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Abstract 3 

The paper presents a methodology for evaluating the ‘actual’ response modification factors (q or R) of 4 

bridges, and applies it to seven concrete bridges typical of the stock found in Southern Europe. The 5 

usual procedure for analytically estimating the q-factor is through pushover curves derived for the 6 

bridge in (at least) its longitudinal and transverse direction. The shape of such curves depends on the 7 

seismic energy dissipation mechanism of the bridge; hence, bridges are assigned to two categories, 8 

those with inelastically responding piers and those whose deck is supported through bearings on 9 

strong, elastically responding, piers. For bridges with yielding piers the final value of the q-factor is 10 

found as the product of the overstrength-dependent component (qs) and the ductility dependent 11 

component (qμ), both estimated from the pertinent pushover curve; for bridges with bearings and non-12 

yielding piers of the wall type an equivalent q-factor is proposed, based on spectral accelerations at 13 

failure and at design level. In this paper pushover curves are also derived for an arbitrary angle of 14 

incidence of the seismic action using a procedure recently developed by the authors, to investigate the 15 

influence of the shape of the pushover curve on the estimation of q-factors. It is found that in all cases 16 

the available force reduction factors were higher than those used for design either to Eurocode 8 or to 17 

AASHTO. 18 

Keywords: concrete bridges; behavior factor; response modification factor; pushover curve 19 

Introduction 20 

This study focuses on the estimation of ductility and overstrength factors, i.e. the two components of 21 

the available force reduction factor (Kappos 1999), for concrete bridges. This factor, which is the ratio 22 

of the force that the bridge would develop if it responded elastically to the design seismic action to the 23 

design base shear (Vel/Vd), is called response modification factor (R) in the US (AASHTO 2010) and 24 

behavior factor (q) in Europe (CEN 2005), and is an important design parameter. The maximum 25 

available value of q-factor for an (already designed) structure can be defined as the ratio of the 26 

maximum horizontal force developed by the structure prior to failure to the design base shear (Vu/Vd), 27 

and provides a meaningful measure of its safety. Evaluating this ratio is a problem of particular 28 

relevance for practice, especially in the case of important bridges or bridges with irregular and/or 29 

unconventional configuration, and also in the verification and calibration of code provisions.  30 
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The procedure for analytically estimating the aforementioned components of the q-factor is usually 31 

based on nonlinear static (pushover) analysis of the entire bridge, wherein pushover curves are derived 32 

for the bridge in its longitudinal and transverse direction. Although a number of previous studies 33 

include pushover curves for bridges, derived using single mode or multi-mode procedures (Kappos et 34 

al. 2012), studies specifically addressing the derivation of q-factors for bridges are scarce and use 35 

different procedures; moreover, they all concern either a single actual bridge or a single bridge 36 

typology, and they all correlate q to the ductility of the critical piers. Some studies, like that of Itani et 37 

al. (1997) analyse single columns only, taking into account both overstrength and ductility. Others like 38 

that of Abeysinghe et al. (2002), Meimari et al. (2005), and  Mackie & Stojadinović (2007), address 39 

entire bridges but estimate q (R) as a function of the column ductility only (ignoring overstrength); it 40 

is important to note that, as a result of ignoring the effect of overstrength, studies like that of 41 

Abeysinghe et al. result in unrealistic (over-conservative) estimates of the q-factor that should be used 42 

in design. For the case of bridges with bearings, Constantinou and Quarshie (1999) propose R-factors 43 

for their inelastically responding piers with bearings (modelled as two-degree-of-freedom systems) 44 

addressing both components of the behaviour factor in a way similar to that for bridges without 45 

bearings. 46 

In the present study pushover curves are derived for a number of typical bridge typologies not only 47 

for their longitudinal and transverse direction but also for an arbitrary angle of incidence of the seismic 48 

action using a procedure recently developed by Moschonas & Kappos (2012). Noting that the shape of 49 

a pushover curve depends on the seismic energy dissipation mechanism of the bridge, bridges are 50 

classified into two main categories according to their seismic energy dissipation mechanism: bridges 51 

with yielding piers of the column type, and bridges with bearings and non- yielding piers of the wall 52 

type. The method proposed herein differentiates the way of defining the aforementioned factors 53 

according to the category of the bridge. 54 

For bridges of the first category, the derived pushover curves are idealized as bilinear ones and the 55 

available q-factor is estimated as the product of two components, a ductility-based one, and an 56 

overstrength-based one (q=qμ∙qs). The overstrength factor (qs) is defined as the ratio of yield strength 57 

to the design base shear, while the ductility factor (qμ) is derived as a function of the available 58 

displacement ductility of the bridge. For bridges of the second category, wherein the deck rests on 59 

elastically responding piers through elastomeric bearings, a different procedure is proposed herein, 60 

since no meaningful bilinear pushover curves can be derived. Hence the concept of equivalent q-factor 61 

(qeq) is introduced; this factor is defined as the ratio of the spectral acceleration (corresponding to the 62 

pertinent predominant period of the bridge) for which failure occurs, to the design spectral 63 

acceleration. 64 

The foregoing methodology is then used to answer the very legitimate (and relevant to practicing 65 

engineers) question ‘what are the actual q-factors of modern bridges?’ More specifically, the available 66 

q-factors (or qeq-factors) are estimated for seven actual bridges, typical of those used in European 67 
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motorways, in particular in Southern Europe, which is a high seismicity region. They include 68 

typologies of both the first (inelastically responding piers) and the second category (bearings on elastic 69 

piers), as well as a ‘mixed’ type of structure, combining features of both categories. The available 70 

force reduction factors calculated for these bridges are then compared with the values specified in the 71 

European (Eurocode 8) and North American (AASHTO) codes for seismic design of bridges.  72 

Methodology 73 

The methodology for evaluating the available force reduction factors (the actual q-factors) for concrete 74 

bridges (the same procedure can be used for steel or composite bridges), is based on nonlinear static 75 

(pushover) analysis of the entire bridge, wherein pushover curves are derived for the structure in (at 76 

least) its longitudinal and transverse directions. A critical issue that differentiates the way of 77 

evaluating the aforementioned factors is the seismic energy dissipation mechanism of the bridge. 78 

According to this mechanism, bridges are classified into two main categories:  79 

 Bridges with yielding piers of the column type: Piers are connected to the deck either 80 

monolithically or through a combination of bearings and monolithic connections, which is fairly 81 

common in modern ravine bridges in Europe. Inelastic behavior is developed due to the 82 

formation of plastic hinges at the pier base, and possibly also the top, if the pier-to-deck 83 

connection allows the development of substantial bending moment. 84 

 Bridges with bearings (with or without seismic links, like stoppers) and non-yielding piers of 85 

the wall type: In these bridges the inelastic behavior is developed due to the inelastic behavior 86 

of bearings and seismic links. In most cases the deck is supported by wall-type piers which 87 

remain in the elastic range even for earthquakes much stronger than the design event.  88 

A key difference between the two main categories is the shape of the pushover curve, which is 89 

clearly bilinear in the first category and essentially linear in the second one, wherein the slope of the 90 

curve is defined by the effective stiffness of the bearings. Reinforced concrete members are modeled 91 

using the lumped plasticity (point hinge) model of SAP2000 (CSI 2005) with multilinear moment – 92 

rotation law for each hinge, accounting for residual strength after exceeding the rotational capacity; 93 

elastic parts of the piers were modeled with cracked stiffness properties allowing for moderate tension 94 

stiffening, as per the Eurocode 8 recommendations. Foundation compliance was modeled using 95 

systems of translational and rotational springs at the bases of the piers and abutments. Relevant details 96 

are given in Kappos & Sextos (2009) and Kappos et al. (2012). P-Δ effects were taken into account for 97 

piers, but in most cases their effect was found to be very small. 98 

Bridges with inelastically responding piers  99 

In bridges with yielding piers of the column type, pushover curves, i.e. plots of base shear vs. 100 

displacement of the ‘monitoring’ point on the deck (taken as the one above the critical pier or 101 

abutment) are derived by performing a standard (fundamental mode based) pushover analysis. Some 102 
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of the bridges have also been analyzed using a modal pushover analysis for each mode independently 103 

(Paraskeva et al. 2006). When the modal pushover method is used, a “multi-modal” curve can be 104 

constructed by an appropriate combination of the values from individual curves (Kappos and 105 

Paraskeva 2008, Kappos et al. 2012). Alternatively, for bridges where the higher modes are significant 106 

(for the transverse response of the bridge) non-linear response history analysis may also be applied to 107 

derive dynamic pushover curves. The derived (through any of these procedures) pushover curve is 108 

then idealized as a bilinear one in order to define a conventional yield displacement, δy and ultimate 109 

displacement δu=μu∙δy , both referring to the entire bridge, not to a single pier (δu is taken here to 110 

correspond to a 20% drop in the base shear capacity, see Figure 1).  111 

By definition, the value of the q-factor for a specific structure is given by the ratio of elastic force 112 

demand (Vel) to the design force (Vd), i.e. (see Figure 2) 113 

sdyyeldel

in

da

el

da qqVVVVVVSSq  )//()/(/)/()(      (1) 114 

where (Sa)d is the design spectral acceleration corresponding to the fundamental period of the structure 115 

and the indices ‘el’ and ‘in’ refer to the elastic spectrum and the corresponding inelastic spectrum, 116 

according to which the design seismic actions are determined (Kappos 1991, 1999). The two 117 

components of q can be estimated as discussed in the following. 118 

The overstrength factor (qs) is usually defined as the ratio of the yield strength to the design base 119 

shear of the structure  120 

 /s y dq V V            (2) 121 

where Vy is the (conventional) yield strength and Vd is the design base shear of the structure. In the 122 

absence of details of the design of the bridge (which in most cases addressed here was carried out 123 

using response spectrum modal analysis) the design shear can be estimated from 124 

  Vd = mtot∙Sad(Τ)           (3) 125 

where mtot the total mass of the bridge and Sad(Τ) the pseudo-acceleration corresponding to the 126 

fundamental period of the bridge, taken from the design spectrum (that includes q); equation (3) is 127 

adopted by Eurocode 8 (CEN 2005) when the ‘fundamental mode method’ is used.  128 

The overstrength factor (upper limit) can also be defined as the ratio of the ultimate strength (the 129 

maximum shear, Vu, corresponding to the last point of the second branch of the idealized bilinear 130 

curve, see Fig. 1) to the design base shear of the structure  131 

  (max) /s u dq V V          (4) 132 

Obviously, when the pushover curve is idealized as elastic-perfectly-plastic, the two definitions of 133 

equations (2) and (4) coincide. A minimum value of the overstrength factor can be defined as the ratio 134 
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of the strength of the structure at the time where the first plastic hinge takes place to the design base 135 

shear  136 

  (min) /s SLS dq V V          (5) 137 

where VSLS is the strength of the structure when the first plastic hinge formation occurs. It is noted that 138 

for deterministic assessment purposes, mean values of material strengths must be introduced for 139 

calculating  Vu, Vy and VSLS. In the longitudinal direction of the bridge, the activation of the abutment-140 

backfill system due to closure of the gap between the deck and the abutments strongly affects the 141 

damage mechanism (see Fig. 1(b)). In any case, the evaluation of the overstrength factor is not 142 

affected by the new seismic energy dissipation mechanism of the bridge. Furthermore, the activation 143 

of the abutment-backfill system increases the total strength of the bridge.  144 

The ductility factor, qμ, is derived as a function of the available ductility of the bridge, which is 145 

defined as the ratio of the ultimate limit state displacement (δu) to the yield displacement (δy), 146 

depending on the prevailing period. Veletsos and Newmark (1960) related qμ to the kinematic ductility 147 

demand μ by the following expressions: 148 

  μ

(2μ-1), 0.5
q =

, 0.5

s

s

  


 
         (6) 149 

which are based on the familiar equal energy absorption and equal displacement approximations, 150 

respectively. It is noted that several other expressions for qμ have been proposed in the literature, some 151 

of them accounting for additional factors such as the ground conditions or the peak ground 152 

displacement. Equations (6) were selected here due to their simplicity; it is noted, though, that in most 153 

concrete bridges the fundamental period T is longer than 0.5s and for this range most of the available 154 

relationships predict qμ=μ (or very nearly so).  155 

As noted previously, the activation of the abutment-backfill system due to closure of the gap 156 

between the deck and the abutments may strongly affect the damage mechanism. So, a “full-range” 157 

analysis of the bridge is suggested in order to model the response of the bridge subsequent to gap 158 

closure. A detailed finite element modeling of the abutment-backfill system (in both the longitudinal 159 

and transverse direction), including soil flexibility (nonlinear behavior and consideration of both stiff 160 

and soft soils) and pile non-linearity (in flexure and shear), was made in the case of a typical overpass 161 

bridge (Pedini bridge in Figure 3). In such an analysis, all stages of the bridge seismic response are 162 

studied, i.e. the initial stage when the joint is still open, during which the contribution of the abutment-163 

backfill system is small, and the second stage after closure, during which a significant redistribution of 164 

seismic forces between the piers and the abutment-backfill system takes place. In this case the 165 

pushover curve has a quadrilinear shape (Fig. 1(b)) and the additional parameter that has to be defined 166 

is the displacement at failure of the abutment-backfill system, δu'. Since it is common, especially in 167 
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design practice, to carry out the analysis of the bridge ignoring the abutment-backfill effect, failure of 168 

the abutment-backfill system can be approximated by estimating δu′ from the following relationship  169 

 u uδ = α δ             (7) 170 

where δu is the ultimate displacement of the bridge without the abutment- backfill effect. The value for 171 

a was found to be about 0.6 for the analyzed overpass (Kappos & Sextos 2009); this approximate 172 

value of the δu′ was used for bridges where the “full-range” analysis is not performed.  173 

For bridges wherein higher modes are significant (for the transverse response of the bridge), a 174 

modal pushover analysis was also applied, as proposed for bridges by Paraskeva et al. (2006). 175 

Alternatively, for these bridges, non-linear response history analysis can also be applied to derive 176 

dynamic pushover curves. Regarding the use of multi-modal pushover curves it was found that they 177 

are much better suited to studying the ductility and overstrength characteristics of a bridge compared 178 

to standard pushover curves, especially for bridge structures where higher modes are significant 179 

(Paraskeva and Kappos 2009, Kappos et al. 2012). Figure 4 shows such static and dynamic pushover 180 

curves for a typical overpass (T7 in Fig. 3), while Figure 5 shows the corresponding static and 181 

dynamic curves for a bridge whose response is dominated by the first mode (G11 bridge in Fig. 3). It 182 

is noted that in these figures the dynamic curves, obtained from response history analysis for a number 183 

of records, correspond to combinations of the maximum displacement (δmax) with the simultaneous 184 

base shear, V(t), or the base shear one time step before or after V(t), or the maximum base shear Vmax , 185 

which is not simultaneous with δmax. It is observed that in all cases the dynamic and multimodal 186 

pushover curves show both higher strength and higher ultimate displacement than the corresponding 187 

single-mode pushover curves; hence, the use of the standard pushover curve for the estimation of the 188 

available q-factor leads to more conservative results. To retain uniformity along all typologies studied, 189 

the estimated q-factors reported in the remainder of the paper are those derived from ‘standard’ 190 

(single-mode) pushover analysis. 191 

Bridges with bearing-supported deck and elastically responding piers  192 

In the case of bridges with elastomeric bearings (with or without seismic links) and non-yielding 193 

piers of the wall type, pushover curves are derived by performing a standard pushover analysis given 194 

that the first (fundamental) mode of the bridge is similar to the first (fundamental) mode of the deck 195 

since the wall-type piers are much stiffer than the bearings, and as a consequence this mode has a very 196 

high participating mass ratio. In the longitudinal direction the first mode of the deck is a rigid-body 197 

displacement, while in the transverse direction it has a sinusoidal shape or it consists of a quasi-rigid-198 

body displacement and rotation, depending on whether the transverse displacement of the deck at the 199 

abutments is restrained or free. In addition, the derived pushover curve has a bilinear shape because of 200 

the corresponding bilinear behavior of the bearings (Figures 6(a) and 6(b)). Note that in the usual case 201 

that common (low-damping ratio, ζ5%) bearings are used, the pushover curve is essentially a straight 202 
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line, whose slope is defined by the effective shear stiffness that does not change substantially (the 203 

hysteresis loop of these bearings is very thin). The choice of this linear approximation is advisable for 204 

both the economy of the analysis procedure and the more accurate assessment of the target 205 

displacement, since the definition of the first branch of the bilinear diagram of the bearings is subject 206 

to substantial uncertainty. Whenever seismic links (stoppers) are present, the pushover curve has a 207 

similar shape but an apparent hardening/softening is noticed, due to the successive activation and 208 

failure, respectively, of seismic links (Fig. 6(b)).  209 

For bridges whose deck rests on elastic piers through bearings, a different procedure for evaluating 210 

the force reduction factor is proposed herein, since no meaningful bilinear pushover curves or ductility 211 

factors can be derived in this case. Hence the concept of equivalent q-factor (qeq) is invoked, first 212 

introduced in Kappos (1991), which involves scaling the design q-factor (qd) by the ratio of the 213 

spectral acceleration (corresponding to the pertinent prevailing period of the bridge, T) for which 214 

failure occurs, Sau(T), to the design spectral acceleration, Sad(T) (see also Eq. (7)) 215 

  eq au ad d eq au adq =(S (T))/S (T)) q q =S (T))/S (T)        (8) 216 

where qd is the design behavior factor which is equal to unity (qd 1.0) for bridges with non-yielding 217 

piers of the wall type (CEN 2005). 218 

Available behavior factors for concrete bridges 219 

To evaluate the force reduction factors of concrete bridges at the ultimate limit state, seven, more or 220 

less typical, bridges along the 670 km Egnatia Highway, which crosses the three regions of the 221 

northern part of Greece, Epirus, Macedonia, and Thrace, were selected. A comprehensive 222 

classification system for modern bridges in Europe, with emphasis on the Egnatia Highway stock, can 223 

be found in Moschonas et al (2009); the basic characteristics considered in the classification were the 224 

type of deck, type of piers, and type of pier-to-deck connections. 225 

Four of the selected structures belong to the first category defined in the previous section 226 

(inelastically responding piers), two to the second one (deck supported through elastomeric bearings 227 

on elastically responding piers) and one is a ‘mixed’ type of structure, combining features of both 228 

categories. The main characteristics of the selected bridges are given in Fig. 3. 229 

The pushover curves derived using analysis with SAP point hinge models as mentioned in the 230 

previous section, were idealized as bilinear curves (Fig. 1) in order to define a conventional yield 231 

displacement, δy, and ultimate displacement, δu. The derived overstrength factors for bridges with 232 

yielding piers, as well as the ductility factors for the same bridges, are given in Table 1; for qμ in the 233 

longitudinal direction two values are reported, the one in parentheses corresponding to the case that 234 

eqn (7) is disregarded (i.e. possible failure of the abutment-backfill system is not taken into account). 235 

It is noted that both qs and qμ range within a rather broad range; taking the lowest among the values 236 

calculated for the longitudinal and the transverse direction in each bridge, qs varies from 1.2 to 2.7, and 237 
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qμ from 1.2 to 5.5. It should also be pointed out that high qμ values do not necessarily correspond to 238 

high qs values. Furthermore, it is noted that some unexpectedly high values of overstrength, notably 239 

the qs=5.8 for Pedini bridge, are simply due to the fact that the contribution of the abutment – backfill 240 

system was modeled (‘full-range’ analysis) and substantial force was carried by this system 241 

subsequent to yielding of the piers; of course, for this and other bridges this was not the critical 242 

direction of the bridge. 243 

Static pushover curves for  some of the bridges were also derived for various angles of incidence of 244 

the seismic action (angles of 15, 30, 45, 60 and 75), using a procedure recently developed by 245 

Moschonas and Kappos (2012) with a view to investigating the influence of the characteristics of the 246 

‘multidirectional’ pushover curves on the estimation of both the ductility and overstrength factors. All 247 

pushover curves derived for Pedini Bridge are plotted on the same diagram in Figure 7; note that in 248 

this case a simpler model, neglecting foundation compliance was used. A rather smooth and gradual 249 

transition from the pushover curve for the longitudinal direction to the corresponding one for the 250 

transverse direction is observed, as expected for a symmetric bridge such as this overpass. The 251 

conventional yield displacement, δy, ultimate displacement, δu, the corresponding available 252 

displacement ductility ratio μu, the ductility factor and the overstrength factor for all angles of 253 

incidence are given in Table 2. The ductility-related factor qμ was calculated using Eq. (6), without 254 

taking into account the displacement at gap closure (eqn. 7) that is valid for the longitudinal direction 255 

only. It is noted that the angle of incidence of the seismic action affects the results of both the 256 

available overstrength and ductility factor; nevertheless, the values estimated for the transverse and 257 

longitudinal direction seem to bound the estimated values. 258 

For bridges of the first category (yielding piers), the available q-factor (in each direction) was 259 

estimated as the product qμ∙qs, whereas for bridges of the second category the previously described 260 

concept of the equivalent q-factor is utilized, defined from equation (8). All q-factor values are 261 

reported in Table 3; recall that one bridge (G2) belongs to both categories in its longitudinal direction. 262 

Some comparisons with code-specified values 263 

The estimated available force reduction factors for the typical bridges studied here can be compared 264 

with values prescribed by modern seismic codes. Eurocode 8 – Part 2 (CEN 2005) qualifies for the 265 

most direct comparison, since the studied bridges were designed according to provisions that are 266 

similar, albeit not identical, to those of this code. For concrete bridges with piers expected to yield 267 

under the design earthquake the Eurocode specifies a behavior factor equal to 3.5λ(αs) for ductile 268 

bridges, where λ(αs)=1.0 when the shear span ratio of the pier αs≥3 (αs =Ls/h, where Ls is the shear 269 

span of the pier columns and h the depth of their cross-section in the direction of flexure of the plastic 270 

hinge), which implies that its response is predominantly flexural, whereas for 3 > αs >1, 271 

3/)( ss   . For the studied bridges in this category a value of 3.5 would be appropriate (αs≥3 for 272 
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most columns); this does not necessarily mean that this was indeed the q-factor used in their design, 273 

since minor discrepancies exist between Eurocode 8 and the previous Greek Code (for instance, q=3.5 274 

applied for αs≥3.5, in lieu of 3). Notwithstanding the aforementioned minor discrepancies, the fact that 275 

the estimated q-factors (Table 3) vary from 4.2 to 10.1 in the longitudinal direction and from 3.7 to 276 

11.6 in the transverse direction, is a clear indication that the code-prescribed value is not only feasible 277 

but in several cases is actually an underestimation of the actual energy dissipation capacity of the 278 

bridge, which is the result primarily of its ductility, but also of its overstrength. 279 

For the bridges on elastomeric bearings q=1 was used in their design, hence the values reported in 280 

the lower part of Table 3 simply indicate that the studied bridges were capable of resisting without 281 

failure earthquake actions about four times higher than the design one. 282 

Comparisons with other codes should be made with caution, as several differences exist in the 283 

‘philosophy’ of international codes. For instance, the American AASHTO (2010) LRFD Code adopts 284 

a different level of design earthquake, i.e. the one having a return period of 1000 yr, whereas Eurocode 285 

8 bases the design of bridges in motorways and national roads, on the 475 yr earthquake. There are 286 

also differences in the detailing provisions and the material safety factors for concrete and steel 287 

between the American and the European codes, although these are not deemed particularly significant. 288 

In any case, AASHTO specifies values of the ‘response modification’ factor R equal to 1.5, 2.0, and 289 

3.0 for single-column bents, and 1.5, 3.5 and 5.0 for multi-column bents, for ‘Operational Category’ 290 

Critical, Essential, or ‘Other’, respectively. The R-values for essential bridges are in the authors’ 291 

opinion the ones that correspond to the Eurocode values, since the latter are meant for highway 292 

bridges. In fact  the Eurocode treats importance of the bridge (‘critical’ etc.) in a different way, i.e. not 293 

through q, but through the importance factor (γI), which varies from 0.85 to 1.3 (the upper limit is for 294 

critical bridges). The different ‘philosophy’ of these two leading codes is clear here, since the 295 

difference in the design seismic action between the highest and the lowest importance category is 296 

1.3/0.85=1.53 in the Eurocode, while in AASHTO it varies between  3.0/1.5=2.0 and 5.0/1.5=3.33, 297 

depending on the number of columns in the bents. If one ignores these and other differences among 298 

the codes under consideration, the AASHTO-specified factors for essential bridges can be evaluated in 299 

the light of the analyses presented herein. For the four bridges with single-column bents (Pedini, T7, 300 

G11, and Krystallopigi in Fig. 3), it is clear that the value R=2.0 adopted by AASHTO in this case, 301 

underestimates the actual energy dissipation capacity of these bridges. The only bridge with multi-302 

column bents in Fig. 3 is G2; for this bridge the estimated force reduction factor is about 4 in the 303 

longitudinal direction, which exceeds the value of 3.5 specified by AASHTO, but only 2.4 in the 304 

transverse direction. Since this is a rather particular case (a combination of the two types discussed in 305 

previous sections) one cannot really draw any definitive conclusions.  306 
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Conclusions  307 

A methodology for evaluating the force reduction factors available in concrete bridges was proposed; 308 

these available factors are related to the ultimate limit state of the bridge. A key aspect of the 309 

approach,  which differentiates the way of evaluating the force reduction factors, is the seismic energy 310 

dissipation mechanism of the bridge. Another aspect is that the bridge is addressed as a system, and 311 

failure modes other than exceedance of available ductility in the piers are also addressed. The 312 

methodology was applied for evaluating the available q-factors (for bridges with yielding piers) or qeq-313 

factors (for bridges with bearings and non-yielding piers) of seven actual bridges representative of  a 314 

broad set of typologies found in Southern Europe.  315 

It was found that in all cases the available force reduction factors were higher than those used for 316 

design in both the longitudinal and transverse directions. In fact, in many cases the code-specified 317 

values (in particular those of AASHTO for single-column bents) seem to significantly underestimate 318 

the actual energy dissipation capacity of concrete bridges. Seen from another perspective, this is a 319 

clear indication that modern bridges possess adequate margins of safety and are able to withstand 320 

seismic actions that are often substantially higher than those used for their design. This high 321 

performance is due to their ductility, as well as their overstrength; previous studies that have ignored 322 

the latter led to deriving unrealistically low values of q-factors.  323 

For bridges with yielding piers of the column type, for which the influence of higher modes is 324 

significant in their transverse direction, it is recommended to use the multi-modal pushover curves 325 

instead of the standard pushover curves to estimate the ‘actual’ available q-factor of the bridge. 326 

Alternatively, dynamic pushover curves may also be used. On the other hand, when the first mode is 327 

dominant (this is typically the case in the longitudinal directions of the bridge) the available q-factor 328 

can be calculated using the standard (single-mode based) pushover curves since the difference 329 

between the static and dynamic pushover curves is not significant. Importantly, if standard pushover is 330 

used for estimating q-factors in the transverse direction, the resulting values are conservative. 331 

The influence of the angle of incidence of the seismic action on the pushover curves and the 332 

derived q-factors was also studied herein. It was found that although the angle of incidence of the 333 

seismic action affects the results of both the available overstrength and ductility factor, the values 334 

estimated for the transverse and longitudinal directions seem to bound the estimated values; hence, 335 

bearing also in mind all the uncertainties involved, two analyses (longitudinal-transverse) of the bridge 336 

are deemed to be sufficient. 337 
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Table Captions 

Table 1. Overstrength factor (qs) and ductility-related factor (qμ) for bridges with yielding 

piers of the column type.  

Table 2. Characteristic bridge displacements, available ductility ratios, overstrength and 

ductility factors for Pedini bridge, for all angles of incidence. 

Table 3. Available force reduction factor (q) for the selected bridges. 

 

Figure Captions 

Fig. 1. Pushover curve of a bridge with inelastically responding piers, (a) without abutment-

backfill effect, (b) with abutment- backfill effect. 

Fig. 2. Definition of the available q-factor. 

Fig. 3. Main characteristics of the bridges selected for analysis. 

Fig. 4. Dynamic ‘multi-modal’ pushover curves compared to a standard pushover curve for a 

bridge where higher modes are significant (T7 Bridge). 

Fig. 5. Dynamic ‘multi-modal’ pushover curves compared to a standard pushover curve for a 

bridge where the 1
st
 mode is dominant (G11 Bridge). 

Fig. 6. Pushover curve of a bridge with elastomeric bearings and non-yielding piers. 

Fig. 7. Pushover curves of Pedini Bridge for various angles of incidence of the seismic action. 



 14 

 

 

 

Table 1. Overstrength factor (qs) and ductility-related factor (qμ) for bridges 

with yielding piers of the column type 

Bridge name 
Longitudinal direction Transverse direction 

qs qμ qs qμ 

Pedini  2.1 2.4 (4.0)
*
 5.8 2.1 

T7  2.7 3.3 (5.6) 2.8 3.3 

G11  2.9 2.4 (4.0) 1.5 2.5 

G2  3.4 1.2 (2.0) 1.6 1.5 

Krystallopigi  1.3 7.6 (12.7) 1.2 5.5 

*
 Values in parentheses refer to the case that possible abutment-backfill failure is ignored  
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Table 2. Characteristic bridge displacements, available 

ductility ratios, overstrength and ductility factors for Pedini 

bridge
*
, for all angles of incidence. 

Angle of incidence [
o
] δy [mm] δu [mm] qs qμ 

0 51.6 270.4 1.8 5.2 

15 58.3 288.2 1.9 4.9 

30 68.2 335.0 2.1 4.9 

45 88.8 408.5 2.4 4.6 

60 149.1 530.3 4.1 3.6 

75 202.8 580.1 5.4 2.9 

90 219.6 582.4 6.0 2.7 

* Using model without foundation compliance 
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Table 3. Available force reduction factor (q) for the studied bridges. 

 Bridge name 
Longitudinal 

direction 

Transverse  

direction 

Bridges with 

yielding piers of 

the column type 

(q) 

Pedini  5.0 (8.4)
*
 12.2 

T7  8.9 (15.1) 9.2 

G11  7.0 (11.6) 3.8 

G2  4.1 (6.8) 2.4 

Krystallopigi  9.9. (16.5) 6.6 

Bridges with 

bearings and 

non-yielding 

piers 

(qeq) 

G2 (approximate evaluation of δu′) 3.9 - 

Lissos River  6.6 9.3 

Kossynthos River  4.2 4.3 

 

* Values in parentheses refer to the case that possible abutment-backfill failure is ignored. 
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