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In their target article, Krueger, DiDonato, and Freestone provided a detailed and thought-

provoking critique of existing approaches to understanding human behavior in social dilemmas, 

including the famous Prisoner’s Dilemma paradigm. In this way, they motivate their own approach, 

based on the idea of social projection. This commentary establishes some theoretical relations 

between the social projection hypothesis and a new “quantum inspired” model of behavior for the 

prisoner’s dilemma game (Pothos & Busemeyer, 2009). Our discussion reveals a subtle difference in 

the motivation between the social projection hypothesis and the “quantum inspired” model, a 

commonality of assumptions (despite the obviously different form of the models), and a 

complementarity of objectives (and strengths). Further elaboration of the two models may well lead 

to a convergence between them, which will further enhance both our insight of the factors which 

drive human intuition in social dilemmas and of the relevant formal principles.  

One of the most famous paradigms for studying social dilemmas and human cooperative 

behavior is Prisoner’s Dilemma (PD), in which a player can decide to cooperate (C) or defect (D) with 

another (imaginary or otherwise) player, who can also C or D. A payoff matrix determines the reward 

of the player depending on her choice and on the actions of the other player. The payoff matrix is 

typically set up in such a way that if both players C they receive a relatively high amount (say $20) 

and if they both D a relatively low amount (say $10).  But, if the first player chooses to D and the 

second chooses to C, then the first player receives the highest possible reward ($25) and the second 

player the lowest possible reward ($5; and vice versa). Perhaps the PD paradigm has attracted the 

attention it has because it embodies one of the fundamental riddles of why human societies work: 

mutual cooperation leads to success (prosperity) for all members, but individuals who choose to D 

stand to gain the most (as long as the majority C).  

 A classical rationality view simply predicts that each player should D (the Nash equilibrium is 

for both players to D). In fact, in laboratory versions of the PD task, naïve observers often choose to 

C and so ignore the prescription from classical (selfish) rationality. Understanding the psychological 

mechanism which makes a C decision more  favorable has proved a major theoretical challenge, and 
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is the focus of the target article of Krueger, DiDonato, and Freestone ,titled “Social Projection Can 

Solve Social Dilemmas” (henceforth we will refer to it as just the ‘target article’ and the authors as 

KDF).  

 KDF provide a detailed overview of alternative theories to account for cooperative behavior 

in social dilemmas, such as PD. For example, they discuss a morality theory, according to which 

cooperation is favored because it is considered a more just or fair strategy. A reciprocity theory 

involves assumptions regarding expectations of how the other player ought to behave. A 

benevolence (social values) hypothesis computes expected reward for a player as a weighted sum of 

the player reward and the reward of the other player. Team reasoning approaches consider reward 

from the point of view of the entire team, not just the individual players. An error approach assumes 

that the optimal strategy is indeed to D, however, players simply occasionally makes errors. Yet 

another explanation for cooperative behavior has to do with observations (or assumptions) 

regarding the preponderance of CC situations (that is, situations in which both players decide to C) in 

particular types of games.  

 KDF’s critical evaluation of these approaches reveals several weaknesses and so motivates 

their own explanation. This depends on social projection, that is, the idea that naïve observers often 

believe that others will behave as they do. Social projection allows a naïve observer to calculate an 

estimate of expected gain for cooperating, under particular assumptions of correspondence in the 

actions of the two players. KDF support their hypothesis with a series of experiments, which are 

based on variations of the PD task. Their social projection hypothesis is the one most consistent with 

the empirical findings, in terms of predicting participant choices (specifically, the recommendations 

for C or D from a participant towards an imaginary player whose actions are given), of predicting 

judgments of rationality for the imaginary player, and of predicting judgments of morality for the 

imaginary player. Support for the KDF is thoughtful, innovative, and, ultimately, convincing.  

 The purpose of this commentary is to consider Pothos and Busemeyer’s (2009) modeling of 

PD (and two-stage gambling task) data, on the basis of quantum probability (henceforth, QP). Given 
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our optimistic view of KDF’s theorizing, one can wonder as to what could be gained by introducing 

yet another theory and, indeed, one which is based on unfamiliar formal principles (why is QP 

needed?). As we shall discuss, first, Pothos and Busemeyer’s (2009) quantum approach enables an 

additional, fundamental perspective regarding the rationality of behavior in a PD task. Second, while 

KDF show that individually any of the existing approaches fail, the quantum theory provides a 

formalization of a combination scheme, which appears to work. In fact, the principles of this 

combination scheme align well with those of the social projection theory. Ultimately, the objectives 

of the quantum model are somewhat different from those of KDF. For KDF, the key objective is to 

explain why naïve observers find it attractive to C in particular PD situations. For the quantum 

model, the challenge is to reconcile behavior in PD situations with formal probability theory. The 

importance of this second issue and the related fundamental implications for the rationality debate 

are considered next.  

A different perspective on the rationality of the PD task 

Shafir and Tversky (1992; Tversky & Shafir, 1992) discussed a variation of the PD task in 

which, in some trials, players were simply told of the opponent’s decision. Unsurprisingly, when 

participants were told that the other person chose to D, they chose do D: Prob(D|D)=.97. When 

participants were told that the other person decided to C, they also chose to D, so that 

Prob(D|C)=.84 (a one-shot PD task was employed, so there were no grounds to worry about tit for 

tat or long term strategies). But, when participants were not told about the other player’s action, the 

probability to C rose, and Shafir and Tversky (1992) observed a Prob(D|unknown)=.63 (for 

replications see Crosson, 1999; Li & Taplan, 2002; Busemeyer, Matthew, & Wang, 2005). Similar 

results were obtained with a two-stage gambling task paradigm, in which participants had to decide 

whether or not to play a second gamble on the basis of knowledge (or not) of the outcome of a first 

gamble (Tversky & Shafir, 1992).  

 Several researchers advocate the view that human naïve decision making and judgment 

follows the principles of classical (Bayesian) probability (CP) theory. Without doubt, there are some 
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aspects of cognitive process which can be successfully described with CP principles (e.g., Anderson, 

1991; Griffiths et al., 2010; Tenenbaum et al., 2011). Indeed, some researchers have suggested that 

human cognition has to follow the principles of CP theory, because it is rational to do so (e.g., 

Oaksford & Chater, 2007; cf. Pothos & Busemeyer, in press). For example, the so-called Dutch-book 

theorem guarantees that, as long as you assign probabilities to bets on the basis of CP theory, you 

will neither lose nor gain money.  

 Unfortunately, for all its normative support, CP theory fails to explain Shafir and Tversky’s 

(1992) results. One of the fundamental axioms of CP theory is the law of total probability, which can 

be expressed as  

 ( )   (  (   ̅))   (   )   (   ̅)   ( ) (   )   ( ̅) (   ̅).  

In other words, the probability of an event A is the sum of the probability of the conjunction of A 

with another event X and the conjunction of A with X’s negation. The law of total probability is 

intuitive: The opponent can either D with some probability  (         ) or C with some probability 

 (         ). If the opponent is predicted to D, then the player has some probability for choosing D, 

 (                   ); or if the opponent is predicted to C, then the player has some other 

probability for choosing D,  (                   ).  Therefore, when the opponent’s action is 

unknown, the probability of defection should equal 

  (         )   (         ) (                   )   (         ) (           ).   

Note that  (         ) is bounded by the two conditional probabilities,  (                   ) and 

 (                   ), so that it cannot be lower than the lowest of these two conditional 

probabilities or higher than the highest of these conditional probabilities. Empirically, however, the 

observed probabilities do not obey these bounds in the case of Shafir and Tversky’s (1992) variation 

to the PD game. In fact Shafir and Tversky (1992) found that  (         ) was lower than both 

conditional probabilities. Whichever way you manipulate the prior assumptions for whether the 

opponent is likely to C or D, Shafir and Tversky’s (1992) findings cannot be reconciled with the law of 

total probability.  
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 So, if it is rational for cognitive process to be consistent with the principles of CP theory, and 

if naive observers violate these principles in the case of, e.g., Shafir and Tversky’s (1992) PD task, do 

we have to conclude that people are (mostly) irrational? According to Shafir, Tversky, Kahneman, 

and their colleagues, either we need to accept this bleak conclusion for human irrationality, or adopt 

their proposal that CP theory has little to do with understanding cognitive processes. In a research 

program that has had an enormous impact in psychology (e.g., over 30,000 citations to Tversky’s 

work and a Nobel prize for Kahneman in 2002), Shafir, Tversky, Kahneman, and their colleagues 

reported several violations of CP theory in naïve decision making (e.g., Kahneman, Slovic, & Tversky, 

1982; Tversky & Kahneman, 1973, 1974).  

 The first point of this commentary is that none of the theories KDF reviewed can readily 

offer some reconciliation between the violation of the law of total probability and the view of 

human rationality based on adherence to CP principles. Note, again, that the rationality we have 

discussed in this section is different from the one KDF examine, in relation to their model. KDF are 

concerned with whether participant choices to D or C can be considered as rational, given 

expectations for reward. We presented a more general notion of rationality, which arises from a 

consideration of PD behavior from the perspective of formal probability theory. We do not claim 

that any of the accounts presented in KDF’s paper are necessarily inconsistent with a resolution of 

the conflict between the violation of the law of total probability and Shafir and Tversky’s (1992) 

empirical findings. Rather, a possible resolution is not discussed.  

Quantum probability theory  

For most psychologists, when it comes to the question of how to systematically assign 

probabilities to events, CP theory is all there is.  CP theory is so ingrained that it is hard to even 

imagine alternative probabilistic frameworks. For example, how can it not be that  ( )  

 (   )   (    ̅)?  Nevertheless, in the beginning of the 20th century, physicists realized that 

the way CP theory formalizes uncertainty is often inconsistent with physical observation. As a result, 

and over a period of around three decades, physicists developed quantum mechanics, arguably one 
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of the most sophisticated creations of the human mind, and one which have had an unparalleled 

impact on human history (through the development of transistors, the foundations of chemistry, the  

development of lasers, etc.).  

Quantum mechanics is a theory of physics, which is based on a particular theory of 

probability, QP theory. QP theory can be dissociated from its physical origins and is potentially 

applicable in any area of human inquiry in which there is a need to formalize uncertainty. For 

example, QP theory has been applied in economics (e.g., Baaquie, 2004) and information theory 

(e.g., Grover, 1997). Moreover, the potential relevance of QP theory in psychology can be motivated 

a priori, in terms of various key characteristics of QP theory which appear consistent with general 

intuition about cognitive process (Busemeyer and Bruza, 2012).  

    The first characteristic concerns the quantum concept of superposition. Classic cognitive 

models assume that at each moment a person is in a definite state with respect to some judgment. 

Of course, it is not known what the person's true state is at each moment, and so the model can only 

assign a probability to a response with some value at each moment. But the model is stochastic only 

because it does not know exactly what trajectory (definite state at each time point) a person is 

following. In this sense, cognitive scientists currently model the cognitive system as if it were a 

particle producing a definite sample path through a state space. Quantum theory works differently 

by allowing a person to be in an indefinite state (formally called a superposition state) at each 

moment in time. Strictly speaking, being in an indefinite or superposition state means that the 

model cannot assume that you have a definite value, with respect to some judgment scale, at each 

moment in time. You can be in an indefinite state that allows all of these definite states to have 

potential. A superposition state perhaps provides a better representation of the conflict, ambiguity, 

or uncertainty that people experience at each moment. In this sense, quantum theory allows one to 

model the cognitive system as if it were a wave moving across time over the state space. This would 

be so until a decision is made, at which point the state is forced to change from an indefinite state to 

a definite response. 
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A second reason concerns a putative sensitivity of the cognitive system to measurement. 

Traditional cognitive models assume that whatever we record at a particular moment reflects the 

state of the system, as it existed immediately before we inquired about it. The answer to a judgment 

question simply reflects the state regarding this question just before we asked it. One of the more 

provocative lessons learned from quantum theory is that taking a measurement of a system creates, 

rather than records, a property of the system. Immediately before asking a question, a quantum 

system can be in an indefinite state. The answer we obtain from a quantum system is constructed 

from the interaction of the indefinite state and the question that we ask. This interaction creates a 

definite state out of an indefinite state. We argue that the quantum principle, that a reality is 

constructed  from an interaction between the person's indefinite state and the question being 

asked, better matches psychological intuition for complex judgments, than the assumption that an 

answer simply reflects a pre-existing state. 

    The third reason concerns the quantum concept of measurement incompatibility. The 

change in state that results after answering one question causes a person to respond differently to 

subsequent questions. Answering one question disturbs the answers to subsequent questions and 

the order of questioning becomes important. In other words, the first question sets up a context 

which changes the answer to the next question. Consequently, we cannot define a joint probability 

of simultaneous answers to a conjunction of questions, and instead we can only assign a probability 

to the sequence of answers. In quantum physics, order dependent measurements are said to be 

non-commutative and quantum theory was especially designed for these types of measures. Many 

of the mathematical properties of quantum theory arise from developing a probabilistic model for 

non-commutative measurements, including Heisenberg's (1927) famous uncertainty principle. 

Question order effects (e.g., Moore, 2002) are major concern for attitude researchers, and a  

theoretical understanding of such effects can be achieved within quantum theory. 

    The fourth reason is that human judgments do not always obey classic laws of logic and 

probability. The classic probability theory used in current cognitive and decision models is derived 
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from the Kolmogorov axioms, which assign probabilities to events defined as sets. Consequently, the 

family of sets in the Kolmogorov theory obey the Boolean axioms of logic, and one important axiom 

of Boolean logic is the distributive axiom. From this distributive axiom, one can derive the law of 

total probability, which provides the foundation for inferences with Bayes nets. However, the law of 

total probability is violated by the results of many psychological experiments, including Shafir and 

Tversky’s (1992) variation of the PD task.  Quantum probability theory is derived from the Dirac and 

von Neumann axioms. These axioms assign probabilities to events defined as subspaces of a vector 

space, and the logic of subspaces does not obey the distributive axiom of Boolean logic. The fact that 

quantum logic does not always obey the distributive axiom implies that the quantum model does 

not always obey the law of total probability.  Essentially, quantum logic is a generalization of classic 

logic and quantum probability is a generalized probability theory. Classic probability theory may be 

too restrictive to explain human judgments. 

    Although the use of quantum principles for modeling psychological processes is still in its 

infancy, there have already been some very promising results (e.g., Aerts & Gabora, 2005; 

Atmanspacher, Filk, & Romer, 2004; Blutner, 2009; Bordley, 1998; Bruza, Kitto, Nelson, & McEvoy, 

2009; Busemeyer, Wang, & Townsend, 2006; Busemeyer et al., 2011; Khrennikov, 2010; Lambert-

Mogiliansky, Zamir, & Zwirn, 2009; Pothos & Busemeyer, 2009; Yukalov & Sornette, 2010).  Now that 

we have identified some general reasons for considering a quantum approach to cognition and 

decision, we present our quantum inspired model for the PD game and relate these ideas to the 

social projection hypothesis.  

Quantum model of social projection 

  Pothos and Busemeyer (2009) formulated a quantum model for the PD game , which 

incorporates the idea of social projection, according to which a player’s particular action implies a 

belief in a corresponding action by the opponent (in our original work we described this influence in 

terms of cognitive dissonance theory, Festinger, 1957, and wishful thinking, but a characterization as 
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social projection is more accurate). The main ideas are briefly sketched below (see Pothos & 

Busemeyer, 2009, for the full mathematical details). 

   The decision maker’s tendencies to make inferences and take actions are based on a state 

vector, which is a unit length vector lying within a four dimensional space. The four coordinates of 

the state represent the “probability amplitudes” for the four events DD, DC, CD, and CC, where the 

first letter indicates the prediction about the opponent’s action and the second letter indicates the 

player’s action. For example, CD represents the event that the opponent is predicted to C but the 

player decides to D.  

The player begins the process with an initial state, denoted by , that contains information 

provided about the opponent’s action. This initial state concerns the player’s initial biases for action 

based on corresponding beliefs about the opponent’s intentions.  The initial state can be affected by 

information the player receives about the opponent’s intentions. If the player is informed that the 

opponent will D, then the probability amplitudes for DC and DD are initially equal to zero, to produce 

a unit length state denoted D; if the player is informed that the opponent will C, then the 

probability amplitudes for CC and CD are initially equal to zero, to produce a unit length state 

denoted C; and if the opponent’s action is unknown, then the player’s initial state is a superposition 

of the two known states  

U = dD + cC  ,  |d|2 + |c|2 = 1. 

This superposition state is interpreted as follows. The player does not necessarily predict that the 

opponent will D, and at the same time, the agent does not necessarily predict that the opponent will 

C. Also the player does not predict both contradictory events to occur at the same time. Instead the 

player is in an indefinite state, in which there is some potential for each prediction to be made. 

The initial state  is then transformed into a final state . The transformation represents the 

thought process, during which the player clarifies her beliefs about the opponent’s actions and her 

own decisions. During this deliberation period, the state is “rotated” by a unitary matrix, denoted U, 

to produce a revised state  = U, which remains unit length. The unitary matrix “rotates” the state 
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in a direction that is determined by two factors. One factor is the utility of the payoffs, which 

generates a potential for defection in the PD game (increasing the probability amplitudes for CD and 

DD). The second factor corresponds to KDF’s social projection influence, which generates a tendency 

for beliefs and actions to become aligned (increasing the probability amplitudes for CC and DD). Both 

factors work together in a dynamic manner to change the initial state into a final state, as a result of 

the deliberation process.   

Specifically, if the opponent’s action is known D, then we have  = D, so that, UD = D, if 

the opponent’s action is known C, then we have  = C, so that, UC = C, and if the opponent’s 

action is unknown, then UU  =  U (dD + cC) = dU D + cUC = d D + cC. The final state  = 

U that results after deliberation is another unit length vector, lying within the four dimensional 

space, which assigns new probability amplitudes to the four events DD, DC, CD, CC.  The player’s 

decision to D depends on the two probability amplitudes in the state  assigned to DD and CD; the 

decision to C depends on the two probability amplitudes in the state  assigned to DC and CC.  For 

this reason, it is convenient to decompose the state into two orthogonal parts, depending on 

whether the player decides to D or C. Let us denote as  the projection on the defection action for 

the player and as  the projection on the cooperation action for the player, indexed in such a way so 

as to indicate knowledge of the opponent’s actions. Then, D = D + D, so that P(player D|known D) 

= D
2 and C = C + C, so that P(player D|known C) = C

2. 

The key issue concerns that happens in the case when the opponent’s action is unknown. 

Using the above equations, we have:  

UU  =  U (dD + cC) = dU D + cUC = d D + cC = d (D + D)+ c(C + C) ,  

The part of the state vector corresponding to the possibility that the player decides to D is given by 

d D + cC. Therefore, the probability that the player decides to D is:  

  d D + cC 2 = |d|2
 D

2 +|c|2
 C

2 + |d||c|(D’C) +  |c||d|(C’D). 
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In other words, the probability of defection for the unknown condition equals 

 P(player D|unknown) =    |d|2
P(player D|known D) + |c|2

P(player D|known C) + Int, 

where the interference term equals Int = (d*c)(D’C) + (c*d)(C’D).   The interference term may 

be positive, negative, or zero, depending on the angle between the pair of vectors (C , D).  If the 

interference term is zero, then QP agrees exactly with CP theory, and obeys the law of total 

probability. However, to account for the empirical findings, the interference term needs to be 

negative. This is where the social projection factor that affects the rotation of the final state 

becomes important. The social projection factor can make this angle negative, so that the probability 

of defection for the unknown condition falls below both of the probabilities for the known states. 

 Thus, time evolution during payoff evaluation in the quantum model leads to interference 

effects and such interference effects allow coverage of the empirical results in the basic PD 

paradigm. Simply put, probabilities in the quantum model are computed through a squaring 

operation (of amplitudes), so that                     . The first two terms are the 

classical terms, the last two terms the interference terms. In the quantum model, two individually 

good reasons for performing an action (e.g., defecting, in a PD task) can cancel each other out, when 

they are both present. For example, in the PD task, the (good) reason for defecting when the 

opponent  defects and the (equally good) reason for defecting when the opponent cooperates, are 

not consistent with these other. So, when they are both present, the model generates these 

interference effects, and the law of total probability can be violated. In fact, the quantum model 

provides a rigorous formalization of Shafir and Tversky’s (1992) suggestion that participants behave 

in the way they do in PD tasks (and related paradigms) because of a failure of consequential 

reasoning.  

  One can wonder whether the approach of combining a factor depending on the utility of 

payoffs and a factor depending on social projection could work within a classical (Markov) 

framework for computing probabilities. In brief, this is not possible (see Pothos & Busemeyer, 2009, 

for further details). In the classical model, the state vector U = dD + cC  would be a 
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superposition of probabilities. Therefore, UU  =  U (dD + cC) = dU D + cUC= d D + cC = d 

(D + D)+ c(C + C) would likewise directly involve probabilities, so that,  

P(player D|unknown) =    dP(player D|known D) + cP(player D|known C) 

Note that the classical , , and U can be specified in a way analogous to how they were specified in 

the quantum model, but of course the classical and quantum components are not identical. 

Crucially, the classical expression for P(player D|unknown) is analogous to the one derived for the 

quantum model, but without the interference term. This is another way to say that a classical model 

is always constrained by the law of total probability, regardless of the form of time evolution which 

is employed.  

 Going back to our discussion of KDF’s proposal, it is clear that the quantum approach is 

based on some of the same ideas as KDF’s social projection hypothesis. However, just the ideas of 

classical rationality and social projection are not sufficient to account for the correct pattern of 

results in PD. As we have seen, a CP model based on exactly these principles is unable to capture 

violations of the sure thing principle. By contrast, the QP model can capture such violations, because 

of interference terms which can arise in probabilistic computation. It is also worth pointing out that 

some aspects of the quantum model can be seen as specific computational formalizations of some 

aspects of the social projection model, notably the idea of social projection. The possible relation 

between the two approaches is further considered in the next section.  

Future directions and final thoughts 

An important aspect of KDF’s demonstration is that they do not restrict themselves to 

predicting that many participants choose to C (or, in their paradigm, to recommend cooperation), 

but rather they provide empirically accurate predictions across a range of variations of the main PD 

paradigm. Can the quantum model for the PD task reproduce these predictions as well? This is an 

interesting question, but one that warrants considerable additional work. Although the principles 

and form of the quantum model are straightforward, its dynamics are complex. The parameters of 

the model interact and, moreover, can affect not just the amplitude, but also the period of 
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oscillation as well. Therefore, before the model can be extended to provide a more complete 

coverage of results in the PD task and, notably, the insightful variations KDF developed, a more 

complete theory of what is the appropriate time point to extract probabilities from the state vector 

is required. Nonetheless, predicting a violation of the law of total probability from a formal 

probabilistic model is already quite a challenge and this makes us optimistic that these further 

challenges can be overcome as well.  

 This leads naturally to the question of whether a quantum approach provides a better 

account of the (baseline) pattern of results in the PD task only because it affords more 

computational flexibility, compared to the classical one. After all, while the quantum PD model can 

violate the law of total probability, without the interference terms it can also be seen to obey the 

law of total probability. Therefore, is it the case that the quantum model is all of the classical model, 

so to say, and a little bit more (with the introduction of the interference terms)?  

 This is a complicated issue (cf. Myung, 2000; Pitt et al., 2002) but, in brief, there are plenty of 

indications that quantum models are not, in general (just) more flexible than classical ones. First, the 

quantum model is quite general and it has been shown to explain not only the violations of total 

probability found with the PD game (Pothos & Busemeyer, 2009), but also other violations of CP 

theory including conjunction and disjunction fallacies (Busemeyer, et al., 2011) and order effects on 

inference (Trueblood and Busemeyer, 2011).  Second, even though quantum models can violate 

certain key constraints of classical models, notably the law of total probability, they are subject to 

alternative, highly restrictive constraints. For example, the matrices (like U, above), which determine 

the dynamics of a quantum model, have to obey a property called double stochasticity. In general, 

CP and QP theory are founded from different sets of axioms (the Kolmogorov and Dirac/ von 

Neumann axioms respectively). Ultimately, whether the success of a model over an alternative one 

is due to flexibility is a technical issue which can only be assessed in the context of specific models. 

So far, this has only been done once. Shiffrin and Busemeyer (2011) compared a quantum model and 

a matched classical one in terms of both model fit and complexity, using a Bayesian approach. 
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Overall, across two different assumptions for the prior distribution of parameters, the quantum 

model was shown to be superior to the classical one. So, while the question of relative flexibility 

between the quantum and the classical models is clearly still open, the existing results are favoring 

the quantum models.  

 Overall, our discussion converges to two broad conclusions. First, the KDF model and the 

quantum model for behavior on the PD task have somewhat different objectives and this endows 

them with complementary strengths. The KDF model was built on the basis of a thorough and 

comprehensive consideration of the relevant psychological processes which could influence 

decisions in PD tasks. By contrast, the starting point of the quantum model was the interest in the 

more general issue of whether it is possible to reconcile human behavior in PD tasks with violations 

of the law of total probability; as discussed, this question is at the heart of the debate of whether it 

is desirable (many cognitive scientists think it is) and possible (researchers following Tversky and 

Kahneman’s tradition think it is not) to attempt to understand cognition within a formal probabilistic 

framework. Second, the KDF model and the quantum model, as currently specified, appear fairly 

consistent with each other. It is possible that further psychological elaboration of the quantum 

model and further computational elaboration of the KDF model may lead to inconsistencies between 

the two approaches. Equally, it is possible that such an endeavor will converge the two approaches 

to the same, or very similar, models. We are looking forward to this challenge.  
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