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SUMMARY 

 

Quasi-static cyclic tests on reinforced concrete (RC) walls have shown that shear 

deformations can constitute a significant ratio of the total deformations when the wall 

is loaded beyond the elastic regime. For slender RC walls that form a stable flexural 

mechanism the ratio of shear to flexural deformations remains approximately constant 

over the entire range of imposed displacement ductilities. This paper proposes a 

method for incorporating shear-flexure interaction effects in equivalent frame models 

of slender RC walls by coupling the shear force-shear strain relationship to the 

curvature and axial strain in the member. The suggested methodology is incorporated 

in a finite element consisting of two interacting spread inelasticity sub-elements 

representing flexural and shear response, respectively. The element is implemented in 

the general finite element code IDARC and validated against experimental results of 

RC cantilever walls. In a second step, it is applied in inelastic static and dynamic 

analyses of tall wall and wall-frame systems. It is shown that ignoring shear-flexure 

interaction may lead to erroneous predictions in particular of local ductility and storey 

drift demands. 
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1 INTRODUCTION 

In regions of moderate to high seismicity, reinforced concrete (RC) walls are 

widely used as lateral stiffness and strength providing elements in medium to tall 

buildings. Since they are inherently stiff, they limit inter-storey drifts and therefore 

prevent excessive damage to non-structural components (Fardis 2009). Furthermore, 

they offer adequate protection against collapse by preventing the development of soft-

storey mechanisms. In accordance with capacity design principles, slender RC walls 

are designed to form a flexural mechanism when loaded beyond the elastic limit. 

None the less, due to the significant depth of the walls, shear deformations play an 

important role and therefore, when compared to RC frames, more sophisticated 

numerical models are required for predicting the seismic response of RC walls (Fardis 

2009). 

The inelastic response of slender RC walls can be predicted well by finite element 

models, which combine shell elements with advanced analytical methodologies that 

account for the biaxial in-plane stress state in RC elements, such as the Modified 

Compression Field Theory (MCFT) by Vecchio and Collins (1986). Other advanced 

modelling techniques developed to analyse the response of slender RC walls are based 

on macro-elements in which different elements are assigned a specific load-carrying 

mechanism, such as axial forces, bending moments and shear forces (Vulcano et al. 

1988; Massone et al. 2006). 

In engineering practice, however, shear walls are often modelled using beam 

elements and several beam-column elements have been developed to model the 

inelastic response of RC members. The vast majority of these elements place 

emphasis on modelling the flexural response such as, for example, the force-based 

distributed inelasticity beam-column element with fibre cross-sections (Spacone et al. 

1996). The variety of approaches for modelling the shear response when the wall 

responds in the inelastic regime is, however, rather limited.  

In most structural engineering analysis programs that are used for equivalent frame 

analysis of RC wall systems the shear stiffness of beam-column elements is assigned 

a constant value that cannot be updated during the analysis. This modelling approach 

has been supported by the misconception that the shear deformations will remain 

constant once the nominal yield force, which is determined by the flexural 

mechanism, is reached. As a result, the ratio of the modelled shear to flexural 

deformations decreases after the onset of flexural yielding. Experimental evidence, 

which goes back as far as the 1970s (Wang et al. 1975; Oesterle et al. 1976; Vallenas 

et al. 1979) has, however, shown that this does not apply to real RC walls even if the 

walls are capacity-designed. After flexural yielding, the shear deformations continue 

to increase due to interaction of shear and flexural deformations in the wall’s plastic 

zone (Beyer et al. 2011). 

Various beam-column element models have been developed to capture shear-

flexure interaction in RC members. The most sophisticated models are force- or 

displacement-based fibre elements (e.g. Petrangeli et al. 1999; Guner and Vecchio 

2010), which use advanced analytical methodologies like the disturbed stress field 

model (Vecchio et al. 2001) to capture the shear-flexure interaction. However, they 

necessitate the use of 2D constitutive material laws and require iterations at each fibre 

to obtain the section’s strain field. Hence, the computational effort involved may 

hinder their applicability to response history analysis of large multi-storey structures. 

Other beam-column elements with shear-flexure interaction apply appropriate 

modifications to phenomenological shear force V – shear strain γ constitutive laws 

(e.g. Takayanagi et al. 1979) as a function of the corresponding section’s flexural 
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deformations in terms of curvatures or axial strains. This approach is computational 

efficient and leads typically to satisfactory results if the phenomenological V-γ 

constitutive laws are used within their scope. Existing models of this category have 

been developed for modeling the response of RC beam and columns with structural 

deficiencies, which may fail in shear after yielding in flexure (e.g. Ricles et al. 1998; 

Marini and Spacone 2006; Mergos and Kappos 2012a). For these elements, shear 

deformations prior to shear failure play a minor role and shear resistance is the major 

issue of concern. Hence, they typically underestimate shear deformations of RC 

members expected to undergo significant ductility demands without failing in shear 

(Mergos 2011).  

The objective of this study is to suggest a constitutive V-γ law for slender RC 

structural walls that accounts for shear-flexure interaction in such members. The 

suggested modifications are implemented in a beam-column element developed 

previously for the seismic analysis of RC structures with structural deficiencies 

(Mergos and Kappos 2012a and 2012b). The resultant numerical model is first 

calibrated against experimental data of a slender RC wall. Then, it is employed for the 

inelastic analyses of tall RC wall and wall-frame structures. The results highlight the 

necessity of incorporating shear-flexure interaction effects in the seismic analysis of 

such structures when not only the global response but also local ductility and drift 

demands are of interest. 

 

 

2 A SIMPLE ANALYTICAL MODEL FOR SHEAR-FLEXURE 

INTERACTION IN SLENDER RC WALLS 

Results from several series of quasi-static cyclic tests on slender, capacity-designed 

cantilever RC walls with different cross sections suggest that the ratio of shear to 

flexural displacement remains approximately constant over the entire range of applied 

displacement ductilities (Fig. 1). A summary of experimental evidence supporting this 

hypothesis and a simple semi-empirical model for estimating the ratio of shear to 

flexural deformations is presented in Beyer et al. (2011). Based on this model a 

constitutive law for shear-flexure interaction in beam-column elements is developed.  
 

 
 

Figure 1. Variation of s/f ratios with top drift for cantilever RC walls tested under quasi-static 

cyclic loading (Beyer et al 2011). 
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Using the geometric relationships within Mohr’s circle, the shear strain γ of a 

cracked RC panel can be expressed as (Fig. 2, Rabbat and Collins 1978, Oesterle et al. 

1984): 

 

2
tan

tan sin 2

m d

h

 
  

 


     (1) 

 

where εd is the axial strain in the compression strut, εm the mean axial strain, εh the 

horizontal strain, and β the cracking angle measured against the element axis. Only 

three out of the five parameters εd, εm, εh, β and, γ are required to determine the Mohr’s 

circle of strains and the other two can be expressed as functions. The form of 

Equation (1) is chosen because it visualizes the effect of the cracking angle β on the 

three different contributions to the shear strain γ: The first term represents the 

contribution of the mean axial strain εm. In structural walls subjected to seismic 

loading, the axial strains are chiefly caused by flexural deformations. Given that the 

depth c of the compression zone remains approximately constant once the section has 
yielded, εm is directly related to the curvature φ, which determines the flexural 

deformations. Therefore, the shear strains are directly related to the flexural 

deformations. The second and third terms represent the contributions of the horizontal 

strains in the shear reinforcement and of the strain in the compression diagonal to the 

shear strain γ. For slender RC walls, which behavior is dominated by the flexural 

response and which shear resisting mechanisms do not significantly degrade, the 

second and third terms may be considered as negligible (Beyer et al. 2011). Hence, 

the shear strain γ can be approximated by a function of the curvature φ, the 

compression zone depth c and the wall length Lw (Fig. 2c): 

 
 
 

 
Figure 2. (a) Truss analogy model for RC elements with parallel compression struts; (b) Mohr’s 

circle, representing the strain state at the center line of the wall; (c) strain profile showing εm and φ. 

Plastic hinge method: (d) crack pattern; (e) true curvature profile; (f) plastic curvature profile assumed 

in plastic hinge method (Beyer et al. 2011) 

 
 

 / 2

tan tan
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L c
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      (2) 

 

As the shear deformations are coupled to the axial strains, the shear strain of 

regions that remain elastic are rather small and will be neglected in the following. 

Assuming a constant curvature φ and a mean axial strain εm over the length of the 

plastic hinge Lph, the shear displacement Δs of the wall can be estimated as: 



5 

 

 / 2
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w

s ph ph

L c
L L
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The flexural displacement Δf, on the other hand, is calculated by assuming that all 

inelastic flexural deformations along the wall height Hn can be ascribed to the plastic 

hinge mechanism: 

 

f n ph
H L       (4) 

 

The ratio of shear to flexural displacement can therefore be written as: 
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The neutral axis depth c remains typically approximately constant after flexural 

yielding. Hence, Eq. (5) backs up the experimental observation that the ratio of shear 

to flexural displacements remains approximately constant over the entire range of 

inelastic response. The cracking angle  can be estimated as (Collins and Mitchell, 

1997): 
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sw yw o
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  

   (6) 

 

where jd is the lever arm between the compression and tensile resultant, V is the 

shear force, fl is the tensile strength perpendicular to the crack, which can be 

estimated as a function of the cracking stress and the strain orthogonal to the crack, bw 

is the wall thickness, and Asw, fyw and s are the area, the yield strength and the spacing 

of the transverse reinforcement, respectively.   

 

3 BEAM-COLUMN FINITE ELEMENT WITH SHEAR-FLEXURE 

INTERACTION 

The constitutive law for shear-fexure interaction in capacity-designed slender RC 

walls that was developed in Section 2 is implemented in a beam-column element. The 

finite element was originally developed for RC column members with sub-standard 

detailing (Mergos and Kappos 2012a) and consists of two sub-elements accounting 

for flexural and shear response, respectively. These sub-elements are discussed in the 

following. Emphasis is placed on the procedures developed to account for shear-

flexure interaction. 

 

3.1 General formulation  

The proposed beam element is based on the flexibility approach (force-based 

element) and belongs to the class of phenomenological member-type models. It 

consists of two sub-elements representing the flexural response and shear response of 

the RC member, respectively (Fig. 3). The total flexibility matrix F is calculated as 
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the sum of the flexibilities of its sub-elements for shear and flexure and can be 

inverted to produce the element stiffness matrix K (Park et al. 1987, Lobo 1994). 

Hence: 

 

 
fl sh

F F F   (7) 

 
1

K F


    (8) 

 

where, F, F
fl
 and F

sh
 are the total, flexural and shear tangent flexibility matrices. K 

is the tangent stiffness matrix of the element, relating the incremental beam end 

moments ΔΜΑ, ΔΜΒ to the beam end rotations ΔθΑ and ΔθΒ (Fig. 3) through the 

following equation: 

 

 A A

B B

M
K

M





    
    

    

   (9) 

 

The local stiffness matrix, relating displacements and forces at the element joints, 

is determined following standard structural analysis procedures (Reinhorn et al. 

2009). A constant elastic axial stiffness is assumed throughout the response. Axial 

force-bending moment interaction is not accounted for in the beam element 

formulation. Hence, the application of the model is restricted to cases for which no 

significant axial load variation is expected. 

In the original formulation of the finite element an additional sub-element, 

connected in series with the flexural and shear sub-element, is employed to account 

for anchorage slip fixed-end rotations developed in RC column members (Mergos and 

Kappos 2012a). However, for typical slender RC walls, fixed-end rotations may be 

omitted or smeared into flexural rotations since the contribution of anchorage slip 

deformation to the total deformation is typically small. The components of the beam 

element, as well as their interaction, are described in the following sections. 

 

 
 

Figure 3. Beam-column element with shear-flexure interaction: (a) RC wall; (b) finite element; (c) 

moment diagram; (d) shear diagram; (e) flexural sub-element; (f) shear sub-element 
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3.2 Flexural sub-element 

The flexural sub-element (Fig. 3e) models the flexural behaviour of the RC 

member. It consists of a set of rules governing the hysteretic moment-curvature (M-φ) 

response of the member end sections and a spread inelasticity model describing the 

flexural stiffness distribution along the length of the member. The M-φ hysteretic 

model is composed of the envelope curve in Fig. 4a and a set of rules determining the 

response during unloading and reloading. The M-φ envelope curve is derived from 

section analysis and appropriate bilinearization. The cyclic response is desribed by the 

hysteretic model by Sivaselvan and Reinhorn (1999), which has been modified in 

order to be compatible with a bilinear envelope curve (Mergos and Kappos 2012a, 

Fig. 4b). The cyclic degradation parameters are chosen to match the response of five 

slender RC structural walls tested by Dazio et al. (2009). The values obtained for the 

parameters describing the unloading stiffness degradation and the slip or crack-

closing are 4.0 and 0.75, respectively (Reinhorn et al. 2009). 

 

  
 

Figure 4. Moment-curvature (M-φ) hysteretic response: (a) bilinear envelope curve; (b) hysteretic 

model 

 

To capture the variation of the flexural stiffness along the concrete member, a 

spread inelasticity model is assigned (Soleimani et al. 1979). To do so, the element is 

divided into two inelastic end regions and one elastic intermediate zone. The stiffness 

of the intermediate zone is assumed to be uniform and equal to the initial branch of 

the M-φ envelope curve which corresponds to the elastic stiffness EIo of the cracked 

member. The flexural stiffness in the inelastic end-zones is defined by the flexural 

rigidities EIA and EIB, which are determined from the M-φ hysteretic relationships of 

the end sections (Fig. 3e). The normalized lengths of these end zones are αA and αB, 

which are referred to as inelastic length coefficients. They are determined from the 

instantaneous moment diagrams as the length of the element where acting moments 

exceed the end section yield moments MyA and MyB. Analytical expressions for the 

yield penetration coefficients under double and single bending conditions can be 

found in Reinhorn et al. (2009). The element formulation does therefore not account 

for the influence of inclined shear cracks on the curvature distribution, which is an 

inherent short-coming of force-based inelastic beam elements.  

Having established the stiffness distribution along the RC member, the coefficients 

of the flexibility matrix of the flexural sub-element can be derived by closed form 

equations determined from virtual work principles (Soleimani et al. 1979, Lobo 

1994). 
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3.3 Shear sub-element 

3.3.1 Formulation  

The shear sub-element (Fig. 3f) represents the hysteretic shear behaviour of the RC 

member prior and subsequent to shear cracking and flexural yielding. It consists of a 

set of rules determining the V-γ hysteretic behaviour of the member’s intermediate 

and end regions, and a shear spread inelasticity model that describes the distribution 

of shear stiffness along the RC member. The shear hysteresis is determined by the V-γ 

envelope (Fig. 5a) and a set of rules describing the response during unloading and 

reloading (Fig. 5b). 

 

 
 

 
 

Figure 5. Shear force-shear strain (V-γ) hysteretic response: (a) initial and modified envelope curve; (b) 

hysteretic model 

 

Equivalent to the flexural sub-element, the shear sub-element is divided into two 

end-zones, in which shear-flexure interaction is considered, and an intermediate 

region, where the interaction with flexure may be disregarded. The lengths of the 

inelastic end-zones αA and αB of the shear sub-element are the same as those of the 

flexural sub-element. This formulation assures that shear deformations in slender RC 

walls are concentrated in the plastic zones (Beyer et al. 2011).  

The shear stiffness of the intermediate part of the sub-element is assumed to be 

uniform and is derived by the application of the V-γ envelope without shear-flexure 

interaction (Fig. 5a). This envelope is composed by two branches. The first branch, 

with uncracked shear stiffness GAo, connects the origin and the point associated with 

shear cracking (γcr,Vcr). The force Vcr at which shear cracking occurs is estimated as 

the shear resistance of members not requiring shear reinforcement (CEN 2004a). The 

shear stiffness GAo is computed as the shear stiffness of an elastic homogenous 

section. The second branch of the envelope characterises the shear stiffness GA1 of the 

member after shear cracking (γcr,Vcr) and prior to the onset of flexural yielding (γy,Vy). 

The shear stiffness GA1 is calculated such that at the onset of flexural yielding the ratio 

of shear to flexural deformations (s/f) corresponds to the s/f-ratio estimated with 

the model presented in Section 2.  

The shear stiffness of the inelastic end-zones is determined by the application of 

the V-γ envelope accounting for shear-flexure interaction effects (Fig. 5a). This 

envelope curve is composed of three branches. The first two branches correspond to 

those of the V-γ envelope without interaction. The stiffness of the third branch GA2 is 

computed such that the shear-flexure interaction constitutive law of Section 2 is 

satisfied. This is achieved by linking the shear stiffness GA2 to the maximum 

curvature demand on the respective end section of the flexural sub-element. The 
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methodology for deriving the shear stiffness GA2 after flexural yielding for slender 

RC walls is described in the following section. 

As for the flexural response, the hysteresis model by Sivaselvan and Reinhorn 

(1999) is used for describing the shear stiffness during unloading and reloading. 

However, since shear hysteretic response is characterized by significant pinching and 

stiffness deterioration (Ozcebe and Saatcioglu 1989), the cyclic degradation 

parameters is assumed to be more severe than for the flexural response. The shear 

cyclic degradation parameters are again chosen to match the experimental V-γ results 

of five slender RC structural walls tested by Dazio et al. (2009). The derived values 

are 1.0 for the unloading stiffness degrading parameter and 0.3 for the slip or crack-

closing parameter (Reinhorn et al. 2009). Having established the stiffness distribution 

along the RC member, the coefficients of the flexibility matrix of the shear sub-

element are derived by closed form equations determined from the virtual work 

principles (Mergos and Kappos 2009, 2012a). 

 

3.3.2 Tangent shear stiffness in the plastic hinge regions for walls under general 

loading conditions 

The total shear flexibility in the plastic hinge regions after flexural yielding may be 

considered as the sum of the shear flexibility prior to flexural yielding and the 

additional shear flexibility induced by shear-flexure interaction. Hence, it is 

 

sh fl
          (10) 

 

where Δγ is the total shear strain increment after flexural yielding, Δγsh is the shear 

strain increment due to shear flexibility prior to flexural yielding and Δγfl is the shear 

strain increment developed by interaction with flexure. The shear flexibility prior to 

flexural yielding is equal to 1/GA1 (see Fig. 5a). If ΔV is the applied shear force 

increment, the tangent shear stiffness GA2 after the onset of flexural yielding can be 

computed as:  

 

2 1

2 1 1

sh fl fl

fl

V V V
GA GA

GA GA V GA
   



  
           

   
   (11) 

 

The shear strain increment developed by interaction with flexure Δγfl can be 

calculated using Eq. (12), which corresponds to the incremental form of Eq. (2).  

 

 / 2

tan

w

fl

L c




  
     (12) 

 

Furthermore, for the vast majority of flexure dominated RC walls, the shear 

flexibility 1/GA1 prior to flexural yielding may be disregarded since it represents only 

a small fraction of the total shear response (Beyer et al. 2011). By applying this 

simplification and substituting Eq. (12) into Eq. (11), GA2 can be expressed as a 

function of Δφ, which is the difference between the new and the previous maximum 

curvature in the same direction of loading, and the corresponding increment in shear 

force ΔV. At all times, GA2 should be smaller than GA1: 
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/ 2
fl w

V V
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

 
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   (13) 

 

Equations (11-13) express the instantaneous tangent shear stiffness GA2 as a 

function of GA1, ΔV and Δφ. Hence, no assumptions regarding the moment 

distribution are required and the equation for GA2 is therefore valid for general 

loading conditions. However, in structural analysis, GA2 also affects ΔV and Δφ since 

it influences the total flexibility matrix of the element. Hence, an iterative solution 

algorithm is adopted, which is outlined in Fig. 6. 

Equation (12) assumes a constant compression zone depth c after the onset of 

flexural yielding and yields a linear variation of γfl with φ. For well detailed RC walls, 

this assumption is typically adequate. However, the proposed procedure can be easily 

modified to account for a variation of c: To do so, Δγfl in Equation (13) is calculated as 

the increment of γfl from two subsequent analysis steps. In this case, γfl is calculated by 

means of Eq. (2), using always the actual value of neutral axis depth c corresponding 

to curvature φ. 

 

 
Figure 6: Proposed iterative scheme for determining GA2 under general loading conditions 

 

Typically the algorithm converges fast. The number of iterations may increase as 

the influence of shear deformations on the element flexibility increases. Considering 

that this iterative scheme is applied only to a limited number of steps in the numerical 

analysis, the additional computational cost may be regarded as negligible when 

compared to analyses with constant member shear stiffnesses.  

 

3.3.3 Tangent shear stiffness for cantilever walls 

For cantilever walls, the shape of the bending moment and shear force diagram 

remains constant throughout the response. This section shows that for this special 

loading condition Eq. (13) can be simplified further. For the cantilever wall in Fig. 7, 

the shear force increment ΔV can be written as ΔΜ/Hn. Hence, Eq. (13) becomes:  
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After the onset of flexural yielding, the ratio ΔΜ/Δφ represents the tangent stiffness 

EI1 of the M-φ envelope (Fig. 4a). Substituting ΔΜ/Δφ by EI1, Eq. (14) becomes: 

 

 

1

2

tan

/ 2
w n

EI
G A

L c H




 
   (15) 

 

Equation (15) shows that for slender RC cantilever walls a constant tangent shear 

stiffness GA2 may be assigned to the plastic hinge regions after the onset of flexural 

yielding in order to account for shear-flexure interaction. It is emphasized that the 

equations above are valid irrespective of the plastic hinge length Lph. The equation 

holds if the compression zone depth can be approximated with a reasonable accuracy 

by a constant value c.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Cantilever wall: a) moment diagram; b) shear force diagram; c) flexural and shear 

stiffness distribution after shear cracking and flexural yielding under monotonic loading 
 

Equation (15) may also be rewritten as a function of the ratio of shear to flexural 

displacements Δs/Δf, which is approximately independent of the imposed ductility 

demand (Beyer et al. 2011). Substituting Eq. (5) into Eq. (15): 

 

1
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f
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   (16) 

 

Figure 7c presents the proposed flexural and shear stiffness distribution over the 

height of the cantilever wall after shear cracking and flexural yielding. It is supposed 

that the wall is subjected to a monotonically increasing lateral load P. Outside the 

plastic hinge region, where shear-flexure interaction is neglected, the elastic flexural 

stiffness EIo and the cracked shear stiffness GA1 are assigned. Inside the plastic hinge 

length Lph, the post-yielding tangent flexural stiffness EI1 and the tangent shear 

stiffness with shear-flexure interaction GA2 have to be applied. 

For single cantilever walls, the shear strain distribution along the height of the wall 

may not be important when local deformations are not examined. For these cases, the 

shear stiffness distribution of Fig. 7c can be substituted by a uniform shear stiffness 

value GA3, which is valid after the onset of flexural yielding. The definition of GA3 is 

also useful for conventional finite element formulations, which assume uniform shear 
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stiffness along the length of the element. The uniform shear stiffness GA3 can be 

computed based on the hypothesis that both shear stiffness distributions yield the 

same tip shear displacement increment δs for a shear force increment ΔV: 

 

 
3 2 1

s n ph n ph

V V V
H L H L

G A G A G A


  
          (17) 

 

Solving for GA3, one obtains: 

 

 
1 2

3

1 2

n

ph n ph

G A G A H
G A

G A L G A H L

 


   
   (18) 

 

4 VALIDATION AGAINST EXPERIMENTAL RESULTS OF SLENDER 

RC WALLS 

The proposed model is implemented in the general finite element code IDARC2D 

developed at the State University of New York at Buffalo (Reinhorn et al. 2009). To 

examine its performance, the numerical results are compared to experimental results 

obtained from a quasi-static cyclic test of a rectangular RC wall (WSH3 in Dazio et 

al. 2009). The test unit was 2.00 m long and 0.15 m wide and had a shear span of 

4.56 m (Fig. 8a). During cyclic loading, the specimen was subjected to a constant 

axial load of 686 kN. Further details on reinforcement configuration and material 

properties can be found in Dazio et al. (2009). 

The test unit is modelled with a single finite element. The length of the inelastic 

end-zones is assumed constant and, rather than computing A from the spread of 

inelasticity, A is computed from the plastic hinge length equation for RC walls in 

Priestley et al. (2007). Since the plastic hinge length equation comprises a strain 

penetration term, anchorage slip is indirectly taken into consideration. As the wall is 

only yielding at its base, B is equal to zero. The shear stiffness GA2 of the plastic 

hinge was computed from Eq. (15) and the crack angle β was estimated from Eq. (6). 

Figure 8b presents the lateral load vs. lateral displacement response obtained from 

the numerical model and the test. It can be seen that the numerical model reproduces 

with sufficient accuracy the experimentally obtained initial stiffness, lateral load 

capacity as well as unloading and reloading stiffness. 

Furthermore, Fig. 8c presents a comparison of the predicted and the recorded 

lateral top displacement developed by shear deformations. This figure underlines that 

experimental shear displacements continue to increase after flexural yielding and 

constitute a considerable part of the total response. The proposed model predicts the 

experimentally obtained shear response in an adequate manner.  

Figure 8d illustrates the variation of the shear-to-flexure displacement ratio with 

the imposed top displacement demand. As outlined in Section 2, the experimental 

ratio remains approximately constant. This is well represented by the proposed model, 

which considers shear-flexure interaction. If shear-flexure interaction is neglected, the 

Δs/Δf-ratio decreases with increasing ductility demand and therefore at larger ductility 

demands the actual Δs/Δf-ratio is significantly underestimated. It is worth noting that, 

even when modeling shear-flexure interaction, Δs/Δf does not remain exactly constant 

as inelastic deformations increase. This is due to the influence of the flexural and 
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shear deformations outside the plastic hinge region. However, it is clear that this 

deviation is insignificant and may be disregarded in the analytical procedure. 

Figure 8e presents a comparison of the experimental and analytical base moment 

vs. base curvature response as derived by the proposed analytical model and as 

derived by a simplified model, which does not consider shear deformations at all. The 

figure shows that the proposed model predicts well the experimental base curvature 

response while the model without shear flexilibity considerably overestimates base 

curvature demands. Finally, Fig. 8f compares the experimental and analytically 

predicted shear strains in the plastic zone. Given the complexity of the phenomenon 

and the uncertainties included in the analytical procedure and the experimental 

measurements, the proposed model predicts the experimental values with reasonable 

accuracy. 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 8. RC structural wall WSH3 by Dazio et al. (2009): (a) structural configuration; (b) shear force 

vs. total displacement; (c) shear force vs. shear displacement; (d) variation of shear-to-flexural 

displacement ratio with imposed top displacement demand; (e) base moment vs. curvature; (f) shear 

force vs. distortion in the plastic hinge region  
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5 CASE STUDIES WITH THE NEW BEAM ELEMENT  

The newly implemented element is applied in the numerical analysis of structures 

with slender RC walls. Three different case studies including pushover and time-

history analyses are presented. These comprise a single RC wall with a varying height 

of contra-flexure (Section 5.1), a pushover analysis of interconnected cantilever walls 

of different length (Section 5.2) and pushover and time-history analyses of a wall-

frame structure (Section 5.3). All case studies investigate the sensitivity of the 

analysis results with regard to modelling assumptions for shear deformations. 

 

5.1 Pushover analysis of a single RC wall with varying point of contra-flexure 

This section investigates the ability of the numerical model to capture shear-flexure 

interaction when the height of contra-flexure varies during the structural response 

(Fig. 9). As an example, the test unit WSH3 of the previous section is assumed to 

have twice its original height and to be rotationally restrained at the top (Fig. 10a). 

The M-φ characteristics of the base wall section are the same as for WSH3. The top 

section has the same elastic flexural stiffness but a significantly higher yield moment 

than the bottom section, preventing flexural yielding at the top throughout the 

analysis. The wall is subjected to an increasing horizontal force until 3% lateral drift 

is reached. It is expected to behave as test unit WSH3 until the onset of flexural 

yielding at its base. From this point onwards, the bending moment distribution 

changes and the point of contra-flexure moves from the midheight towards the wall 

base. The reduction of the height of contra-flexure affects the ratio of shear to flexural 

deformations of the wall. 

 

 

 

 

 

 

 

 

 
 

Figure 9: Case study of a wall member with varying height of contra-flexure: (a) bending moment 

diagram; (b) shear force diagram in two subsequent analysis steps 
 

Three beam element models are used with different capabilities concerning 

capturing shear-flexure interaction: The first model neglects any shear-flexure 

interaction but assumes a constant shear stiffness GA1 subsequent to shear cracking. 

The second model considers shear-flexure interaction but assumes that the height of 

zero moment Hn remains constant and equal to its value at the onset of flexural 

yielding (Hn0=4.56 m). The third model accounts for shear-flexure interaction as well 

as the change of the height of contra-flexure (proposed model). In all models, the 

length of the inelastic zone at the base of the wall is computed from the current 
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moment diagram following the gradual spread plasticity approach in order to account 

for the variation of the height of contra-flexure (Mergos and Kappos 2012a). 

 
  

 

    

  

  

 

Figure 10. RC structural wall in double bending: (a) structural configuration; (b) variation of cantilever 

height with lateral drift; (c) shear force vs. base curvature; (d) base shear strain vs. base curvature; (e) 

shear force vs. base shear strain; (f) variation of shear-to-flexural top displacement ratio with lateral 

drift 
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the base to approximately Htot/4 at 3% lateral drift. As a result of the variation of Hn, 

the relationship between shear force and base curvature becomes nonlinear (Fig. 10c). 
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neglected when computing the shear stiffness GA2, one obtains a linear relationship 

between shear force and shear strain after the onset of flexural yielding (Fig. 10e). 

Because the relationship between shear force and base curvature is nonlinear (Fig. 

10c), this leads to a nonlinear relationship between base curvature and base shear 

strain (Fig. 10d), which is not consistent with Eq. (2). Since GA2 is inversely 

proportional to Hn (see Eq. 15) and Hn decreases during the structural response, this 

model overestimates the base shear strains. 

On the other hand, the proposed model is consistent with Eq. (2) and provides a 

linear relationship between base curvature and base shear strain since the depth of the 

compression zone depth is assumed to be constant (Fig. 10d). The resulting 

relationship between shear force and base shear strain is therefore nonlinear (Fig. 

10e). 

Fig. 10f presents the variation of the ratio of shear to flexural displacements at the 

top of the wall with the imposed lateral drift demand. Up to the onset of flexural 

yielding at the wall base, all models yield the same ratio. After yielding, the model 

which neglects shear-flexure interaction predicts a decrease of the Δs/Δf-ratio with 

increasing lateral drift. This contradicts Eq. (5) according to which Δs/Δf  tends to 

increase as Hn decreases. The proposed model correctly predicts that Δs/Δf increases 

with increasing lateral drift. The final ratio lies between the Δs/Δf -ratios of 0.11 and 

0.22 which correspond to the ratios predicted by Eq. (5) for Hn=Htot/2 and Hn=Htot/4, 

respectively. The model which accounts for shear-flexure interaction but does not 

consider the change in height of contra-flexure largely overestimates the Δs/Δf-ratio 

when the height of contra-flexure decreases. 

 

5.2 Pushover analysis of interconnected cantilever walls  

The tall wall structure examined herein has eight storeys and a total height of 24 m 

(Fig. 11). It is braced by two RC walls with lengths of 6 m and 4 m, respectively. The 

RC walls are coupled at each storey level by a RC slab. In this study, the effect of 

gravity columns is not considered. The slabs are considered as infinitely stiff in-plane 

and infinitely flexible out-of-plane. Both walls have a width of 0.2 m and are designed 

according to EC8 (CEN 2004b). The structure is subjected to a pushover analysis 

applying a uniformly distributed lateral load. The aim of this study is to examine the 

sensitivity of the wall base shears to modelling assumptions regarding the shear 

flexibility of the walls. 

The structure is analysed using three different equivalent frame models: The first 

model includes flexural deformations only. The second model accounts for flexural 

and shear deformations without considering their interaction. The proposed model 

accounts for shear-flexure interaction as described in Section 3.3. Due to the forces 

transmitted by the floor diaphragms, the wall moment distribution varies throughout 

the analyses. For this reason, after the onset of flexural yielding, Eq. (13) is used for 

computing the shear stiffness GA2 and the length of the inelastic zone at the base of 

the wall is defined by the instantaneous moment diagram (Section 3.2). The results of 

the three models are compared to the predictions of a shell element model analysed 

using the finite element program VecTor2 (Wong and Vecchio 2002). VecTor2 is 

based on the modified compression field theory (Vecchio and Collins 1986) and the 

disturbed stress field theory (Vecchio et al. 2001). Details on the analysis of the 

example structure with VecTor2 are given in Simonini et al. (2012). Since VecTor2 

represents a rather refined analysis approach, it will serve as benchmark model for the 

results of the three equivalent frame models. 
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Figure 12 presents the base shear vs. top displacement relationships of the entire 

structure, the long wall and the short wall as predicted by the three equivalent frame 

models and the VecTor2 model. The system’s response obtained from the three 

equivalent frame models is not sensitive to the modelling assumptions and all three 

equivalent frame models yield results that are in close agreement with the prediction 

by VecTor2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Geometry of the cantilever wall with two slender RC walls of different lengths 

  

 
 

Figure 12. Base shear vs. top displacement responses of the cantilever wall structure for (a) the entire 

structure, (b) the long wall and (c) the short wall 
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The shear force distribution between the long and the short wall, on the contrary, is 

rather sensitive to the modelling assumptions: The model, which does not account for 

the shear flexibility of the RC walls, yields base shear demands on the long and short 

wall that deviate significantly from the benchmark results by VecTor2. Considering 

the shear flexibility but neglecting the interaction between shear and flexural stiffness 

improves the prediction significantly at the onset of yielding of the long and short 

wall (100-150 mm). At this stage, the models with and without shear-flexure 

interaction yield similar results since the shear flexibilities are the same (see Fig. 5a). 

However, for larger displacements, the model without interaction wrongly predicts 

that the base shear in the long wall increases while the base shear in the short wall 

decreases. This incorrect trend is eliminated if shear-flexure interaction is considered 

and the results of the proposed model are in good agreement with the benchmark 

results obtained from the VecTor2 model.   

 

5.3 Pushover and time history analyses of a tall wall-frame structure 

This section examines the effect of shear deformations on the response of a ten-

storey wall-frame structure designed according to a previous version of EC8 for 

ductility class ‘M’. The frame geometry is presented in Fig. 13 and the design of the 

frame is described in Penelis and Kappos (1997). 

Three different finite element models are applied for the seismic analysis of this 

frame. The first model includes flexural deformations only while the second model 

accounts for flexural and shear deformations but neglects their interaction. The 

proposed model accounts for shear-flexure interaction as outlined in Section 3.3. 

Since the wall moment distribution varies throughout the structural response, Eq. (13) 

is applied for computing the shear stiffness GA2. The length of the inelastic zone at 

the base of the wall is defined by the instantaneous moment diagram following the 

gradual spread plasticity approach (Section 3.2). The main scope of this section is to 

investigate if shear-flexure interaction modifies the distribution of damage obtained 

from equivalent frame models for tall wall-frame structures. 

Figure 14a shows that the shear flexibility has a negligible effect on the shape of 

the force-displacement response of the wall-frame structure when subjected to lateral 

loading but increases the displacement capacity of the wall-frame system. Figure 14b 

illustrates the drift profiles at a top displacement corresponding to an average drift of 

2%. The figure shows that the normalized drift of the base storey increases by 

approximately 30% when interaction is taken into account. This is due to the increase 

in inelastic shear deformations in the plastic hinge region. Unlike flexural 

displacements, which increase gradually over the height, inelastic shear displacements 

are concentrated in the plastic hinge regions. Additional shear deformations in the 

plastic hinge cause an increase in the curvature demand on the base columns (Fig. 

14d), but have an insignificant effect on beam curvatures (Fig. 14c).  

Figure 15 illustrates the basic time history analysis results of this frame for the El-

Centro 1940 N-S ground motion record. The record is scaled up to a peak ground 

acceleration of 0.5g in order to obtain significant damage for the frame under 

investigation. The trends observed from nonlinear time history analysis are similar to 

those obtained from pushover analysis: Considering shear-flexure interaction 

increases the first storey drift (Fig. 15b, c) and therefore the curvature ductility 

demand on the column base which increases from 1.1 to 5.4 (Fig. 15d). The shear 

flexibility, with and without interaction, has only a minor effect on the global 

response (Fig. 15a).   
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Figure 13. Geometry of the wall-frame structure 

 

  

  
 

Figure 14. Pushover analysis results: (a) base shear over weight vs. top displacement over total height; 

(b) maximum normalized interstorey drifts at 2% normalized top displacement demand; (c) maximum 

beam curvature ductility demands and; (d) maximum column curvature ductility demands at a top 

displacement corresponding to an average drift of 2% 
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Figure 15. Inelastic time history analysis results for the El-Centro 1940 N-S ground motion: (a) top 

lateral displacement response; (b) ground storey lateral displacement response; (c) maximum beam 

curvature ductility demands and; (d) maximum column curvature ductility demands  

 

6 CONCLUSIONS 

Experimental results from quasi-static cyclic tests on reinforced concrete (RC) 

walls have shown that shear deformations can constitute a significant ratio of the total 

deformations when the wall is loaded beyond the elastic regime. For cantilever walls, 

which form a stable flexural hinge at their base, the ratio of shear to flexural 

deformations remains approximately constant over the entire range of imposed 

displacement ductilities. This is contrary to the common modelling approach of 

treating shear deformation as decoupled from flexural deformations, which leads to 

constant shear deformations rather than a constant ratio of shear to flexural 

displacements once a flexural mechanism is formed and the shear force carried by the 

wall no longer increases. 

This paper presents a methodology for incorporating shear-flexure interaction in 

the seismic analysis of structures with slender RC walls. Building on mechanics and 

experimental evidence, a phenomenological constitutive V-γ law for the wall base 

section is proposed. The model is applicable for general loading conditions and can be 

simplified for the special loading condition of cantilever walls (constant shape of 

moment and shear profile). For the latter, a simple formula is proposed for 

determining a uniform average shear stiffness along the member length.   

The modifications are implemented in a flexibility-based distributed inelasticity 

beam-column element composed of two interacting sub-elements (flexure and shear), 

which are connected in series. The element is implemented in IDARC2D, a general 

finite element framework for inelastic static and dynamic analysis of RC structures. 

The model is validated against global and local results from a quasi-static cyclic test 

of a RC wall. Inelastic static and dynamic analyses of tall wall and wall-frame 

structures were also employed to examine the effect of considering or neglecting 
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shear-flexure interaction on global and local response quantities. The results of these 

analyses showed that considering shear-flexure interaction increases significantly the 

flexibility in the plastic hinge region. This led to an improved prediction of the base 

shear demand for the structure with walls of different length and increased curvature 

ductility demands on the column bases of the wall-frame structure. It is therefore 

recommended that shear-flexure interaction should be considered in the analysis if not 

only the global response of the system is of interest but if the analysis results are also 

used to assess the internal force distribution, local ductility demands or inter-storey 

drifts.  
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