-scale image.

Our second experiment evaluates the RT detection for suppression of FPs in CAD. Any

detection by CAD is removed as a FP if the distance between the center of the detected

region and the center of the detected RT is less than 10mm in-plane and 7mm out-of-

plane. On the 42 volume testing datasets, we could reduce 119 FPs generated by CAD (RT

filtering is turned off)8, and the average FPs per volume is reduced to 5.3 from 8.3, which

is 35.6% of improvement in FP reduction, without any loss of sensitivity. We repeat this

RT filtering but by replacing the estimated RT position with the annotated RT position,

where 121 FPs can be removed in total, including the 119 FPs identified by our approach

and with only 2 additional missed FPs. This shows that our approach has detected 98.4%

of FPs caused by the RT and didn’t remove any CAD mark from other sources, particularly

true positives. In our data, we have found no true positives touching the RT and therefore

no sensitivity loss due to this reason. The approach proposed in 11 was tested on a 210

datasets, achieving 94.7% detection rate and removing additional 26 CAD marks caused

by other sources. Although the data set is different and our testing dataset is smaller, our

performance has shown a very competitive performance in removing RT FPs and keeping

the CAD sensitivity. We attribute the improved results of our method to the global shape

model, which provides robustness to potentially erroneous local features.

We further test our approach on a large database of 382 volumes (without annotated

RT). The average FP is reduced to 4.17 from 5.64 per volume. Overall, this improved the

CAD with a 20.2% FP reduction without missing any polyp, therefore CAD sensitivity

is unaffected. The FPs arising from RT are typically polyp-mimicking, and can pass the

classifier designed based on the shape and contextual features, unlike FPs from other sources

which are more easily rejected by the classifier. The RT filter presented in this paper is

independent of our CAD system and can be used by other CAD system. The algorithm

runs in 3.6 seconds per volume on a standard quad-core 2.4 GHz processor while requiring

at most 150 MB of RAM regardless of the number of images in the series, which compares

favorably to 11 which required 5.3 seconds running time (PC configuration is unknown).
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IV. DISCUSSION

The method proposed in 9 determined a path by the first nine air hole regions. Tracking

a long path, the RT can be detected using template matching with a set of fixed shape

templates. The method is relatively rigid for detection, and may fail to take account of the

shape variability when tracking 2D slices. The assumption that the RT can be continuously

detected by a set of fixed-shape template matching during tracking could be very strong

and may lead to incorrect or partly detection only. Indeed, in our work we have noticed

that local detections can be erroneous on individual slices, thereby suggesting a more global

approach achieved through the shape model in our approach. The method proposed by

Barbu et al.11 made a very weak assumption that the RT path can be any curved shape,

which we believe underconstrains the problem and introduces additional complexities into

the algorithm, such as two level PBT training. In11 a large feature set is required for the

task of classification, e.g. approximate 6720 features for circular region detection in PBT.

In this paper, we assume the path of RT to be a straight line or quadratic curve given that

the knowledge that the RT exhibits a slight bending or straight-like shape inserted into the

rectum of the body, matching observation in practice. Our experiments demonstrate the

effectiveness of this assumption by giving a high detection rate of the RT in our data collected

from different sources. This simplifies the complexity of our algorithms and requires only 3

simple low level features to be computed: 2D normalized positions (x,y) and the size of air

regions.

We have tested this approach on the image without RT. When the input image does

not have RT, the estimated path is not on the RT path. Searching along the path, most

extracted sub-images don’t have the appearance of RT tip. After tip classification and

clustering stage, the tip detector is going to end at the staring slice 0. This correctly reflects

the fact that there is no RT in the image.

The RT tip appearance can be varied and is difficult to detect in isolation. Therefore,

our method classifies each slice as having the RT tip, and merges the classification labels

to produce the final tip location. This helps identify the tip location using long sections

(possibly the entire) tube. To fulfill this task, we could collect each possible sectional

appearance of RT and perform template matching for each of them. This may increase the

cost of computation. In this paper, we propose to detect the RT tip along the estimated path
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with an eigentube method. A QDA classifier is applied to the transformed 17-eigenvectors

constructed subspace. Each 2D sectional image of RT can be projected into a data point

in this subspace. In the subspace, the similar appearance object is much closer to each

other than the very dissimilar appearance ones. This allows some degree of variance in the

appearance among the samples from RT candidates. The classification only requires the

computation of the data points distribution in this subspace, which is quite cost-effective.

We design a bottom-up clustering method to have a high-level view of the individual local

detections on each section, with which an optimal decision to determine the place of the RT

tip can be made.

Our method is designed generally to be robust from outlier data’s influence. However,

the accuracy of tip detector relies on the training samples to be representative. The RT

path should generally pass through axial section perpendicularly or with a large angle with

the axial plane. Some extreme cases that the angle between RT path and axial section

could be small, the image of the intersection and axial plane may look very different from

training sample images. In these cases, the eigentube detector may fail to accurately detect

the tip. However, in practice, we have not observed cases where the detection failed due to

this reason.

The balloon inflated at the top of the RT can be another potential source of FPs. Due to

partial volume effect, there is not a clear boundary of the balloon, which makes its detection

difficult. Our future work will try to estimate the balloon position using the estimated RT

path and reduce the balloon’s resulting FPs.

V. CONCLUSIONS

In this paper, we present a novel and robust learning approach for RT detection and

removal of its resulting FPs in CAD. The approach starts from simple image processing

operations and simple low-level 2D feature extraction for locally detected objects, which are

then probabilistically ranked using KDE. Then, RANSAC robustly estimates the RT path

from the most likely 2D candidates by fitting a 3D global shape model. The tip of the RT

is estimated quickly, computed in an eigenspace of low dimension. A bottom-up clustering

method is designed to put each individual local detections on each section together and make

an optimal decision of the tip location in a high-level view. Our RT detection method has
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shown a state-of-the-art performance in detecting the RT path and removing FPs resulting

from the RT in our CAD system.
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FIG. 10: The visualization of RT detection. Each row shows a patient respectively, the

first two (prone position) and the last two (supine position). The first and third column

illustrates the estimated RT path (red line), rendered directly through a segmented colon.

The second and fourth column illustrates the estimated RT path (red line) and circular

path along axial slice (white circle), rendered directly through the gray-scale image.
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