
              

City, University of London Institutional Repository

Citation: Borsato, R., Olsson-Sax, O., Sfondrini, A. & Stefanski, B. (2014). The complete 

AdS3 ×S3 × T4 worldsheet S matrix. Journal of High Energy Physics, 2014(10), 66. doi: 
10.1007/jhep10(2014)066 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/4787/

Link to published version: https://doi.org/10.1007/jhep10(2014)066

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


J
H
E
P
1
0
(
2
0
1
4
)
0
6
6

Published for SISSA by Springer

Received: June 25, 2014

Revised: August 25, 2014

Accepted: September 15, 2014

Published: October 10, 2014

The complete AdS3 × S3 × T4 worldsheet S matrix

Riccardo Borsato,a Olof Ohlsson Sax,b Alessandro Sfondrinic and

Bogdan Stefański jr.d
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1 Introduction

The AdS/CFT correspondence is a remarkable equivalence between quantum gauge and

gravity theories. In its simplest form it posits a strong/weak duality between superstring

theories on AdSd+1 × M9−d, where M9−d is a (9−d)-dimensional compact space, and

d-dimensional Conformal Field Theories (CFTs) on the boundary of AdSd+1 [1–3]. This

conjecture has inspired important advances in our understanding of quantum gravity and

Quantum Field Theory (QFT). An intriguing feature of the AdS/CFT duality is the emer-

gence of integrable structures in the ’t Hooft, or planar, limit [4] of certain classes of dual

theories. The prototypical example is the case of type IIB strings on AdS5 × S5 and the

dual N = 4 Supersymmetric Yang-Mills (SYM) theory, see [5, 6] for a review. Following

the discovery of the ABJM Chern-Simons theory [7], integrability was found also to un-

derpin the duality between this CFT and Type IIA string theory on AdS4 × CP3 in the

planar limit.1 The key role of integrability in providing a quantitative handle on both

the AdS5/CFT4 and AdS4/CFT3 dualities is rather striking. It hints very strongly that,

for certain classes of dual pairs, integrability provides the right set of tools with which to

investigate the AdS/CFT correspondence. As a result, identifying other dual pairs where

integrable methods may be applicable is an important challenge in developing a detailed

understanding of the AdS/CFT correspondence.

Another set of classes where integrability emerges are strings on AdS3 ×M7 back-

grounds with 16 real supersymmetries. The AdS3/CFT2 correspondence is a particularly

important example of gauge/string duality. Historically, gravity on AdS3 gave rise to

an early example of holography [9]. The gravity theory was found to have an (infinite-

dimensional) conformal symmetry on the boundary whose central charge could be calcu-

lated. Further, black hole solutions could be constructed in the gravitational theory [10, 11]

and their entropy was understood using holography [12]. Moreover, the D1-D5 brane sys-

tem, whose near-horizon limit gives rise to the AdS3/CFT2 correspondence, has played

a central role in the string theory derivation of the black-hole entropy formula [13]. At

low energy, such a brane construction gives rise to a 1 + 1 dimensional supersymmetric

Yang-Mills theory with matter multiples in the fundamental and adjoint representations,

adding new features with respect to N = 4 SYM and ABJM theories.

In the context of string theory, it is natural to first consider AdS3 backgrounds with

maximal supersymmetry. Such backgrounds have 16 real supersymmetries and come in

two distinct types. String theory on AdS3 × S3 × T4 gives rise to the small N = (4, 4)

superconformal algebra [1, 14],2 while string theory on AdS3×S3×S3×S1 leads to the large

N = (4, 4) superconformal algebra [15]. Both types of backgrounds can be supported by a

mixture of Ramond-Ramond (R-R) and Neveu-Schwarz-Neveu-Schwarz (NS-NS) fluxes. In

the case of pure NS-NS flux, much progress was made by studying the worldsheet theory

with two-dimensional CFT techniques [16–22]. These results can be mapped onto the

1See [8] for a review and a more complete list of references.
2String theory on AdS3×S3×K3 also leads to a small N = (4, 4) superconformal algebra. From the point

of view adopted in this paper this background can be viewed as a blow-up of an orbifold of AdS3 ×S3 ×T4.

– 2 –
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D1-D5 system via S duality,3 which however acts in a non-perturbative and non-planar

way. It is then natural to ask if backgrounds involving R-R fluxes can be studied more

directly [23]. In particular, developing a quantitative understanding of the pure R-R string

theory is essential in understanding generic unprotected properties of the D1-D5 system,

and a starting point to tackling more general AdS3/CFT2 dualities.

With this motivation in mind, it was realised that the equations of motion of type

II string theory on the pure R-R background are integrable [24]4 and that this extends

to mixed fluxes as well [26]. This prompted an extensive investigation of the quantum

integrability properties of these backgrounds [24, 25, 27–48], mainly by means of the S-

matrix approach that proved successful in the case of AdS5/CFT4, see also [49] for a review.

A new feature of the AdS3 backgrounds is the presence of massless fundamental

excitations on the worldsheet. Because massless modes are notoriously difficult to in-

corporate into integrability constructions [50–52], this presented an early challenge to

fully understanding the AdS3/CFT2 correspondence using integrable methods. On the

other hand, massive S-matrices and Bethe ansatz equations of AdS3 × S3 × T4 [34, 35]

and AdS3 × S3 × S3 × S1 [32, 33] are relatively well-understood in the pure R-R case;5 the

giant magnon associated to the massive modes was also understood some time ago [56, 57].

In [31] massless modes were incorporated in the weakly-coupled spin-chain picture. On the

string side, only very recently it has been shown how massless modes can be included in

the classical integrability machinery [58]. Both of these results demonstrate that the real

intricacies involved in understanding massless modes occur away from the weakly-coupled

string and spin-chain regimes.

The aim of this paper is to present in detail how massless excitations can be included

in the non-perturbative integrability picture, and how the non-perturbative asymptotic

worldsheet S matrix for all fundamental particles can be found in the case of pure R-R

AdS3 × S3 × T4 background. These results were first presented in [59].

Our analysis starts from the determination of the off-shell symmetry algebra A of the

theory. Before light-cone gauge fixing, the symmetries of AdS3 × S3 × T4 are given by

the AdS3× S3 superisometries6 psu(1, 1|2)L⊕ psu(1, 1|2)R together with the T4 isometries.

Fixing light-cone gauge breaks some of these symmetries, and in particular halves the

supersymmetries. We are interested in the symmetry generators that are linearly realised

after gauge fixing, as the S matrix will have to commute with them. Such generators will

sit in A, together with some additional central charges which are expected from the case

of AdS5×S5 [60–62]. We will determine the form of these and find, as it should be, that they

have a non-trivial action only on states that do not satisfy the level-matching constraint (i.e.

3In fact, S duality acts on mixed-flux background by swapping R-R with NS-NS fluxes.
4Integrable structures were also recently found from studying the Gubser-Klebanov-Polyakov “spinning

string” [25].
5The S matrix for mixed R-R and NS-NS fluxes has also been studied [42, 43], but remains somewhat

more puzzling, see [44]. Other integrable aspects of the mixed flux backgrounds have been investigated

in [53–55].
6The two copies of psu(1, 1|2) carry labels “L” (left) and “R” (right) corresponding to chiralities in the

dual CFT2.
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off shell). Once the off-shell algebra of the theory is determined we will use it to constrain

the non-perturbative 2→ 2 S matrix, which will then satisfy the Yang-Baxter equation.

Unlike what happened in AdS5/CFT4 [60–62], we cannot use the coset action [24, 63–

65] for our calculations. The coset action requires the use of a particular kappa gauge [24],

which does not allow for a straightforward quantization of the massless modes; see [28] for

a discussion of the coset kappa gauge. We will therefore work with the Green-Schwarz ac-

tion [66], in light-cone gauge. Furthermore, we take the decompactification limit, whereby

the world-sheet cylinder becomes a plane and the asymptotic states can be defined. It is

interesting to note that our results give an example of integrability where the fermionic

degrees of freedom do not enter the dynamics through a coset action; similar observa-

tions have recently been made in integrable AdS backgrounds which preserve even less

supersymmetry [67].

In this way, we are able to establish the off-shell symmetry algebra, including the

non-linear momentum-dependent central extension reminiscent of [61]. As expected, the

light-cone-gauge worldsheet theory is non-relativistic. Massive and massless excitations

will then have periodic dispersion relations, with the energy of the latter being linear in

the momentum for small values of it. Using these results, the two-body S matrix will follow

immediately by symmetry arguments, and is fixed up to some dressing factors, for which

crossing equations can be written down. As expected, the massive-sector S matrix of [34],

including the crossing-invariant dressing factors of [35] can be consistently embedded in

the full S matrix of the present paper.

This paper is structured as follows. In section 2 we consider the type IIB superstring

action for AdS3×S3×T4 in light-cone gauge, and derive its conserved supercurrents. This

is done at leading order in the fermions and at subleading order in the bosons. In section 3

we study the symmetry algebra A and the representations that emerge from the super-

current analysis. We find three short irreducible representations of the centrally extended

psu(1|1)4⊕so(4) algebra:7 two massive representations of dimension four, and one massless

one of dimension eight. In section 4 we deform the representations found perturbatively in

order to reproduce the correct non-linear central extension and shortening condition. We

also comment on the possibility of quantum corrections to the massless dispersion relation,

arguing that they would break part of A. Using those exact representations, in section 5 we

construct an invariant S matrix for all of the superstring’s excitations, including the mass-

less ones, up to some dressing factors which we constrain by crossing symmetry. We con-

clude in section 6. We relegate the more technical aspects of our results to the appendices.

2 The off-shell symmetry algebra of superstrings on AdS3 × S3 × T4

In this section we compute the algebra A of off-shell symmetries for classical Type IIB

superstring theory on AdS3×S3×T4. At first sight it may appear that the natural setting

for this would be the coset action [24, 63–65], since one can use the algebraic structure of

7The symbol ⊕ here and later indicates the direct sum of vector spaces, and not necessarily of (su-

per)algebras. To avoid introducing non-standard notation we will always explicitly detail the non-vanishing

(anti-)commutation relations of the (super)algebras considered.
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the coset to facilitate the computations. The coset action is obtained from a Green-Schwarz

action [66] by fully fixing the kappa symmetry to the so-called coset gauge. While it is use-

ful in the study of the classical integrability of this theory, the coset gauge leads to a kinetic

term for the massless fermions which contains no quadratic piece. As a result, computing

A using Poisson brackets is not straightforward in the coset gauge. Instead, we will per-

form the calculations using the Green-Schwarz action in the BMN light-cone kappa gauge.

Explicit expressions up to quartic order in fermions have been recently found [68], but we

will only work up to quadratic order in fermions and so will use the component action [69].

This section is divided into four parts. In section 2.1 we find the Killing spinors of the

background in the metric (2.1). In section 2.2 we write down explicitly the action for Type

IIB superstrings on AdS3×S3×T4, both before and after imposing the kappa gauge along

the BMN light-cone coordinates. In section 2.3 we write down the super-currents for the

A charges and in section 2.4 we compute the off-shell algebra A of the classical theory. In

appendix A we establish our conventions.

2.1 Killing spinors for type IIB supergravity on AdS3 × S3 × T4

In this sub-section we construct the Killing spinors for type IIB supergravity on AdS3 ×
S3 × T4. Expressions for these are well-known in the literature [70, 71]. We adapt these

well-known calculations to the metric

ds2 = ds2AdS3 + ds2
S3

+ dXidXi , (2.1)

where

ds2
S3

= +

(
1− y23+y24

4

1 +
y23+y24

4

)2

dφ2 +

(
1

1 +
y23+y24

4

)2

(dy23 + dy24) (2.2)

and

ds2
AdS3

= −
(
1 +

z21+z22
4

1− z21+z22
4

)2

dt2 +

(
1

1− z21+z22
4

)2

(dz21 + dz22) , (2.3)

since this metric is well suited for expansion around the BMN ground state.

The ten-dimensional Killing spinor equations of Type IIB supergravity on AdS3×S3×
T4 with R-R flux are

Dmε
1 +

1

24
/F /Emε

1 = 0, Dmε
2 − 1

24
/F /Emε

2 = 0, (2.4)

where the covariant derivative is given by

Dmε
I =

(
∂m +

1

4
/ωm

)
εI , (2.5)

and the R-R field strength by

/F = ΓABCFABC = 6(Γ012 + Γ345). (2.6)

As is shown in more detail in appendix C, these equations are solved by

ε1 = M̂ε10, , ε2 = M̌ε20, (2.7)

– 5 –
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where εI0 are constant 9+1 dimensional Majorana-Weyl spinors,8 which further satisfy

1

2
(1 + Γ012345)εI =

1

2
(1 + Γ012345)εI0 = 0 . (2.8)

The matrices M̂ and M̌ depend on the AdS3 × S3 coordinates and for later convenience

we seperate out the dependence on t and φ from the other coordinates by writing

M̂ =M0Mt, M̌ =M−1
0 M−1

t , (2.9)

where

M0 =
1√(

1− z21+z22
4

)(
1 +

y23+y24
4

)

(
1− 1

2
ziΓ

iΓ012

)(
1− 1

2
yiΓ

iΓ345

)
,

M−1
0 =

1√(
1− z21+z22

4

)(
1 +

y23+y24
4

)

(
1 +

1

2
ziΓ

iΓ012

)(
1 +

1

2
yiΓ

iΓ345

)
,

(2.10)

and

Mt = e−
1
2
(tΓ12+φΓ34), M−1

t = e+
1
2
(tΓ12+φΓ34). (2.11)

2.2 Type IIB superstring action on AdS3 × S3 × T4

In this sub-section we write down the action for Type IIB superstring action on AdS3×S3×
T4. In section 2.2.1 we begin by introducing a set of bosonic vielbeins, particularly adapted

to the analysis in the remainder of this section, and expressing the bosonic equations of

motion in terms of these. In section 2.2.2 we write down the action to quadratic order in

fermions. By picking suitably defined fermionic fields, our action realises the 16 unbroken

supersymmetries of the background via linear shifts of the massive fermionic fields. In

section 2.2.3 we write down the BMN light-cone kappa gauge-fixed action to quadratic

order in fermions. Just as was done in [72], we find it useful to redefine the fermions further

so that they are neutral under the u(1) charges associated with t and φ translations. The

action is then re-expressed in first-order formalism and fully gauge-fixed in the uniform

light-cone gauge in section 2.2.4.

2.2.1 A suitable vielbein and bosonic equations of motion

The Lagrangian for the bosonic sigma model is given by

LB = −1

2
γαβEα

AEβ
BηAB, (2.12)

where Eα
A = Em

A∂αX
m denotes the pullback of the vielbein. LB is invariant under

SO(1, 9) rotations in tangent space. As a result, all vielbeins that describe the same metric

will lead to the same bosonic equations of motion, up to field redefinitions. Nevertheless,

picking a suitable vielbein may reduce substantially the computational complexity of the

analysis. Since we will be working with the metric (2.1), one seemingly natural choice is to

8Our spinor and gamma matrix conventions are given in appendix B.
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pick diagonal vielbeins Em
A given in equations (C.1) and (C.13). It turns out that, for the

purpose of understanding the realisation of supersymmetry in the Green-Schwarz action, it

is instead more conventient to use vielbeins K̂m
A and Ǩm

A, which are related to the Em
A

by orthogonal transformations

K̂m
A = M̂A

BEm
B, Ǩm

A = M̂A
BEm

B . (2.13)

The matrices M̂ and M̌ are defined in equations (C.26), (C.17) and (C.5). They follow

from considering bilinears formed out of the Killing spinors εI , (cf. equation (C.25)). As a

result, as shown in equations (C.11) and (C.20), K̂m
A and Ǩm

A satisfy the Killing vector

equation (C.10) and generate the so(2, 2) ⊕ so(4) = sl(2) ⊕ sl(2) ⊕ su(2) ⊕ su(2) isometry

algebra of AdS3 × S3.

The bosonic equations of motion that follow from LB are

0 = ηAB

[
∂α(γ

αβEm
AEn

B∂βX
n)− 1

2
γαβ∂m(En

AEk
B)∂αX

n∂βX
k

]

= γαβ
[
−1

2

(
ωkABEn

A + ωnABEk
A
)
Em

B + ηABEm
A∂nEk

B

]
∂αX

n∂βX
k

+ ηABEm
AEn

B∂α(γ
αβ∂βX

n) ,

(2.14)

where in the second line we have used the fact that Em
A is covariantly constant. For a

generic vielbein the first term above is nonvanishing. However, the vielbeins K̂m
A and Ǩm

A

satisfy the Killing vector equation which makes it vanish, see (C.9). Hence the equations

of motion written in terms of the worldsheet pullbacks K̂α
A and Ǩα

A are simply

∂α(γ
αβK̂β

A) = 0, ∂α(γ
αβǨβ

A) = 0 . (2.15)

This form of the equations of motion is not only particularly simple, but will prove to be

very useful in analysing the supersymmetries of string theory on this background.

2.2.2 Green-Schwarz action before kappa gauge fixing

In this sub-section we write down the Green-Schwarz action for a superstring propagating in

AdS3×S3×T4 up to quadratic order in fermions and construct supercharges preserving the

non-gauge-fixed action. The Green-Schwarz action for Type IIB superstrings in a generic

supergravity background was constructed in terms of superfields in [66], and explicit expres-

sions in terms of fields are known to quadratic [69] and quartic order [68] in the fermions.

We will perform a field redefinition of the conventional fermions [69] so that the 16 real

supersymmetries of this background are realised as linear shifts of the massive fermions.9

The Green-Schwarz Lagrangian can be written as

L = LB + Lkin + LWZ. (2.16)

9In a background described by a super-coset conventional fermions [69] correspond to picking the super-

coset element g = gbosgferm — see for example appendix B in [24]. The field redefinition we perform would

amount to picking a super-coset element of the form g = gfermgbos. Such changes of variable were discussed

in the context of the maximally supersymmetric type IIB plane-wave background in [73].
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The bosonic Lagrangian LB was discussed in the previous sub-section. We have split the

fermionic Lagrangian into two terms: a term dependent on the worldsheet metric, Lkin, and

the Wess-Zumino term LWZ. In the background we are considering, the former term is [69]

Lkin = −iγαβ θ̄I /Eα

(
δIJDβ +

1

24
σIJ3 /F /Eβ

)
θJ , (2.17)

where θ̄I = θ†IΓ
0 and we have redefined the fermions compared to Cvetič, Lü, Pope and

Stelle [69]

θ1CLPS =
θ1 + θ2√

2
, θ2CLPS =

θ1 − θ2√
2

, (2.18)

so that they enter diagonally in Lkin.

Next we define new fermions ϑ±I which are related to θI by

θ1 =
1

2
(1 + Γ012345)M̂ϑ+1 +

1

2
(1− Γ012345)M̂ϑ−1 ,

θ2 =
1

2
(1 + Γ012345)M̌ϑ+2 +

1

2
(1− Γ012345)M̌ϑ−2 ,

(2.19)

where the matrices M̂ and M̌ were given in (2.9). Inserting this into the Lagrangian and

using the relations in appendix C we find

Lkin = −iγαβ
[
ϑ̄−I

/̂Kα∂βϑ
−
I + 2ϑ̄+I

/̄̄Eα∂βϑ
−
I + ϑ̄+I

/̂Kα∂βϑ
+
I

− 1

2
σ3IJ ϑ̄

+
I Γ

012ϑ+J (K̂
a
αK̂

b
βηab +

¯̄Eȧ
α
¯̄E ḃ
βηȧḃ)

]
.

(2.20)

The definitions of the vielbeins appearing above are given in equations (2.13) and (C.27).

The Lagrangian LB + Lkin is invariant under the supersymmetry transformations

δϑ−I = ǫI , δϑ+I = 0 , δK̂α
A = −iǭIΓA∂αϑ

−
I , δ ¯̄Eα = 0 , (2.21)

where in the above equation the index A = 0, . . . , 5. By imposing the Majorana condition

on the fermions this gives us the expected 16 real supersymmetries of the background.

We now consider the Wess-Zumino term10

LWZ = +iǫαβ
(
θ̄2 /Eα

(
Dβ +

1

24
/F /Eβ

)
θ1 + θ̄1 /Eα

(
Dβ −

1

24
/F /Eβ

)
θ2

)
(2.22)

After introducing the rotated fermions we find

LWZ = +iǫαβ
(
ϑ̄−2 M̌

−1M̂ /̂Kα∂βϑ
−
1 + 2ϑ̄+2 M̌

−1M̂ /̄̄Eα∂βϑ
−
1 + ϑ̄+2 M̌

−1M̂ /̂Kα∂βϑ
+
1

+ ϑ̄−1 M̂
−1M̌ /̌Kα∂βϑ

−
2 + 2ϑ̄+1 M̂

−1M̌ /̄̄Eα∂βϑ
−
2 + ϑ̄+1 M̂

−1M̌ /̌Kα∂βϑ
+
2

− 1

2
ϑ̄+2 M̌

−1M̂( /̂Kα
/̂Kβ + /̄̄Eα

/̄̄Eβ)Γ
012ϑ+1

+
1

2
ϑ̄+1 M̂

−1M̌( /̌Kα /̌Kβ + /̄̄Eα
/̄̄Eβ)Γ

012ϑ+2

)
.

(2.23)

10We set ǫτσ = +1.
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This term is also invariant to quadratic order in the fermions under the supersymmetry

transformations (2.21). To see this we can use the identity

ǫαβ∂α
(
M̌−1M̂ /̂Kβ

)
(1− Γ012345) = 0 (2.24)

to show that

ǫαβϑ̄−2 M̌
−1M̂ /̂Kα∂βϑ

−
1 = ǫαβϑ̄−1 M̂

−1M̌ /̌Kα∂βϑ
−
2 , (2.25)

up to a total derivative. In appendix D we prove (2.24). Together with an obvious extension

of the above argument to expressions involving Ǩ instead of K̂, the Lagrangian LWZ can

therefore be written in a form where ϑ−I only appears with a partial derivative acting on

it, making the symmetry under shifts of that fermion manifest.

2.2.3 Neutral fermions and the kappa gauge-fixed action

In this sub-section we impose the BMN light-cone kappa gauge on the Lagrangian obtained

in the previous sub-section. In addition, we will further redefine the fermions. Recall

that the tangent space rotations (2.19) introduced in the previous section were useful

for obtaining the supersymmetry transformations before fixing kappa gauge. However,

K̂m
A and Ǩm

A, and therefore also the fermions ϑ±I , transform nontrivially under shifts

of the coordinates t and φ. When imposing uniform light-cone gauge it is useful to work

with fermions that are uncharged under these shifts [72], which motivates the further re-

definition of the fermions.11

To perform this field redefinition, recall that the rotation matrices M̂ and M̌ can be

written in terms of the matrices M0 and Mt (see equation (2.9)), where M0 is independent

of t and φ while Mt only depends on those two coordinates. In order to have fermions that

are uncharged under shifts of t and φ one needs to multiply the fermions ϑ±1 by M−1
t and

the fermions ϑ±2 with Mt. In other words, we define

θ1 =
1

2
(1 + Γ012345)M0χ1 +

1

2
(1− Γ012345)M0η1

θ2 =
1

2
(1 + Γ012345)M−1

0 χ2 +
1

2
(1− Γ012345)M−1

0 η2.

(2.26)

We also need to perform the corresponding rotation on the vielbeins defining new vielbeins

Ê and Ě,
/̂K =M−1

t
/̂EMt, /̌K =Mt /̌EM

−1
t . (2.27)

The components of the inverse vielbeins can easily be read off from equations (C.7)

and (C.19) by dropping the first t- and φ-dependent factor.

It is useful to introduce light-cone coordinates

E± =
1

2
(E5 ± E0), x± =

1

2
(φ± t). (2.28)

This leads to

E+
x+ = E−

x−
=

1

2

(
E5

φ + E0
t

)
, E−

x+ = E+
x−

=
1

2

(
E5

φ − E0
t

)
. (2.29)

11In a super-coset background this redefinition amounts to picking a coset representative of the form

g = gt,φgfermgbos′ , where gbos′ involves the (eight) bosonic coordinates transverse to t and φ.
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The light-cone components of the tangent space metric are given by

η+− = η−+ = +
1

2
, η+− = η−+ = +2. (2.30)

The bosonic Lagrangian then takes the form

LB = −1

2
γαβ

(
4E+

αE
−
β + Ei

αE
i
β + Ei

αE
i
β

)
. (2.31)

We will work in the BMN light-cone kappa gauge

Γ+ηI = 0, Γ+χI = 0, Γ± =
1

2

(
Γ5 ± Γ0

)
. (2.32)

The kappa gauge-fixed Lagrangian then takes the form

Lkin = −2iγαβ
(
η̄1Ê

+
α Γ

−∂βη1 − η̄1Γ012η1Ê
+
α ∂βx

+ + η̄2Ě
+
α Γ

−∂βη2 + η̄2Γ
012η2Ě

+
α ∂βx

+

+χ̄1Ê
+
α Γ

−∂βχ1 −
1

4
χ̄1Γ

012χ1

( 5∑

A,B=0

ÊA
α Ê

B
β ηAB + ¯̄Ei

α
¯̄Ei
β − 4Ê+

α ∂βx
−

)

+χ̄2Ě
+
α Γ

−∂βχ2 +
1

4
χ̄2Γ

012χ2

( 5∑

A,B=0

ĚA
α Ě

B
β ηAB + ¯̄Ei

α
¯̄Ei
β − 4Ě+

α ∂βx
−

))
.

(2.33)

LWZ = +iǫαβ
(
η̄2 /̌EαM

2
0∂βη1 + η̄2 /̌EαM

2
0Γ

12η1∂βx
+

+η̄1 /̂EαM
−2
0 ∂βη2 − η̄1 /̂EαM

−2
0 Γ12η2∂βx

+

+χ̄2 /̌EαM
2
0∂βχ1 − χ̄2 /̌EαM

2
0Γ

12χ1∂βx
− − 1

2
χ̄2( /̌Eα /̌Eβ + /̄̄Eα

/̄̄Eβ)M
2
0Γ

012χ1

+χ̄1
/̂EαM

−2
0 ∂βχ2 + χ̄1

/̂EαM
−2
0 Γ12χ2∂βx

− +
1

2
χ̄1( /̂Eα

/̂Eβ + /̄̄Eα
/̄̄Eβ)M

−2
0 Γ012χ2

+2χ̄2
/̄̄EαM

2
0∂βη1 + 2χ̄2

/̄̄EαM
2
0Γ

12η1∂βx
+

+2χ̄1
/̄̄EαM

−2
0 ∂βη2 − 2χ̄1

/̄̄EαM
−2
0 Γ12η2∂βx

+

)
. (2.34)

2.2.4 First-order action and uniform light-cone gauge

To fix the bosonic gauge we will impose uniform light-cone gauge [74]. The simplest way

to introduce this gauge is to rewrite the action in a first-order formalism by introducing

coordinates xM

pM =
δS

δẋM
. (2.35)

From the definition of the light-cone coordinates x± we then have

p+ = pφ + pt, p− = pφ − pt. (2.36)
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The isometries generated by shifts in t and φ lead to the conservation of the energy E and

angular momentum J

E = −
∫ +r

−r
dσ pt, J = +

∫ +r

−r
dσ pφ, (2.37)

where −r ≤ σ < r denotes the range of σ. For the light-cone momenta we then find

P+ =

∫ +r

−r
dσ p+ = J − E, P− =

∫ +r

−r
dσ p− = J + E. (2.38)

The uniform light-cone gauge fixing is now obtained by setting12

x+ = τ, p− = 2. (2.39)

To make the origin of various expressions more clear we generally still write out factors of

p−, unless this clutters our formulae excessively. In any case, the correct factors of p− can

be restored from dimensional considerations.

To see how this gauge works let us consider the bosonic first-order action, which takes

the form

SB =

∫ +r

−r
dσ dτ

(
p+ẋ

+ + p−ẋ
− + piẋ

i + piẋ
i +

γ01

γ00
C1 +

1

2γ00
C2

)
, (2.40)

where

C1 = p+
′

x+ + p−
′

x− + pi
′

xi + pi
′

xi (2.41)

and

C2 = G++p+p+ + 2G+−p+p− +G−−p−p− +Gijpipj +Gijpipj

+G++
′

x+
′

x+ + 2G+−
′

x+
′

x− +G−−
′

x−
′

x− +Gij
′

xi
′

xj +Gij
′

xi
′

xj .
(2.42)

The equations of motion for the worldsheet metric leads to the Virasoro constraints C1 = 0

and C2 = 0. Since
′

x+ = 0 we can solve the first constraint by

′

x− = − 1

p−

(
pi

′

xi + pi
′

xi
)
. (2.43)

Inserting this into the expression for C2 we can solve the second constraint for p+. The

gauge-fixed action can then be written as13

SB =

∫ +r

−r
dσ
(
piẋ

i + piẋ
i −HB

)
, (2.44)

with

HB = −p+. (2.45)

12The integrals in (2.37) and (2.38) that yields our charges are normalised as in (2.4) of [5], but our

definition of the light-cone momentum p− is different and later we impose p− = 2 rather than p− = 1.

Here we only consider string states with zero winding number. For more general states the gauge fixing

condition becomes x+ = τ + 1
2

π
r
mσ, where m is the integer winding number along the angle φ.

13We have omitted the total derivative term p−ẋ
−.
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For the transverse fields we impose periodic boundary conditions14 xi(+r) = xi(−r) and

xi(+r) = xi(−r). Since we further assume there is no winding along the angle φ, we find

that a physical state should satisfy the level matching condition

∆x− = x−(+r)− x−(−r) =
∫ +r

−r
dσ

′

x− = 0. (2.46)

The gauge-fixed action is invariant under worldsheet translations, which leads to the con-

servation of the worldsheet momentum

pws = −
∫ +r

−r
dσ
(
pi

′

xi + pi
′

xi
)
= p−∆x

−. (2.47)

From the level matching constraint we then find that a physical string in the zero winding

sector has to have vanishing total worldsheet momentum

pws = 0. (2.48)

In order to study the worldsheet S matrix we need to be able to create well-defined

asymptotic states to scatter. To do this we will from now on work in the decompactification

limit by sending the parameter r, which gives the circumference of the worldsheet cylinder,

to infinity. Note that after gauge fixing, the light-cone momentum P− is given by

P− =

∫ +r

−r
dσ p− = 4r. (2.49)

Hence, in the large-r limit the light-cone momentum becomes infinite.

By imposing periodic boundary conditions on the T4 coordinates xi we are ignoring

winding modes on the torus. This is justified since we study local properties of the field

theory on the worldsheet and work in the decompactification limit. If we begin with a

string state in the zero winding sector and act on the state with a symmetry generator

that acts locally, there is no way to obtain a state with non-zero winding. Similarly, the

scattering of two excitations without any winding will not result in non-trivial winding of

the out-going states. In the zero-winding sector the u(1)4 shift isometries of the T4 are

supplemented by an so(4) symmetry, which we will discuss in the next subsection and will

play an important role in A when we will use it to constrain the S matrix.

It is furthermore possible to check that, as long as we are in the decompactified theory

with P− = ∞, the light-cone Hamiltonian takes the same form in any sector with finite

winding on T4. This indicates that the S matrix that we will find by this treatment should

be valid in any winding sector, and should not depend on the moduli of T4. The depen-

dence of the spectrum on winding numbers and torus moduli should then manifest itself

only at the level of the Bethe-Yang equations, as it happens in the case of orbifolds, see

e.g. [75, 76] for a review.

14Here we also ignore possible winding modes along the T4 directions. See below for a further discussion

of these modes.
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2.2.5 Gauge-fixed action with so(4)1 ⊕ so(4)2 bispinor fermions

The fermions appearing in the action (2.33), (2.34) are 32-component 9+1-dimensional

spinors. However, these spinors satisfy a number of projections: the 9+1-dimensional

Weyl projection, the kappa gauge condition (2.32) as well as equation (2.26). Because of

these, writing the fermions as 32 component spinors is rather redundant. In this sub-section

we will write down the fully gauge-fixed action in terms of non-redundant physical spinors.

As a result of the above projections, the physical spinors ηI and χI are in fact bispinors

of so(4)1 ⊕ so(4)2 ⊂ so(8), with so(8) corresponding to rotations transverse to light-cone

directions. The algebras so(4)1 and so(4)2 correspond to rotations along the non-light-cone

AdS3 × S3 and T4, directions, respectively.15 While the latter algebra remains unbroken

by the background, so(4)1 is in fact broken to so(2)⊕ so(2), as can be already seen in the

plane-wave limit [77, 78]. We will see this breaking in the Lagrangian we write down in this

subsection. Nevertheless, it is still convenient to express the fermionic fields that enter the

Lagrangian as bispinors of so(4)1 ⊕ so(4)2. We will use the indices a, ȧ (respectively, a, ȧ)

to denote the positive and negative chirality so(4)1 (so(4)2) spinors. Further, we introduce

gamma matrices, γ̂i with i = 1, 2, 3, 4 and τ̂ i, i = 6, 7, 8, 9 for so(4)1 and so(4)2 . We write

these matrices as16

(γ̂i)aȧbḃ =

(
0 (γi)aḃ

(γ̃i)ȧb 0

)
, (τ̂ i)aȧbḃ =

(
0 (τ i)aḃ

(τ̃ i)ȧb 0

)
, (2.50)

with the Clebsch-Gordan coefficients for the decomposition of two so(4) Weyl spinors of

opposite chirality given by

γ1 = +σ3, γ2 = −i1, γ3 = +σ2, γ4 = +σ1, γ̃i = +(γi)†,

τ6 = +σ1, τ7 = +σ2, τ8 = +σ3, τ9 = +i1, τ̃ i = −(τ i)† .
(2.51)

The notation introduced above is purposefully reminiscent of the light-cone gauge in flat

space [79] but our exact conventions are slightly different to, for example, those in [80].

The matrices γ̂i and τ̂ i satisfy the Clifford algebra relations

{γ̂i, γ̂j} = +2δij , (γ̂i)t = +tγ̂it−1,

{τ̂ i, τ̂ j} = −2δij , (τ̂ i)t = −sτ̂ is−1,
(2.52)

where t = s = σ3 ⊗ σ2. We also introduce

(γij)ab =
1

2
(γiγ̃j − γj γ̃i)ab, (τ ij)ab =

1

2
(τ iτ̃ j − τ j τ̃ i)ab,

(γ̃ij)ȧḃ =
1

2
(γ̃iγj − γ̃jγi)ȧḃ, (τ̃ ij)ȧḃ =

1

2
(τ̃ iτ j − τ̃ jτ i)ȧḃ,

(2.53)

15In the next section we will write the T4 part of this algebra as so(4)2 = su(2)• ⊕ su(2)◦.
16The matrices γi introduced here should not be confused with the three dimensional gamma matrices

for AdS3 and S3 used to express the Killing spinors in section 2.1 and in appendix B to construct the ten

dimensional gamma matrices. Since the two types of matrices never appear in the same setting we hope

that the meaning of γ is clear from the context it appears in.
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so that the Lorentz generators take the form

γ̂ij =

(
γij 0

0 γ̃ij

)
, τ̂ ij =

(
τ ij 0

0 τ̃ ij

)
. (2.54)

Some useful relations involving these gamma matrices are collected in appendix E.

In order to obtain compact expressions for the gauge-fixed action we find it necessary to

perform a change of basis on the gamma matrices presented in appendix B. These matrices

are written as tensor products of five 2× 2 matrices. Our change of basis takes the form

m1 ⊗m2 ⊗m3 ⊗m4 ⊗m5 → n1 ⊗ n2 ⊗ n3 ⊗ n4 ⊗ n5 (2.55)

with

n1 = m1 , n2 ⊗ n3 = P (m3 ⊗m4)P
−1 , n4 ⊗ n5 = m2 ⊗m5, (2.56)

and

P =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


 . (2.57)

With this change of basis, so(4)1 and so(4)2 act non-trivially only on n2⊗ n3 and n4⊗ n5,
respectively, while the 9+1-dimensional Weyl projection acts only on n1. The kappa gauge-

fixed spinors satisfy

Γ1234χI = +χI , Γ6789χI = +χI , Γ1234ηI = −ηI , Γ6789ηI = −ηI . (2.58)

Since the action of Γ1234 and Γ6789 reduces to γ̂1234 and τ̂6789 when acting on ηI and χI

we see that χI and ηI carry indices

(χI)
ab, (ηI)

ȧḃ. (2.59)

Having introduced this notation we can now re-write Lkin in equation (2.33) as17

Lkin = −2iγαβ
[
Ê+

α η̄1∂βη1 + Ě+
α η̄2∂βη2 + Ê+

α χ̄1∂βχ1 + Ě+
α χ̄2∂βχ2

− ∂αx+
(
Ê+

β η̄1γ̃
34η1 + Ě+

β η̄2γ̃
34η2

)

− 1

4

( 5∑

A,B=0

ÊA
α Ê

B
β ηAB + ¯̄Ei

α
¯̄Ei
β − 4Ê+

α ∂βx
−

)
χ̄1γ

34χ1

+
1

4

( 5∑

A,B=0

ĚA
α Ě

B
β ηAB + ¯̄Ei

α
¯̄Ei
β − 4Ě+

α ∂βx
−

)
χ̄2γ

34χ2

]
.

(2.60)

17In appendix F we summarise the relations between the ΓA and the γ̂i and τ̂ i that are useful in obtaining

the following expressions.
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Above, we have suppressed the spinor indices for compactness and defined

η̄I ≡ (ηI)
ḃḃǫḃȧǫḃȧ , χ̄I ≡ (χI)

bbǫbaǫba . (2.61)

Re-writing LWZ in equation (2.34) in terms of so(4)1 and so(4)2 bispinors one arrives at a

longer expression which we have relegated to appendix G.

The above Lagrangian still depends on the worldsheet metric. As discussed above, one

way to complete the light-cone gauge fixing is to go to first-order formalism and solve the

Virasoro constraints. Alternatively we can impose the condition p− = 2 by solving for the

worldsheet metric. Doing this we find that to the relevant order the metric is diagonal

with components

γ00 = −1 + 1

2
(z2 − y2) + 1

8
(z2 + y2)(ż2 +

′

z2 + ẏ2 +
′

y2 − (z − y)2),

γ11 = +1 +
1

2
(z2 − y2) + 1

8
(z2 + y2)(ż2 +

′

z2 + ẏ2 +
′

y2 + (z − y)2).
(2.62)

The derivatives of the nondynamic field x− can then be found from the Virasoro constraints.

2.3 Supercurrents

In section 2.2.2 we wrote down an action which realised linearly all 16 supersymmetries

of our background. However, half of the supervariations (2.21) are incompatible with the

BMN light-cone kappa gauge choice (2.32). This is a well known aspect of the light-cone

gauge formalism [81] — it implies that such supervariations have to be combined with a

compensating kappa transformation in order to preserve the gauge choice (2.32). The eight

supercharges that commute with the Hamiltonian and form the fermionic part of A are

associated with variations of precisely of this form.

Since kappa gauge transformations are known explicitly [66], it is in principal possible

to find expression for such compensating kappa gauge transformations. The procedure is

however computationally involved. To simplify matters, we will write down the supercur-

rents corresponding to the A supercharges to first order in fermions and third order in the

transverse bosons. When computing the algebra A later in this section we will only need

these expressions.

For notational convenience, we split the full supercurrent into parts involving only

massless fields, only massive fields and a part involving a mix of massive and massless fields,

jαI = jαI,massless + jαI,massive + jαI,mixed, I = 1, 2. (2.63)

The supercurrents are given by

jτ1,massless = e+x−γ34
(
ẋiγ34τ̃ iχ1 − ′

xiγ34τ̃ iχ2

)
,

jτ2,massless = e−x−γ34
(
ẋiγ34τ̃ iχ2 − ′

xiγ34τ̃ iχ1

)
,

(2.64)
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jτ1,mixed = e+x−γ34

(
− 1

2
(z2 − y2)(ẋiγ34τ̃ iχ1 +

′

xiγ34τ̃ iχ2) + ziyj
′

xiγ34γij τ̃ iχ2

+
1

2
ẋ · ′

x(zi − yi)γ34γiη2 +
1

4
(ẋ2 +

′

x2)(zi − yi)γ34γiη1
)
,

jτ2,mixed = e−x−γ34

(
− 1

2
(z2 − y2)(ẋiγ34τ̃ iχ2 +

′

xiγ34τ̃ iχ1) + ziyj
′

xiγ34γij τ̃ iχ1

− 1

2
ẋ · ′

x(zi − yi)γ34γiη1 −
1

4
(ẋ2 +

′

x2)(zi − yi)γ34γiη2
)
,

(2.65)

jτ1,massive = e+x−γ34
(
(żi − ẏi)γiη1 + (zi + yi)γ34γiη1 − (

′

zi − ′

yi)γiη2

)
,

jτ2,massive = e−x−γ34
(
(żi − ẏi)γiη2 − (zi + yi)γ34γiη2 − (

′

zi − ′

yi)γiη1

)
.

(2.66)

jσ1,massless = −e+x−γ34
(

′

xiγ34τ̃ iχ1 − ẋiγ34τ̃ iχ2

)
,

jσ2,massless = −e−x−γ34
(

′

xiγ34τ̃ iχ2 − ẋiγ34τ̃ iχ1

)
,

(2.67)

jσ1,mixed = −e+x−γ34

(
+

1

2
(z2 − y2)( ′

xiγ34τ̃ iχ1 − ẋiγ34τ̃ iχ2) + ziyj ẋiγ34γij τ̃ iχ2

+
1

2
ẋ · ′

x(zi − yi)γ34γiη1 +
1

4
(ẋ2 +

′

x2)(zi − yi)γ34γiη2
)
,

jσ2,mixed = −e−x−γ34

(
+

1

2
(z2 − y2)( ′

xiγ34τ̃ iχ2 − ẋiγ34τ̃ iχ1) + ziyj ẋiγ34γij τ̃ iχ1

− 1

2
ẋ · ′

x(zi − yi)γ34γiη2 −
1

4
(ẋ2 +

′

x2)(zi − yi)γ34γiη1
)
,

(2.68)

jσ1,massive = −e+x−γ34
(
(

′

zi − ′

yi)γiη1 − (żi − ẏi)γiη2 − (zi + yi)γ34γiη2

)
,

jσ2,massive = −e−x−γ34
(
(

′

zi − ′

yi)γiη2 − (żi − ẏi)γiη1 + (zi + yi)γ34γiη1

)
.

(2.69)

Above, for the massive part of the supercurrents we have only written down the lowest-

order-in-bosons expression since it will be all we need later on. For compactness we have

also suppressed all spinor indices; re-instating these we have, for example,

γ34τ̃ iχ1 ≡ (γ34)ab(τ̃
i)ȧb(χ1)

bb . (2.70)

Using the equations of motion, which are presented in appendix H, we have checked that

the currents satisfy the equation

∂τ j
τ
I + ∂σj

σ
I = 0 , (2.71)

and hence are conserved.

2.4 The A algebra

In this sub-section we will compute the algebra A. Our computation will be done in a field

expansion discussed below. In particular, we will work to leading order in fermions and
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sub-leading order in bosons. This is the same order to which the corresponding algebra

was computed for Type IIB strings on AdS5 × S5 [61]. Before describing the details of the

computations, let us pause briefly to make two general observations.

Firstly, on-shell A reduces to psu(1|1)4 extended by the Hamiltonian and a central

angular momentum and by the torus isometries. This is simply the part of superisometries

of the classical string theory on AdS3 × S3 × T4 that commutes with the Hamiltonian,

and amounts to psu(1|1)4 ⊕ u(1)2 ⊕ so(4). The important consistency check then is to see

that when going off-shell, by relaxing the level-matching condition, the algebra becomes

centrally extended in just the right way. In other words, the Poisson bracket between two

different supercharges should result in an expression of the form

{(Q1)
aȧ, (Q2)

bḃ}
PB

= −i Cab,ȧḃ, (2.72)

where the matrix on the right-hand side can be decomposed into the two central charges

extending the symmetry algebra.

Secondly, we note that the massive (yi, zi and ηI) and the massless fields (xi and χI)

each form a consistent closed sector of the equations of motion of the theory. In the classical

theory the massive sector is isomorphic to a closed sub-sector of the Type IIB string on

AdS5×S5.18 As a result, the off-shell computation ofA in the massive sub-sector is identical

to the computation performed in [61] and so we will not repeat it here. Instead, we will

perform two types of computations that are new to Type IIB strings on AdS3 × S3 × T4.

In section 2.4.1 we restrict to the massless sector of the theory and compute the off-shell

algebra A; as anticipated in the previous paragraph, we explicitly see that on-shell the

algebra does indeed reduce to psu(1|1)4 ⊕ u(1)2. In section 2.4.3, we compute, off-shell, in

the full massive and massless theory the relation (2.72).

We only determine the part of the central charges that depend on the bosonic fields.

Since the central charges have to vanish for zero total worldsheet momentum this is enough

to reconstruct the full charges. As we will see, the momentum dependence of the central

charges comes in through the nonlocal and nondynamic field x−. To capture this depen-

dence we employ a “hybrid” expansion similar to what was used in AdS5×S5 in [61]. This

means that we expand the action in the transverse fields to quadratic order in fermions

and quartic order in the transverse bosons, but keep any explicit factors of x− unexpanded.

This allows us to capture the full momentum dependence of the central charges. It is worth

noting at this point that central extensions of the on-shell algebra of this kind had been

studied for the plane-wave limit of AdS3 × S3 × T4 in [77].

The fermions in the Lagrangian (2.60) and (G.6) do not have a canonical kinetic term

and so will not have a conventional Poisson bracket. It is possible to further redefine the

fermionic fields order by order in the field expansion to correct this. However, for our

purpose it will be simpler to work with the non-canonical Poisson bracket for the fermions

that follows from the Lagrangian (2.60) and (G.6). The Poisson bracket of the fermions ηI
and χI is presented below.

18This is a consequence of the fact that the kappa gauge-fixed massive sector of Type IIB strings on

AdS3 × S3 × T4 can be described in terms of a super-coset. In turn it is easy to see that that super-coset

is a sub-super-coset of the kappa gauge-fixed Type IIB strings on AdS5 × S5.
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2.4.1 The massless sub-sector

As we have noted above, the equations of motion of our system are such that it is consistent

to set the transverse massive excitations to zero. In this sub-section we focus on computing

A in the purely massless sector. This sector turns out to have a number of simplifying

features compared to the full theory and so serves as a good warm-up exercise. We will

therefore repeat some of the steps discussed above in more detail. What is more, this sector

is not described by a semi-symmetric space coset and so understanding how it enters the

integrable machinery is one of the central results of this paper. The massless part of the

gauge fixed Lagrangian is given by

L
(m)
B = −1

2
γαβ

(
4∂αx

+∂βx
− + ∂αx

i∂βx
i
)

L
(m)
kin = −2iγαβ

(
χ̄I∂αχI∂βx

+ − 1

4
σ3IJ χ̄Iγ

34χJ∂αx
i∂βx

i

)
,

L
(m)
WZ = −2iǫαβ

(
σ1IJ χ̄I∂αχJ∂βx

+ + ǫIJ
1

4
χ̄Iγ

34τ ijχJ∂αx
i∂βx

j

)
.

(2.73)

The massless parts of the supercurrents were given in equations (2.64) and (2.67). Notice

that to this order in fermions the supercurrents do not contain a term cubic in the bosons,

and are in fact the same as they would be in flat space.19 The non-linear terms in the

equations of motion for the fermions are exactly cancelled by the nonlocal exponential part

of the supercurrents.

We now want to calculate the algebra A obtained by taking Poisson brackets between

the supercharges obtained from the currents. To do this we write the action in first-order

formalism. The conjugate momenta of the bosonic fields are given by

p− =
δS

δẋ−
= −2γ0β∂βx+,

p+ =
δS

δẋ+
= −2γ0β∂βx− − 2iγ0βχ̄I∂βχI + 2iσ1IJ χ̄I

′

χJ ,

pi =
δS

δẋi
= −γ0β∂βxi + iγ0βσ3IJ χ̄Iγ

34χJ∂βx
i − iǫIJ χ̄Iγ

34τ ijχJ
′

xj .

(2.74)

Inserting this into the Lagrangian we get

L(m) = p−ẋ
− + piẋ

i + ip−χ̄I χ̇I +
γ01

γ00
C1 +

1

2γ00
C2, (2.75)

with the constraints given by

C1 = p−
′

x− + pi
′

xi + ip−χ̄I
′

χI ,

C2 = p+p− + pipi +
′

x2 − 2ip−σ
1
IJ χ̄I

′

χJ + iσ3IJ χ̄Iγ
34χJ(pipi − ′

x2)

+ 2iǫIJ χ̄Iγ
34τ ijχJpi

′

xj .

(2.76)

19We expect this to be only true because we are working to lowest order in fermions. There does not

appear to be an obvious reason for the term quartic in fermions in the action to vanish. Such a term would

likely lead to corrections to the supercurrents that are cubic in fermions. Such terms are however absent

in the free theory.
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By solving the constraint C1 = 0 we obtain

′

x− = − 1

p−
pi

′

xi − iχ̄I
′

χI . (2.77)

Up to quadratic order in the fermions the massless Hamiltonian density H(m) = −p+ is

given by

H(m) =
1

p−

(
pipi +

′

x2 − 2ip−σ
1
IJ χ̄I

′

χJ

+ iσ3IJ χ̄Iγ
34χJ(pipi −

′

X2) + 2iǫIJ χ̄Iγ
34τ ijχJpi

′

xj
)
.

(2.78)

From the kinetic term of the action we can read off the (canonical) Poisson brackets

[xi(σ), pj(σ
′)]

PB
= δijδ(σ − σ′),

{(χI)
aa(σ), (χJ)

bb(σ′)}
PB

= − i

2p−
ǫabǫabδ(σ − σ′) .

(2.79)

Using results from appendix J one can check that the supercharge densities

Q1 = e+γ34x−(
piτ̃

iχ1 − ′

xiτ̃ iχ2

)
≡ e+γ34x−Q(2)

1 , (2.80)

Q2 = e−γ34x−( ′

xiτ̃ iχ1 − piτ̃ iχ2

)
≡ e−γ34x−Q(2)

2 (2.81)

both lead to conserved charges

QI =

∫ r

−r
dσQI , [Q1, H

(m)]
PB

= [Q2, H
(m)]

PB
= 0 . (2.82)

Next we note that up to integrating by parts20

{(Q(2)
1 )aȧ, (Q(2)

1 )bḃ}
PB

= +
i

2p−
ǫabǫȧḃ

(
pipi +

′

x2 − 2ip−σ
1
IJ χ̄I

′

χJ

)
. (2.83)

The last term in the expression in the bracket is exactly the quadratic Hamiltonian in the

massless sector. So up to quadratic order in excitations we find

{(Q1)aȧ, (Q1)bḃ}PB
= +

i

2

∫ +∞

−∞
dσ
(
e+γ34x−)a

c

(
e+γ34x−)b

dǫ
cdǫȧḃH(m)

= +
i

2
ǫabǫȧḃH(m) .

(2.84)

Similarly we can calculate the commutator between two different supercharges

{(Q(2)
1 )aȧ, (Q(2)

2 )bḃ}
PB

=

(
i

p−
pi

′

xi − χ̄I
′

χI

)
ǫabǫȧḃ

= −i ′

x−ǫabǫȧḃ.

(2.85)

20Here it is useful to note the identities (E.2).
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At quadratic order we then find

{(Q1)
aȧ, (Q2)

bḃ}
PB

= −i
∫ +∞

−∞
dσ
(
e+γ34x−)a

c

(
e−γ34x−)b

dǫ
cdǫȧḃ

′

x−

= − i
2

∫ +∞

−∞
dσ ∂σ

(
e+2γ34x−

γ34ǫ
)ab

ǫȧḃ

= − i
2

(
e+2γ34x−(+∞) − e+2γ34x−(−∞)

)a
c(γ

34ǫ)cb ǫȧḃ

= − i
2

(
e+2γ34x−(−∞)

)a
c

(
e+2γ34∆x− − 1

)c
d(γ

34ǫ)db ǫȧḃ

= − i
2

(
e+2γ34x−(−∞)

)a
c

(
e
+ 2

p
−

γ34pws − 1
)c

d(γ
34ǫ)db ǫȧḃ.

(2.86)

Hence, the central charge takes the form21

C =
iζ

2
(e+ipws − 1), (2.87)

with ζ = exp(+2ix−(−∞)). This is exactly the form found in [61] for AdS5× S5, which as

we argued coincides with what we must have in our massive sector, as can be seen by an

appropriate truncation of the supercoset [49].

To summarize, in this sub-section we have worked in the massless subsector of the full

string theory. We have constructed the supercharges and hamiltonian of the theory in the

first-order formalism and have shown that they satisfy the commutation relations of A.
We have also found that in the off-shell theory the central extension C takes precisely the

form expected for A.

2.4.2 Fermionic Poisson brackets

Having found the central charges of A in the massless sector we now want to perform

the same calculation again but now including both massive and massless fields. To the

order that we will be working in, we only need the dependence of the central charges

on the bosonic fields. As explained below, we will in fact only need to consider terms

up to quadratic order in both the massless and massive fields, so that the only bosonic

quartic terms that we will be interested in contain fields of both masses. Each term in

the supercharges contains at least one fermionic field. Since we are only interested in the

bosonic field dependence of the central charge, we only need the contribution from the

Poisson bracket of two supercharges that comes from the Poisson bracket between two

fermions. Any other term will be higher order in fermions.

Since we only need to calculate Poisson brackets between fermionic fields, we do not

need to introduce canonical momenta for the bosons. The kinetic terms for the fermions is

quite complicated which leads to an involved Poisson structure. We relegate the calculation

to appendix I and simply state the non-zero Poisson brackets here

{η1, η1}
PB

= − i
4
(1 +A11)ǫǫ , {η1, η2}

PB
= − i

4
A12ǫǫ , {η1, χ2}

PB
= − i

4
A14ǫǫ

21The Poisson bracket between the charges Q1 and Q2 contains both the charge C and its conjugate C.

In section 3 we will write the full algebra A in a more convenient form. Here we report the expression

corresponding to the charge C.
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{η2, η2}
PB

= − i
4
(1 +A22)ǫǫ , {η2, χ1}

PB
= − i

4
A23ǫǫ ,

{χ1, χ1}
PB

= − i
4
(1 +A33)ǫǫ , {χ1, χ2}

PB
= − i

4
A34ǫǫ ,

{χ2, χ2}
PB

= − i
4
(1 +A44)ǫǫ . (2.88)

The bi-spinor valued matrices Aij are given in equation (I.6) and we have suppressed the

bispinor indices in the above so as not to over-clutter the notation.22

2.4.3 Computing the central charge C in the full theory

To establish the off-shell symmetry algebra of Type IIB string theory on AdS3 × S3 × T4

we need to check whether the commutation relation (2.72) holds in the full theory. Above,

we have demonstrated such a relation in the massless sector of the theory (that is, when

massive fields are turned off). Since, as we argued, a similar calculation for the massive

sector follows directly from [61], all that we need to worry about now are the mixed-

mass terms. In this sub-section, we will indeed establish (2.72) by taking into account

mixed-mass terms the supercharges expanded to linear order in fermions and cubic order

in bosons. To this order we will be showing that such a relation holds with the central

charge C taken to zeroth order in fermions and quartic order in bosons.

Using the Poisson brackets given in equation (2.88), we find the Poisson bracket be-

tween two supercharges

∫
dσ dσ′ {jτ1 (σ), jτ2 (σ′)}

PB
=− i

p−

∫
dσ e+2γ34x−(

(ż · ′

z + ẏ · ′

y + ẋ · ′

x)ǫǫ

+(z · ′

z − y · ′

y)γ34ǫǫ
)

+
i

2

∫
dσ (zi

′

yj +
′

ziyj)γ34γijǫǫ .

(2.89)

The details of the calculation are given in appendix K. The last line above is a total

derivative and can be dropped with a suitable choice of boundary conditions. By par-

tially integrating the second line and again dropping the total derivative we find that the

remaining integrand is proportional to

ż · ′

z + ẏ · ′

y + ẋ · ′

x+ (z2 − y2) ′

x− = ż · ′

z + ẏ · ′

y + ẋ · ′

x− 1

2
(z2 − y2)(ẋ · ′

x), (2.90)

up to terms that are quartic in the massive fields. The last expression is equal to −p− ′

x−

22The reader should note that the epsilon symbols appearing in the Poisson brackets carry different kinds

of indices depending on which particular fermions’ Poisson bracket one is computing.

– 21 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
6

and so we may write
∫
dσ dσ′ {jτ1 (σ), jτ2 (σ′)}

PB
=+ i

∫
dσ e+2γ34x− ′

x−ǫǫ

=− i

2

∫
dσ ∂σ

(
e+2γ34x−)

γ34ǫǫ

=− i

2

(
e+2γ34x−(+∞) − e+2γ34x−(−∞)

)
γ34ǫǫ

=− i

2
e+2γ34x−(−∞)

(
e+2γ34∆x− − 1

)
γ34ǫǫ

=− i

2
e+2γ34x−(−∞)

(
e+γ34pws − 1

)
γ34ǫǫ .

(2.91)

Hence, the central charge takes the form

C =
iζ

2
(e+ipws − 1), (2.92)

with ζ = exp(+2ix−(−∞)), in agreement with the expression found the previous sub-

section.

3 Symmetry algebra

In the previous section we have found the off-shell symmetry algebra A for type IIB su-

perstrings on AdS3 × S3 × T4 . We showed that A is given by a central extension of

psu(1|1)4 ⊕ so(4)2, where so(4)2 comes from the torus coordinates.23

In this section we will first review how this algebra can be constructed by tensoring

two copies of su(1|1)2c.e.. Then, in subsection 3.2 we will investigate the representations of

A in the near-plane wave limit. This can be read-off from the supercurrents obtained in

section 2.3 but we collect the results here to set up the notation and conventions that we

will use in later sections.

As a preliminary step, it is convenient to rewrite A in components, using the notation

introduced in appendix L. We then find the anti-commutation relations take the form

{Q ȧ
L ,QLḃ} =

1

2
δȧ

ḃ
(H+M), {Q ȧ

L ,QRḃ} = δȧ
ḃ
C,

{QRȧ,Q
ḃ

R } =
1

2
δ ḃ
ȧ (H−M), {QLȧ,Q

ḃ
R } = δ ḃ

ȧ C,

(3.1)

where we introduced labels “L” and “R” (left and right) for the supercharges in psu(1|1)4.
These are inherited from the superisometry algebra su(1, 1|2)L⊕su(1, 1|2)R, where they refer

to the chirality in the dual CFT2. Note that in the leading-order expansion of appendix L,

the central charges C,C were linear functions of the worldsheet momentum, C = C =

−1
2P. This is indeed the leading order term in the expansion of the non-linear relation

C = +
iζ

2
(e+iP − 1), C = − iζ̄

2
(e−iP − 1), (3.2)

23As discussed at the end of section 2.2.4, such so(4)2 is unbroken as long as we are in the decompactifi-

cation limit P− = ∞.
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found in the previous section, cf. (2.92). The so(4)2 subalgebra arising from the torus

directions can be decomposed into su(2)• ⊕ su(2)◦, satisfying

[J•ȧ
ḃ,J•ċ

ḋ] = δḃċ J•ȧ
ḋ − δḋȧ J•ċ

ḃ, [J◦a
b,J◦c

d] = δbc J◦a
d − δda J◦c

b, (3.3)

The supercharges Qj L,R are in the fundamental representation of su(2)•. Indices are there-

fore raised and lowered by the antisymmetric tensor ǫȧḃ and its inverse, so that charges

with upper indices transform in the anti-fundamental representation. We then have

[J•ȧ
ḃ,Qċ] = δḃċQȧ −

1

2
δ ḃ
ȧ Qċ, [J•ȧ

ḃ,Qċ] = −δ ċ
ȧ Qḃ +

1

2
δ ḃ
ȧ Qċ, (3.4)

where Q is any supercharge in the appropriate representation. All of the generators of the

centrally extended psu(1|1)4 commute with su(2)◦. The u(1) charges of A are therefore

given by the Hamiltonian H, the angular momentum M, two Cartan elements coming from

the two su(2)’s and the central elements C,C.

The centrally extended psu(1|1)4 superalgebra appeared already in the study of the

massive sector of the theory in [34], and as discussed there it could be obtained from two

copies of the centrally extended su(1|1)2. In the next subsection we briefly review that

construction.

3.1 From su(1|1)2c.e. to psu(1|1)4c.e.

Let us consider su(1|1)L ⊕ su(1|1)R, given by

{QL,QL} = HL, {QR,QR} = HR. (3.5)

Physically, if we intend to couple these two systems, it is natural to define the positive-

definite combination of the two central charges to be the Hamiltonian, while the other one

will be an angular momentum:

H = HL +HR, M = HL −HR . (3.6)

Let us consider a central extension of su(1|1)2 by setting

{QL,QR} = C , {QL,QR} = C . (3.7)

If we now consider a tensor product of two copies of the above algebra, we have

Q 1
L = QL ⊗ 1, QL1 = QL ⊗ 1, Q 2

L = 1⊗QL, QL2 = 1⊗QL,

QR1 = QR ⊗ 1, Q 1
R = QR ⊗ 1, QR2 = 1⊗QR, Q 2

R = 1⊗QR,
(3.8)

and for the central elements

H 1
L = HL ⊗ 1, H 2

L = 1⊗HL, C1 = C⊗ 1, C2 = 1⊗C,

H 1
R = HR ⊗ 1, H 2

R = 1⊗HR, C1 = C⊗ 1, C2 = 1⊗C.
(3.9)

If we now identify the central charges as

H 1
L = H 2

L , H 1
R = H 2

R , C1 = C2, C1 = C2, (3.10)

and consequently drop the indices 1, 2, we are left precisely with (3.1). Constructing

psu(1|1)4c.e. as a tensor product of two su(1|1)2c.e. as described above will be particularly

useful in the study of its representations below [34, 49].
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3.2 Representations in the near-plane-wave limit

We expect the fundamental excitations of the GS string to transform in two distinct (not

necessarily irreducible) representations of A, for massive and massless particles,24 with the

corresponding modules having the same dimension. This constrains the dimension of the

representations of psu(1|1)4c.e. ⊂ A that may appear. Since long representations are at least

sixteen-dimensional, our representations must instead be short, i.e. they must satisfy the

shortening condition [32, 34]

HL HR = CC , (3.11)

which can be recast in the form of a dispersion relation

H2 = M2 + 4CC , (3.12)

in which the eigenvalues of M play the role of a mass term.25

In section 2.3 we obtained the representation of A in terms of the fields. In order

study it more easily, it is useful to go to momentum-space and introduce oscillators. It will

be enough to consider the leading-order in the field expansion of the supercharges, which

coincides with the leading order in a near-plane-wave [77] or BMN expansion [82].

Let us introduce bosonic creation and annihilation operators, that schematically take

the form

a†(p) ≈
∫

dσ√
ω(p,m)

(
ω(p,m)X − iP

)
e+ipσ,

a(p) ≈
∫

dσ√
ω(p,m)

(
ω(p,m)X + iP

)
e−ipσ,

(3.13)

where ω(p,m) is the dispersion, and fermionic ones

d†(p) ≈
∫

dσ√
ω(p,m)

(
f(p,m) η − ig(p,m)η̄

)
e+ipσ,

d(p) ≈
∫

dσ√
ω(p,m)

(
f(p,m) η + ig(p,m)η̄

)
e−ipσ,

(3.14)

where f(p,m), g(p,m) are wavefunction parameters. We will have eight such pairs of

operators for bosons and eight for fermions, whose precise form is given in appendix L. We

can use them to construct the module of the representation, which is then given by the

eight massive states

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 , |ηLȧ〉 = d ȧ†
L |0〉 , |ηR

ȧ〉 = d†
Rȧ |0〉 , (3.15)

and the eight massless ones

|T ȧa〉 = aȧa† |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 . (3.16)

24This follows from the fact that the Hamiltonian H takes different values on massless and massive

excitations.
25Recall that the central charges C,C are functions of the momentum p and vanish at p = 0.
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Since at this order all excitations are relativistic, we have

ω(p,m) =
√
m2 + p2, f(p,m) =

√
ω(p,m) + |m|

2
, g(p,m) =

−p
2f(p,m)

, (3.17)

see also equations (L.15)–(L.18). Note that equations (3.17) depend on the eigenvalue m

of M, which can take value ±1 for massive excitations and 0 for massless ones. It will be

convenient to denote ωp = ω(p,±1), ω̃p = ω(p, 0), and similarly for f and g.

In terms of the ladder operators the supercharges take a very transparent form, whence

their action can be easily read off:

Q ȧ
L =

∫
dp
[
(d ȧ †

L aLy + ǫȧḃ a†LzdLḃ)fp + (a†Ryd
ȧ

R + ǫȧḃ d†
Rḃ
aRz)gp

+
(
ǫȧḃ d̃a †aḃa + aȧa †da

)
f̃p

]
,

QRȧ =

∫
dp
[
(d†

RȧaRy − ǫȧḃ a
†
Rzd

ḃ
R )fp + (a†LydLȧ − ǫȧḃ d

ḃ †
L aLz)gp

+
(
da †aȧa − ǫȧḃ aḃa †d̃a

)
g̃p

]
,

(3.18)

where we suppressed the dependence of a†, a and d†, d on the momentum p. Similarly, the

Hamiltonian H and the angular momentum M read

H =

∫
dp
[
(a†LzaLz + a†LyaLy + d ȧ†

L dLȧ + a†RzaRz + a†RyaRy + d ȧ†
R dRȧ)ωp

+ (a†ȧaa
ȧa + da†da + d̃a†d̃a) ω̃p

]
,

M =

∫
dp
[
(a†LzaLz + a†LyaLy + d ȧ†

L dLȧ)− (a†RzaRz + a†RyaRy + d ȧ†
R dRȧ)

]
.

(3.19)

This sixteen-dimensional module will split in several irreducible ones, which we will

describe below one by one. We can label them by the eigenvalue of the angular momen-

tum M.

3.2.1 Left representation

One representation of dimension four (two bosons and two fermions) has eigenvalue +1

under M, and consists only of excitations labelled “L”. These correspond to half of the

transverse modes on AdS3 × S3, and it can be represented as in the left panel of figure 1.

This is a bi-fundamental representation of psu(1|1)4c.e., supplemented by the action of su(2)•
on the fermions. In particular, the fermions are in the fundamental representation

J ḃ
•ȧ |ηLċ〉 = −δ ċ

a |ηLḃ〉+ 1

2
δ ḃ
ȧ |ηLċ〉 . (3.20)

It is interesting to see what happens if we consider the representation on-shell, i.e.

(since we are dealing with a single-particle representation) at zero momentum. Observing

that one of the fermion wave-function parameters vanishes then, gp=0 = 0, greatly simplifies

the action of the supercharges (3.18). In fact, only left supercharges act non-trivially. For

this reason we call this representation left, which explains the name of the corresponding

excitations, which then can be thought of as left-movers in the dual CFT2. Of course this

is only true for an on-shell one-particle state — generally, all states are charged under the

whole psu(1|1)4c.e..
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|Y L〉

|ηL1〉 |ηL2〉

|ZL〉

Q 1
L ,Q 1

R

QL1,QR1

QL2,QR2

Q 2
L ,Q 2

R

J a
•

|ZR〉

|ηR
1
〉 |ηR

2
〉

|Y R〉

QR2,QL2

Q 2
R ,Q 2

L

Q 1
R ,Q 1

L

QR1,QL1

J a
•

Figure 1. The left and right psu(1|1)4
c.e.

multiplets consists of two bosons Y L,R, ZL,R and of two

fermions ηL,Rȧ , corresponding to transverse directions on AdS3× S3. The fermions carry an index ȧ

of the fundamental representation of su(2)•. Note that off-shell any excitation is charged under

all supercharges, whereas on-shell left (respectively right) excitations are charged only under left

(respectively right) supercharges. We indicate the supercharges whose action corresponds to the

outermost arrows of the diagram. The innermost ones follow by Hermitian conjugation.

3.2.2 Right representation

We have a similar representation with eigenvalue −1 underM, which is depicted in the right

panel of figure 1, and consists of “R” excitations. This is again a bi-fundamental representa-

tion, closely resembling the left one. We see however that if we take the S3 excitation |Y L〉 to
be the highest weight state in the left-representation, we must take the AdS3 excitation |ZR〉
to be the highest weight state here. The reason is that we cannot take e.g. Q 1

L and QR1 to

be both lowering operators, if we want the central charge C to be non-vanishing. Instead,

we should take e.g. Q 1
L and Q 1

R . This in turn forces the choice of different highest weight

states in the two representations. The fermions ηR
ȧ are in the anti-fundamental of su(2)•.

In the same way as earlier, taking the representation to be on-shell makes it charged

under the right supercharges only.

3.2.3 Massless representation

We expect the remaining eight particles (four bosons and four fermions) to be all massless,

at least in this semi-classical analysis. This is indeed the case, and we can check that the

massless particles arrange themselves into two irreducible representations of psu(1|1)4c.e.,
both with fermionic highest weight states, see figure 2. Additionally, note that these

representations seem to be left by the argument above. This should be taken with a pinch of

salt, because we are considering the situation when the eigenvalue of M precisely vanishes,

which as we will see makes the left and right representations practically equivalent.

We have to take the action of so(4)2 into account. Under this, all of the torus bosons

are obviously charged. In our su(2) decomposition we see that the two psu(1|1)4c.e. modules

are rotated one into another by the action of su(2)◦. We then conclude that the massless

particles transform into a single irreducible representation of the symmetry algebra A.
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

Q 1
L ,Q 1

R

QL1,QR1

QL2,QR2

Q 2
L ,Q 2

R

J a
• J α

◦

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

Q 1
L ,Q 1

R

QL1,QR1

QL2,QR2

Q 2
L ,Q 2

R

J a
•

Figure 2. The eight massless excitations form two psu(1|1)4
c.e.

multiplets. The four bosons T ȧa

are charged both under su(2)• and su(2)◦, while the four fermions χa, χ̃a are in the fundamental

representation of su(2)◦ only. Again we indicate the charges whose action corresponds to the

outermost arrows of the diagram, while the innermost ones follow by Hermitian conjugation. Note

how su(2)◦ relates the two psu(1|1)4
c.e.

modules, yielding a single irreducible representation of A,
denoted by a box.

4 Exact representations

In the previous section we constructed representations of A that are valid in the near-

plane-wave limit, when C = C = −1
2P. On the other hand, we know that instead C 6= C

should be non-linear functions of the world-sheet momentum P given by equation (3.2). In

this section, we will show that the representations of section 3.2 can be deformed in such a

way so as to satisfy (3.2) together with the shortening condition (3.12) without resorting

to any perturbative expansions.

To do this, it will be sufficient to suitably deform the representation parameters ωp, fp
and gp. In fact, since the Hamiltonian follows from the central charges, ωp will be fixed in

terms of the fermion wave-function parameters. In order to find the central charges C 6=
C, which will now be complex and conjugate to each other, we must introduce complex

representation coefficients. Hence, fp will be replaced by ap or its conjugate āp, and gp by bp
or b̄p. These will also suitably depend on the mass m. When expanded in the near-BMN

limit, ap and āp reduce to fp (or f̃p if m = 0) while bp and b̄p to gp (or g̃p).

We will proceed as follows. Since the representations of A discussed above must in par-

ticular be bi-fundamental representations of psu(1|1)4c.e., and these can be obtained [32, 49]

from fundamental representations of su(1|1)2c.e., we will focus on these first. In subsec-

tion 4.1 we will construct the most general su(1|1)2c.e. short fundamental representations.

In subsections 4.2 and 4.3 we will show how from these we can find massive and mass-

less psu(1|1)4c.e. representations, respectively, and comment on their properties. Then in

subsection 4.4 we write down the deformed representation parameters ap, bp for the massive

and massless case, and finally in subsection 4.5 we will rule out quantum corrections to the

massless dispersion relation by a symmetry argument.
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4.1 Short representations of su(1|1)2c.e.

In [32] short representations of the centrally extended psu(1|1)L ⊕ psu(1|1)R algebra were

considered. Denoting a boson and fermion excitation of definite momentum p by |φL
p〉 , |ψL

p〉
respectively, the fundamental representation ̺L is given by

̺L :

QL |φL
p〉 = ap |ψL

p〉 , QL |ψL
p〉 = 0,

QL |φL
p〉 = 0, QL |ψL

p〉 = āp |φL
p〉 ,

QR |φL
p〉 = 0, QR |ψL

p〉 = bp |φL
p〉 ,

QR |φL
p〉 = b̄p |ψL

p〉 , QR |ψL
p〉 = 0.

(4.1)

Our choice of the representation coefficients ensures that the left- and right-Hamiltonians

are positive definite. Furthermore, when we reduce to a one-particle on-shell representa-

tion, it must be bp=0 = b̄p=0 = 0. In this sense, this representation is a left one.

We can consider a right representation ̺R. The module consists of two excitations |φR
p 〉

and |ψR
p 〉 transforming as

̺R :

QR |φR
p 〉 = ap |ψR

p 〉 , QR |ψR
p 〉 = 0,

QR |φR
p 〉 = 0, QR |ψR

p 〉 = āp |φR
p 〉 ,

QL |φR
p 〉 = 0, QL |ψR

p 〉 = bp |φR
p 〉 ,

QL |φR
p 〉 = b̄p |ψR

p 〉 , QL |ψ̄p〉 = 0.

(4.2)

Comparing with (4.1), we see that the two representations are related by exchanging the

labels L↔R.

It we will also be useful to consider a representation ˜̺L,

˜̺L :

QL |ψ̃L
p〉 = ap |φ̃L

p〉 , QL |φ̃L
p〉 = 0,

QL |ψ̃L
p〉 = 0, QL |φ̃L

p〉 = āp |ψ̃L
p〉 ,

QR |ψ̃L
p〉 = 0, QR |φ̃L

p〉 = bp |ψ̃L
p〉 ,

QR |ψ̃L
p〉 = b̄p |φ̃L

p〉 , QR |φ̃L
p〉 = 0.

(4.3)

This representation differs from ̺L by the choice of the highest weight state, which is

fermionic here rather than bosonic. In a similar way, one can construct a ˜̺R representa-

tion. It is easy to check that any short representation of psu(1|1)4c.e. for which H has real

eigenvalues takes the form of one of ̺L, ̺R, ˜̺L, ˜̺R. We will use graded tensor products of

these representations to construct short representations of psu(1|1)4c.e..

4.2 psu(1|1)4c.e. representations for massive excitations

We now want to take the massive near-plane-wave representations discussed in section 3.2

and deform them in such a way as to reproduce the non-linear relation (3.2). We will then

see how these can indeed be thought of as coming from the tensor product of suitable pairs

of the su(1|1)2c.e. representations that we just constructed.
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If we restrict to on-shell one-particle states, only left (respectively right) supercharges

have a non-trivial action on left (respectively right) excitations, of the form

Q ȧ
L |Y L

p 〉 = ap |ηLȧ
p 〉 , Q ȧ

L |ηLḃ
p 〉 = ǫȧḃ ap |ZL

p 〉 ,
QLȧ |ZL

p 〉 = −ǫȧḃ āp |ηLḃ
p 〉 , QLȧ |ηLḃ

p 〉 = δ ḃ
ȧ āp |Y L

p 〉 ,

QRȧ |Y R
p 〉 = ǫȧḃ ap |ηRḃ

p 〉 , QRȧ |ηRḃ
p 〉 = δ ḃ

ȧ ap |ZR
p 〉 ,

Q ȧ
R |ZR

p 〉 = āp |ηRȧ
p 〉 , Q ȧ

R |ηRḃ
p 〉 = −ǫȧḃ āp |Y R

p 〉 ,

(4.4)

where we anticipated the tensor-product structure in the formula label. Off shell, by virtue

of the central extension this is supplemented by the action of left supercharges on right-

moving states and vice-versa:

Q ȧ
L |ZR

p 〉 = bp |ηRȧ
p 〉 , Q ȧ

L |ηRḃ
p 〉 = −ǫȧḃ bp |Y R

p 〉 ,
QLȧ |Y R

p 〉 = ǫȧḃ b̄p |ηRḃ
p 〉 , QLȧ |ηRḃ

p 〉 = δ ḃ
ȧ b̄p |ZR

p 〉 ,

QRȧ |ZL
p 〉 = −ǫȧḃ bp |ηLḃ

p 〉 , QRȧ |ηLḃ
p 〉 = δ ḃ

ȧ bp |Y L
p 〉 ,

Q ȧ
R |Y L

p 〉 = b̄p |ηLȧ
p 〉 , Q ȧ

R |ηLḃ
p 〉 = ǫȧḃ b̄p |ZL

p 〉 .

(4.5)

4.2.1 Bi-fundamental structure

The above left and right psu(1|1)4 representations can be constructed by tensoring the

fundamental representation of (4.1), (4.2). To this end, it is sufficient to identify the

excitations as

Y L = φL ⊗ φL, ηL1 = ψL ⊗ φL, ηL2 = φL ⊗ ψL, ZL = ψL ⊗ ψL,

Y R = φR ⊗ φR, ηR
1 = ψR ⊗ φR, ηR

2 = φR ⊗ ψR, ZR = ψR ⊗ ψR,
(4.6)

where indices have been appropriately raised and lowered. The left psu(1|1)4 module is

then isomorphic to ̺L ⊗ ̺L, while the right one to ̺R ⊗ ̺R.

4.2.2 Left-right symmetry

It is clear that consistency with the string theory picture requires considering both the

left and right representations.26 On the other hand, “left” and “right” are just labels that

can be swapped without affecting the description. This results in a Z2 left-right symmetry

(LR-symmetry) [32, 34, 49]. In particular, this relates left and right massive excitations as

Y L ←→ Y R, ZL ←→ ZR, ηLȧ ←→ ηR
ȧ, (4.7)

which is compatible with (L.23).

26As we will see, this is also required if we want the worlsheet theory to be crossing-invariant.
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4.3 psu(1|1)4c.e. representations for massless excitations

Similarly to the previous subsection, we now deform the massless near-plane-wave rep-

resentations and show how they also enjoy a tensor-product structure. We know that

massless bosons transform in the fundamental representation of both su(2)• and su(2)◦,

while fermions are singlets of su(2)• and are in the fundamental of su(2)◦. All these in-

dices correspond to the fundamental representation of equation (3.20). The action of the

supercharges on the massless excitations is

(̺L ⊗ ˜̺L)⊕2 :

Q ȧ
L |T ḃa

p 〉 = ǫȧḃap |χ̃a
p〉 , Q ȧ

L |χa
p〉 = ap |T ȧa

p 〉 ,
QLȧ |χ̃a

p〉 = −ǫȧḃāp |T ḃa
p 〉 , QLȧ |T ḃa

p 〉 = δ ḃ
ȧ āp |χa

p〉 ,

QRȧ |T ḃa
p 〉 = δ ḃ

ȧ bp |χa
p〉 , QRȧ |χ̃a

p〉 = −ǫȧḃbp |T ḃa
p 〉 ,

Q ȧ
R |χa

p〉 = b̄p |T ȧa
p 〉 , Q ȧ

R |T ḃa
p 〉 = ǫȧḃb̄p |χ̃a

p〉 .

(4.8)

Masslessness of the excitations is encoded in the fact that they are annihilated by M, which

due to the shortening condition (3.12) plays the role of mass. This results in a constraint

on the representation coefficients

|ap|2 = |bp|2. (4.9)

4.3.1 Bi-fundamental structure

The above representation of A can be constructed out of two bi-fundamental psu(1|1)4c.e.
representations. To see this we note that the massless excitations can be re-written as

T 1a =
(
ψL ⊗ ψ̃L

)a
, χ̃a =

(
ψL ⊗ φ̃L

)a
, χa =

(
φL ⊗ ψ̃L

)a
, T 2a =

(
φ⊗ φ̃L

)a
, (4.10)

where the two copies are labelled by an su(2)◦ index a = 1, 2. Note that we used two

modules of the form (̺L ⊗ ˜̺L) ⊕ (̺L ⊗ ˜̺L), in agreement with the fact that for massless

representations the highest weight state is fermionic.

4.3.2 Equivalent descriptions

It may appear strange that massless excitations come from left representations only. Ac-

tually, there are several ways to obtain the massless excitations out of tensor product of

su(1|1)2 modules. Let us introduce rescaled excitations27

|χ̃a
p〉 = −

ap
bp
|χ̃a

p〉 , |χa
p〉 =

bp
ap
|χa

p〉 , (4.11)

which gives the following action of the supercharges

(̺R ⊗ ˜̺R)⊕2 :

Q ȧ
L |T ḃa

p 〉 = −ǫȧḃbp |χ̃α
p 〉 , Q ȧ

L |χa
p〉 = bp |T ȧa

p 〉 ,
QLȧ |χ̃a

p〉 = ǫȧḃb̄p |T ḃa
p 〉 , QLȧ |T ḃa

p 〉 = δ ḃ
ȧ b̄p |χa

p〉 ,

QRȧ |T ḃa
p 〉 = δ ḃ

ȧ ap |χa
p〉 , QRȧ |χ̃a

p〉 = ǫȧḃap |T ḃa
p 〉 ,

Q ȧ
R |χa

p〉 = āp |T ȧa
p 〉 , Q ȧ

R |T ḃa
p 〉 = −ǫȧḃāp |χ̃a

p〉 ,

(4.12)

27As we will see in the next subsection, the ratio
ap

bp
appearing here is essentially the sign of the momentum,

due to the massless condition (4.9).
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where we used (4.9). Thanks to this change of basis, we can identify a different tensor

product structure, given by

T1a =
(
ψR ⊗ ψ̃R

)
a
, χ̃a =

(
φR ⊗ ψ̃R

)
a
, χa =

(
ψR ⊗ φ̃R

)
a
, T2a =

(
φR ⊗ φ̃R

)
a
. (4.13)

This amounts to considering two modules of the form (̺R ⊗ ˜̺R)⊕ (̺R ⊗ ˜̺R), i.e. to obtain

the massless representation out of the massless limit of two right modules, rather than of

two left ones. Yet another possibility is to perform the rescaling (4.11) only on one of

the psu(1|1)4c.e. representations, for instance setting

|χ̃1
p〉 = |χ̃1

p〉 , |χ1
p〉 = |χ1

p〉 , |χ̃2
p〉 = −

ap
bp
|χ̃2

p〉 , |χ2
p〉 =

bp
ap
|χ2

p〉 , (4.14)

on the fermions. In this way, the massless modules have the form (̺L ⊗ ˜̺L) ⊕ (̺R ⊗ ˜̺R),
where the former term in the direct sum corresponds to a = 1 and the latter to a = 2.

The conclusion is that any of the two psu(1|1)4 modules describing the massless exci-

tations can be equivalently taken to be right or left, up to an inessential change of basis.28

Therefore, we can think of our representation as coming from any of these choices depending

on what is most convenient, as we will discuss in the next subsection.

4.3.3 Left-right symmetry

We have seen that the massive sector should be invariant under exchanging the “left” and

“right” labels. This imposes a discrete symmetry on the S matrix in that sector [32, 34].

When we include massless excitations and consider two-particle states as it is necessary for

the S matrix, a consistency condition arises. One should give a prescription on how the

massless excitations transform when exchanging L↔R in the massive sector.

Let us start from the case where the massless excitations are in the representation

(̺L ⊗ ˜̺L)⊕ (̺R ⊗ ˜̺R). Then, a natural extension of LR symmetry is exchanging the L and

R labels in the massless sector too. Following the discussion of the previous subsection,

it is clear that those labels are somewhat artificial, because the left and right massless

representation are in fact equivalent.

In what follows we will find it more convenient to describe massless excitations using

the (̺L⊗ ˜̺L)⊕ (̺L⊗ ˜̺L) representation. This is because the action of the su(2)◦ raising and

lowering operators is simpler in this case (in the mixed case, one finds additional factors

of ap/bp). Even in this case, we can consistently implement LR symmetry, by combining

the previous prescription with the change of basis (4.14), see also equation (L.24). This

gives the prescription

|T ȧa〉 ←→ |Tȧa〉 , |χ̃a〉 ←→ +
bp
ap
|χa〉 , |χa〉 ←→ −ap

bp
|χ̃a〉 , (4.15)

where we suppressed the momentum label on the excitations for clarity. Note that the

symmetry now depends on the momentum of the particles through the combination
ap
bp
.

We will comment on the interpretation of these ubiquitous coefficients in the next section.

28This is true only when (4.9) holds, which is not surprising: if that is not the case, left and right

representations have opposite, non-vanishing charge under M and therefore cannot be equivalent.
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4.4 Representation coefficients

The representations we constructed can be labelled by the values of the central charges,

in terms of which the representation coefficients ap, bp and their conjugates must be deter-

mined. There are essentially two independent charges: the angular momentum M, whose

absolute value plays the role of the mass, and the central charge C (together with its

conjugate C). Their eigenvalues on a one-particle off shell representation are

M |Xp〉 = m |Xp〉 , C |Xp〉 = Cp |Xp〉 , C |Xp〉 = C̄p |Xp〉 , (4.16)

In section 2 we have found their expressions in terms of the momentum p and the coupling

constant h to be

m =

{
±1 massive

0 massless
, Cp = h

i

2
(eip − 1) ζ, (4.17)

where we explicitly extracted the dependence on the coupling constant h, and ζ = e2iξ

characterizes the representation. From the shortening condition (3.12) we immediately

find the dispersion relation

Ep =

√
m2 + 4h2 sin2

p

2
. (4.18)

For m2 = 1, this dispersion relation, strongly reminiscent of the AdS5 × S5 case [83],

was first found in this context from the study of giant magnons on AdS3 × S3 [57]. The

parametrisation

ap = ηpe
iξ, āp = ηpe

−ip/2e−iξ, bp = −
ηp

x−p
e−ip/2eiξ, b̄p = − ηp

x+p
e−iξ, (4.19)

with

ηp = eip/4
√
ih

2
(x−p − x+p ) , (4.20)

satisfies equation (4.16) if the Zhukovski parameters x± satisfy

x+p +
1

x+p
− x−p −

1

x−p
=

2i |m|
h

,
x+p

x−p
= eip. (4.21)

As for the value of ξ, as discussed at length in [62] we can take it to vanish on the one-particle

representation, but it plays an important role in the multi-particle ones. When constructing

the two-particle representation out of the tensor product of two one-particle ones, we see

that to reproduce the correct value of the central charges we cannot take ξ1 = ξ2 = 0 for

both of the constituent particles. In fact, imposing that on a two-particle state C gives

C |X1X2〉 = h
i

2
(ei(p1+p2) − 1) |X1X2〉 . (4.22)

we see that the parameter ξ must be non-vanishing in one of the representations, resulting

in a non-trivial coproduct [84–86]. We solve this condition by setting

ξ1 = 0 , ξ2 =
p1
2
. (4.23)
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We see that the case m = 1 does not introduce any new feature with respect to the

treatment of [34]. However, at m = 0 something new happens already at the level of the

representation parameters, in terms of the non-analyticities

Ep = 2h
∣∣∣sin

p

2

∣∣∣ , x±p = e±
i
2
p sign

(
sin

p

2

)
. (4.24)

This is typical in a theory featuring massless excitations, and naturally leads to distinguish

left- and right-movers on the worldsheet. Indeed the combination

ap
bp

= −sign
(
sin

p

2

)
, (4.25)

which appears in the formulation of (target-space) left-right symmetry or in the action of

the su(2)◦ raising and lowering operators, shows that excitations have different transfor-

mation properties depending on the sign of their momentum. A way to consistently get

rid of the non-analyticities is to treat worldsheet left- and right-movers as two genuinely

different species of particles, with dispersion

Ep =

{
Eleft = +2h sin p

2 0 < p 6 π
2 ,

Eright = −2h sin p
2 −π

2 6 p < 0 .
(4.26)

If we take both massless psu(1|1)4c.e. modules to be in the representation ̺L⊗ ˜̺L, we find that

worldsheet left-movers (respectively right-movers) transform in a definite representation

of su(2)◦. On the other hand, by virtue of (4.15), the LR symmetry transformation also

swaps worldsheet left- and right-moving fermions. In the representation ̺L ⊗ ˜̺R, instead,
the situation is reversed as can be seen from (4.11). LR symmetry preserves the worldsheet

chirality, while su(2)◦ rotates worldsheet left- and right-moving fermions into each other.

4.5 Corrections to the massless dispersion relation

As we have seen in the previous section (see for example equation (4.26)), the massless

modes have rather different properties to the massive ones. One may wonder whether the

massless modes could receive corrections which would give them masses in the quantum

theory. Even in integrable theories, it may happen that quantum corrections dress the par-

ticle with a mass,29 and it is interesting to investigate whether this can be the case here. As

we are about to show, this is impossible unless part of the so(4)2 invariance is also broken.

We have seen that the massless module is constructed out of two bi-fundamental

psu(1|1)4c.e. ones. Each of them can be equivalently left (L) or right (R), giving the possi-

bilities
LL: (̺L ⊗ ˜̺L)⊕ (̺L ⊗ ˜̺L), RR: (̺R ⊗ ˜̺R)⊕ (̺R ⊗ ˜̺R),
LR: (̺L ⊗ ˜̺L)⊕ (̺R ⊗ ˜̺R), RL: (̺R ⊗ ˜̺R)⊕ (̺L ⊗ ˜̺L).

(4.27)

However, only when the representation coefficients satisfy |a2p| = |bp|2, all of these cases are
equivalent, up to a rescaling of the basis vectors. If we think of deforming the representa-

tions to switch on a mass ε > 0 (coming from e.g. quantum corrections), these four choices

29A prototypical example being the Gross-Neveu model [87].
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will no longer be equivalent, and will lead to different deformations, which we will consider

separately. The non-vanishing masses will appear in particular in the matrix representation

of M. This will read either

LL/RR : M =




+14 0 0 0

0 −14 0 0

0 0 ±ε14 0

0 0 0 ±ε14


 , (4.28)

where we used a block form and the ± signs correspond to LL/RR, or

LR/RL : M =




+14 0 0 0

0 −14 0 0

0 0 ±ε14 0

0 0 0 ∓ε14


 . (4.29)

In this notation each block corresponds to a bi-fundamental representation, with the two

upper blocks being the massive left and right representations of [34].

We can immediately establish that the choice of (4.28) is incompatible with crossing

invariance. In fact, charge conjugation will flip the sign of all the u(1) charges, see also

equation (5.42) below. Therefore, a necessary condition for crossing invariance is that each

representation appears together with its conjugate, which is indeed the case in the massive

sector, as one can easily read-off from the first two diagonal entries of M above. This is

not the case when we choose to deform the LL (or RR) representation for ε > 0: both

representations will have positive (or negative) eigenvalues of modulus ε. On the other

hand, the choice of equation (4.29) is compatible with crossing symmetry, but does not

respect the so(4) invariance. In fact, all of the supercharges should commute with su(2)◦,

and therefore so should M. But su(2)◦ rotates the two mass-ε representations into each

other, so that its raising and lowering operators cannot commute with M when ε 6= 0. This

also clearly shows how both obstructions disappear at ε = 0.

5 S matrix

In the previous section we have constructed the representations of A valid for arbitrary

values of the momentum and of the coupling constant h, as long as we are in the decom-

pactification limit. The mere fact that the two-particle S matrix should commute with the

off-shell symmetry algebra will allow us to fix it almost completely, up to a small number

of functions — the dressing factors.

In subsection 5.1 we recall the construction of the su(1|1)2c.e. invariant S matrices of [32].

By tensoring these in a suitable way, in subsection 5.2 we obtain the A-invariant S matrix

up to the dressing factors. In subsection 5.3 we show that these dressing factors can in

turn be constrained by unitarity. In subsection 5.4 we show that the S matrix satisfies the

Yang-Baxter equation, and therefore can be used to define an integrable theory. Finally,

in subsection 5.5, we constrain the dressing factors by crossing symmetry.

– 34 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
6

The S matrix scattering two fundamental particles is an operator — in fact, a finite-

dimensional matrix — that relates in- and out-states. Schematically,

S |X (in)
p Y(in)

q 〉 = |Y(out)
q X (out)

p 〉 (5.1)

where outgoing momenta are permuted. Due to the presence of massless excitations, defin-

ing a scattering matrix may appear problematic. In the familiar relativistic case, the

equivalent of the dispersion relation (4.26) is linear in p. Therefore, the group velocity of

a wave-packet is

vrel =
∂Ep

∂p
= ±const , (5.2)

i.e., massless relativistic particles move at a constant velocity — the speed of light. Particles

with the same worldsheet chirality then cannot scatter, regardless of the value of their

momentum.30 In the case of interest to the present paper however, factorised massless

scattering appears to be simpler than in the relativistic case. In fact, from equation (4.26)

we find the group velocity

vnon-rel = ±h cos
(p
2

)
. (5.3)

We see then that massless excitations of different momenta have different velocity, so that

we can expect them to scatter in the usual way. It could be interesting to investigate

the near-plane-wave limit of our S matrix, in which the theory becomes approximately

relativistic.

The two-particle S matrix has to satisfy a number of consistency conditions. The

first requirement, is that S commutes with all the generators of A acting on two-particle

excitations

S(12)(p, q)Q(12)(p, q) = Q(12)(q, p)S(12)(p, q). (5.4)

Additionally, braiding unitarity is the requirement that acting twice with the S matrix is

equivalent to acting with the identity operator

S(12)(q, p)S(12)(p, q) = 1 (5.5)

and physical unitarity demands that S is unitary as a matrix

S(12)(p, q)
(
S(12)(p, q)

)†
= 1. (5.6)

Furthermore, as we will see our S matrix will satisfy the Yang-Baxter equation, meaning

that it can consistently be used to define multi-particle scattering. In what follows, it will

be useful to define, by means of the permutation matrix Π,

S = ΠS , (5.7)

which then satisfies

S(12)(p, q)Q(12)(p, q) = Q(21)(q, p)S(12)(p, q), S(21)(q, p)S(12)(p, q) = 1. (5.8)

30Nevertheless, in the relativistic case, a formal treatment of factorised scattering matrices is still possi-

ble [50–52, 88]. To this end, it is necessary to introduce appropriate rapidity variables and take suitable

limits of them.
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Conservation of energy and of the other central charges implies that the scattering can

be broken down in several sectors, consistently with our discussion of the representations.

We naturally find purely massive scattering, which is the one that was already discussed

in [34], purely massless scattering, and finally mixed massive-massless scattering. In each

of these parts we will construct the S matrix as one that describes the scattering of suitable

su(1|1)4c.e. modules. In fact, in view of our discussion of these modules, it is convenient to

first consider suitable su(1|1)2c.e. invariant S matrices that will serve as building blocks of

the full S matrix.

5.1 The su(1|1)2c.e. invariant S matrices

In section 4.1 we constructed the short representations of psu(1|1)2, namely ̺L, ̺R, ˜̺L, ˜̺R.
The scattering of these leads to distinct S matrices. We start by discussing the case in

which both excitations are left ones, which allows for four different S matrices:

SLL |φL
pφ

L
q〉 = ALL

pq |φL
qφ

L
p〉 , SLL |φL

pψ
L
q 〉 = BLL

pq |ψL
qφ

L
p〉+ CLL

pq |φL
qψ

L
p〉 ,

SLL |ψL
pψ

L
q 〉 = F LL

pq |ψL
qψ

L
p〉 , SLL |ψL

pφ
L
q〉 = DLL

pq |φL
qψ

L
p〉+ ELL

pq |ψL
qφ

L
p〉 ,

(5.9)

S L̃L̃ |φ̃L
pφ̃

L
q〉 = −F LL

pq |φ̃L
q φ̃

L
p〉 , S L̃L̃ |φ̃L

pψ̃
L
q 〉 = DLL

pq |ψ̃L
q φ̃

L
p〉 − ELL

pq |φ̃L
q ψ̃

L
p〉 ,

S L̃L̃ |ψ̃L
p ψ̃

L
q 〉 = −ALL

pq |ψ̃L
q ψ̃

L
p〉 , S L̃L̃ |ψ̃L

p φ̃
L
q〉 = BLL

pq |φ̃L
q ψ̃

L
p〉 − CLL

pq |ψ̃L
q φ̃

L
p〉 ,

(5.10)

SLL̃ |φL
pφ̃

L
q〉 = BLL

pq |φ̃L
qφ

L
p〉 − CLL

pq |ψ̃L
qψ

L
p〉 , SLL̃ |φL

pψ̃
L
q 〉 = ALL

pq |ψ̃L
qφ

L
p〉 ,

SLL̃ |ψL
p ψ̃

L
q 〉 = −DLL

pq |ψ̃L
qψ

L
p〉+ ELL

pq |φ̃L
qφ

L
p〉 , SLL̃ |ψL

p φ̃
L
q〉 = −F LL

pq |φ̃L
qψ

L
p〉 ,

(5.11)

S L̃L |φ̃L
pφ

L
q〉 = DLL

pq |φL
q φ̃

L
p〉+ ELL

pq |ψL
q ψ̃

L
p〉 , S L̃L |φ̃L

pψ
L
q 〉 = −F LL

pq |ψL
q φ̃

L
p〉 ,

S L̃L |ψ̃L
pψ

L
q 〉 = −BLL

pq |ψL
q ψ̃

L
p〉 − CLL

pq |φL
q φ̃

L
p〉 , S L̃L |ψ̃L

pφ
L
q〉 = ALL

pq |φL
q ψ̃

L
p〉 .

(5.12)

As indicated by their labels, the S matrices above scatter particles in the representations

̺L⊗ ̺L, ˜̺L⊗ ˜̺L, ̺L⊗ ˜̺L and ˜̺L⊗ ̺L. The four S matrices are related by simple changes of

bases. Their different structures account for the fact that a pair of highest- or lowest-weight

states should scatter diagonally.

The ratios BLL
pq /A

LL
pq , C

LL
pq /A

LL
pq , . . . , F

LL
pq /A

LL
pq are fixed by (5.4). However, that linear

relation allows for an arbitrary prefactor in each S matrix. Such prefactors, until we take

non-linear constraints such as unitarity and crossing symmetry into account, are merely

a matter of convention. The explicit parametrisation of the S-matrix element is given in

appendix M, with a convention that slightly differs from the original one of [32].

When the two excitations do not have the same LR flavor we find S-matrices such as

SLR |φL
pφ

R
q 〉 = ALR

pq |φR
q φ

L
p〉+BLR

pq |ψR
q ψ

L
p〉 , SLR |φL

pψ
R
q 〉 = CLR

pq |ψR
q φ

L
p〉 ,

SLR |ψL
pψ

R
q 〉 = ELR

pq |ψR
q ψ

L
p〉+ F LR

pq |φR
q φ

L
p〉 , SLR |ψL

pφ
R
q 〉 = DLR

pq |φR
qψ

L
p〉 ,

(5.13)

SRL |φR
pφ

L
q〉 = ARL

pq |φL
qφ

R
p 〉+BLR

pq |ψL
qψ

R
p 〉 , SRL |φR

pψ
L
q 〉 = CRL

pq |ψL
qφ

R
p 〉 ,

SRL |ψR
pψ

L
q 〉 = ERL

pq |ψL
qψ

R
p 〉+ FRL

pq |φL
qφ

R
p 〉 , SRL |ψR

pφ
L
q〉 = DRL

pq |φL
qψ

R
p 〉 ,

(5.14)
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S L̃R |φ̃L
pφ

R
q 〉 = +DLR

pq |φR
q φ̃

L
p〉 , S L̃R |φ̃L

pψ
R
q 〉 = −ELR

pq |ψR
q φ̃

L
p〉 − F LR

pq |φR
q ψ̃

L
p〉 ,

S L̃R |ψ̃L
pψ

R
q 〉 = −CLR

pq |ψR
q ψ̃

L
p〉 , S L̃R |ψ̃L

pφ
R
q 〉 = +ALR

pq |φR
q ψ̃

L
p〉 −BLR

pq |ψR
q φ̃

L
p〉 ,

(5.15)

SRL̃ |φR
p φ̃

L
q〉 = +CRL

pq |φ̃L
qφ

R
p 〉 , SRL̃ |φR

p ψ̃
L
q 〉 = +ARL

pq |ψ̃L
qφ

R
p 〉 −BRL

pq |φ̃L
qψ

R
p 〉 ,

SRL̃ |ψR
p ψ̃

L
q 〉 = −DRL

pq |ψ̃L
qψ

R
p 〉 , SRL̃ |ψR

p φ̃
L
q〉 = −ERL

pq |φ̃L
qψ

R
p 〉+ FRL

pq |ψ̃L
qφ

R
p 〉 .

(5.16)

The S matrices above scatter particles in the representations ̺L⊗ ̺R, ̺R⊗ ̺L and ˜̺L⊗ ̺R,

̺R ⊗ ˜̺L. The former pair was one of the main results of [32], while the latter corresponds

to the so-called second central extension in appendix D in the same reference. Note that

we could write down four more S matrices corresponding to scattering processes where one

of the excitations is in the representation ˜̺R. We will not be needing their explicit form,

which in any case follows from similar changes of bases. The S-matrix elements obey a

constraint due to left-right symmetry, which simply reads

ARL = ALR, BRL = BLR, CRL = CLR,

DRL = DLR, ERL = ELR, FRL = F LR.
(5.17)

The explicit expression of these S-matrix elements is also given in appendix M. The case

where we scatter particles in the representations ̺R ⊗ ̺R, ˜̺R ⊗ ̺R, etc. follows from equa-

tions (5.9)–(5.12) by LR symmetry.

5.2 The S matrix from a tensor product

As discussed in section 4, the excitations of the AdS3 × S3 × T4 superstring transform

in four bi-fundamental representations of psu(1|1)4c.e., two massive (̺L ⊗ ̺L and ̺R ⊗ ̺R)

and two massless ones (both of the form ̺L ⊗ ˜̺L). The corresponding S matrices can be

obtained from graded tensor products of the ones introduced in the previous section, which

takes the general form

Spsu(1|1)4 ≈ Ssu(1|1)2 ⊗̂ Ssu(1|1)2 , (5.18)

up to a prefactor. The tensor product ⊗̂ is graded, i.e. it takes into account the signs

arising from fermion permutations

(
A ⊗̂B

)KK′,LL′

MM ′,NN ′
= (−1)ǫM′ǫN+ǫL′ǫK AKL

MN BK′L′

M ′N ′ , (5.19)

where the symbol ǫ is one for fermions and zero for bosons. We collect explicit expres-

sions for the graded tensor products used in the construction of the S-matrix blocks in

appendix N. Each of the psu(1|1)4c.e.-invariant blocks that we obtain in this way should

be multiplied by a (dressing) scalar factor. A priori these may all differ, but as we will

see some of those are in fact related by additional symmetries, namely left-right symmetry

and su(2)◦. To describe these blocks it is convenient to split the S matrix in three sectors:

massive, massless, and mixed-mass. Schematically

S =

(
S•• S◦•

S•◦ S◦◦

)
, (5.20)
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where S•• scatters two massive particles, S◦◦ scatters two massless ones, and the remaining

blocks describe mixed-mass scattering.31

Below, we will construct the S matrix block by block, having particular care to keep

track of the number of independent scalar factor that we should allow for. We will come

back to those factors at the end of the discussion.

5.2.1 Massive sector (••)

In the massive sector, the psu(1|1)4c.e. modules are ̺L⊗̺L and ̺R⊗̺R, which we labelled

“left” and “right” depending on their eigenvalues under M. The S matrix that scatters

two left-modules is then

left - left: SLL ⊗̂SLL . (5.21)

In a similar way, the matrix scattering a left excitation with a right one is

left - right: SLR ⊗̂SLR . (5.22)

These two matrices can in principle be multiplied by two arbitrary scalar factors containing

the dressing factors, which we call σ•• and σ̃•• respectively. The two remaining blocks (RR

and RL) can be obtained in a similar way, and moreover are related to the LL and LR

blocks by left-right symmetry. In particular, this symmetry constrains the RR and RL

scalar factors in terms of σ•• and σ̃••.

The massive fermions are also charged under su(2)•. It is easy to see that invariance

under such transformations is guaranteed by the tensor product structure, so that no

additional requirement should be imposed on S••. Therefore, the massive sector of our

S matrix is given precisely by the matrix proposed in [34], and schematically reads

S•• =

(
σ•• SLL⊗̂SLL σ̃•• SRL⊗̂SRL

σ̃•• SLR⊗̂SLR σ•• SRR⊗̂SRR

)
, (5.23)

5.2.2 Mixed-mass sector (•◦ and ◦•)

In the mixed-mass sector we scatter one massive particle with one massless one, or vice

versa. Let us focus on the former possibility. Massive excitations are given by ̺L⊗̺L or

̺R⊗̺R, while massless ones consist of two identical modules32 of the form ̺L⊗˜̺L, which
together form a doublet of su(2)◦. Let us consider first the case where the massive particles

have left flavor. Then we find two blocks (one for each ̺L⊗˜̺L module), each of the form

massive (left) - massless: SLL ⊗̂SLL̃ . (5.24)

The relative coefficient between the blocks is fixed by su(2)◦ action.

31The use of the • and ◦ symbols here to denote massive and massless excitations respectively is remi-

niscent of the notation introduced for the algebras su(2)• and su(2)◦. In fact, only massive fermions are

charged under su(2)•, and all massless excitations are charged under su(2)◦.
32Recall that we could equivalently (up to a change of basis) obtain either or both of these two modules

from the massless limit of ̺L⊗˜̺L or ̺R⊗˜̺R. For definiteness, we take the former representation for all

massless particles.
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If instead we started from a right massive particle, we would have found two blocks of

the form

massive (right) - massless: SRL ⊗̂SRL̃ , (5.25)

which again form a doublet of su(2)◦.

The two pairs of blocks of (5.24) and (5.25) are related to each other by left-right

symmetry. Therefore, we are left only with a single undetermined scalar factor for the

scattering of a massive particle with a massless one, i.e. for the whole S•◦. We denote the

corresponding dressing phase as σ•◦, and we have

S•◦ = σ•◦
[(

SLL⊗̂SLL̃

)
⊕
(
SRL⊗̂SRL̃

)]⊕2
. (5.26)

If we now consider the scattering of a massless particle with a massive one, analogous

considerations yield the S◦• up to a dressing factor σ◦•,

S◦• = σ◦•
[(

SLL⊗̂SL̃L

)
⊕
(
SLR⊗̂SL̃R

)]⊕2
. (5.27)

5.2.3 Massless sector (◦◦)

We are left with the scattering of massless particles, each transforming in two copies of

̺L⊗˜̺L. Constructing the S matrix for these psu(1|1)4c.e. modules would lead to 16 seemingly

unrelated blocks. However, each of the modules is part of a su(2)◦ doublet. As a result,

the blocks must arrange themselves in an su(2)◦ covariant expression. In other words we

may decompose S◦◦ as

Ssu(2) ⊗
(
SLL ⊗̂ SL̃L̃

)
, (5.28)

and the su(2) invariant S matrix takes the familiar form33

Ssu(2)(p, q) =
1

1 + ςpq

(
Π+ ςpq1

)
, (5.29)

in terms of the permutation operator Π and of an undetermined function ςpq which we will

constrain later. The action of Ssu(2) can be represented in a block matrix form, whereby

the whole S◦◦ takes the form




SLL⊗̂SL̃L̃ 0 0 0

0
ςpq

1+ςpq
SLL⊗̂SL̃L̃ 1

1+ςpq
SLL⊗̂SL̃L̃ 0

0 1
1+ςpq

SLL⊗̂SL̃L̃ ςpq
1+ςpq

SLL⊗̂SL̃L̃ 0

0 0 0 SLL⊗̂SL̃L̃


 (5.30)

up to an overall coefficient containing the dressing factor σ◦◦.

5.2.4 Normalisation of the sectors

Before moving on to discuss the non-linear constraints on the S matrix it is convenient to

fix its normalisation. There is some arbitrariness in doing so because, as we mentioned,

any of the blocks discussed above can be multiplied by an arbitrary prefactor.

33Recall that in our notation the matrices S do not permute the excitations, cf. equation (5.7).
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Here we chose these prefactors in such a way as to reproduce scattering elements

that are compatible with perturbative results (in the massive sector, where there exists a

proposal for the dressing factors [35]) and make their symmetry properties as manifest as

possible. In particular, we dictate the form of the following boson-boson processes

〈Y L
q Y

L
p | S |Y L

p Y
L
q 〉 =

x+p

x−p

x−q

x+q

x−p − x+q
x+p − x−q

1− 1
x−

p x+
q

1− 1
x+
p x−

q

1
(
σ••pq
)2 ,

〈Y R
q Y L

p | S |Y L
p Y

R
q 〉 =

x+p

x−p

x−q

x+q

1− 1
x+
p x−

q

1− 1
x+
p x+

q

1− 1
x−

p x+
q

1− 1
x−

p x−

q

1
(
σ̃••pq
)2 ,

(5.31)

〈T ȧa
q Y L

p | S |Y L
p T

ȧa
q 〉 =



1− 1

x+
p x−

q

1− 1
x+
p x+

q

1− 1
x−

p x+
q

1− 1
x−

p x−

q




1/2

1
(
σ•◦pq
)2 ,

〈Y L
q T

ȧa
p | S |T ȧa

p Y L
q 〉 =



1− 1

x+
p x−

q

1− 1
x+
p x+

q

1− 1
x−

p x+
q

1− 1
x−

p x−

q




1/2

1
(
σ◦•pq
)2 ,

(5.32)

〈T ȧa
q T ȧa

p | S |T ȧa
p T ȧa

q 〉 =
1

(
σ◦◦pq
)2 . (5.33)

In the massive sector, this is the same normalisation used in [34, 35]. The necessary

prefactors by which the formulae of appendix Mmust be multiplied are given in appendix O.

5.3 Physical and braiding unitarity

We have already mentioned that braiding and physical unitarity are necessary properties

for the self-consistency of our construction. It is easy to see that they result in (mild)

constrains on the five scalar factors, i.e.

σ••qp =
(
σ••pq
)∗

=
1

σ••pq
, σ̃••qp =

(
σ̃••pq
)∗

=
1

σ̃••pq
, σ◦◦qp =

(
σ◦◦pq
)∗

=
1

σ◦◦pq
,

σ•◦qp =
(
σ•◦pq
)∗

=
1

σ◦•pq
, σ◦•qp =

(
σ◦•pq
)∗

=
1

σ•◦pq
,

(5.34)

together with a constrain on the undetermined function ςpq appearing in the su(2) S matrix,

ςqp =
(
ςpq
)∗

= −ςpq , (5.35)

where ∗ denotes complex conjugation.

5.4 The Yang-Baxter equation

A necessary condition for our S matrix to describe an integrable system is that the Yang-

Baxter equation (YBE) holds. In a matrix language, this is a cubic equation on a three-

particle vector space

1⊗ S(p, q) · S(p, r)⊗ 1 · 1⊗ S(q, r) = S(q, r)⊗ 1 · 1⊗ S(p, r) · S(p, q)⊗ 1 . (5.36)
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Since our S matrix decomposes into a tensor-product structure, so does the Yang-

Baxter equation, which therefore can be checked directly for the fundamental S-matrices of

section 5.1 together with the su(2) S matrix of section 5.2. While the former automatically

satisfy the YBE, the latter in general does not. In fact, it is well known from the study

of the Heisenberg model that, for the su(2)-invariant S matrix (5.29) to be integrable, the

relative coefficient between the identity and the permutation operator cannot be arbitrary.

In our normalisation, the YBE imposes

ς(p, q)− ς(p, r) + ς(q, r) = 0 . (5.37)

Therefore, ςpq must be the difference of two appropriately defined rapidities,

ς(p, q) = i
(
wp − wq

)
, (5.38)

which together with equation (5.33) implies that w(p) is real.

5.5 Crossing invariance

Another natural requirement on our S-martrix is crossing invariance [89]. The crossing

transformation involves analytic continuation of the S matrix to an unphysical channel, so

that momentum and energy flip signs

p→ −p, ωp → −ωp . (5.39)

In string-theory discussions of crossing it is useful to introduce a complex variable z that

takes values in a “rapidity torus”,34 so that the dispersion relations are uniformised [35, 49,

89, 90]. The analytic continuation amounts to z → z+ω2, where ω2 is half of the imaginary

period of the torus. In terms of the Zhukovski parameters x± and of the function η this gives

x±(z + ω2) =
1

x±(z)
, η(z + ω2) =

i

x+(z)
η(z). (5.40)

In order to impose crossing symmetry on the S matrix, one needs to find the matrix Cp

that implements the crossing transformation on the one-particle states. In general Cp is

momentum dependent and it turns out that we will need this dependence for massless

fermions. The charge conjugation matrix Cp acts on the su(2) charges as

J•ḃ
ȧ = −Cp J•ȧ

ḃ
C

−1
p , J◦b

a = −Cp J◦a
b
C

−1
p , (5.41)

and flips the sign of the central charges, giving in particular

H = −CpHC
−1
p , M = −CpMC

−1
p . (5.42)

while for the supercharges one has

Q ȧ
L (z + ω2)

st = −e− i
2
p
C (z)Q ȧ

L (z)C
−1(z),

QRȧ(z + ω2)
st = −e− i

2
p
C (z)QRȧ(z)C

−1(z),

QLȧ(z + ω2)
st = −e+ i

2
p
C (z)QLȧ(z)C

−1(z),

Q ȧ
R (z + ω2)

st = −e+ i
2
p
C (z)Q ȧ

R (z)C
−1(z).

(5.43)

34In this sub-section we use z to denote this rapidity. We trust this causes no confusion with zi used to

denote the tranverse AdS3 massive boson fields used in other sections of this paper.
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Here st denotes supertransposition, defined as Qst = QtΣ. The diagonal matrix Σ is the

fermion-sign matrix, taking values +1,−1 on bosons and fermions respectively.

If we work in the basis

{Y L, ηL1, ηL2, ZL} ⊕ {Y R, ηR1, ηR2, ZR} ⊕ {T 11, T 21, T 12, T 22} ⊕ {χ̃1, χ1, χ̃2, χ2}, (5.44)

then the matrix for the crossing transformation can be written as35

Cp =




0 0 0 0 1 0 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 1 0 0 0 0




⊕




0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −i
ap

bp

0 0 0 0 0 0 i
bp
ap

0

0 0 0 0 0 i
ap

bp
0 0

0 0 0 0 −i
bp
ap

0 0 0




. (5.45)

The crossing equations can be derived in a standard way [5, 49] and are most simply

expressed in terms of the matrix S, and read

C (zp)⊗ 1 · St1(zp + ω2, zq) · C−1(zp)⊗ 1 · S(zp, zq) = 1⊗ 1,

1⊗ C
−1(zq) · St2(zp, zq − ω2) · 1⊗ C (zq) · S(zp, zq) = 1⊗ 1.

(5.46)

In fact, taking the symmetry properties of the scalar factors into account, it will be suf-

ficient to consider the crossing equation in either variable, e.g. the first. Such a matrix

equation automatically yields a left-hand side which is proportional to the identity matrix,

and constrains the normalisation of certain products of S-matrix elements to be one. In

appendix P we write down such constraints in components. They are equivalent to the

following equations for the scalar factors

(
σ••pq
)2 (

σ̃••p̄q
)2

=

(
x−q

x+q

)2
(x−p − x+q )2

(x−p − x−q )(x+p − x+q )
1− 1

x−

p x+
q

1− 1
x+
p x−

q

,

(
σ••p̄q
)2 (

σ̃••pq
)2

=

(
x−q

x+q

)2
(
1− 1

x+
p x+

q

)(
1− 1

x−

p x−

q

)

(
1− 1

x+
p x−

q

)2
x−p − x+q
x+p − x−q

,

(5.47)

(
σ•◦p̄q
)2 (

σ•◦pq
)2

=
x+p

x−p

x−p − x+q
x+p − x+q

1− 1
x+
p x+

q

1− 1
x−

p x+
q

,

(
σ◦•p̄q
)2 (

σ◦•pq
)2

=
x+q

x−q

x+p − x−q
x+p − x+q

1− 1
x+
p x+

q

1− 1
x+
p x−

q

(5.48)

35The solution for Cp is not unique, due to the fact that we are dealing with several irreducible represen-

tations of the symmetry algebra. Nevertheless the crossing equations that we will derive do not depend on

this ambiguity.
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(
σ◦◦p̄q
)2 (

σ◦◦pq
)2

=
ςpq − 1

ςpq

1− 1
x+
p x+

q

1− 1
x+
p x−

q

1− 1
x−

p x−

q

1− 1
x−

p x+
q

, (5.49)

ςp̄q = ςpq − 1, (5.50)

where we indicate the crossed momenta by a bar,

p̄ = p(z + ω2). (5.51)

The equations in (5.47) are the crossing equations for the scalar factors in the massive

sector. They were already derived in [34] and a solution to them was proposed in [35].

Equation (5.49) contraints the scalar factor of the massless sector, while (5.48) gives the

crossing equations for massive-massless and massless-massive scalar factors. Finally, if we

use the fact that the scalar factor ςpq is given by the difference of two rapidities as in equa-

tion (5.38), we have that its crossing symmetry simply amounts to the well-known equation

w(p̄) = w(p) + i . (5.52)

6 Discussion and outlook

In this paper we have given a detailed exposition of the results announced in [59]. We

have found the symmetries of type IIB AdS3 × S3 × T4 superstrings with R-R flux from

the light-cone gauge-fixed action, and illustrated how they can be used to fix the exact

non-perturbative worldsheet S matrix up to five crossing-symmetric dressing factors. We

have also written down the crossing relations that these dressing factors satisfy.

Our results provide a comprehensive framework for investigating the AdS3/CFT2 cor-

respondence using integrability tools. In particular, we have shown how to include the

massless modes into the non-perturbative worldsheet S matrix of the theory, thus solving

this long-standing obstacle.

The next natural step in this investigation is to determine the form of such factors: so

far, a proposal [35] exists only for the ones related to scattering processes in the massive

sector, i.e. σ•• and σ̃••. Finding the remaining factors will likely require new insights into

the analytic structure of the rapidity curve for massless excitations, as well as guidance

from perturbative calculations [40].

Another interesting direction would be to write down the Bethe-Yang equations de-

scribing the asymptotic spectrum and thereby extending the results presented for the mas-

sive modes in [34] to the complete theory. While diagonalising the S matrix is a relatively

straightforward task, it would be very interesting to see how the asymptotic N = (4, 4)

symmetry is realised on the spectrum. It will be particularly interesting to see how the

AFS phase [91] generalises to the massless modes setting and how the semi-classical fea-

tures such as finite gap equations [92, 93] or Landau-Lifshitz equations [94–99] emerge in

this setting. The former would then need to be compared to the recent proposal for the

finite-gap equations of [58].

Since the massless dispersion relation is reminiscent of the ones of giant magnons [83],

it is natural to look for similar classical solitonic solution in the massless sector. It appears
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however that such solutions cannot be straightforwardly constructed only out of bosonic

fields, as the related equations of motions are essentially free.

Additionally, note that our description is valid even in the presence of non-trivial wind-

ing on the torus because we are in the strict decompactification limit. At the level of the

Bethe-Yang equations we should instead be able to distinguish the winding sectors and

torus moduli. It would also be very interesting if a similar set of Bethe ansatz equations

could be extracted from the dual CFT, perhaps by techniques similar to the ones described

in [29]. Further, given the advances in the thermodynamical Bethe Ansatz/quantum spec-

tral curve program [100–107], it would be interesting to see how massless modes will appear

in that setting.

Let us remark that the methods presented here should be applicable to more general

cases. One is the AdS3 × S3 × S3 × S1 background, which is also classically integrable [24]

and whose massive-sector S matrix and Bethe-Yang equations were found in refs. [32, 33].

While this case is somewhat more complicated than the AdS3 × S3 × T4 one — the dual

CFT is still to be precisely identified [108, 109] — the presence of so-called large N = (4, 4)

symmetry yields a rich algebraic structure, which was fruitfully employed in the study of

higher spin theories [110].

It would also be interesting to consider the case where AdS3 backgrounds are supported

by a mixture of R-R and NS-NS fluxes. These are also classically integrable [26], and

interpolate between the pure R-R superstrings described here and supersymmetric WZW

models [20–22]. Recently, considerable effort was put into studying the massive sector of

the mixed-flux AdS3×S3×T4 background, both in terms of their world-sheet S matrix [42,

43, 48] and by semi-classical techniques [44, 47]. The study of their off-shell symmetries

and representations could shed new light on the structure of the massive sector and of the

massless one, which at this time remains quite obscure.

Finally, the prospect of studying deformations and orbifolds of these backgrounds —

as it was done for AdS5 × S5, see e.g. [75, 76] for a review — is extremely appealing,

as they include BTZ-like black-hole backgrounds [10], and also appear to be classically

integrable [111, 112]. This may allow to put, for the first time, an integrability handle on

string theory in black-hole backgrounds.

We are confident that we will witness significant progress in these directions in the

near future, and we hope to report on some of these topics soon.
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A Index conventions

In this appendix we collect our index conventions. Indices α, β, . . . = τ, σ are used for

worldsheet coordinates. Indices m,n, . . . = 0, . . . , 9 are used for spacetime coordinates;

the coordinates m = 0, 5 will form the light-cone directions and are denoted as t and

φ, respectively. Indices A,B, . . . = 0, . . . , 9 are used for so(1, 9) tangent indices. Indices

I, J, . . . = 1, 2 denote the two sets of spacetime spinors.

We will often write expressions in so(4)1 × so(4)2 notation. so(4)1 corresponds to

rotations along the AdS3 × S3 directions transverse to the light-cone directions t and φ.

This is not a symmetry of the theory; nevertheless it will be useful to write the theory

in terms of this algebra. so(4)2 corresponds to rotations along T4. Underlined indices

will always refer to so(4)1. Indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 are used for the two

Weyl spinors of so(4)1, while i, j, . . . = 1, . . . , 4 are used for the vector of so(4)1. Further,

throughout the paper i, j, . . . = 1, 2 will denote the two directions of AdS3 transverse

to t; the corresponding coordinates will be denoted as zi, with the understanding that

z3 ≡ z4 ≡ 0. Similarly, i, j, . . . = 3, 4 will denote the two directions of S3 transverse to

φ; the corresponding coordinates will be denoted as yi, with y1 ≡ y2 ≡ 0. By a slight

abuse of notation we will sometimes write expressions like ǫijzi∂αzj or ǫijyi∂αyj with the

understanding that

ǫijzi∂αzj ≡ z1∂αz2 − z2∂αz1 , ǫijyi∂αyj ≡ y3∂αy4 − y4∂αy3 . (A.1)

Indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 are used for the two Weyl spinors of so(4)2 while

i, j, . . . = 6, . . . , 9 are used for the vector of so(4)2. We raise and lower the spinor indices

using epsilon symbols which we normalize by

ǫ12 = −ǫ12 = +1. (A.2)

B Spinor and gamma matrix conventions

For AdS3 and S3 we consider the three-dimensional gamma matrices36

γ0 = −iσ3, γ1 = σ1, γ2 = σ2, γ3 = σ1, γ4 = σ2, γ5 = σ3. (B.1)

We further define

γ6 = σ1, γ7 = σ2, γ8 = σ3. (B.2)

36Our conventions are the same as those of [24], except for the definition of γ0 and γ2.
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The ten-dimensional gamma matrices are then given by

ΓA = +σ1 ⊗ σ2 ⊗ γA ⊗ 1 ⊗ 1 , A = 0, 1, 2,

ΓA = +σ1 ⊗ σ1 ⊗ 1 ⊗ γA ⊗ 1 , A = 3, 4, 5,

ΓA = +σ1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ γA, A = 6, 7, 8,

Γ9 = −σ2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.3)

We then have
Γ05 = −1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ012 = +σ1 ⊗ σ2 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ345 = +iσ1 ⊗ σ1 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ012345 = + 1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ1234 = − 1 ⊗ 1 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ6789 = + σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ = Γ0123456789 = +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.4)

The gamma matrices satisfy

(ΓA)t = −TΓAT−1, (ΓA)† = −CΓAC−1, (ΓA)∗ = +BΓAB−1, (B.5)

where

T = −iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, C = Γ0, B = −Γ0 T. (B.6)

It is useful to note the relations

T †T = C†C = B†B = 1, Bt = TC†,

T † = −T = +T t, C† = −C = +Ct, B† = +B = +Bt,

T = −Γ01479, C = −iσ1 ⊗ σ2 ⊗ σ3 ⊗ 1⊗ 1,

B = +σ3 ⊗ 1⊗ σ1 ⊗ σ2 ⊗ σ2 = −Γ1479,

BΓB† = Γ∗.

(B.7)

The Majorana spinors satisfy the conditions

θ∗ = Bθ, θ̄ = θ†C = θtT. (B.8)

For all gamma matrices we define the antisymmetric product by

ΓA1A2···An =
1

n!

∑

π∈Sn

(−1)πΓAπ(1)ΓAπ(2) · · ·ΓAπ(n) , (B.9)

where the sum runs over all permutations of the indices and (−1)π denotes the signature of

the permutation. Similar expressions are used for the three-dimensional gamma matrices

γA as well as for the so(4) gamma matrices introduced in section 2.2.5.
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C Killing spinors and a preferred choice of vielbeins

In this appendix we collect some of the computational details that are useful for the calcu-

lation of Killing spinors done in section 2.1. We begin by presenting solutions of the Killing

spinor equation on S3 and AdS3 and, using these, we construct Killing spinors in the full

AdS3×S3×T4 geometry. In parallel with this construction, we also introduce a particular

choice of vielbeins for the geometries in question. Such a choice is of course in some sense

arbitrary and can be gauged away. However, many of the detailed computations performed

in this paper simplify significantly in this frame.

Killing spinors on S3. The S3 metric (2.2) can be written in terms of a diagonal

dreibein37

Em
A =




1

1+
y23+y24

4

0 0

0 1

1+
y23+y24

4

0

0 0
1−

y23+y24
4

1+
y23+y24

4




(C.1)

and the spin connection

ωy3 AB =
1

2




0 − y4

1+
y23+y24

4

0

+ y4

1+
y23+y24

4

0 0

0 0 0


 ,

ωy4 AB =
1

2




0 + y3

1+
y23+y24

4

0

− y3

1+
y23+y24

4

0 0

0 0 0


 ,

ωφAB =




0 0 + y3

1+
y23+y24

4

0 0 + y4

1+
y23+y24

4

− y3

1+
y23+y24

4

− y4

1+
y23+y24

4

0



.

(C.2)

The S3 Killing spinors satisfy [71]

∂mη
I
S3

+
1

4
ωAB
m γABη

I
S3

+
i

2
Em

AγAσ
IJ
3 ηJ

S3
= 0. (C.3)

These equations are solved by

η̃1
S3

=
1√

1 +
y23+y24

4

(
1− iy3

2
γ3 − iy4

2
γ4
)
e−

iφ
2
γ5
η10 ≡ M̂S3η

1
0,

η̃2
S3

=
1√

1 +
y23+y24

4

(
1 +

iy3
2
γ3 +

iy4
2
γ4
)
e+

iφ
2
γ5
η10 ≡ M̌S3η

1
0,

(C.4)

where ηI0 are constant spinors with two complex components.

37We denote the tangent space directions for S3 with A = 3, 4, 5.
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Let us consider the first of these solutions. We note that

M̂−1
S3

γA M̂S3 Em
A = γA M̂A

BEm
B, M̌−1

S3
γA M̌S3 Em

A = γA M̌A
BEm

B, (C.5)

where M̂AB and M̌AB are orthogonal matrices. Using these matrices we can introduce

new dreibeins, obtained by a rotation in tangent space

K̂A
m = M̂A

B Em
B , Ǩm

A = M̌A
BEm

B . (C.6)

The components of the inverse dreibein are given by a fairly compact expression and can

be written in the factorized form

K̂A
m =



+cosφ +sinφ 0

− sinφ +cosφ 0

0 0 1







1 +
y23−y24

4 +y3y4
2 − y4

1−
y23+y24

4

+y3y4
2 1− y23−y24

4 + y3

1−
y23+y24

4

+y4 −y3 1



,

ǨA
m =



+cosφ − sinφ 0

+ sinφ +cosφ 0

0 0 1







1 +
y23−y24

4 +y3y4
2 + y4

1−
y23+y24

4

+y3y4
2 1− y23−y24

4 − y3

1−
y23+y24

4

−y4 +y3 1



.

(C.7)

Like all vielbeins, the K̂n
A are covariantly constant

D̂mK̂n
A = ∂mK̂n

A − Γk
mnK̂k

A + ω̂m
A
BK̂

B
n = 0 . (C.8)

Here, ω̂mAB is the spin connection in the rotated tangent space. K̂m
A and ω̂mAB further

satisfy the relation

ω̂m
A
BK̂n

B + ω̂n
A
BK̂m

B = 0 , (C.9)

which is not true for generic vielbeins and spin-connections. Equations (C.8) and (C.9)

together give the relation

D̂mK̂n
A + D̂nK̂m

A = ∂mK̂n
A + ∂nK̂m

A − 2Γk
mnK̂k

A = 0. (C.10)

This is the Killing vector equation; similar equations hold for Ǩn
A.

The vectors K̂m
A and Ǩm

A together generate the so(4) = su(2) ⊕ su(2) isometry

algebra of S3,

[K̂A, K̂B] = +2ǫAB
CK̂C , [ǨA, ǨB] = −2ǫAB

CǨC , [K̂A, ǨB] = 0. (C.11)

Killing spinors on AdS3. We consider the AdS3 metric

ds2
AdS3

= −
(
1 +

z21+z22
4

1− z21+z22
4

)2

dt2 +

(
1

1− z21+z22
4

)2

(dz21 + dz22), (C.12)

– 48 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
6

with the diagonal dreibein38

Em
A =




1+
z21+z22

4

1−
z21+z22

4

0 0

0 1

1−
z21+z22

4

0

0 0 1

1−
z21+z22

4



. (C.13)

and the spin connection

ωt AB =




0 − z1

1−
z21+z22

4

− z2

1−
z21+z22

4

+ z1

1−
z21+z22

4

0 0

+ z2

1−
z21+z22

4

0 0



,

ωz1 AB =
1

2




0 0 0

0 0 + z2

1−
z21+z22

4

0 − z2

1−
z21+z22

4

0


 ,

ωz2 AB =
1

2




0 0 0

0 0 − z1

1−
z21+z22

4

0 + z1

1−
z21+z22

4

0


 .

(C.14)

The AdS3 Killing spinors satisfy [70, 71]

∂αǫ
I
AdS3 +

1

4
ωAB
α γABǫ

I
AdS3 +

1

2
Eα

AγAσ
IJ
3 ǫJAdS3 = 0, (C.15)

These equations have the solutions

ǫ̃1AdS3 =
1√

1− z21+z22
4

(
1− z1

2
γ1 − z2

2
γ2
)
e+

t
2
γ0
ǫ10 ≡ M̂AdS3ǫ

1
0,

ǫ̃2AdS3 =
1√

1− z21+z22
4

(
1 +

z1
2
γ1 +

z2
2
γ2
)
e−

t
2
γ0
ǫ20 ≡ M̌AdS3ǫ

2
0,

(C.16)

where ǫI0 are constant spinors.

Like we did for the S3 we introduce matrices M̂A
B and M̌A

B

M̂−1
AdS3

γA M̂AdS3 EmA = γA M̂A
BEmB, M̌−1

AdS3
γA M̌AdS3 EmA = γA M̌A

BEmB,

(C.17)

These matrices are orthogonal with respect to a metric of signature (−1,+1,+1). The

rotated dreibeins are defined by

K̂m
A = M̂A

BEm
B, Ǩm

A = M̌A
BEm

B, (C.18)

38For AdS3 we denote the tangent space directions A = 0, 1, 2.
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are their inverses can be written in components as

K̂A
m =



1 0 0

0 + cos t +sin t

0 − sin t +cos t







+1 +z2 −z1
+ z2

1+
z21+z22

4

1− z21−z22
4 − z1z2

2

− z1

1+
z21+z22

4

− z1z2
2 1 +

z21−z22
4



,

ǨA
m =



1 0 0

0 + cos t − sin t

0 + sin t +cos t







+1 −z2 +z1

− z2

1+
z21+z22

4

1− z21−z22
4 − z1z2

2

+ z1

1+
z21+z22

4

− z1z2
2 1 +

z21−z22
4



.

(C.19)

Like in the S3 case these dreibeins are Killing vectors satisfying the so(2, 2) = sl(2)⊕ sl(2)

algebra

[K̂A, K̂B] = +2ǫAB
CK̂C , [ǨA, ǨB] = −2ǫAB

CǨC , [K̂A, ǨB] = 0. (C.20)

Killing spinors on AdS3 × S3 × T4. The above constructions of Killing spinors on

AdS3 and S3 can readily be used to show that the spinors (2.7) satisfy the Killing spinor

equations (2.4). Writing the Killing spinors in the penta-spinor notation used to define the

gamma matrices in appendix B, we have

ε1 =

(
1

0

)
⊗
(
0

1

)
⊗ ǫ̃1AdS3 ⊗ η̃1S3 ⊗ ψ

1
0 = M̂

[(
1

0

)
⊗
(
0

1

)
⊗ ǫ10 ⊗ η10 ⊗ ψ1

0

]
,

ε2 =

(
1

0

)
⊗
(
0

1

)
⊗ ǫ̃2AdS3 ⊗ η̃2S3 ⊗ ψ

2
0 = M̌

[(
1

0

)
⊗
(
0

1

)
⊗ ǫ20 ⊗ η20 ⊗ ψ2

0

]
,

(C.21)

where ǫI0, η
I
0 and ψI

0 are constant two-component spinors. In this basis, the matrices M̂

and M̌ are given by

M̂ = 1⊗ 1⊗ M̂AdS3 ⊗ M̂S3 ⊗ 1, M̌ = 1⊗ 1⊗ M̌AdS3 ⊗ M̌S3 ⊗ 1, (C.22)

and satisfy

M̂ tT = M̂−1 T, M̌ tT = M̌−1 T, M̂ †Γ0 = M̂−1 Γ0, M̌ †Γ0 = M̌−1 Γ0. (C.23)

One can easily check that the Killing spinors εI are chiral in the 5+1 and 9+1 dimensional

sense
1

2
(1 + Γ012345)εI = 0,

1

2
(1− Γ0123456789)εI = 0 . (C.24)

Again we introduce orthogonal matrices M̂AB and M̌AB satisfying

M̂−1ΓAM̂ = ΓBM̂B
A, M̌−1ΓAM̌ = ΓBM̌B

A. (C.25)

These matrices are block diagonal,

M̂ = M̂AdS3 ⊕ M̂S3 ⊕ 14, M̌ = M̌AdS3 ⊕ M̌S3 ⊕ 14 , (C.26)
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and are used in equation (2.13) to define a preferred set of vielbeins K̂m
A and Ǩm

A used in

much of the paper. The tangent space rotations above only affect the AdS3×S3 directions

A = 0, . . . , 5 but leave the T4 directions i = 6, . . . , 9 untouched. It is therefore convenient

to introduce the contractions

/̄Em =
5∑

A=0

Em
AΓA, /̂Km =

5∑

A=0

K̂m
AΓA,

/̄̄Em =
9∑

i=6

Em
iΓi, /̌Km =

5∑

A=0

Ǩm
AΓA,

(C.27)

of the various vielbeins in the two subspaces. We also sometimes use ¯̄Em
A to denote the

A = 6, . . . , 9 componentes of the vielbein.

After performing the tangent space rotations we find new spin connections ω̂mAB and

ω̌mAB, and corresponding covariant derivatives D̂m and Ďm satisfying

D̂m ≡ M̂−1Dm M̂ = M̂−1

(
∂m +

1

4
ωAB
m ΓAB

)
M̂ = ∂m +

1

4
ω̂AB
m ΓAB, (C.28)

and similar for Ďm. The spin connections can be written as

1

4
/̂ωm = −1

4
/̂Km(Γ012 + Γ345)− 1

4
(Γ012 + Γ345) /̂Km,

1

4
/̌ωm = +

1

4
/̌Km(Γ012 + Γ345) +

1

4
(Γ012 + Γ345) /̌Km,

(C.29)

which leads to

∂m +
1

4
/ωm +

1

24
/F /Em = M̂

(
∂m −

1

4

(
/̂Km + /̄̄Em

)
Γ012

(
1 + Γ012345

))
M̂−1,

∂m +
1

4
/ωm −

1

24
/F /Em = M̌

(
∂m +

1

4

(
/̌Km + /̄̄Em

)
Γ012

(
1 + Γ012345

))
M̌−1.

(C.30)

D Proof of the identity (2.24)

To prove the identity (2.24) we write

ǫαβ∂α
(
M̌−1M̂ /̂Kβ

)
(1− Γ012345) = ǫαβ∂αX

m∂βX
n
[
∂m
(
M̌−1 /EnM̂

)]
(1− Γ012345). (D.1)

The expression in the square brackets is antisymmetrized in m and n. By multiplying it

from the left and the right by M̌ and M̂−1 we get

M̌∂[m
(
M̌−1 /̄En]M̂

)
M̂−1 = ∂[m /̄En] +

(
M̌∂[mM̌

−1
)
/̄En] + /̄E[m

(
M̂∂m]M̂

−1
)
. (D.2)

Using the relations

1

4
/ωm =

1

4
M̂ /̂ωmM̂

−1 + M̂∂mM̂
−1 =

1

4
M̌ /̌ωmM̌

−1 + M̌∂mM̌
−1 (D.3)
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we find

M̌∂[m
(
M̌−1 /̄En]M̂

)
M̂−1 = ∂[m /̄En] +

1

4

(
/ω[m

/̄En] + /̄E[m/ωn]

)

− 1

4
M̌ /̌ω[m

/̌Kn]M̌
−1 − 1

4
M̂ /̂K [m /̂ωn]M̂

−1.

(D.4)

The first term on the right-hand side can be shown to be zero using the covariant constancy

of the vielbein. Using the expressions for the spin connection in section C we can check

that the second term is proportional to the projector (1 + Γ0123456). Hence the expression

appearing in (2.24) vanishes.

E Useful identities for so(4) gamma matrices

The following identities involving blocks of the so(4) gamma matrices γ̂i and τ̂ i are useful

γiγ̃j = +δij + γij , τ iτ̃ j = −δij + τ ij ,

γ̃iγj = +δij + γij , τ̃ iτ j = −δij + τ ij ,

γiγ̃jγk = +ǫijklγl + δijγk − δikγj + δjkγi,

γ̃iγj γ̃k = −ǫijklγ̃l + δij γ̃k − δikγ̃j + δjkγ̃i,
(E.1)

γiγ̃jγkγ̃l = δjkδil − δjlδik + δklδij + ǫijkl − ǫjklmγim + δjkγil − δjlγik + δklγij ,

γ̃iγj γ̃kγl = δjkδil − δjlδik + δklδij − ǫijkl + ǫjklmγ̃im + δjkγ̃il − δjlγ̃ik + δklγ̃ij ,

τ̃kτ ij = ǫkijlτ̃l − δkiτ̃ j + δkj τ̃ i .

We also use the relations

(τ̃ i)ȧaǫ
ab(τ̃ j)ḃb = −δijǫȧḃ + (τ̃ ij)ȧḋ ǫ

ḋḃ, (τ̃ i)ȧa (τ̃
i)ḃb = +2ǫȧḃǫab. (E.2)

F Relations between ΓA and so(4)1 ⊕ so(4)2 gamma matrices

Let us relate the action on the fermions of the ten dimensional gamma matrices of ap-

pendix B with the action of the so(4)1⊕so(4)2 gamma matrices introduced in section 2.2.5.

The chiral spinors ηI and χI have eigenvalue +1 under Γ0123456789. Here we write the action

of the gamma matrices that preserve this chirality. Performing the change of basis (2.55)
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we find the decomposition

TΓ0 = − σ3 ⊗ 1 ⊗ σ1 ⊗ σ2 ⊗ σ2 → −
(
+ǫ 0

0 +ǫ

)
⊗
(
+ǫ 0

0 +ǫ

)

TΓ1 = +iσ3 ⊗ 1 ⊗ σ3 ⊗ σ2 ⊗ σ2 → −i
(

0 +ǫγ1

−ǫγ̃1 0

)
⊗
(
+ǫ 0

0 +ǫ

)
,

TΓ2 = − σ3 ⊗ 1 ⊗ 1 ⊗ σ2 ⊗ σ2 → −i
(

0 +ǫγ2

−ǫγ̃2 0

)
⊗
(
+ǫ 0

0 +ǫ

)
,

TΓ3 = + σ3 ⊗ σ3 ⊗ σ2 ⊗ σ3 ⊗ σ2 → −i
(

0 +ǫγ3

−ǫγ̃3 0

)
⊗
(
+ǫ 0

0 −ǫ

)
,

TΓ4 = +iσ3 ⊗ σ3 ⊗ σ2 ⊗ 1 ⊗ σ2 → −i
(

0 +ǫγ4

−ǫγ̃4 0

)
⊗
(
+ǫ 0

0 −ǫ

)
,

TΓ5 = − σ3 ⊗ σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2 → +

(
+ǫ 0

0 −ǫ

)
⊗
(
+ǫ 0

0 −ǫ

)
,

TΓ6 = − σ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ σ3 → −i
(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(

0 −ǫτ6
+ǫτ̃6 0

)
,

TΓ7 = −iσ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ 1 → −i
(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(

0 −ǫτ7
+ǫτ̃7 0

)
,

TΓ8 = + σ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ σ1 → −i
(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(

0 −ǫτ8
+ǫτ̃8 0

)
,

TΓ9 = +i1 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 → −i
(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(

0 −ǫτ9
+ǫτ̃9 0

)
,

(F.1)

where the matrix T is the transpose intertwiner defined in appendix B, and the arrows

indicate the change of basis as well as a restriction to the upper left 16 × 16 block. The

symbol ǫ represents the antisymmetric tensor. We further find

TΓ012 = −σ3 ⊗ 1 ⊗ σ2 ⊗ σ2 ⊗ σ2 → +

(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(
+ǫ 0

0 +ǫ

)
,

TΓ345 = −σ3 ⊗ σ3 ⊗ σ2 ⊗ σ2 ⊗ σ2 → +

(
+ǫγ34 0

0 −ǫγ̃34

)
⊗
(
+ǫ 0

0 −ǫ

)
,

(F.2)

and

Γ1234 = −1 ⊗ 1 ⊗ σ3 ⊗ σ3 ⊗ 1 → +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ6789 = +σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 → +1 ⊗ 1 ⊗ σ3 ⊗ 1 ,

Γ05 = −1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ 1 → +σ3 ⊗ 1 ⊗ σ3 ⊗ 1 .

(F.3)
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It is also useful to note that

Γ12 → +γ̂12 ⊗ 1,

Γij → +γ̂ij ⊗ τ̂6789, for i = 1, 2, j = 3, 4,

Γ34 → +γ̂34 ⊗ 1,

Γij → −1⊗ τ̂ ij .

(F.4)

G LWZ in so(4)1 ⊕ so(4)2 components

In this appendix we write down the expression for LWZ in terms of so(4)1⊕so(4)2 bispinors
introduced in section 2.2.5. In order to do this notice first that the matrixM0, when written

after the basis change (2.55), is of the form

M0 = 12 ⊗m0 ⊗ 14 , (G.1)

where m0 is a 4× 4 matrix. In other words it acts non-trivially only on so(4)1. Explicitly

we find

m0 =
1√(

1− z2

4

)(
1 + y2

4

)

(
1− iǫijzi

2

(
0 +γj

−γ̃j 0

))(
1− iǫklyk

2

(
0 +γl

+γ̃l 0

))
(G.2)

and it is also useful to note

m2
0 =




(
1+ z2

4

)(
1− y2

4

)
−ǫijǫklziykγjl(

1− z2

4

)(
1+ y2

4

) −i
(
1+ z2

4

)
ǫijyiγj+

(
1− y2

4

)
ǫijziγj(

1− z2

4

)(
1+ y2

4

)

−i
(
1+ z2

4

)
ǫijyiγ̃j−

(
1− y2

4

)
ǫijziγ̃j(

1− z2

4

)(
1+ y2

4

)
(
1+ z2

4

)(
1− y2

4

)
+ǫijǫklziykγ̃jl(

1− z2

4

)(
1+ y2

4

)


 . (G.3)

The above matrices are written in block form, with the blocks having the same index

structure as that given in equation (2.50). Using this block structure we define

m2
0 ≡

(
(m2

0)
a
b (m2

0)
a
ḃ

(m2
0)

ȧ
b (m2

0)
ȧ
ḃ

)
. (G.4)

It is straightforward to check that

m−2
0 ≡

(
(m2

0)
a
b −(m2

0)
a
ḃ

−(m2
0)

ȧ
b (m2

0)
ȧ
ḃ

)
. (G.5)

Equipped with these observations, it is now straightforward though laborious to express

LWZ given in equation (2.34), in terms of so(4)1 ⊕ so(4)2 bispinor fermions,

LWZ = ǫαβ
(
2iĚ+

α η̄2m
2
0∂βη1 + 2iÊ+

α η̄1m
2
0∂βη2 + 2iĚ+

α χ̄2m
2
0∂βχ1 + 2iÊ+

α χ̄1m
2
0∂βχ2

+
∑

i=1,2

(
Êi

αη̄1γ̃
im2

0∂βη2 − Ěi
αη̄2γ̃

im2
0∂βη1 + Ěi

αχ̄2γ
im2

0∂βχ1 − Ěi
αχ̄1γ

im2
0∂βχ2

)
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+
∑

i=3,4

(
Ěi

αη̄2γ̃
im2

0∂βη1 − Êi
αη̄1γ̃

im2
0∂βη2 + Ěi

αχ̄2γ
im2

0∂βχ1 − Ěi
αχ̄1γ

im2
0∂βχ2

)

− 2Ei
α

(
χ̄2γ

34m2
0τ

i∂βη1 − χ̄1γ
34m2

0τ
i∂βη2

)

− 2i
(
Ê+

α χ̄1m
2
0γ

34χ2 − Ě+
α χ̄2m

2
0γ

34χ1

)
∂βx

−

− 2i
(
Ê+

α η̄1m
2
0γ̃

34η2 − Ě+
α η̄2m

2
0γ̃

34η1
)
∂βx

+

+
(
Ěi

αχ̄2γ
im2

0γ
34χ1 + Êi

αχ̄1γ
im2

0γ
34χ2

)
∂βx

−

−
∑

i=1,2

(
Ěi

αη̄2γ̃
im2

0γ̃
34η1 + Êi

αη̄1γ̃
im2

0γ̃
34η2

)
∂βx

+

+
∑

i=3,4

(
Ěi

αη̄2γ̃
im2

0γ̃
34η1 + Êi

αη̄1γ̃
im2

0γ̃
34η2

)
∂βx

+

− 2Ei
α

(
χ̄2γ

34m2
0γ̃

34τ iη1 + χ̄1γ
34m2

0γ̃
34τ iη2

)
∂βx

+

+
i

2
Ei

αE
j
β

(
χ̄2γ

34m2
0τ

ijχ1 − χ̄1γ
34m2

0τ
ijχ2

)
∂βx

+

− 2iĚ+
α Ě

−
β χ̄2γ

34m2
0χ1 + 2iÊ+

α Ê
−
β χ̄1γ

34m2
0χ2

+ 2
(
Ě+

α Ě
i
βχ̄2γ

iγ̃34m2
0χ1 − Ê+

α Ê
i
βχ̄1γ

iγ̃34m2
0χ2

)

− i

2

(
Ěi

αĚ
j

βχ̄2γ
ijγ34m2

0χ1 − Êi
αÊ

j

βχ̄1γ
ijγ34m2

0χ2

))
. (G.6)

In some terms in the above expressions we have written out the sums over indices i = 1, 2

and i = 3, 4 separately. In all terms where there are no explicit summation there is an

implicit summation over the indices i, j = 1, . . . , 4 and i, j = 6, . . . , 9. As expected, many

of the terms above break the so(4)1 explicitly.

H Equations of motion

In this appendix we write down the bosonic and fermionic equations of motion for the

physical fields of the fully gauge-fixed theory to leading order in fermionic fields and sub-

leading order in bosonic fields. The bosonic equations of motion are

z̈i =
′′

zi − zi + (z2 − y2) ′′

zi + (2z · ′

z − y · ′

y)
′

zi − y · ẏ żi

+
1

2

(
y2 − ẏ2 − ′

y2 − 2
′

z2 − ẋ2 − ′

x2
)
zi + · · · , (H.1)

ÿi =
′′

yi − yi + (z2 − y2) ′′

yi + (z · ′

z − 2y · ′

y)
′

yi + z · ż ẏi

+
1

2

(
ż2 +

′

z2 − z2 + 2
′

y2 + ẋ2 +
′

x2
)
yi + · · · , (H.2)

ẍi =
′′

xi + (z2 − y2) ′′

xi + (z · ′

z − y · ′

y)
′

xi + (z · ż − y · ẏ)ẋi + · · · . (H.3)

The fermionic equations of motion are

2η̇1 =− 2
′

η2 − 2γ̃34η1 + ǫij(zi
′

zj − yi ′

yj)
′

η1 +
(
y · ′

y − z · ′

z + (yi
′

zj − zi ′

yj)γ̃
ij
)
η2

+
(
y2 − z2 + (żi + ẏi)(zj − yj)γ̃34γ̃iγj

)
′

η2 +
(
y · ′

y − z · ′

z + (zi
′

yj − yi ′

zj)γ̃
34γ̃ij

)
η̇2

+ (zi − yi) ′

xiγ̃
iτ̃ iχ̇2 − (zi − yi)ẋiγ̃iτ̃ i ′

χ2
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+
(
(żi − ẏi) ′

xi − (
′

zi − ′

yi)ẋi + (zi − yi)ẋiγ̃34
)
γ̃iτ̃ iχ2 + · · · , (H.4)

2η̇2 =− 2
′

η1 + 2γ̃34η2 − ǫij(zi ′

zj − yi ′

yj)
′

η2 +
(
y · ′

y − z · ′

z + (yi
′

zj − zi ′

yj)γ̃
ij
)
η1

+
(
y2 − z2 − (żi + ẏi)(zj − yj)γ̃34γ̃iγj

)
′

η1 −
(
y · ′

y − z · ′

z + (zi
′

yj − yi ′

zj)γ̃
34γ̃ij

)
η̇1

− (zi − yi) ′

xiγ̃
iτ̃ iχ̇1 + (zi − yi)ẋiγ̃iτ̃ i ′

χ1

−
(
(żi − ẏi) ′

xi − (
′

zi − ′

yi)ẋi − (zi − yi)ẋiγ̃34
)
γ̃iτ̃ iχ1 + · · · , (H.5)

4χ̇1 =− 4
′

χ2 + 2ǫij(yi − zi) ′

xiγ
jτ iη2 − 2(yi − zi) ′

xiγ
jτ iη̇2 + 2(yi − zi)ẋiγiτ i ′

η2

+ ǫij(zi
′

zj − yi ′

yj)
′

χ1 + (ẋ2 + ẏ2 + ż2 − ′

x2 − ′

y2 − ′

z2 − y2 − z2)γ34χ1

+ 2
(
ẋi

′

xjγ
34τ ij +

1

2
ǫij(ẏi

′

yj − żi ′

zj) + (yi − zi)( ′

yj +
′

zj)γ
j γ̃i − (ẏi

′

zj + żi
′

yj)γ
34γji

)
χ2

+ 2
(
y2 − z2 − (zi − yi)(żj − ẏj)γ34γj γ̃i

)
′

χ2

+
(
y · ′

y + z · ′

z − 2(zi
′

yj +
′

zjyi)γ
ij
)
γ34χ̇2 + · · · , (H.6)

4χ̇2 =− 4
′

χ1 + 2ǫij(yi − zi) ′

xiγ
jτ iη1 + 2(yi − zi) ′

xiγ
jτ iη̇1 − 2(yi − zi)ẋiγiτ iη′1

− ǫij(zi ′

zj − yi ′

yj)
′

χ2 − (ẋ2 + ẏ2 + ż2 − ′

x2 − ′

y2 − ′

z2 − y2 − z2)γ34χ2

− 2
(
ẋi

′

xjγ
34τ ij +

1

2
ǫij(ẏi

′

yj − żi ′

zj)− (yi − zi)( ′

yj +
′

zj)γ
j γ̃i − (ẏi

′

zj + żi
′

yj)γ
34γji

)
χ1

+ 2
(
y2 − z2 + (zi − yi)(żj − ẏj)γ34γj γ̃i

)
′

χ1

−
(
y · ′

y + z · ′

z − 2(zi
′

yj +
′

zjyi)γ
ij
)
γ34χ̇1 + · · · . (H.7)

I Poisson bracket for ηI and χI

In this appendix we compute the Poisson brackets for ηI and χI . To do this let us write

all the terms in the action that have a τ -derivative acting on the fermions up to quadratic

order in transverse bosons. Keeping only the terms up to the order in the number of fields

that we require, Lkin gives rise to two such terms

−2iγ00
(
η̄1Ê

+
τ Γ

−η̇1 + χ̄1Ê
+
τ Γ

−χ̇1

)
≈ 2i

(
η̄1η̇1 + χ̄1χ̇1

)(
1 +

1

2
(ǫijziżj − ǫijyiẏj)

)
,

−2iγ00
(
η̄2Ě

+
τ Γ

−η̇2 + χ̄2Ě
+
τ Γ

−χ̇2

)
≈ 2i

(
η̄2η̇2 + χ̄2χ̇2

)(
1− 1

2
(ǫijziżj − ǫijyiẏj)

)
.

(I.1)

From LWZ we get additional terms

−iη̄1 /̌EσM
−2
0 η̇2 ≈ +iη̄1γ̃

34η̇2(z · ′

z − y · ′

y)− iη̄1γ̃34γ̃ij η̇2(zi ′

yj + zi
′

yj),

−iη̄2 /̂EσM
+2
0 η̇1 ≈ −iη̄2γ̃34η̇1(z · ′

z − y · ′

y) + iη̄2γ̃
34γ̃ij η̇1(zi

′

yj + zi
′

yj),

−iχ̄1
/̂EσM

−2
0 χ̇2, ≈ −iχ̄1γ

34χ̇2(z · ′

z + y · ′

y)− iχ̄1γ
34γijχ̇2(zi

′

yj − ′

ziyj),

−iχ̄2 /̌EσM
+2
0 χ̇1, ≈ +iχ̄2γ

34χ̇1(z · ′

z + y · ′

y) + iχ̄2γ
34γijχ̇1(zi

′

yj − ′

ziyj),

(I.2)

as well as terms that mix massless and massive fields,

−iη̄1 /̄̄EσM
−2
0 χ̇2 ≈ −iη̄1γ̃iτ̃ iχ̇2(zi − yi) ′

xi,

−iη̄2 /̄̄EσM
+2
0 χ̇1 ≈ +iη̄2γ̃

iτ̃ iχ̇1(zi − yi) ′

xi,

−iχ̄1
/̄̄EσM

−2
0 η̇2 ≈ −iχ̄1ǫγ

iτ iη̇2(zi − yi) ′

xi,

−iχ̄2
/̄̄EσM

+2
0 η̇1 ≈ +iχ̄2γ

iτ iη̇1(zi − yi) ′

xi.

(I.3)
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These terms can be diagonalised by a field redefinition. Let us introduce a new set of

spinors ψa, a = 1, . . . , 4 by

η1 = ψ1 +
1

2
A1aψa, η2 = ψ2 +

1

2
A2aψa, χ1 = ψ3 +

1

2
A3aψa, χ2 = ψ4 +

1

2
A4aψa. (I.4)

The kinetic term then take the canonical form

2iψaǫǫψ̇a, (I.5)

provided the coefficients Aab are chosen as

+A11 = −A22 = +A33 = −A44 = −
1

2
ǫij(ziżj − yiẏj),

+A12 = −A21 = −
1

2
γ̃34(z · ′

z − y · ′

y) +
1

2
γ̃34γ̃ij(zi

′

yj +
′

ziyj),

+A34 = −A43 = +
1

2
γ34(z · ′

z + y · ′

y) +
1

2
γ34γij(zi

′

yj − ′

ziyj),

A13 = A31 = A24 = A42 = 0,

+A14 = −A23 = +
1

2
γ̃iτ̃ i(zi − yi) ′

xi,

+A41 = −A32 = −
1

2
γiτ i(zi − yi) ′

xi.

(I.6)

It is useful to note that the coefficients satisfy

Aab = (ǫǫ)At
ba(ǫǫ). (I.7)

The fermions ψa have canonical Poisson brackets

{ψa, ψb}
PB

= − i
4
δabǫǫ. (I.8)

The Poisson brackets for the ηi and χI then follow immediately and are given in equa-

tion (2.88).

J Some Poisson brackets used in section 2.4.1

To calculate the Poisson bracket between the exponential factor in Q and H we need the

relations

[x−(σ), xi(σ′)]
PB

= +
1

p−

∫ σ

−∞
ds

′

xi(s)δ(s− σ′)

= +
1

p−

′

xi(σ′)Θ(σ − σ′),

[x−(σ),
′

xi(σ′)]
PB

= +
1

p−

∫ σ

−∞
ds ∂σ′(

′

xi(s)δ(s− σ′)

= +
1

p−

′′

xi(σ′)Θ(σ − σ′)− 1

p−

′

xi(σ′)δ(σ − σ′),

[x−(σ), pi(σ
′)]

PB
= − 1

p−

∫ σ

−∞
ds pi(s)∂sδ(s− σ′)

= +
1

p−

′

pi(σ
′)Θ(σ − σ′)− 1

p−
pi(σ)δ(σ − σ′),

(J.1)
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where Θ(σ) is the standard step function. Using these relations we find

[x−(σ),
1

2
(p2(σ′) +

′

x2(σ′))]
PB

=+
1

p2−
∂σ′

[(
p2(σ′) +

′

x2(σ′)
)
Θ(σ − σ′)

]

− 1

p2−

(
p2(σ′) +

′

x2(σ′)
)
δ(σ − σ′)

(J.2)

For the Poisson bracket between the Hamiltonian and the quadratic supercharge we note

[pi(σ)τ̃
iχ1(σ),

1

2
′

x2(σ′)]
PB

= − ′

xi(σ
′)τ̃ iχ1(σ)∂σ′δ(σ − σ′),

[
′

xi(σ)τ̃
iχ2(σ),

1

2
p2(σ′)]

PB
= +pi(σ

′) τ̃ iχ2(σ)∂σδ(σ − σ′),

[pi(σ)τ̃
iχ1(σ), χ1(σ

′)ǫǫ
′

χ2(σ
′)]

PB
= − i

2p−
pi(σ)τ̃

i ′

χ2(σ
′)δ(σ − σ′),

[pi(σ)τ̃
iχ1(σ), χ2(σ

′)ǫǫ
′

χ1(σ
′)]

PB
= +

i

2p−
pi(σ)τ̃

iχ2(σ
′)∂σ′δ(σ − σ′),

(J.3)

and

[piτ̃
iχ1, χ1(ǫγ

34)ǫχ1]
PB

= − i

p−
piγ

34τ̃ iχ1,

[
′

xiτ̃
iχ2, χ2(ǫγ

34)ǫχ2]
PB

= − i

p−

′

xiγ
34τ̃ iχ2,

[pkτ̃
kχ1, χ1(ǫγ

34)(ǫτ ij)χ2]
PB

= − i

2p−
pkγ

34τ̃kτ ijχ2,

[
′

xkτ̃
kχ2, χ2(ǫγ

34)(ǫτ ij)χ1]
PB

= − i

2p−

′

xkγ
34τ̃kτ ijχ1.

(J.4)

We also collect here some formulas that are useful in deriving equation (2.82). First,

note that for a constant α

eαx
−(σ)[Q2(σ), H]

PB
=+

2

p−
∂σ
(
eαx

−

(
′

xiτ̃
iχ1 − piτ̃ iχ2)

)

− 2

p2−
eαx

−(
pi

′

xiγ34 + αp−
′

x−
)
(

′

xiτ̃
iχ1 − piτ̃ iχ2)

+
1

p2−
eαx

−

(p2 +
′

x2)γ34(piτ̃
iχ1 − ′

xiτ̃
iχ2)

(J.5)

and

Q2(σ)[e
αx−(σ), H]

PB
=− 1

p2−
eαx

−(σ)α(p2(σ) +
′

x2(σ))(piγ
34τ̃ iχ1 − ′

xiτ̃
iχ2). (J.6)

Putting this together we find, up to total derivatives of expressions that vanish at ±∞,

[eαx
−Q2, H]

PB
=− 2

p2−

∫ +∞

−∞
dσ eαx

−

pi
′

xi(γ34 − α)( ′

xj τ̃
jχ1 − pj τ̃ jχ2)

− 1

p2−

∫ +∞

−∞
dσeαx

−

(
′

x2 + p2)(γ34 − α)(piτ̃ iχ1 − ′

xiτ̃
iχ2).

(J.7)

Hence, if we set

α = γ34 (J.8)

the expression eαx
−Q2 gives a conserved charge.
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K Derivation of equation (2.89)

In this appendix we give the details of the how equation (2.89) is derived. The various

terms in {j1, j2}
PB

are given by, up to terms quartic in the transverse fields

2ip−{j1,massless, j2,massless}
PB
≈ + 2ẋ · ′

xǫǫ

+ ǫij(ziżj − yiẏj)ẋi ′

xjǫτ̃
ijǫ

− 1

2
(z · ′

z + y · ′

y)(ẋ2 − ′

x2)γ34ǫǫ

− 1

2
(zi

′

yj − ′

ziyj)(ẋ
2 − ′

x2)γijγ34ǫǫ,

2ip−{j1,massless, j2,massive}
PB
≈ − 1

2
(zi − yi)(żj − ẏj)ẋi ′

xjγ
34γiγ̃jǫτ̃ iτ jǫ

− 1

2
(zi − yi)(zj + yj)ẋi

′

xjγ
34γiγ̃jγ34ǫτ̃ iτ jǫ

− 1

2
(zi − yi)( ′

zj − ′

yj)
′

x2γ34γiγ̃jǫǫ,

2ip−{j1,massive, j2,massless}
PB
≈ − 1

2
(żi − ẏi)(zj − yj) ′

xiẋjγ
iγ̃jγ34ǫτ̃ iτ jǫ

− 1

2
(zi + yi)(zj − yj) ′

xiẋjγ
34γiγ̃jγ34ǫτ̃ iτ jǫ

− 1

2
(

′

zi − ′

yi)(zj − yj) ′

x2γiγ̃jγ34ǫǫ,

2ip−{j1,massive, j2,mixed}
PB
≈ − 1

2
(żi − ẏi)(zj − yj)ẋ · ′

xγiγ̃jγ34ǫǫ

− 1

2
(zi + yi)(zj − yj)ẋ · ′

xγ34γiγ̃jγ34ǫǫ

+
1

4
(

′

zi − ′

yi)(zj − yj)(ẋ2 + ′

x2)γiγ̃jγ34ǫǫ,

2ip−{j1,mixed, j2,massive}
PB
≈ − 1

2
(zi − yi)(żj − ẏj)ẋ · ′

xγ34γiγ̃jǫǫ

− 1

2
(zi − yi)(zj + yj)ẋ · ′

xγ34γiγ̃jγ34ǫǫ

+
1

4
(zi − yi)( ′

zj − ′

yj)(ẋ
2 +

′

x2)γ34γiγ̃jǫǫ,

2ip−{j1,massless, j2,mixed}
PB
≈ − (z2 − y2)ẋi ′

xjǫτ̃
ijǫ

+ ziyj ẋi
′

xjγ
ijǫτ̃ iτ jǫ,

2ip−{j1,mixed, j2,massless}
PB
≈ + (z2 − y2)ẋi ′

xiǫτ̃abǫ

− ziyj ′

xiẋjγ
ijǫτ̃ iτ jǫ,

2ip−{j1,massive, j2,massive}
PB
≈ + 2(ż · ′

z + ẏ · ′

y)ǫǫ

+ 2(z · ′

z − y · ′

y)γ34ǫǫ

− 2(zi
′

yj +
′

ziyj)γ
34γijǫǫ,

(K.1)
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2ip−{j1,mixed, j2,mixed}
PB
≈ 0.

Putting this together we find

2ip−{j1, j2}
PB

= +2e+γ34x−

(
(ż · ′

z + ẏ · ′

y + ż · ′

z)ǫǫ+ (z · ′

z − y · ′

y)γ34ǫǫ

− (zi
′

yj +
′

ziyj)γ
34γijǫǫ

)
e−γ34x−

= +e+γ34x−

(
2(ż · ′

z + ẏ · ′

y + ż · ′

z)ǫǫ+ ∂σ(z
2 − y2)γ34ǫǫ

− ∂σ(ziyj)γ34γijǫǫ
)
e−γ34x−

.

(K.2)

L Oscillator algebra

As a preliminary step to facilitate the study of non-perturbative representations, let us

rewrite the supercurrents in components and expand them in terms of oscillators in a

momentum-basis. In this way, it will be easier to read off the form of the representations,

and to deform their dependence on the momentum. In order to elucidate the structure of

the representations it will be sufficient to consider their leading order in a field expansion.

We introduce complex coordinates

Z = −z2 + i z1 , Z̄ = −z2 − i z1 , Y = −y3 − i y4 , Ȳ = −y3 + i y4 , (L.1)

and the corresponding conjugate momenta PZ , PZ̄ and PY , PȲ so that the variables satisfy

canonical commutation relations

[Z(σ1), PZ̄(σ2)] = [Z̄(σ1), PZ(σ2)] = i δ(σ1 − σ2) ,
[Y (σ1), PȲ (σ2)] = [Ȳ (σ1), PY (σ2)] = i δ(σ1 − σ2) .

(L.2)

Similarly, for T4 coordinates we introduce

X12 = −x8 + i x9 , X21 = x8 + i x9 , X11 = x6 − i x7 , X22 = x6 + i x7 , (L.3)

and canonical momenta satisfying

[X ȧa(σ1), Pḃb(σ2)] = i δȧ
ḃ
δab δ(σ1 − σ2) . (L.4)

It will also be useful to expand the fermions in components. For the massive ones we have

(
η1
)ȧȧ

=

(
−e+iπ/4 η̄L2 −e+iπ/4 η̄L1
e−iπ/4 η 1

L −e−iπ/4 η 2
L

)
,

(
η2
)ȧȧ

=

(
−e−iπ/4 ηR2 −e−iπ/4 ηR1
e+iπ/4 η̄ 1

R −e+iπ/4 η̄ 2
R

)
, (L.5)

where we introduced a rotation of e±iπ/4 for later convenience. Similarly, we have

(
χ1

)aa
=

(
e+iπ/4χ̄+2 −e+iπ/4χ̄+1

e−iπ/4χ 1
+ e−iπ/4χ 2

+

)
,
(
χ2

)aa
=

(
−e−iπ/4χ 1

− −e−iπ/4χ 2
−

e+iπ/4χ̄−2 −e+iπ/4χ̄−1

)
. (L.6)
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On the right-hand side of the above expressions for ηI (respectively χI) the indices 1, 2

correspond to the unbroken su(2)• (respectively su(2)◦), and complex conjugation is indi-

cated by a bar. We write superscript su(2)• indices for left massive fermions and subscript

indices for right massive fermions (the opposite for their conjugates) because they trans-

form in the fundamental and anti-fundamental representations, respectively. The canonical

anti-commutation relations take the form

{η̄Lȧ(σ1), η ḃ
L (σ2)} = {η̄ ḃ

R (σ1), ηRȧ(σ2)} = δ ḃ
ȧ δ(σ1 − σ2),

{χ̄+a(σ1), χ
b
+(σ2)} = {χ̄−a(σ1), χ

b
−(σ2)} = δ b

a δ(σ1 − σ2),
(L.7)

Using these expressions, we can write the leading order expression of the charges,

recalling that we take ǫ12 = −ǫ12 = +1,

Q ȧ
L = e−

π
4
i

∫
dσ

(
1

2
PZη

ȧ
L − iZ ′η̄ ȧ

R + iZη ȧ
L − ǫȧḃ

(
i

2
PȲ η̄Lḃ − Ȳ ′η

Rḃ + Ȳ η̄
Lḃ

)

− 1

2
ǫȧḃPḃaχ

a
+ − i(X ȧa)′ χ̄−a

)
,

QRȧ = e−
π
4
i

∫
dσ

(
1

2
PZ̄ηRȧ − iZ̄ ′η̄Lȧ + iZ̄ηRȧ + ǫȧḃ

(
i

2
PY η̄

ḃ
R − Y ′η ḃ

L + Y η̄ ḃ
R

)

+
1

2
Pȧaχ

a
− − iǫȧḃ(X ḃa)′ χ̄+a

)
,

(L.8)

while their Hermitian conjugates can be found directly by

QLȧ = (Q ȧ
L )†, Q ȧ

R = (QRȧ)
†. (L.9)

The identification with the supercharges in (2.63) goes as follows

Q1
L = −(Q1)

21, Q2
L = (Q1)

22, QR1 = (Q2)
12, QR2 = (Q2)

11, (L.10)

where for simplicity we have written QI =
∫
dσ jτI .

We can now introduce ladder operators satisfying canonical (anti-)commutation rela-

tions. Let us define the wavefunction parameters

ω(p,m) =
√
m2 + p2, f(p,m) =

√
ω(p,m) + |m|

2
, g(p,m) = − p

2f(p,m)
, (L.11)

satisfying

ω(p,m) = f(p,m)2 + g(p,m)2, |m| = f(p,m)2 − g(p,m)2, (L.12)

and the short-hand notation

ωp = ω(p,±1) fp = f(p,±1), gp = g(p,±1),
ω̃p = ω(p, 0), f̃p = f(p, 0), g̃p = g(p, 0).

(L.13)
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Then, for the massive bosons we have

aLz(p) =
1√
2π

∫
dσ
√
ωp

(
ωpZ̄ +

i

2
PZ̄

)
e−ipσ,

aRz(p) =
1√
2π

∫
dσ
√
ωp

(
ωpZ +

i

2
PZ

)
e−ipσ,

aLy(p) =
1√
2π

∫
dσ
√
ωp

(
ωpȲ +

i

2
PȲ

)
e−ipσ,

aRy(p) =
1√
2π

∫
dσ
√
ωp

(
ωpY +

i

2
PY

)
e−ipσ,

(L.14)

while for the massive fermions

dLȧ(p) = +
e+iπ/4

√
2π

∫
dσ
√
ωp

ǫȧḃ

(
fp η

ḃ
L − igp η̄ ḃ

R

)
e−ipσ,

d ȧ
R (p) = −e

+iπ/4

√
2π

∫
dσ
√
ωp

ǫȧḃ
(
fp ηRḃ − igp η̄Lḃ

)
e−ipσ.

(L.15)

The corresponding creation operators are found by taking the complex conjugate of the

above expressions, and raising and lowering the su(2) indices by the tensor ǫ, yielding

[a†L z(p1), aL z(p2)] = [a†R z(p1), aR z(p2)] = δ(p1 − p2) ,
[a†L y(p1), aL y(p2)] = [a†R y(p1), aR y(p2)] = δ(p1 − p2) ,
{d ȧ †

L (p1), dLḃ(p2)} = {d
†

Rḃ
(p1), d

ȧ
R (p2)} = δ ȧ

ḃ
δ(p1 − p2) .

(L.16)

For the massless bosons we have

aȧa(p) =
1√
2π

∫
dσ√
ω̃p

(
ω̃pXȧa +

i

2
Pȧa

)
e−ipσ. (L.17)

and for the massless fermions

d̃a(p) =
e−iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃pχ̄+a − ig̃p ǫabχ b

−

)
e−ipσ,

da(p) =
e+iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃p ǫabχ

b
+ − ig̃p χ̄−a

)
e−ipσ.

(L.18)

The commutators for the creation and annihilation operators are then

[a†ȧa(p1), a
ḃb(p2)] = δ ḃ

ȧ δ b
a δ(p1 − p2) ,

{d̃a †(p1), d̃b(p2)} = {d a †(p1), db(p2)} = δ a
b δ(p1 − p2) .

(L.19)

We define states by acting with the creation operators on the vacuum. We have eight

massive excitations

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 , |η ȧ
L 〉 = dȧ†L |0〉 , |ηRȧ〉 = d†

Rȧ |0〉 , (L.20)
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and eight massless ones

|T ȧa〉 = aȧa † |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 . (L.21)

The same notation is used in the main text for the states on which the non-perturbative

S matrix acts.

Finally, the supercharges in terms of ladder operators take the form

Q ȧ
L =

∫
dp

[
(d ȧ †

L aLy + ǫȧḃ a†LzdLḃ)fp + (a†Ryd
ȧ

R + ǫȧḃ d†
Rḃ
aRz)gp

+
(
ǫȧḃ d̃a †aḃa + aȧa †da

)
f̃p

]
,

QRȧ =

∫
dp

[
(d†

RȧaRy − ǫȧḃ a
†
Rzd

ḃ
R )fp + (a†LydLȧ − ǫȧḃ d

ḃ †
L aLz)gp

+
(
da †aȧa − ǫȧḃ aḃa †d̃a

)
g̃p

]
.

(L.22)

Note that these supercharges are manifestly covariant under so(4)2 = su(2)• ⊕ su(2)◦, and

furthermore enjoy a discrete “left/right” symmetry under

aLz ←→ aRz, aLy ←→ aRy, dLȧ ←→ d ȧ
R , (L.23)

and

aaȧ ←→ aaȧ, d̃a ←→ +
g̃p

f̃p
da, da ←→ −

f̃p
g̃p
d̃a, (L.24)

where we also used the fact that f̃2 = g̃2.

M Parametrisation of su(1|1)2
c.e.

S-matrix elements

Here we give an explicit parametrisation of the su(1|1)2c.e. invariant S-matrix elements. We

use the Zhukovski variables introduced in equation (4.21). In the left-left sector we have

ALL
pq = 1, BLL

pq =

(
x−p

x+p

)1/2
x+p − x+q
x−p − x+q

,

CLL
pq =

(
x−p

x+p

x+q

x−q

)1/2
x−q − x+q
x−p − x+q

ηp
ηq
, DLL

pq =

(
x+q

x−q

)1/2
x−p − x−q
x−p − x+q

,

ELL
pq =

x−p − x+p
x−p − x+q

ηq
ηp
, F LL

pq = −
(
x−p

x+p

x+q

x−q

)1/2
x+p − x−q
x−p − x+q

,

(M.1)
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while in the left-right sector

ALR
pq =

(
x+p

x−p

)1/2 1− 1
x+
p x−

q

1− 1
x−

p x−

q

, CLR
pq = 1,

BLR
pq = −2i

h

(
x−p

x+p

x+q

x−q

)1/2
ηpηq

x−p x
+
q

1

1− 1
x−

p x−

q

, DLR
pq =

(
x+p

x−p

x+q

x−q

)1/2 1− 1
x+
p x+

q

1− 1
x−

p x−

q

,

F LR
pq =

2i

h

(
x+p

x−p

x+q

x−q

)1/2
ηpηq

x+p x
+
q

1

1− 1
x−

p x−

q

, ELR
pq = −

(
x+q

x−q

)1/2 1− 1
x−

p x+
q

1− 1
x−

p x−

q

.

(M.2)

Note that for convenience we normalise these S-matrices in a different way from what was

done in [32]. In particular, in order to satisfy unitarity one would need to multiply them

by an appropriate scalar factor.

N Explicit form of the S-matrix elements

For the reader’s convenience we write the explicit form of the S matrix in the different

sectors. To this end, we introduce the graded tensor product ⊗̌ for the matrices S so that

up to prefactors

Spsu(1|1)4 ≈ Ssu(1|1)2 ⊗̌ Ssu(1|1)2 , (N.1)

defined by

(A⊗̌B)KK′,LL′

MM ′,NN ′ = (−1)ǫM′ǫN+ǫLǫK′ AKL
MN BK

′L′

M ′N ′ . (N.2)

Since S and S differ by a permutation matrix, their commutators with (super-)charges are

implemented by different formulas, see (5.4) and (5.8) for a comparison. This also explains

why we need to define a graded tensor product that differs from the one defined in (5.19)

for the case of S.

N.1 The mixed-mass sector

In the following we write the S matrix in the case of a massive excitation that scatters

with a massless excitation. We write only the matrix part of it. These elements need to be

multiplied by the appropriate scalar factors introduced in (O.1). In the case of left massive

excitations that scatter with massless excitations transforming in the ̺L⊗ ˜̺L representation
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of psu(1|1)4c.e. we find

SLL⊗̌SLL̃ |ZL
pT

ȧa
q 〉 =− F LL

pq D
LL
pq |T ȧa

q ZL
p 〉 − F LL

pq E
LL
pq |χ̃a

qη
Lȧ
p 〉 ,

SLL⊗̌SLL̃ |Y L
p T

ȧa
q 〉 =+ALL

pqB
LL
pq |T ȧa

q Y L
p 〉 −ALL

pqC
LL
pq |χa

qη
Lȧ
p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p χ̃a

q〉 =+ F LL
pq B

LL
pq |χ̃a

qη
Lȧ
p 〉+ F LL

pq C
LL
pq |T ȧa

q ZL
p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p χa

q〉 =−ALL
pqD

LL
pq |χa

qη
Lȧ
p 〉+ALL

pqE
LL
pq |T ȧa

q Y L
p 〉 ,

SLL⊗̌SLL̃ |ZL
p χ̃

a
q〉 =+ F LL

pq F
LL
pq |χ̃a

qZ
L
p 〉 ,

SLL⊗̌SLL̃ |Y L
p χ

a
q〉 =+ALL

pqA
LL
pq |χa

qY
L
p 〉 ,

SLL⊗̌SLL̃ |ZL
pχ

a
q〉 =+DLL

pqD
LL
pq |χa

qZ
L
p 〉+ ELL

pqE
LL
pq |χ̃a

qY
L
p 〉+DLL

pqE
LL
pq ǫȧḃ |T ȧa

q ηLḃ
p 〉 ,

SLL⊗̌SLL̃ |Y L
p χ̃

a
q〉 =+BLL

pqB
LL
pq |χ̃a

qY
L
p 〉+ CLL

pqC
LL
pq |χa

qZ
L
p 〉+BLL

pqC
LL
pq ǫȧḃ |T ȧa

q ηLḃ
p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p T ḃa

q 〉 =+DLL
pqB

LL
pq |T ȧa

q ηLḃ
p 〉 − ELL

pqC
LL
pq |T ḃa

q ηLȧ
p 〉

+DLL
pqC

LL
pq ǫ

ȧḃ |χa
qZ

L
p 〉+ ELL

pqB
LL
pq ǫ

ȧḃ |χ̃a
qY

L
p 〉 .

(N.3)

When we scatter a right excitation with a massless one we can write the S-matrix elements

as39

SRL⊗̌SRL̃ |ZR
p T

ȧa
q 〉 =−DLR

pq E
LR
pq |T ȧa

q ZR
p 〉+DLR

pq F
LR
pq |χa

qη
Rȧ
p 〉 ,

SRL⊗̌SRL̃ |Y R
p T

ȧa
q 〉 =+ALR

pqC
LR
pq |T ȧa

q Y R
p 〉 −BLR

pq C
LR
pq |χ̃a

qη
Rȧ
p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χa

q〉 =−DLR
pq A

LR
pq |χa

qη
Rȧ
p 〉+DLR

pq B
LR
pq |T ȧa

q ZR
p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χ̃a

q〉 =+ ELR
pq C

LR
pq |χ̃a

qη
Rȧ
p 〉 − F LR

pq C
LR
pq |T ȧa

q Y R
p 〉 ,

SRL⊗̌SRL̃ |ZR
p χ

a
q〉 =+DLR

pqD
LR
pq |χa

qZ
R
p 〉 ,

SRL⊗̌SRL̃ |Y R
p χ̃

a
q〉 =+ CLR

pq C
LR
pq |χ̃a

qY
R
p 〉 ,

SRL⊗̌SRL̃ |ZR
p χ̃

a
q〉 =+ ELR

pq E
LR
pq |χ̃a

qZ
R
p 〉 − F LR

pq F
LR
pq |χa

qY
R
p 〉+ F LR

pq E
LR
pq ǫȧḃ |T ȧa

q ηRḃ
p 〉 ,

SRL⊗̌SRL̃ |Y R
p χ

a
q〉 =+ALR

pqA
LR
pq |χa

qY
R
p 〉 −BLR

pq B
LR
pq |χ̃a

qZ
R
p 〉 −BLR

pq A
LR
pq ǫȧḃ |T ȧa

q ηRḃ
p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p T ḃa

q 〉 =+BLR
pq F

LR
pq |T ȧa

q ηRḃ
p 〉 −ALR

pqE
LR
pq |T ḃa

q ηRȧ
p 〉

−BLR
pq E

LR
pq ǫ

ȧḃ |χ̃a
qZ

R
p 〉+ALR

pq F
LR
pq ǫ

ȧḃ |χa
qY

R
p 〉 .

(N.4)

After taking into account a proper normalisation (see (O.1)), the S-matrix elements for

left-massless and right-massless scattering can be related by LR symmetry. In order to

do so one needs to implement it on massive and massless excitations as in equations (4.7)

and (4.15).

39To be rigorous we should write the right massive fermion with a lower su(2) index, since the identification

with right psu(1|1)2 representations is correctly implemented only in that case, see equation (4.6). To write

the S matrix we decide to raise this index with ǫab to have a better notation.
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N.2 The massless sector

We write the non-vanishing entries of the two-particle S matrix in the massless sector.

First we focus on the structure fixed by the psu(1|1)4 invariance. For this reason we omit

the indices corresponding to su(2)◦.

SLL⊗̌S L̃L̃ |T ȧ
p T ḃ

q 〉 =− CLL
pqE

LL
pq |T ȧ

q T ḃ
p 〉+BLL

pqD
LL
pq |T ḃ

q T
ȧ
p 〉

+ ǫȧḃ
(
CLL
pqD

LL
pq |χqχ̃p〉+BLL

pqE
LL
pq |χ̃qχp〉

)
,

SLL⊗̌S L̃L̃ |T ȧ
p χ̃q〉 =−BLL

pqF
LL
pq |χ̃qT

ȧ
p 〉 − CLL

pq F
LL
pq |T ȧ

q χ̃p〉 ,

SLL⊗̌S L̃L̃ |χ̃pT
ȧ
q 〉 =− F LL

pq D
LL
pq |T ȧ

q χ̃p〉 − F LL
pq E

LL
pq |χ̃qT

ȧ
p 〉 ,

SLL⊗̌S L̃L̃ |T ȧ
p χq〉 =−BLL

pqF
LL
pq |χqT

ȧ
p 〉 − CLL

pq F
LL
pq |T ȧ

q χp〉 ,

SLL⊗̌S L̃L̃ |χpT
ȧ
q 〉 =− F LL

pq D
LL
pq |T ȧ

q χp〉 − F LL
pq E

LL
pq |χqT

ȧ
p 〉 ,

SLL⊗̌S L̃L̃ |χ̃pχ̃q〉 =−ALL
pqA

LL
pq |χ̃qχ̃p〉 ,

SLL⊗̌S L̃L̃ |χpχq〉 =−ALL
pqA

LL
pq |χqχp〉 ,

SLL⊗̌S L̃L̃ |χ̃pχq〉 =−DLL
pqD

LL
pq |χqχ̃p〉 − ELL

pqE
LL
pq |χ̃qχp〉 − ELL

pqD
LL
pq ǫȧḃ |T ȧ

q T ḃ
p 〉 ,

SLL⊗̌S L̃L̃ |χpχ̃q〉 =−DLL
pqD

LL
pq |χ̃qχp〉 − ELL

pqE
LL
pq |χqχ̃p〉+ ELL

pqD
LL
pq ǫȧḃ |T ȧ

q T ḃ
p 〉 .

(N.5)

The structure fixed by the su(2)◦ symmetry is as follows

Ssu(2) |X a
p Yb

q〉 =
1

1 + ςpq

(
ςpq |Y ′b

qX ′a
p〉+ |Y ′a

qX ′b
p〉
)
, (N.6)

where we use X ,Y,X ′,Y ′ to denote any of the excitations that appear above. The anti-

symmetric function ςpq is further discussed in section 5.4. The full S matrix in the massless

sector is then found by combining the structures fixed by psu(1|1)4c.e. and su(2)◦ and multi-

plying each element by the scalar factor as in (O.1). This S matrix automatically satisfies

the LR-symmetry, where this is implemented on massless excitations as in (4.15).

O Normalization of S-matrix elements

In order to obtain the normalisation of section 5.2.4 we can can multiply each block of the

S matrix by the following prefactors

LL, RR:
x+p

x−p

x−q

x+q

x−p − x+q
x+p − x−q

1− 1
x−

p x+
q

1− 1
x+
p x−

q

1
(
σ••pq
)2 ,

LR, RL:

(
x+q

x−q

)−1 1− 1
x−

p x+
q

1− 1
x+
p x−

q

ζ2pq
1

(
σ̃••pq
)2 ,

(O.1)
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•◦ :
(
x+p

x−p

)−1/2


1− 1

x−

p x+
q

1− 1
x+
p x−

q




1/2

ζpq
1

(
σ•◦pq
)2 ,

◦• :
(
x+q

x−q

)1/2


1− 1

x−

p x+
q

1− 1
x+
p x−

q




1/2

ζ−1
pq

1
(
σ◦•pq
)2 ,

(O.2)

◦◦ :
(
x+p

x−p

x−q

x+q

)1/2
x−p − x+q
x+p − x−q

1
(
σ◦◦pq
)2 , (O.3)

where we defined

ζpq =



1− 1

x−

p x−

q

1− 1
x+
p x+

q




1/2

. (O.4)

P Crossing equations for the S-matrix elements

For completeness we present the crossing equations also in terms of the S-matrix elements.

To obtain simpler expressions we choose to focus on processes involving the highest weight

states of the left, right and massless modules, which are enough to constrain all of the dress-

ing factors. We then rewrite the crossing equations in terms of these scattering processes

and the ones with the conjugates of the highest weight states.

For example, in the massive sector we can consider

A••
pq ≡ 〈Y L

q Y
L
p | S |Y L

p Y
L
q 〉 , B••pq ≡ 〈Y L

q Y
R
p | S |Y R

p Y
L
q 〉 ,

Ã••
pq ≡ 〈ZR

q Y
L
p | S |Y L

p Z
R
q 〉 , B̃••pq ≡ 〈ZR

q Y
R
p | S |Y R

p Z
R
q 〉 .

(P.1)

The two crossing equations are then equivalent to imposing

A••
pqB••p̄q = 1, Ã••

pqB̃••p̄q = 1. (P.2)

Similarly, in the mixed-mass sector one can look at the processes

A•◦
pq ≡ 〈χa

qY
L
p | S |Y L

p χ
a
q〉 , B•◦pq ≡ 〈χa

qY
R
p | S |Y R

p χ
a
q〉 ,

A◦•
pq ≡ 〈Y L

q χ
a
p| S |χa

pY
L
q 〉 , B◦•pq ≡ 〈Y L

q χ̃a p| S |χ̃a pY
L
q 〉 ,

(P.3)

and obtain the corresponding crossing equations by imposing

A•◦
pqB•◦p̄q = 1, A◦•

pqB◦•p̄q = 1. (P.4)

To conclude, in the massless sector we can choose

A◦◦
pq ≡ 〈χa

qχ
a
p| S |χa

pχ
a
q〉 , B◦◦pq ≡ 〈χa

q χ̃a p| S |χ̃a pχ
a
q〉 , (P.5)

and rewrite the crossing equations for σ◦◦pq and wp as

A◦◦
pqB◦◦p̄q = 1. (P.6)
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[31] O. Ohlsson Sax, B. Stefański Jr. and A. Torrielli, On the massless modes of the AdS3/CFT2

integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].

[32] R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic su(1|1)2 S-matrix for

AdS3/CFT2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].

[33] R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for

AdS3/CFT2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].

[34] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, The all-loop
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[98] B. Stefański Jr. and A.A. Tseytlin, Super spin chain coherent state actions and AdS5 × S5

superstring, Nucl. Phys. B 718 (2005) 83 [hep-th/0503185] [INSPIRE].
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